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Abstract—Recently, experimental and theoretical studies have
revealed the potential of fractional calculus to represent vis-
coelastic blood vessel and arterial biomechanical properties.
This paper presents five fractional-order models to describe the
dynamic relationship between aortic blood pressure and volume,
representing the apparent vascular compliance. The proposed
model employs fractional-order capacitor element (FOC) to
lump the complex and frequency dependence characteristics of
arterial compliance. FOC combines both resistive and capacitive
properties, which the fractional differentiation order, α , can
control. The proposed representations have been compared with
generalized integer-order models of arterial compliance. All
structures have been validated using different aortic pressure
and flow rate waveforms collected from various human and
animal species such as pigs and dogs. The results demonstrate
that the fractional-order scheme can reconstruct the overall
dynamic of the complex and frequency-dependent apparent
compliance dynamic and reduce the complexity. The physiolog-
ical relevance of the proposed models’ parameters was assessed
by evaluating the variance-based global sensitivity analysis.
Moreover, the simplest fractional-order representation has been
embed in a global arterial lumped parameter representation to
develop a novel fractional-order modified arterial Windkessel.
The introduced arterial model has been validated by applying
real human and animal hemodynamic data and shows an
accurate reconstruction of the proximal blood pressure. The
novel proposed paradigm confers a potential to be adopted in
clinical practice and basic cardiovascular mechanics research.

Keywords—Fractional calculus, fractional-order capacitor,
vascular compliance, aortic input impedance, Global sensitivity
analysis.

I. INTRODUCTION

C Ardiovascular diseases (CVDs) are the number one
cause of premature death in the world. Decreased
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arterial compliance is recognized to be detrimental to the
heart and arterial functions. Besides, variation in arterial
compliance is associated with the major forms of CVDs,
mainly hypertension and atherosclerosis [1]. Accordingly,
assessment and evaluation of arterial compliance changes are
crucial in diagnosing and treating hemodynamic disorders
[2]. Vascular compliance stands for the ability of the vessel
to store the blood. Functionally, it can be defined as the
ratio of the incremental variation in the blood volume (dV )
due to an incremental variation in distending pressure (dP).
Accordingly, mathematically it is expressed as: C = dV/dP
[3]. Over the last decades, several analytical and experi-
mental studies have focused on modeling and characterizing
vascular compliance [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. With the introduction of the well-known linear
Windkessel representation of the arterial system, arterial
compliance was assumed to have a single constant value for
the entire cardiac cycle. Hence, the transfer function relating
the blood volume variation to the blood pressure input
changes was considered constant as well. Accordingly, the
arterial compliance was modeled within the arterial lumped
parameter circuit’s Windkessel as an ideal capacitor whose
capacitance is constant [8]. However, this assumption was not
realistic, and its drawbacks were reflected essentially in the
estimation of the hemodynamic determinants [14]. In fact, it
does not lead to the correct evaluation of the true value of
arterial compliance [15]. Besides, by analyzing the transfer
function blood volume/input pressure, experimental studies
have shown that this relationship is frequency-dependent, and
a time delay between the arterial blood volume and the input
blood pressure is observed. Hence a variation in the arterial
compliance along the cardiac cycle coexists [16], [3], [14].

In order to take into account this frequency dependence,
some research investigations have promoted a new config-
uration where they considered the viscoelastic properties of
the arterial vessel and represented the arterial compliance
using the so-called Voigt-cell configuration[16], [17]. This
type of arterial model was known as viscoelastic Windkessel.
Although the viscoelastic Voigt-cell has resolved some con-
tradictions of the standard elastic lumped parameter Wind-
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kessel, this configuration does also present some limitations
as it does not account for the so-called stress-relaxation
experiment [16]. To overcome this restriction, high-order
viscoelastic configurations have been proposed by connecting
many Voigt-cells. This solution might lead to an accurate
estimation of arterial compliance and its feature; however,
it is deemed a very complex alternative that poses extra
challenges. Indeed, the number of parameters to estimate is
more significant for higher-order models, while the obtained
experimental data is habitually small and insufficient to
identify all the parameters. It is also known that reduced-
order models are more desirable for their uniformity and
simplicity of investigation [18], [16].

In the last decades, non-integer differentiation, the so-
called fractional-order differential calculus, became a popu-
lar tool for characterizing real-world physical systems and
complex behaviors from various fields such as biology,
control, electronics, and economics. The long-memory and
spatial dependence phenomena inherent to the fractional-
order systems present unique and attractive peculiarities that
raise exciting opportunities to represent complex phenom-
ena that represent power-law behavior accurately. Regarding
cardiovascular modeling, the power-law behavior has been
demonstrated in describing human soft tissues visco-elasticity
and characterizing the elastic vascular arteries. The in-vivo
and in-vitro experimental studies have pointed that fractional-
order calculus-based approaches are more decent to precisely
represent the hemodynamic; the viscoelasticity properties of
soft collagenous tissues in the vascular bed; the aortic blood
rate [19], [20]; red blood cell (RBC) membrane mechanical
properties [21] and the heart valve cusp [22], [23], [24], [20].

In addition, recently, we developed novel fractional-order
arterial Windkessel representations, [25], [26]. The proposed
framework takes advantage of the relevant fractional-order
calculus tools. Basically, the fractional-order Windkessel
representations are similar to the well-known Windkessel
configurations; however, instead of representing the arte-
rial compliance with an ideal capacitor which is purely a
storage element, we investigate the use of the fractional-
order element, namely the fractional-order capacitor. Our
elemental investigations in the frequency domain showed
that the proposed models accurately reconstruct the arterial
impedance and solve the hemodynamic inverse problem by
estimating the different vascular biomechanics determinants.
Moreover, a clear association between the central hemody-
namic parameters and the fractional differentiation order (α)
has been observed. In this context, fractional orders have
been employed to describe and control the transition between
viscosity and elasticity.

This paper presents five fractional-order model represen-
tations to describe the apparent vascular compliance by
representing the active relationship between blood pressure
and volume. Each configuration incorporates a fractional-
order capacitor element (FOC) to lump the apparent arterial
compliance’s complex and frequency dependence properties.

FOC combines both resistive and capacitive attributes within
a unified component, controlled through the fractional dif-
ferentiation order, α . Besides, the equivalent capacitance
of FOC is inherently frequency-dependent, compassing the
complex properties using only a few numbers of param-
eters. In order to evaluate the physiological relevance of
the developed representations’ parameters and calibrate the
models, variance-based global sensitivity analysis was evalu-
ated. The proposed representations have been compared with
generalized integer-order models of arterial compliance. Both
models have been employed and verified using different cen-
tral pressure and flow rate waveforms secured from human
and animal subjects such as pigs and dogs. In addition, the
simplest fractional-order model’s structure of the proposed
arterial compliance that consists of a single fractional-order
capacitor has been integrated within a well-known arterial
Windkessel configuration to represent proximal and distal
compliances. Accordingly, we developed a new modified ar-
terial Windkessel. This model has been applied and validated
using real central hemodynamic waveforms.

II. PRELIMINARIES

A. Apparent Compliance

The apparent compliance, Capp, refers to the arterial bed’s
capacity to store blood dynamically. Functionally, it corre-
sponds to the transfer function between the blood volume
(V ) and input blood pressure (Pin). Here, we present its
mathematical derivation. Based on the conservation mass, the
arterial blood flow pumped from the heart to the vascular bed
(Qin) which can be written as:

Qin = Qstored +Qout , (1)

where Qstored is the blood stored in the arterial tree, and
Qout corresponds to the flow out of the arterial system. In
the frequency domain Qout can be expressed as:

Qout(w) =
1

Rapp(ω)
Pω (w). (2)

where ω corresponds to the angular frequency and Rapp is the
apparent arterial resistance [3]. Qstored is defined as the rate
of flow by taking the first derivative of the volume equation
for the time.

Qstored(t) =
dV
dt

=
dV (t)
dPin(t)︸ ︷︷ ︸

Capp

dPin(t)
dt

, (3)

Hence in the frequency domain Qstored can be expressed as:

Qstored = jωPinCapp (4)

Aortic input impedance Zin defines the capacity of the
vascular system to impede the blood rate dynamically. It
corresponds to the left ventricular afterload. Functionally, it
is expressed in the frequency domain, as the ratio between
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Fig. 1: (a) Circuit diagram of the ordinary resistor and capacitor and the constant phase element is (fractional-order capacitor). It also shows the current-
voltage relationship (Q-P): fractional-order capacitor; Q(t) =Cα (dα/dtα )P(t) where 0≤ α ≤ 1 and Cα is the pseudo-capacitance. The limits values of
α namely for α = 0 and α = 1 corresponds to the ordinary elements the ideal resistor and capacitor respectively. (b) Circuit diagram representing the
equivalent RC tree circuit of the fractional-order capacitor of any order, 0 < α < 1. (c) Circuit diagram representing the equivalent RC tree circuit of the
fractional-order capacitor when α = 0.5.

the arterial blood pressure (Pin) and flow (Qin) at the aortic
level of the systemic vascular system, that is:

Zin(ω) =
Pin(ω)

Qin(ω)
, (5)

Substituting equations (2) and (4) into equation (1) gives:

Qin = jωPinCapp +
1

Rapp(ω)
Pω (w). (6)

Rearranging the above equation yields an expression for Capp
in terms of Zin and Rapp as follow:

Capp =
Rapp−Zin

jωRappZin
(7)

B. Fractional-order capacitor

Fractional-order capacitor (FOC) known as the constant
phase element [27] is a fractional-order electrical element
representing the fractional-order derivative through its curent-
volatge characteristic. In fact, the relationship between the
current, Q(t), passing through an FOC and the voltage, P(t),
across it with respect to time, t, can be written as follow:

Q(t) =Cα

dα

dtα
P(t), (8)

where Cα is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second1−α ], [28].
The conventional capacitance, C, in unit of Farad is related
to Cα as C = Cα ωα−1 that is frequency-dependent. The
fractional-order impedance (Zα ) is expressed as follow:

Zα (s) =
1

Cα sα
=

1
Cα

ω
−α cos(φ)︸ ︷︷ ︸
Zr

− j
1

Cα

ω
α sin(φ)︸ ︷︷ ︸
Zi

, (9)

where s corresponds to the Laplace variable and φ denotes
the phase shift expressed as: φ =απ/2 [rad] or φ =90α

[degree or ◦]. Zr and Zi are the real and imaginary parts
of Zα corresponding to the resistive and capacitive portions,
respectively. From (9), it is apparent that the transition
between resistive and capacitive parts is ensured by α . If
0 ≤ α 6 1, the bounding conditions of α will corresponds
to the discrete conventional elements: the resistor at α = 0
and the ideal capacitor at α = 1). As α goes to 0, (Zi)
convergence to 0, and thus the fractional element looks like
that a pure resistor, whereas as α goes to 1, (Zr) converges
to 0 and hence, the fractional element serves as a pure
capacitor, [29]. Fig. 1 (a) represents the schematic diagram
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Fig. 2: Schematic representations of the proposed fractional-order apparent
compliance models.

for a FOC along with the ideal resistor and capacitor. Many
studies have shown that FOC is equivalent to a resistor ladder
network (RC tree circuit), [30], [31]. This structure is similar
to the electrical analogy of the generalized Kelvin–Voigt
viscoelastic model. Fig. 1 (b) presents the equivalent RC
tree circuit of FOC of any order, and Fig. 1 (c) shows the
equivalent RC tree circuit of FOC of order 0.5. Bearing these
properties in mind, the fractional-order α parameter allows
extra versatility in modeling viscoelastic systems [32].

III. MODELS

As shown in the previous section, the FOC offers extra
flexibility via its fractional differentiation order α , and it
permits the smooth transition and control between the re-
sistive and capacitive parts, which might be investigated to

model the arterial system properties. By rewriting (3) in the
fractional-order domain as:

Qstored(t) =
dαV
dtα

=
dαV (t)
dα Pin(t)︸ ︷︷ ︸

Cαapp

dα Pin(t)
dtα

. (10)

The FOC can be an inherent lumped element that can catch
vascular compliance’s complex and frequency-dependent be-
havior. In fact, as expressed in (10), the pseudo compliance,
Cαapp , should be expressed in the unit of [l/mmHg .sec1−α ]
that makes, naturally, the standard compliance (CC), in the
unit of [l/mmHg], frequency-dependent as:

CC =Cαapp( jω)α−1. (11)

Hence the fractional-order capacitor presents physical bases
in portraying the complex and frequency dependency of
the apparent vascular compliance. Besides, based on the
variation of the fractional differentiation order α , the real
and imaginary parts of the resultant FOC’s impedance can
possess various levels, so by analogy, α can control dissi-
pative and storage mechanisms and hence the viscous and
elastic component of the arterial wall. Furthermore, it is
worth remarking that the equivalent circuit representation of
FOC can be seen as an infinity Voigt cells branches joined
in parallel. Consequently, FOC simplifies the representation
of the complex arterial network’s mechanical properties by
employing only two parameters (α and Cα ). In the following,
we present the five fractional-order representations of arterial
compliance shown in Fig. 2. In addition, as in this study, the
proposed models were compared with generalized ordinary
(integer-order) vascular compliance models; we also present
their expressions following the fractional-order ones.

A. Fractional-order Models

Model A: As shown in Fig. 2, this representation con-
sists of a single fractional-order capacitor. Accordingly, as
mentioned previously, the apparent arterial compliance for-
mulated in the unit of [l/mmHg] can be expressed as follows:

CA
app =Cα ( jω)α−1. (12)

Model B: As shown in Fig. 2, this representation consists
of an ideal integer-order capacitor (Cstat ) accounting for the
static compliance connected in series to and FOC. The appar-
ent arterial compliance formulated in the unit of [l/mmHg]
can be expressed as follows:

CB
app =

CαCstat( jω)α

Cα ( jω)α +Cstat( jω)
. (13)

Model C: As shown in Fig. 2, this representation con-
sists of an ideal resistor (R) connected in series to FOC.
The apparent arterial compliance formulated in the unit of
[l/mmHg] can be expressed as follows:

CC
app =

Cα ( jω)α−1

1+RCα ( jω)
. (14)
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Fig. 3: In-vivo human aging data sets digitized from ( Nichols et al., [33]).
It presents the blood flow rate and pressure waveforms at different ages,
namely 28, 52, and 68 years.

Fig. 4: In-vivo human hypertension data sets digitized from (Nichols et
al., [33]). It presents the blood flow rate and pressure waveforms at
different hypertension conditions, namely normotensive, mild-hypertension,
and severe-hypertension.

Fig. 5: In-vivo animal (Pigs and Dogs) data sets digitized from (Segers et
al.,[34]).

Model D: As shown in Fig. 2, this representation consists
of an ideal resistor (R), an ideal integer-order capacitor
(Cstat ), and FOC all connected in series. The apparent arterial
compliance formulated in the unit of [l/mmHg] can be
expressed as follows:

CD
app =

CstatCα ( jω)α

Cstat( jω)+Cα ( jω)α +RCαCstat( jω)α+1 . (15)

Model E: As shown in Fig. 2, this representation consists
of an ideal resistor (R1) connected in parallel to a branch
of a FOC in series with an ideal resistor (R2). The apparent
arterial compliance formulated in the unit of [l/mmHg] can
be expressed as follows:

CE
app =

1+(R1 +R2)Cα ( jω)α−1

R1(1+R2Cα ( jω)α )
. (16)

B. Integer-order Models

Model F: This model expresses the apparent compliance
based on the general viscoelastic model [35]. It is formulated
as follows:

CF
app =Cstat

∏
N
n=1 an(( jω)+bn)

∏
N
n=1 bn(( jω)+an)

, (17)

where an and bn corresponds to imperial constants that can
be adapted to fit any special case. Cstat expresses the static
compliance. Goedhard et. all pointed that this model could
fit real experimental data with N=4, which we adopt in our
comparative study.

Model G: It corresponds to the Voigt-cell based-
representation. It consists of an integer-order, ideal capacitor
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(Cstat ) accounting for the static compliance in series to a
resistor (Rd), accounting for viscous losses.

CG
app =Cstat

1
1+( jω)RdCstat

(18)

IV. METHOD & MATERIAL

A. In-vivo human and animal datasets

In order to validate the proposed approach, in this study,
we use real data for human aging human hypertension and
animal subjects. The in-vivo human data was extracted and
digitized from aging, and hypertensive studies (Nichols et
al., [33]). The aging human data consists of measured aortic
blood flow rate (Qa) and aortic blood pressure (Pa) at various
ages, specifically 28, 52, and 68 years whose cardiac cycle
is T = 0.95 Sec. The hypertensive pulse waves correspond to
the aortic blood flow rate and pressure waveforms for three
human subjects suffering from three different hypertension
stages, particularly normotensive, mild-hypertension, and se-
vere hypertension. Their cardiac cycle is T = 0.92 Sec. In
addition, to further compare and check the efficiency of the
proposed models, we utilized animal (pigs and dogs) data
extracted and digitized from (Segers et al.,[34]).The cardiac
cycle of the dog is T = 0.46 Sec, and the pig’s one is
T = 0.52 Sec. Figures 3-5 show the blood flow and pressure
signals for each subject that we have used.

B. Sensitivity analysis for the proposed arterial apparent
compliance

In order to study how the variation in the apparent
arterial compliance modulus and phase is associated with
the variations of the different input parameters factors, a
global sensitivity analysis based on variance method has been
performed. Variance-based Sensitivity Analysis (VBSA) is a
valuable step in the model calibration process, estimating the
model parameters. In fact, it provides a relevant insight on
how changes in the estimates of the parameters (the inputs
of the model) map into variations of the performance metric
that evaluates the model fit. A detailed review with practical
workflow about the sensitivity analysis literature can be found
in [36], [37], [38]. In this study, we evaluate the VBSA of the
fractional-order arterial compliance using First-order indices
known also as ’main effect’ and the total-order indices so-
called ’total effect’. The ’main effect’ indices measure the
direct contribution of the output variation from individual
input factor or, equivalently, the expected reduction in output
variance that can be obtained when fixing a specific input
[36]. The First-order indices is defined as:

SV BF =
Vx∼i[Ex∼i(y|xi)]

V (y)
=

V (y)− [Ex∼i(y|xi)]

V (y)
(19)

where E denotes expected value, V denotes the variance, x
denotes the input, y denotes the output and x∼ i denotes "all
input factors but the i-th". The total-order indices evaluates
the overall contribution from an input factor considering its

direct effect and its interactions with all the other factors,
which might amplify the individual effects. It is defined as:

SV BT =
Ex∼i[Vxi(y|x∼ i)]

V (y)
= 1− Vx∼i[Exi(y|x∼ i)]

V (y)
(20)

C. Parameters fitting of the models

To fully identify the proposed fractional-order model and
the integer-order based apparent compliance representations,
the parameters and the fractional differentiation orders have
to be estimated using the measured flow and pressure wave-
forms. The estimation process was based on a non-linear
least square minimization routine applying the well-known
MATLAB−R2020b, function fmincon . The parameters to
estimate for each model’s representation CModel

c are refereed
as ΘModel where Model = {(A),(B),(C),(D),(E),(F),(G)}
denotes to the index of the model’s structure.

Θ
Model =



CαA ,αA if Model = A
CstatB ,CαB ,αB if Model = B
RC;CαC ,αC if Model =C
RD;CstatD ,CαD ,αD if Model = D
R1E ;R2E ,CαE ,αE if Model = E
CstatF ,ai |i=1,2,3,4,bi |i=1,2,3,4 if Model = F
Rd ;Cstat if Model = G

Fig. 6 exposes a flowchart describing the process of the
models’ parameters estimation and performance analysis.

Algorithm 1 Parameter calibration of the models

1: Load the datasets of the aortic blood pressure (Pin) and
flow rate (Q)

2: Evaluate the Fast Fourier Transform (FFT) of both P and
Q

3: Select the frequency range (Hz) f ∈ [0 12]
4: Calculate the aortic input impedance Zin

. Using equation (5)
5: Calculate the in-silico apparent compliance Capp

. Using equation (7)
6: Select the model to fit with the data
7: Include and Initialize the parameter to estimate Θ

8:

RMSE =

√√√√√√∑
Ns
i=1

([
Re− R̂e
max(Re)

]2

+

[
Im− ˆIm
max(Im)

]2
)

Ns

Θ̂ = arg min
Θ

RMSE

Where Ns denoting the number of explored frequency
samples, Re and Im denoting the real and imaginary parts
of the exprmental Capp, and Im, evaluated in step (5), and
R̂e and ˆIm corresponds to the real and imaginary parts
of CModel

app (Θ), respectively. θ̂ denotes the estimates that
minimize RMSE
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Fig. 6: A flowchart showing the three main steps of the models’ calibration and performance analysis.

Furthermore, algorithm 1 summarizes the different steps
applied to identify the different representations and estimate
the model’s parameters.

D. Statistical Analysis & convergence analysis

To analyze the ability of the developed models in reproduc-
ing the apparent arterial compliance dynamic, we evaluate the
RMSE. In addition, because the model representations pos-
sess various numbers of parameters, to conduct a legitimate
measurement and comparison, in addition to the RMSE, we
assess the following criteria:
• Bayesian Information Criterion, (BIC):

BIC =−2 · ln(RMSE)+P · ln(Ns). (21)

• Akaike Information Criterion, (AIC):

AICC =−2 · ln(RMSE)+
2 ·P ·Ns

Ns−P−1
. (22)

• Corrected Akaike Information Criterion (AICC):

AICC =−2 · ln(RMSE)+
2 ·P ·Ns

Ns−P−1
. (23)

In the above expressions, P corresponds to the number of
parameters.
Furthermore, to check the convergence of the estimates of
the unknown parameters, we assess the time history of the
estimated values of every fractional-order model during the
optimization process starting from different initial conditions.
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Fig. 7: Main effect and total effect related-variance based sensitivity analysis with respect to the modulus of the fractional-order complex and frequency
dependent apparent compliance
In addition, we show the time history of the objective
function (RMSE) during the optimization process starting
from different initial conditions.

V. RESULTS & DISCUSSIO

A. Variance based sensitivity analysis in the fractional-order
models

Fig. 7 shows the evaluated V BSA( f ) based on main
effect and total effect indices for the modulus of the
complex and frequency-dependent apparent compliance for
each fractional-order model. Fig. 8 displays the evaluated
V BSA( f ) based on main effect and total effect for the

phase of the complex and frequency-dependent apparent
compliance for each fractional-order model. In all cases, the
V BSA was computed over a frequency range (Hz) f ∈ [0 30].
For the ease of visualization, for each model, all the param-
eters are listed in y-axis, whereas the x-axis represent the
frequencies at which the main and total effect indices were
computed. It is clear from these plots that the modulus and
phase-based Model (A) and Model (B)are very sensitive to
the fractional orders αA and αA respectively. With respect
to the modulus, it worth to note that this sensitivity is
minimal at low frequencies in favor of CαA for Model (A)
and (CstatB = CαB ) for Model (B). This result indicates that
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Fig. 8: Main effect and total effect related-variance based sensitivity analysis with respect to the phase of the fractional-order complex and frequency
dependent apparent compliance
the initialization of the fractional differentiation orders for
Model (B) and Model (B) should be set properly in the
parameter’s calibration process. In addition, it marks that
the fractional orders in these cases have central control in
the variation of the modulus and phase of the apparent

arterial compliance. Accordingly, this parameter might play
an important function as a bio-marker assessing the transition
between viscosity and elasticity; hence a potential index for
arterial stiffness. With respect to Model (C) and Model (D),
generally the modulus and phase are not very sensitive to the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.460769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.460769


TABLE I: RMSE calculated based on the developed fractional-order representation and standard ones for each subject.

Model (A) Model (B) Model (C) Model (D) Model (F) Model (E) Model (G)

Human
(aging)

68-yr 1.64 1.63 1.51 1.54 1.42 1.16 1.55
52-yr 1.4 1.38 1.16 1.18 1.1 1.07 1.21
28-yr 5.44 5.29 2.85 3.96 2.36 2.85 4.31

Human
(hypertension)

Normal 0.72 0.7 0.63 0.63 0.62 0.57 0.63
Mild 2.29 2.26 2.1 2.11 1.44 1.86 2.11
Sever 0.64 0.64 0.64 0.64 0.64 0.63 0.65

Animal
(healthy)

Pig 1.18 1.14 0.49 0.69 0.45 1.15 0.8
Dog 20.27 20.12 16.83 18.09 15.22 10.51 18.47

TABLE II: BIC calculated based on the developed fractional-order representation and standard ones for each subject.

Model (A) Model (B) Model (C) Model (D) Model (F) Model (E) Model (G)

Human
(aging)

68-yr 4.14 4.15 6.87 6.84 9.56 22.79 4.25
52-yr 4.45 4.49 7.4 7.36 10.06 22.95 4.74
28-yr 1.74 1.8 5.6 4.94 8.54 20.99 2.21

Human
(hypertension)

Normal 5.78 5.84 8.63 8.61 11.22 24.2 6.07
Mild 3.47 3.5 6.21 6.2 9.53 21.85 3.64
Sever 6.02 6.03 8.58 8.59 11.16 24.02 6

Animal
(healthy)

Pig 3.83 3.9 7.68 6.97 9.9 18.44 4.6
Dog -1.86 -1.84 0.59 0.45 2.87 14.01 -1.67

TABLE III: AIC calculated based on the developed fractional-order representation and standard ones for each subject.

Model (A) Model (B) Model (C) Model (D) Model (F) Model (E) Model (G)

Human
(aging)

68-yr 3.01 3.02 5.18 5.14 7.3 17.7 3.12
52-yr 3.32 3.36 5.7 5.66 7.8 17.87 3.61
28-yr 0.61 0.67 3.9 3.25 6.28 15.9 1.08

Human
(hypertension)

Normal 4.65 4.71 6.94 6.92 8.96 19.12 4.94
Mild 2.34 2.37 4.51 4.51 7.27 16.76 2.51
Sever 4.89 4.9 6.89 6.9 8.9 18.94 4.87

Animal
(healthy)

Pig 3.67 3.74 7.44 6.73 9.58 17.72 4.44
Dog -2.02 -2 0.35 0.21 2.55 13.3 -1.83

TABLE IV: AICC calculated based on the developed fractional-order representation and standard ones for each subject.

Model (A) Model (B) Model (C) Model (D) Model (F) Model (E) Model (G)

Human
(aging)

68-yr 4.34 4.35 8.18 8.14 13.02 107.7 4.45
52-yr 4.65 4.7 8.7 8.66 13.52 107.87 4.95
28-yr 1.95 2 6.9 6.25 12 105.9 2.41

Human
(hypertension)

Normal 5.99 6.04 9.94 9.92 14.68 109.12 6.27
Mild 3.68 3.7 7.51 7.51 12.98 106.76 3.84
Sever 6.22 6.23 9.89 9.9 14.62 108.94 6.21

Animal
(healthy)

Pig 6.67 6.74 15.44 14.73 29.58 -42.28 7.44
Dog 0.98 1 8.35 8.21 22.55 -46.7 1.17

TABLE V: Parameter estimates of the fractional-order models for each subject.
Model (A) Model (B) Model (C) Model (D) Model (E)
CαA αA CstatB ,CαB αB RC CαC αC RD CstatD ,CαD αD R1E R2E CαE αE

Human
(aging)

68-yr 2.93 0.2 3.45 0.18 0.14 0.44 1.36 0.12 1.27 1.43 1.8 320 4.41e-5 1.49
52-yr 3.85 0.34 5.14 0.27 0.08 0.85 1.29 0.07 2.1 1.43 0.88 179.42 2.37e-4 1.25
28-yr 7.88 0.35 10.65 0.27 0.04 0.92 1.63 0.04 4.36 1.47 0.43 57.17 5.47e-4 1.39

Human
(hypertension)

Normal 2.94 0.51 4.42 0.41 0.05 1.28 1.02 0.06 1.4 2 0.93 340.63 1.16e-4 1.14
Mild 1.44 0.75 2.44 0.63 0.06 0.53 1.05 0.06 1.13 1.07 2.96 92.33 2.83e-5 1.66
Sever 1.08 0.65 1.77 0.55 0.05 0.71 0.84 0 1.77 0.55 1.4 126.29 1.41e-3 0.64

Animal
(healthy)

Pig 1.72 0.57 2.59 0.49 0.09 0.25 1.38 0.07 0.87 1.42 2.6 0.24 0.06 1.36
Dog 3.07 0.28 3.65 0.25 0.12 0.13 1.61 0.1 0.98 1.38 2 728.44 1.94e-5 1.38
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variation of the fractional order differentiation αC and αD,
respectively. The αC-related V BSA based on total effect is
around 1 in the modulus case, and it increases with frequency
concerning the phase. The αD-related V BSA based on total
effect increases as the frequency increases for both modulus
and phase. For Model (E), it is noticeable that the fractional
differentiation order αE plays an important role over the
whole frequency range for both the phase and modulus
of the apparent compliance. In addition, it is considered
the most critical for the parameters estimation procedure.
Conclusively, the sensitivity analysis based on the variance
method was very informative to understand the role of the
fractional-order over the frequency domain and to evaluate
the effect of the parameters variation on the changes of the
modulus and phase of the apparent compliance. This analysis
is also very useful for the subsequent step consisting of the
model calibration and real fitting data.

B. Model calibration

The evaluated RMSE and {BIC, BIC and AICc}, values
after applying the proposed model and integer-order ones
to the experimental human and animal data, are presented
in TABLE I-IV, respectively. The reconstructed apparent
arterial compliance magnitudes using the fractional-order
and integer-order models and the experimental magnitude
are shown in Fig. 9. Each row in this figure corresponds
to a specific subject from the real data, and each column
corresponds to a particular model. Analyzing these results
makes it clear that the fractional-order model representations
grant an acceptable reproducing of the real arterial apparent
compliance with a minimum number of parameters.
The fractional-order Model (C) and Model (E) present
the best RMSE comparing to the other fractional-order
representation. The comparison between the proposed
fractional-order models and the integer ones, namely Model
(F) and (G) confirms that as the models differ in terms
of performance, there is a trade-off between complexity
induced by the number of parameters per representation and
accuracy. Indeed, high-order models deliver high precision,
however, at the expense of complexity. In order to take into
account this compromise, the BIC and AIC criteria have been
evaluated. Accordingly, Model (A) and Model (B) present
the minimum values. Overall, using the fractional-order
element enhances the accuracy of arterial compliance and
reduces the complexity. For example, approximately the
same performances are obtained using both Model (C) and
Model (F). However, in the representation-based Model
(C), only three parameters have been used rather than nine
parameters in Model (F).

TABLE V presents the estimates of the unknown param-
eters of each fractional-order representation for each human
and animal subject. Using Model (A) and Model (B), for
all the subjects, the fractional-order, α , is less than 1. These
results demonstrate the fractional-order behavior within the

apparent compliance. As in the estimation process, the esti-
mate of α was only constrained to be positive, larger than
zero (the lower bound is set to be 0 or the upper bound left
unconstrained, equal to infinity). Therefore, this effect intends
that the vascular system presents a viscoelastic behavior, not
a purely elastic one. Actually, the fact that α 6= 1 means that
the fractional-order component involves both resistance and
capacitance parts, as demonstrated mathematically in Eq. (9).
The contributions from both the resistive and capacitive parts
within the fractional-order capacitor are controlled through
the fractional-order, α , allowing a profound physiological
characterization. As the α moves to 1, the capacitance
component becomes predominant and, hence the vascular
mechanism functions as a pure elastic system, and as α

goes to 0, the resistive portion expands, and so the vascular
mechanism operates as a pure viscous system. By examining
the estimates of the fractional orders of Models (C), (D) and
(E), it is noticeable that for all the subjects, α̂ is higher than
1. Functionally, as α beats 1, the real part of the fractional-
order capacitor impedance, Zr, converts negative, and hence
it has the characteristic of a negative resistor producing
power. Having a negative resistance in these models appears
as compensation for the added static resistance in those
representations. It is worth mentioning that the interest of
constant resistor and/or capacitor in these fractional-order
models is to account for the static viscosity and/or elasticity,
respectively, while the fractional-order capacitor represents
the ability of the arterial vessel to store blood dynamically.

C. Convergence of the parameters

As shown in the parameter calibration algorithm 1,
the estimate of ΘModel is Θ̂Model were found via the
solution of the inverse problem of the estimated apparent
compliance (Ĉapp = CModel

app (Θ)) and the real one (Capp).
Initialized by Θ0 and using a nonlinear programming solver
(fmincon), the inverse algorithm iteratively predicts the set
of parameters Θ̂ which minimizes the objective function,
the root mean square error between the complex Capp[i] and
the model predicted Ĉapp[i](Θ) evaluated at the ith harmonic
(Θ̂ = arg min

Θ

RMSE). In this process, we constrained
all the parameters to be positive to guarantee physical
properties ( Lowerbounds = [0], Upperbounds = [∞] and .
Once a tolerance of error was reached, the convergence of
the method is confirmed, the fmincon function exits and
yields an output of the optimal set of model parameters
estimates θ̂ ∗. In order to study the convergence of the
parameter estimations , Θ̂∗

Model
, of the proposed fractional-

order models, the estimation problem has been solved for
each fractional-order model using different initial conditions.

Fig. A.1, in the appendix, shows the time history of the
estimated values of the models’ parameters {Model (A);
Model (B); Model (C); Model (D); Model (E);} during
the optimization process starting from ten different initial
conditions. In addition, Fig. A.2, in the appendix, displays
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Fig. 9: Estimated apparent compliance magnitudes using proposed fractional-order and standards apparent compliance models {Model (A), Model (B),
Model (C), Model (D), Model (E), Model (F), Model (G)} along with the experimental In-vivo human-aging and animal (Pigs and Dogs) ones.

the time history of the objective function (RMSE) during the
optimization process starting from different initial conditions.
Each color in these figures represents an iteration chain asso-
ciated with a given initial condition configuration. Overall, it
is clear that for each initial parameter configuration, after 100
iterations, the parameters and the RMSE converge to the same
value. Conclusively, we can guarantee a good convergence of
both the RMSE and parameters in the proposed fractional-
order model’s calibration.

D. Physiological consistency of the fractional differentiation
order parameter

The fractional-order paradigm affords a concise alternative
to characterize and quantify the biomechanical behavior of
membranes, cells, and tissues. In fact, many studies have
found that the fractional-order framework is particularly
relevant in the area of biorheology characterization. This
because many tissue-like materials present power-law
responses to applied stress or strain. The power-law
response has also been observed within the viscoelastic
characterization of the aorta. In-vivo and in-vitro experiments

and analysis showed the convenience of using fractional
order viscoelastic model rather than the integer-order ones
[21]. As shown previously, fractional differential order
provides extra flexibility to model the apparent arterial
compliance. It appears that the changes in the composition
of the viscoelasticity of the whole vascular system are
conveniently described in the fractional order of the model
system. Based on the model formulation, the fractional
parameter is convenient to describe the transition between
viscosity and elasticity levels. Although the lack of enough
real data, in this part, we investigate the interpretability and
the physiological consistency of the fractional differentiation
order.

For the ease of visualization, we present in Fig. 10, Fig.
12 and Fig. 11 the fractional differentiation order estimates,
α , of each fractional-order model for the human and animal
subject, respectively. In the case of human-hypertension, as
shown in Fig. 10 we notice that the α values decreases from
Mild-hypertension to Severe-hypertension conditions for
all the proposed fractional-order models. These results are
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Fig. 10: Estimated fractional differentiation order α using fractional-order
models {Model (A), Model (B), Model (C), Model (D), Model (E)} for
human hypertension .

consistent with clinical analysis for hypertension and related
risk factors. In fact, it is proven that stiff blood vessels and
a lack of elasticity cause increased resistance to the flow
of blood and high blood pressure. In addition, as shown
in the previous sections, it is clear that as the fractional
differentiation order decreases, the real part representing the
resistive part increases and mirrors the stiffness behavior
of the vessel. It is worth mentioning that in these results,
we mark that α values in the normotensive case don’t
show a good association with the other related-hypertension
conditions based orders except for Model(D). Conclusively,
in the human-hypertension cases, the variation of the
fractional-order is in compliance with the transition variation
between viscosity and elasticity of the vascular vessel, which
is revealed in the variation of the hypertension severity.
Given the small number of observations, more data are
needed to confirm this conclusion.

Fig. 11: Estimated fractional differentiation order α using fractional-order
models {Model (A), Model (B), Model (C), Model (D), Model (E)} for
human-aging.

Fig. 12: Estimated fractional differentiation order using fractional-order
models {Model (A), Model (B), Model (C), Model (D), Model (E)} for
animals (Pigs and Dogs) ones.

From Fig. 11, it is clear that αA and αB increase as
the age decreases. This result is in coherence with what
has been demonstrated in several human-aging studies. In
fact, it is well recognized that the arterial vessel becomes
stiffer with age. On the other hand, as we explained before,
when α goes to 0, the resistive part increases within the
fractional-order element, and the system behaves as a
viscous element. For the other models based {αC, αD, and
αE} where their values exceed 1, we can notice that from
68 years old subject to 52 years old one, the values of α

decrease; however, the 28 years old subject presents the
highest value. In this case, more real data are needed to
affirm such conclusion and correlation between the evolution
of the fractional differentiation order and age.

In Fig. 12, αA and αB of the dog is less than the ones
of the pig. By checking the blood pressure waveform of
these two animals in Fig. 3, it is clear that the pig’s systolic
and diastolic blood pressure values are larger than the dog’s
ones. Accordingly, the results can be interpreted as the
increase of the hemodynamic values might be a consequence
of increased vessel stiffness, leading to a decrease in α , for
{αC, which exceeds 1, we notice that αC of the pig is less
than the dog’s one, which is consistent with the previous
results. However, {αD and αE} are approximately equal
for both animals. The discussed results show the inherent
benefits of using fractional-order elements in describing and
characterizing the apparent arterial compliance. Fractional-
order modeling offers an acceptable accuracy with a
minimum number of parameters.

The analysis of the variation of the fractional differentia-
tion order in human-hypertension, human-aging and animals
points out the potential of this parameter to be adopted
as a surrogate measure of the arterial stiffness or marker
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Fig. 13: Fractional-order modified Windkessel circuit model. Cα represents
the compliance of large arteries close to the heart, while Cβ represents that
of muscular arteries further away from the heart. L represents the inertance
of the flowing blood. Rp represents the peripheral resistance.

of cardiovascular diseases. Future clinical and experimental
validations are required to prove the concept within a wide
spectrum of normal and pathological cardiovascular condi-
tions.

VI. EXAMPLE OF ARTERIAL WINDKESSEL MODEL USING
FRACTIONAL-ORDER COMPLIANCE

In order to evaluate the effect of integration the pro-
posed fractional-order compliance representations within a
complete arterial lumped parameter model, in this section
we present a novel fractional-order Modified Windkessel
model based on fractional-order capacitor. We validate the
output pressure waveforms through forward fractional-order
framework.

A. Fractional-order modified Windkessel Model

The modified Windkessel model (MWK) is one of the
simplest arterial representations that lumps the arterial net-
work into two main compartments, proximal and distal, [39].
Taking into account that the proximal arteries close to the
heart have different properties in comparison to the distal
ones, MWK splits the total arterial compliance used in the
original arterial Windkessel into two capacitances: proximal
capacitor represents the compliance of the large arteries,
which are commonly elastic and distal capacitor depicts
the compliance of muscular arteries that are stiffer. Clinical
studies demonstrated that distal compliance is very sensitive
to vasodilatory experiments, a property apparent in distal
arteries. Other investigations have also shown that proximal
compliance is reduced with aging and hypertension. The
latest properties make these capacitances potential indicators
of cardiovascular risk. Fig. 13 shows the circuit model of
the fractional-order modified arterial Windkessel (F-MWK),
which is similar to the MWK; however, instead of using
integer-order ideal capacitors to represent the arterial com-
pliances, simple fractional-order capacitors are employed. In
this arterial lumped model, Cα represents the compliance
of large arteries close to the heart, while Cβ represents
that of muscular arteries further away from the heart. L
represents the inertance of the flowing blood. Rp represents
the peripheral resistance. Q(t) corresponds to the arterial
blood flow and Pap(t) and Pad(t) denotes the proximal and
distal pressure respectively.

B. F-MWK mathematical model

As the model comprises two fractional-order capacitors
and an inductor, a state space representation with three states
is written to describe the dynamic of the arterial system.
Based on the Kirchhoff’s voltage and current laws, we obtain
the following three equations:

Dq
t X(t) = AX(t)+U, (24)

where,

Dq
t = [

dα

dtα
,

d1

dt1 ,
dβ

dtβ
]tr (25)

is the fractional-order derivative operator for all the states
and

X(t) =
[
Pap(t),Q1(t),Pad(t)

]tr (26)

represents the state vector, (·)tr denotes the transpose of the
row vector.

A =



0 − 1
Cα

0

1
L

0 − 1
L

0
1

Cβ

− 1
RpCβ


(27)

represent the parameters.

U is written as: 

Q(t)
Cap

0

0


(28)

To implement the fractional-order derivative we used the
following Grünwald–Letnikov (GL) formula [40]:

dα

dtα
f (t) = lim

h→0

1
hα

∞

∑
i=0

c(α)
i f (t− ih), α > 0, (29)

where h > 0 is the time step, c(α)
i (i = 0,1, ...) are the bi-

nomial coefficients recursively computed using the following
formula,

c(α)
0 = 1, c(α)

i =

(
1− 1+α

i

)
c(α)

i−1. (30)

C. Validation

The time validation of the proximal pressure waveforms
Pap was performed through the proposed F-MWK using in-
vivo human and animal database described in section IV.
The optimizer algorithm uses the measured aortic root flow
rate as an input and compute the required model parameters,
{Cα ,L,Cβ ,Rp,α,β}, which minimize the pressure root mean
square error (P-RMS), i.e. the difference between measured
and calculated aortic root pressure as:

PRMSE =

√
1
N

Σn
i=1(Papi − P̂api)

2 (31)
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Fig. 14: Estimated proximal blood pressure using the proposed fractional-
order modified Windkessel model along with the experimental in-vivo
human-aging and animal (Pigs and Dogs) ones.

Where N denotes the number of samples per Pap pressure
signal. To evaluate the performance of the estimation, we
calculate the relative error, R.E.[%] defined as:

R.E.[%] =
||Pap− P̂ap||2
||Pap||2

×100%. (32)

Fig. 14 shows the reconstructed blood pressure using the
proposed F-MWK model along with the measured in-vivo
blood waveform for each case of study, namely, human-

aging, human-hypertension, and animal. In TABLE VI, the
parameter estimates of the proposed F-MWK for each human
and animal subject listen. We also present the PRMSE
and R.E.[%] values for each subject. It is clear that the
proposed model based on fractional-order compliance was
able to capture the main features during the different phases
of the cardiac cycle (systolic and diastolic phases) of the
experimental data. The comparison between the obtained
R.E. of the human aging and hypertension data indicates
that the F-MWK reconstructs better the proximal pressure
in the hypertension case. The best reconstruction is obtained
in the case of the Pig blood pressure waveform with R.E.
around 2.68%. In this case, the proposed model could catch
all the features, including the dicrotic notch. The estimates
of the fractional differentiation orders (α , β ) and pseudo-
capacitances (Cα ,Cβ ) of the proximal and distal compliances,
respectively, for all the human-aging, hypertension, and ani-
mal cases are presented in Fig. 15. These results show that
as the age or the level of hypertension increases, the value
of α and β decreases. We noticed the same behavior for the
values of Cα and Cβ . These results are in agreement with
the clinical studies that prove that proximal compliance is
reduced with aging. In fact, the decrease of the value of
the fractional differentiation order and pseudo-capacitance
implies an increase in the resistive part and a decrease in
the compliance one.

VII. CONCLUSION

Arterial compliance is a vital determinant of the ventriculo-
arterial coupling dynamic. Its variation is detrimental to
cardiovascular functions and is associated with heart diseases.
Accordingly, assessment and measurement of arterial compli-
ance are essential in diagnosing and treating chronic arterial
insufficiency. Indices and surrogate measurements of arterial
compliance present a non-invasive assessment of the vascu-
lature’s health and can provide appropriate knowledge about
an individual’s future risk of morbidity and mortality. The
fractional-order behavior by mean of the power low response
has been shown in the characterization of the collagenous
tissues in the arterial bed, the arterial hemodynamic, the red
blood cell membrane mechanics, and the heart valve cusp.

TABLE VI: Parameter estimates of the fractional-order modified Windkessel arterial models along with the RMSEp and the relative error Re[%] for each
subject.

Parameters estimates Performance
Cα L Cβ Rp α β PRMSE R.E.[%]

Human (aging)
68-years 0.07 0.0012 0.9 1.13 0.83 0.89 8.63 8
52-years 0.85 0.0019 0.61 0.91 0.9 0.92 8.74 8.9
28-years 1.53 0.0037 0.93 0.72 0.92 0.94 6.79 7.48

Human (Hypertension)
Normal 1.63 0.0592 0.4 0.88 0.99 0.99 4.01 4.05

Mild 0.78 0.0020 0.25 1.32 0.96 0.96 5.46 4.56
Severe 0.6 0.0853 0.05 1.96 0.91 1.05 7.8 5.65

Animal (healthy) Pig 1.24 0.0342 0.23 1.98 1.01 1.05 2.92 2.68
Dog 0.68 0.0040 0.16 1.81 1.03 0.68 5.52 6.22
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Fig. 15: (a) Fractional differentiation order estimates, α , of the proximal compliance, (c) Fractional differentiation order estimates, β , of the distal
compliance, (b) Pseudo-capacitance estimate of the proximal compliance Cα , and (d) Pseudo-capacitance estimate of the distal compliance Cβ .

This paper investigates the fractional-order framework to
characterize vascular compliance. Accordingly, we introduce
five fractional-order lumped parametric representations to
assess apparent arterial compliance. The proposed models
vary in terms of the number of elements to characterize com-
pliance’s dynamic. Every configuration contains a fractional-
order capacitor (FOC) that accounts for the complex and
frequency dependence characteristics of the compliance. FOC
lumps both viscous and elastic properties of the vascular wall
in one component, controlled through the fractional differ-
entiation order (α) of FOC. To fully identify the proposed
models, the unknown parameters and the fractional differ-
entiation order were estimated using real hemodynamic data
collected from human aging and hypertensive and animal (Pig
and Dog) subjects. The developed parametric models produce
an accurate reconstruction of the real data. In order to check
the validity of the proposed concepts within a global arterial
pattern, the simplest fractional-order compliance developed
configuration consisting of a single FOC has been employed
to account for the proximal and distal arterial compliance
within a modified arterial Windkessel representation.

The validation results using real human and animal aortic
blood pressure and flow data show a perfect reconstruction
of the proximal blood pressure. In addition, the values of the

compliances and theirs fractional differentiation orders were
in agreement with the clinical results of the aging and hyper-
tension implications. Conclusively, our investigation attests
that the fractional-order modeling framework conveniently
captures the dynamic capacity of the vascular system to
store the blood. In addition, it shows that the fractional-
order paradigm has a prominent potential to afford a novel
alternative in assessing arterial stiffness.

In future work, we will propose a fractional-order dis-
tributed arterial network model. Besides, we will exam-
ine the effects of certain cardiovascular pathologies upon
changes in the dynamic arterial compliance described by
the fractional-order capacitor. To allow future authors to
produce reproducible and easily-compared evaluations of the
proposed approach, we provide a publicly available Matlab
code used for the presented results and models calibra-
tion algorithm. The pre-processed real data employed in
this work is also available at https://github.com/Bahloulm/
Fractional-modeling-of-vascular-compliance.
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APPENDIX

Convergence of the parameters
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(A) Time history of the estimated values {CαA , αA} during the optimization process
starting from 10 initial conditions. Each color represents an iteration chain associated
with a given initial condition.

(B) Time history of the estimated values {Cstat , CαB , αB} during the
optimization process starting from 10 initial conditions. Each color
represents an iteration chain associated with a given initial condition.

(C) Time history of the estimated values {rC , CαC , αC} during the optimization process starting from 10 initial conditions. Each color represents an iteration chain
associated with a given initial condition.

(D) Time history of the estimated values {rD, CstatD =CαD , αD} during the optimization process starting from 10 initial conditions. Each color represents an
iteration chain associated with a given initial condition.

(E) Time history of the estimated values {R1E , R2E , αD, CαE , αE } during the optimization process starting from 10 initial conditions. Each color represents
an iteration chain associated with a given initial condition.

Fig. A.1: Time history of the estimated values of the models’ parameters, during the optimization process starting from 10 initial conditions. Each color
represents an iteration chain associated with a given initial condition.
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(A) Time history of the RMSE during the optimization process starting from 10
initial conditions. Each color represents an iteration chain associated with a given
initial condition.

(B) Time history of RMSE during the optimization process starting from 10 initial
conditions. Each color represents an iteration chain associated with a given initial
condition.

(C) Time history of RMSE during the optimization process starting from 10
initial conditions. Each color represents an iteration chain associated with a
given initial condition.

(D) Time history of RMSE during the optimization process starting from 10
initial conditions. Each color represents an iteration chain associated with a
given initial condition.

(E) Time history ofRMSE during the optimization process starting from 10 initial
conditions. Each color represents an iteration chain associated with a given initial
condition.

Fig. A.2: Time history of RMSE, during the optimization process starting from 10 initial conditions. Each color represents an iteration chain associated
with a given initial condition.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.460769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.460769

	Introduction
	PRELIMINARIES
	Apparent Compliance
	Fractional-order capacitor

	Models
	Fractional-order Models
	Integer-order Models

	Method & Material
	In-vivo human and animal datasets
	Sensitivity analysis for the proposed arterial apparent compliance
	Parameters fitting of the models
	Statistical Analysis & convergence analysis

	Results & Discussio
	Variance based sensitivity analysis in the fractional-order models
	Model calibration
	Convergence of the parameters
	Physiological consistency of the fractional differentiation order parameter

	Example of arterial Windkessel model using fractional-order compliance
	Fractional-order modified Windkessel Model
	F-MWK mathematical model
	Validation

	Conclusion
	References
	Appendix

