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Abstract 18 
 Modern vaccine designs and studies of human leukocyte antigen (HLA)-mediated 19 
immune responses rely heavily on the knowledge of HLA allele-specific binding motifs and 20 
computational prediction of HLA-peptide binding affinity. Breakthroughs in HLA peptidomics 21 
have considerably expanded the databases of natural HLA ligands and enabled detailed 22 
characterizations of HLA-peptide binding specificity. However, cautions must be made when 23 
analyzing HLA peptidomics data because identified peptides may be contaminants in mass 24 
spectrometry or may weakly bind to the HLA molecules. Here, a hybrid de novo peptide 25 
sequencing approach was applied to large-scale mono-allelic HLA peptidomics datasets to 26 
uncover new ligands and refine current knowledge of HLA binding motifs. Up to 12-40% of the 27 
peptidomics data were low-binding affinity peptides with an arginine or a lysine at the C-28 
terminus and likely to be tryptic peptide contaminants. Thousands of these peptides have been 29 
reported in a community database as legitimate ligands and might be erroneously used for 30 
training prediction models. Furthermore, unsupervised clustering of identified ligands revealed 31 
additional binding motifs for several HLA class I alleles and effectively isolated outliers that 32 
were experimentally confirmed to be false positives. Overall, our findings expanded the 33 
knowledge of HLA binding specificity and advocated for more rigorous interpretation of HLA 34 
peptidomics data that will ensure the high validity of community HLA ligandome databases. 35 
 36 
Introduction 37 
 Human leukocyte antigen (HLA) is a family of proteins in the immune system that binds 38 
to and presents peptide fragments of proteins expressed in the body for recognition by T cells. 39 
Peptides that form stable complexes with HLA proteins are also called HLA ligands. When a 40 
foreign antigen, whose amino acid sequence differs from the host’s proteome, was intracellularly 41 
processed and presented on the cell surface by HLA proteins, the cell containing foreign antigen 42 
would be recognized T cell and subsequently destroyed by the immune system. Therefore, HLA-43 
peptide binding activity has been extensively studied for medical and biotechnology applications 44 
in vaccine design and cancer immunotherapy

1-6
. 45 
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HLA class I is a subclass of the HLA system that recognizes peptides with 8-15 amino 46 
acids in length. The binding affinity of a peptide to an HLA class I molecule mainly depends on 47 
an 8- to 10-residue motif on the peptide including a few HLA allele-specific amino acid residues 48 
at anchor positions

7-10
. Other residues on the peptide are relatively unconstrained, but some 49 

amino acid combinations can affect the binding affinity. To date, although a few works have 50 
highlighted the multiple specificities of HLA class I binding

8,11,12
 and HLA class II binding

13
, the 51 

motif of each HLA class I allele is still represented with a single amino acid frequency profile in 52 
major databases

14,15
. In other words, HLA class I motifs were assumed to be unimodal. While 53 

this simplification may not have a noticeable impact on the development of HLA binding 54 
prediction models

11,16
, it may limit the design landscape of vaccines if researchers use only the 55 

consensus motif as a guideline. 56 
 Breakthroughs in HLA peptidomics, which enabled the isolation of HLA proteins from 57 
the cell surface followed by high-throughput sequencing of HLA ligands, have cataloged a large 58 
amount of ligand sequences for a multitude of HLA class I and class II alleles from both cell 59 
lines and patient samples

8,10,17,18
. These data accelerated the improvement in HLA binding 60 

prediction accuracy as well as enabled detailed characterization of HLA binding specificity. 61 
HLA peptidomics is also being increasingly utilized to identify tumor-specific or tumor-elevated 62 
antigens in cancer patients, which can then be developed into a cancer vaccine to boost the 63 
immune system to target cancer cells

5,6
. Nonetheless, results from HLA peptidomics only 64 

indicate whether the peptides are bound to the HLA proteins and presented on the cell surface 65 
but provides no information on their actual binding affinities. Hence, downstream analyses of 66 
HLA peptidomics often involve HLA binding affinity predictions by artificial neural network 67 
models to screen for peptides with strong bindings. Furthermore, like most mass spectrometry 68 
analyses, results from HLA peptidomics can include contaminants such as carry-over peptides 69 
and non-HLA-specific proteolytic peptides or artifacts from in-source fragmentations 

19,20
. A 70 

recent study has proposed additional analysis steps that would help reduce the number of 71 
contaminant identifications originating from these sources

20
. 72 

 Increasing the understanding of HLA binding specificity and the quality of known HLA 73 
ligand databases is crucial for designing better vaccines against constantly emerging pathogens 74 
and improving the accuracy of HLA binding and immunogenicity predictions. In this study, a 75 
hybrid de novo peptide sequencing strategy with SMSNet

21
 was applied to large-scale HLA class 76 

I peptidomics datasets
8,17

 to uncover new candidate HLA ligands that would expand the existing 77 
databases. Subsequent unsupervised clustering of known and newly discovered ligands for each 78 
HLA class I allele strongly suggested that several alleles recognize multiple, clearly distinct 79 
motifs. Many potential false positives whose sequences do not match the corresponding HLA 80 
binding motifs were also observed. A validation experiment confirmed that almost all potential 81 
false positives exhibit no HLA binding activity. Most importantly, many of these false positives 82 
were also found in the Immune Epitope Database

15
 and could be erroneously used by the 83 

community. Additionally, our HLA peptidomics analysis of a B-lymphoblastoid cell line 84 
expressing both HLA class I and class II alleles highlighted the capability of de novo sequencing 85 
by SMSNet to identify high-affinity antigens in a multi-allelic setting. 86 
 Overall, our work revisited two key aspects of the HLA study: the representation of the 87 
HLA binding motif and the interpretation of HLA peptidomics data. The findings strongly 88 
suggested that the implicit unimodal assumption of HLA class I motifs should be replaced by a 89 
multimodal representation and that the quality of HLA peptidome-derived HLA-I ligands 90 
reported in the community database may be questioned. 91 
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Results 92 
Re-analysis of large-scale mono-allelic HLA class I peptidomes 93 
 De novo peptide sequencing with SMSNet

21
 was shown to be effective for discovering 94 

new candidate HLA class I antigens from a peptidomics dataset. Here, SMSNet was applied to a 95 
larger collection of high-quality HLA peptidomics data from mono-allelic human B 96 
lymphoblastoid cell lines encompassing 88 HLA-A, -B, -C, and -G alleles

8,17
. In total, 109,372 97 

unique peptide sequences with lengths ranging from 8 to 15 amino acids were identified from 98 
327,312 mass spectra (Figure 1a, Supplementary Table 1). There are 36,043 newly discovered 99 
peptide-HLA pairs involving 25,718 unique peptide sequences as well as 5,347 additional pairs 100 
that have been previously observed in multi-allelic patient samples. Over 88% (22,854 peptides) 101 
of newly discovered peptides could be mapped to the human reference proteome. About half of 102 
peptides with unknown origins could be traced to open reading frames on non-coding transcripts 103 
(1,630 peptides) and a small fraction could be explained by proteasome-mediated splicing (222 104 
peptides). However, it should be noted that 30% of hypothetical spliced peptides could also be 105 
alternatively explained by missense mutations and 45% of them might be erroneously attributed 106 
to splicing events (see Methods). The length distribution of newly identified peptides matches 107 
well with past observations

22
, with the majority being 9-mers (Figure 1b). Most importantly, the 108 

discovery of these new peptides has the potential to expand the database of known HLA class I 109 
ligands by up to 35-40% for some major alleles such as HLA-A*11:02 and HLA-A*34:02 110 
(Figure 1c). 111 
 112 
Extent of tryptic peptide contaminations in HLA peptidomics data 113 

Past analyses of HLA peptidomics were careful not to report 9-mer tryptic peptides as 114 
antigens for HLA alleles whose binding motifs do not end with an arginine or a lysine

10
. Among 115 

88 HLA class I alleles investigated in this study, 12 have binding motifs ending with an arginine 116 
or a lysine (Figure 2a, HLA-A*03:01, HLA-A*11:01, HLA-A*11:02, HLA-A*30:01, HLA-117 
A*31:01, HLA-A*33:01, HLA-A*33:03, HLA-A*34:01, HLA-A*34:02, HLA-A*66:01, HLA-118 
A*68:01, and HLA-A*74:01). However, 2,838 tryptic peptides identified for the other 76 alleles 119 
are reported as positive antigens in the Immune Epitope Database (IEDB)

15
. Motif clustering 120 

with GibbsCluster
23

 and binding affinity prediction with NetMHCpan
24

 clearly illustrated that 121 
these tryptic peptides form a separate cluster with lower binding affinities than the known motifs 122 
(Figure 2b and Supplementary Figure 1). Clusters of tryptic peptides were observed for 11 HLA 123 
class I alleles where greater than 13% of identified peptides are tryptic. In extreme cases such as 124 
for HLA-B*57:01 and HLA-B*35:01, more than 42% of all identified peptides are tryptic, and 125 
more than half (365 out of 709) of these tryptic peptides are reported as legitimate ligands in 126 
IEDB. To test whether these tryptic peptides are specifically recognized by the corresponding 127 
HLA alleles, and thus may be true ligands, predicted binding affinities for observed tryptic 128 
peptide-HLA allele pairs were compared with the predicted binding affinities between random 129 
pairs. This finding revealed that almost every HLA allele does not exhibit a stronger affinity 130 
toward the observed tryptic peptides compared with random tryptic peptides (Supplementary 131 
Figure 2). Hence, these tryptic peptides are likely to be contaminants. Furthermore, the bimodal 132 
distribution of predicted binding affinities observed in HLA alleles whose motifs contain an 133 
arginine or a lysine at the last position, such as HLA-A*11:01 (Figure 2a), strongly suggests that 134 
some of the identified tryptic peptides are not true ligands for these alleles as well. 135 
 136 
HLA alleles with multiple binding motifs 137 
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 In addition to revealing clusters of false-positive tryptic peptides, unsupervised motif 138 
clustering also showed that several HLA class I alleles possess multiple motif specificities that 139 
cannot be explained by length alone

11
. For example, antigens of HLA-B*14:02 contain arginine 140 

exclusively at either the 2
nd

 or the 5
th

 position of the motif with only slight differences in 141 
predicted binding affinities (Figure 2c, average predicted affinities are 2,067 nM and 1,733 nM, 142 
respectively). The motif for this allele was previously reported as a combined pattern with 143 
arginine at both positions

10,14
. Other alleles with multiple, clearly distinct motifs include HLA-144 

B*15:01, HLA-B*51:01, and HLA-B*53:01 (Supplementary Figure 3). Additionally, several 145 
alleles also contain multiple related motifs that differ only by the shift of the anchor residue at 146 
the 2

nd
 position to the 1

st
 position (Supplementary Figure 4). 147 

  148 
False positives in HLA peptidomics data 149 
 A by-product of unsupervised motif clustering is the designation of outlier peptides that 150 
do not fit into any motif. Here, a peptide is labeled as an outlier if the quality of the motif 151 
clustering, as measured by Kullback-Liebler distance in GibbsCluster, is improved by removing 152 
the peptide from the analysis. This result revealed that up to 5-6% of identified peptides were 153 
classified as outliers for some HLA alleles (e.g., HLA-B*14:02 and HLA-A*02:05, 154 
Supplementary Table 2). As expected, the predicted binding percentage ranks of these outliers 155 
were much higher than those of peptides belonging to motif clusters (Figure 2d, higher 156 
percentage rank indicates weaker binding affinity). More than 83.8% and 95.5% of outliers do 157 
not pass the 2% rank threshold for weak binder and the 0.5% rank threshold for strong binder

24
, 158 

respectively. In contrast, only 10.2% and 20.4% of peptides that belong to motif clusters failed 159 
the same thresholds. Among peptides with unknown origins, which were identified solely by de 160 
novo sequencing, more than 47% of them pass the 0.5% rank threshold for strong binder (Figure 161 
2e). 162 
 To test whether outlier peptides identified by unsupervised motif clustering are false 163 
positives or true ligands with very weak binding affinity, we performed an HLA binding assay 164 
on 59 newly identified antigens for HLA-B*14:02 (Supplementary Table 3, 13 outliers and 46 165 
non-outlier peptides). This assay showed that all outlier peptides except LRNGGHFVI and 166 
LPFCRPGPEGQL exhibited almost no binding activity against the HLA molecules (Figure 3a, 167 
relative binding activity <1% of positive control). The high binding affinity of LRNGGHFVI 168 
and LPFCRPGPEGQL may be attributed to the arginine residues. LRNGGHFVI was likely 169 
called an outlier because its non-arginine residues did not fit the motif profile of HLA-B*14:02 170 
(Figure 2c, top cluster). For LPFCRPGPEGQL, this peptide was likely called an outlier because 171 
the middle arginine residue was not predicted to take part in the 9-mer binding motif by 172 
NetMHCpan (the predicted core motif was LPFGPEGQL). Overall, the experimental binding 173 
result is in good agreement with computational affinity prediction (Figure 3b, Spearman’s rank 174 
correlation = –0.62 with p-value = 1.6e-7). These pieces of evidence together strongly suggest 175 
that outlier peptides are false positives. 176 
 177 
Application of SMSNet on multi-allelic peptidomics data 178 
 To showcase the capability of SMSNet in a multi-allelic setting, SMSNet and PEAKS

25,26
 179 

were used to analyze an HLA peptidomics experiment of a B-lymphoblastoid cell line expressing 180 
HLA-A*01:01, HLA-B*08:01, HLA-C*07:01, HLA-DPA1*01:03, HLA-DPB1*04:01/02:01, 181 
HLADQA1*05:01/05:01, HLA-DQB1*02:01/02:01, and HLADRB1*03:01/03:01. HLA class I 182 
and class II peptidomes were isolated and analyzed separately. NNAlign_MA

27
 was used to 183 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.19.460988doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.19.460988
http://creativecommons.org/licenses/by/4.0/


5 
 

predict the binding probabilities for each identified antigen simultaneously against all HLA class 184 
I or class II alleles present. The maximum predicted binding score was taken for each peptide. 185 
Peptide sequencing with PEAKS was performed in two modes: the de novo-assisted database 186 
search mode (PEAKS-DB) and the fully de novo mode (PEAKS-DeNovo). As each tool was 187 
optimized differently, the confidence thresholds for peptide identification were set separately 188 
(see Methods). For PEAKS-DeNovo, confidence score thresholds ranging from 0.7 to 0.9 were 189 
explored. The results for PEAKS-DeNovo at a score threshold of 0.7 were selected, but it should 190 
be noted that increasing this threshold did not alter the conclusion. 191 
 For HLA class I peptidome, SMSNet and PEAKS-DB had a 40% overlap at peptide level 192 
(Figure 4a and Supplementary Table 4) and agreed on the same peptides for 98% of the MS/MS 193 
spectra identified by both tools (2,170 of 2,215 spectra). In contrast, PEAKS-DeNovo produced 194 
quite a different set of peptides (Figure 4a). SMSNet and PEAKS-DeNovo agreed on the same 195 
peptide for only 27% of the MS/MS spectra identified by both tools (526 of 1,973 spectra). To 196 
assess the quality of peptides identified by each tool, predicted HLA binding scores and peptide 197 
identification confidence scores were visualized together. Tools that identified peptides with high 198 
HLA binding scores with high confidences should be preferable. This analysis revealed that both 199 
SMSNet and PEAKS-DB identified peptides with high predicted binding probabilities and high 200 
confidences (heatmaps in Figure 4b). On the other hand, peptides identified de novo by PEAKS-201 
DeNovo exhibited a bimodal distribution of predicted binding probabilities, with two modes at 202 
0.5 and 1.0 (Figure 4c, the leftmost panels), which indicated that there is a substantial number of 203 
false positives. 204 

To rule out the possibility that SMSNet produced peptides with high quality only because 205 
it relied on a follow-up database search after de novo sequencing to reduce errors, the set of 206 
peptides identified by both SMSNet and PEAKS-DeNovo and the set of peptides fully identified 207 
de novo by SMSNet before the database search step were analyzed separately. There were clear 208 
shifts in predicted binding scores toward 0.8-1.0 in both cases compared to PEAKS-DeNovo’s 209 
predictions (Figure 4c, the middle and rightmost panels), suggesting that de novo sequencing by 210 
SMSNet identified highly probable peptides. It should be noted that all methods also identified 211 
other peptides whose lengths do not match the expected lengths of HLA class I ligands (8-15 212 
amino acids), and peptides with modifications were not considered here because their binding 213 
probabilities could not be predicted. 214 
 For the HLA class II peptidome, all tools made fewer identifications and had smaller 215 
overlap than HLA class I peptidome’s results (Figure 5a). This finding is likely because HLA 216 
class II antigens are much longer

28
 and consequently harder to confidently identify from MS/MS 217 

spectra. Only one peptide identified by PEAKS-DeNovo was also identified by others. In terms 218 
of the predicted binding scores, peptides identified by SMSNet exhibited slightly higher scores 219 
than PEAKS-DB’s (Figure 5b, Mann-Whitney p-value = 0.0131) and PEAKS-DeNovo’s (Mann-220 
Whitney p-value = 4.34e-60). But as most of the predicted binding probabilities were below 0.5, 221 
it is inconclusive whether one tool is better than the others. 222 
 223 
Discussion 224 
 Our work highlighted the need for a careful downstream analysis of peptides identified 225 
from the HLA peptidomics experiment to remove potential false positives. Although a prior 226 
work has provided detailed analyses to account for non-ligand contaminants

20
, there are still true 227 

peptide identifications that bind very weakly or non-specifically to the target HLA allele. 228 
Inclusion of these peptides as true HLA ligands in community database can potentially mislead 229 
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researchers as HLA peptidome-derived peptides are not accompanied with binding affinity 230 
values. Unsupervised clustering of identified putative HLA ligands not only elucidate allele-231 
specific binding motif patterns

11,12
 but also revealed clusters of tryptic peptides for HLA alleles 232 

that should not recognize an arginine or a lysine at the C-terminus of the binding motif 233 
(Supplementary Figure 1) as well as outlier peptides that do not fit into any cluster. A small-scale 234 
HLA binding experiment of putative ligands of HLA*B14:02 confirmed that almost all outliers 235 
(11 of 13) exhibited no binding activity (Figure 3a, relative affinity < 1% of positive control) 236 
while 72% (33 of 46) of non-outliers exhibited some binding activities. Outlier peptides are also 237 
predicted to be weaker binders than de novo-identified peptides whose origins cannot be verified 238 
(Figure 2d and 2e, NetMHCpan % rank eluted ligand). Similarly, most tryptic peptides are likely 239 
false positives because their predicted binding affinities are not stronger than those between 240 
random tryptic peptides and HLA alleles (Supplementary Figure 2). 241 

Overall, there are 3,846 potential false positives identified here that have been reported as 242 
positive antigens in the IEDB database. Although this number may seem small compared to the 243 
current size of the IEDB database (>300,000 allele-specific antigens), the presence of potential 244 
false positives is substantial for HLA alleles with fewer known ligands. For example, 23% (679 245 
of 2,957), 16% (342 of 2,165), and 11% (209 of 1,843) of IEDB reported ligands for HLA-246 
C*03:03, HLA-A*36:01, and HLA-B*57:01, respectively, are flagged as potential false positives 247 
here. Furthermore, the bimodal distribution of predicted affinities suggested that there are more 248 
false positives among peptides that belong to motif clusters (Figure 2a). Hence, careful analysis 249 
of both future HLA peptidomics data and the data already deposited into the IEDB database is 250 
needed in order to maintain the integrity of community antigen databases and prevent errors from 251 
propagating into HLA binding prediction and immunogenicity prediction models. 252 

It is interesting to note that this work and prior unsupervised clustering analyses of the 253 
same HLA class I alleles

11,12
 do not always identify the same multiple motif specificities. For 254 

example, three motifs were identified for HLA-B*15:01 here (Supplementary Figure 3) but not 255 
in prior analysis

11
. On the other hand, three motifs for HLA-B*07:02 were previously reported

12
, 256 

but only a single motif was identified here. This latter case is especially unexpected because the 257 
motif identified here was not the one with the highest number of associated peptides among the 258 
three reported motifs. As a quality control, both motifs of HLA-B*51:01 (Supplementary Figure 259 
3) were consistently identified

11
. In addition to multiple specificities, related motifs that differ by 260 

a shift of the 2
nd

 residue position to the 1
st
 residue position, with only minor changes in predicted 261 

binding affinities, were observed in several alleles (Supplementary Figure 4). These likely 262 
indicate the presence of 10-mer or longer motif patterns that were truncated to 9-mer during the 263 
core binding motif prediction by NetMHCpan. Lastly, unsupervised clustering was also able to 264 
capture minor inter-residue cooperation between non-anchor positions and represent them in 265 
separate motif clusters (HLA-B*53:01 in Supplementary Figure 3, HLA-B*15:03 and HLA-266 
B*40:01 in Supplementary Figure 4). 267 

Our work also illustrated the capability of hybrid de novo sequencing with SMSNet for 268 
uncovering new HLA antigens in both mono-allelic and multi-allelic peptidomics samples. More 269 
than 36,000 new peptide-HLA pairs were identified from public mono-allelic HLA class I 270 
peptidomics datasets

8,17
 that have already been extensively analyzed. The new putative antigens 271 

could potentially expand the antigen pools for some HLA alleles by up to 40% (Figure 1a and 272 
1c). SMSNet exhibited good agreement with the de novo-assisted database search mode of 273 
PEAKS (PEAKS-DB), both producing peptide identifications with high predicted binding 274 
affinities to HLA class I alleles (Figure 4b). Furthermore, in the absence of a reference proteome 275 
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database, SMSNet was able to produce peptides with higher predicted binding affinities than the 276 
de novo mode of PEAKS (PEAKS-DeNovo, Figure 4c). Putative HLA class II antigens 277 
identified by SMSNet also have slightly higher predicted binding affinities than both modes of 278 
PEAKS (Figure 5b), while PEAKS-DB produced many more identifications. The drop in the 279 
number of peptides identified from HLA class I to HLA class II peptidomics data is likely 280 
because HLA class II antigens consist of longer peptides which are more difficult to identify, 281 
especially for SMSNet and PEAKS-DeNovo which rely primarily on de novo sequencing. 282 
Overall, de novo analysis of HLA peptidomics would benefit from combining results from 283 
SMSNet and PEAKS-DB together to increase antigen detection sensitivity. It should be noted 284 
that combining results from multiple software tools is a well-established approach that has been 285 
shown to improve the quality of proteomics analyses

29,30
. 286 

 287 
Methods 288 
Cell line and antibody preparation 289 
 B-lymphoblastoid cell line (BLCL1408-1038) expressing HLA-A*01:01, HLA-B*08:01, 290 
HLA-C*07:01, HLA-DPA1*01:03, HLA-DPB1*04:01/02:01, HLADQA1*05:01/05:01, HLA-291 
DQB1*02:01/02:01, and HLADRB1*03:01/03:01 was purchased from Fred Hutchinson Cancer 292 
Research Center, Washington, USA. Cells were cultured in RPMI 1640 media supplemented 293 
with 10% fetal bovine serum, 50 U/ml penicillin in a humidified incubator at 37C with 5% CO2. 294 
Purified pan HLA-A, -B, -C and pan HLA-DR, -DP, -DQ antibodies were generated from W6/32 295 
(ATCC, USA) and IVA12 (provided by the lab of Professor Anthony Purcell, Monash 296 
University, Australia) hybridoma cells cultured in RPMI 1640 media supplemented with 10% 297 
fetal bovine serum, 50 U/ml penicillin and expanded in roller bottles at 37C with 5% CO2. 298 
Secreted monoclonal antibodies were harvested from spent media and purified using Protein A 299 
resin with ÄKTA purification system (Cytiva, USA). 300 
 301 
Immunoprecipitation of HLA class I and class II complexes 302 
 BLCL1408-1038 cell pellets (1 x 10

8
) were pulverised using an MM400 Retsch Mixer 303 

Mill (Retsch, Germany) and lysed with 0.1% IGEPAL CA-630, 100 mM Tris, 300 mM NaCl, 304 
pH 8.0 Complete Protease Inhibitor Cocktail (Roche, Switzerland). The supernatant was passed 305 
through a Protein G resin pre-column (500 L) to remove non-specific binding materials. HLA 306 
class I and II immunoaffinity purification was performed as previously described

31
. Briefly, the 307 

pre-cleared supernatant was incubated with 10 mg of pan HLA-A, -B, and -C antibodies or 10 308 
mg of pan HLA-DR, -DP, and -DQ antibodies coupled to Protein G resin with rotation overnight 309 
at 4C. After conjugation, the resins were washed with 10 ml of ice-cold wash buffer 1 (0.005% 310 
IGEPAL, 50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM EDTA), 10 ml of ice-cold wash buffer 2 311 
(50 mM Tris, pH 8.0, 150 mM NaCl), and 10 ml of ice-cold wash buffer 3 (50 mM Tris, pH 8.0, 312 
450 mM NaCl). Bound complexes were eluted from the column using 5 column volumes of 10% 313 
acetic acid. Eluted peptides were fractionated by reverse-phase high-performance liquid 314 
chromatography (Shimadzu, Japan) on a 4.6 mm diameter Chromolith SpeedROD RP-18 (Merck, 315 
USA). The optimized conditions were as follows: mobile phase A (0.05% v/v TFA, 2.5% v/v 316 
ACN in water), mobile phase B (0.045% v/v TFA, 90% v/v ACN in water), flow rate of 1 317 
mL/minute, temperature of 30C, and injection volume of 200 L. The elution program was set as 318 
follows: 0-5% of mobile phase B over 1 minute, 5-15% of mobile phase B over 4 minutes, 15-319 
45% of mobile phase B over 30 minutes, 45-100% of mobile phase B over 15 minutes, and 320 
100% of mobile phase B over 4 minutes. Fractions were collected in 1 mL each. Consecutive 321 
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fractions were pooled into 11 fractions. Pooled fractions were concentrated by vacuum 322 
centrifugation and reconstituted in 0.1% FA. 323 
 324 
LC-MS/MS analysis of HLA peptidome 325 
 Pooled peptide fractions eluted from an HLA class I sample and an HLA class II sample 326 
were analyzed on a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA) coupled to 327 
an EASY-nLC 1000 (Thermo Fisher Scientific, USA). Peptide samples were separated at a flow 328 
rate of 300 L/minute of buffer B (80% ACN, 0.1% FA). The gradient was set at 4-20% of 329 
buffer B over 30 minutes, 20-28% of buffer B over 40 minutes, 28-40% of buffer B over 5 330 
minutes, 40-95% of buffer B over 3 minutes, washing with 95% of buffer B over 8 minutes, re-331 
equilibration with buffer A (2% ACN/0.1% FA) over 5 minutes. Mass spectra resolutions were 332 
set at 70,000 for full MS scans and 17,500 for MS/MS scans. The normalized collision energy 333 
for HCD fragmentation was set at 30%. The m/z scan range was set at 350-1,400. Dynamic 334 
exclusion was set at 15 seconds. For HLA class I samples, the maximum injection times were set 335 
at 120 ms for full MS scan and 120 ms for MS/MS scans. Precursor ions with charge states +2, 336 
+3, +4, and +5 were accepted. For HLA class II samples,  337 
the maximum injection times were set at 200 ms for full MS scan and 120 ms for MS/MS scans. 338 
Precursor ions with charge states +2, +3, +4, +5, and +6 were accepted. 339 
 340 
Collection of published HLA class I peptidomics and antigen data 341 
 A combined dataset of mass spectrometry raw data of mono-allelic HLA class I 342 
peptidomes (399 raw files, 88 HLA alleles) were obtained from two prior studies

8,17
 343 

(MSV000080527 and MSV000084172). List of reported antigen-HLA pairs were obtained from 344 
the Immune Epitope Database

15
 (IEDB, downloaded December 2020), the HLA Ligand Atlas

32
 345 

(downloaded June 2020), and from peptidomics analyses of multi-allelic patient samples
8,33

. It 346 
should be noted that these recent studies of patient samples not only reported new data but also 347 
provided compilations of multi-allelic peptidomics data from earlier studies. 348 
 349 
Peptide sequencing of MS/MS data 350 
 For de novo peptide sequencing with SMSNet

21
, MS/MS spectra and precursor masses 351 

were extracted from raw MS files using ProteoWizard
34

 with the following parameters: Peak 352 
Picking = Vendor for MS1 and MS2, Zero Samples = Remove for MS2, MS Level = 2-2, and the 353 
default Title Maker. Charge state deconvolution was not performed. The SMSNet-M model 354 
which treats carbamidomethylation of cysteine as fixed modification and oxidation of 355 
methionine as variable modification was used. Target amino acid-level false discovery rate was 356 
set at 5%. Precursor mass tolerance of 30 ppm was applied to discard identified peptides with 357 
high mass deviations. Partially identified peptides were searched against a UniProt

35
 reference 358 

human proteome (downloaded August 2020) and a GRCh38 RefSeq
36

 non-coding transcriptome 359 
(downloaded August 2020) to fill in the missing amino acids. From the transcriptome data, 360 
possible open reading frames that translate to at least 5 amino acids in length were considered. 361 
 For database search and de novo peptide sequencing with PEAKS version 8.5

25
, raw MS 362 

files were searched against a UniProt reference human proteome and reversed decoys. Cleavage 363 
enzyme specificity was set to none. Carbamidomethylation of cysteine, oxidation of methionine, 364 
and phosphorylation of serine, threonine, and tyrosine were set as variable modifications. A 365 
maximum of three modifications per peptide were allowed. Mass tolerances were set at 10 ppm 366 
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for precursor mass and at 0.02 Da for fragment mass. Target peptide-level false discovery rate 367 
was set at 1%. 368 
 369 
Explaining peptides with unknown origins 370 
 Peptides that do not match to either reference human proteome or non-coding 371 
transcriptome were further analyzed to explain their origins. The proteasome-mediated splicing 372 
mechanism, which causes the joining of two distal peptide fragments from the same protein into 373 
a new contiguous peptide, was explored by considering all possible combinations of 3-12 amino 374 
acid peptides originating from non-overlapping regions of each protein. Only proteins that were 375 
already identified with some peptides in the same dataset were considered as sources of spliced 376 
peptides. If multiple possible splicing events could explain an observed peptide, the one 377 
involving peptides that are nearest to each other on a protein was selected as the most likely 378 
explanation. To check whether some peptides could be explained by splicing events by chance 379 
alone, the amino acid sequences of these peptides were randomly shuffled and reanalyzed. This 380 
revealed that using proteasome-mediated splicing as explanation may not be reliable because as 381 
many as 45% (99 out of 222) of randomized sequences could still be matched to some 382 
hypothetical spliced peptides. Furthermore, missense mutations could serve as an alternative 383 
explanation for 30% (66 out of 222) of peptides that could be explained by proteasome-mediated 384 
splicing. 385 
 386 
HLA binding affinity and binding motif analyses  387 

For peptides identified from mono-allelic HLA peptidome experiments
8,17

, the binding 388 
affinities and the 9-mer binding motifs for the corresponding HLA alleles were predicted using 389 
NetMHCpan-4.1

24
 with default setting. For peptides identified from multi-allelic B-390 

lymphoblastoid cell line, the binding affinities were predicted against all HLA class I or class II 391 
alleles present using NNAlign_MA

27
. Predicted 9-mer binding motifs for each HLA class I allele 392 

were then clustered using GibbClusters
23

. For each allele, the clustering was performed with 393 
number of clusters ranging from 1 to 5, with or without outlier detection, and with inter-cluster 394 
penalty parameter  ranging from 0.1 to 0.8. The optimal number of clusters was determined 395 
from the parameter setting with the highest Kullback-Liebler distance (KLD) as recommended 396 
by the authors

23
. Information contents and the amino acid profiles of 9-mer binding motif 397 

clusters were visualized using Logomaker
37

. 398 
 399 
HLA binding assay 400 
 The binding activities of selected 59 newly identified candidate antigens for HLA-401 
B*14:02 (Supplementary Table 3) were assessed using the REVEAL MHC-peptide binding 402 
assay provided by ProImmune, Ltd. (Oxford, UK). Peptides were synthesized and quality 403 
checked using MALDI-TOF mass spectrometry by ProImmune, Ltd. (Oxford, UK). Binding 404 
activities were reported as percentage relative to the affinity of a positive control (a known high-405 
affinity T cell epitope for HLA-B*14:02). According to the experiment report provided by the 406 
company, the standard error of the reported affinities is 3 percentage points. 407 
 408 
Data availability 409 
 Identified peptides from public mono-allelic HLA peptidomes are provided in 410 
Supplementary Table 1 along with binding affinity prediction and outlier detection result. HLA 411 
binding assay results are provided in Supplementary Table 3. Identified peptides from the multi-412 
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allelic B cell peptidome are provided in Supplementary Table 4. Raw mass spectrometry data for 413 
the multi-allelic B cell peptidome are available at PXD028088. Visualizations of all identified 414 
motifs are available on FigShare at 10.6084/m9.figshare.16025226. 415 
 416 
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Figures 545 
 546 

 547 
Figure 1 – SMSNet identified a large number of new ligands from public HLA peptidomics 548 
datasets. a) Statistics of MS/MS spectra, peptide-HLA pairs, and the sources of peptides 549 
identified by SMSNet on mono-allelic HLA peptidomics datasets of 88 HLA class I alleles (see 550 
Methods). b) Length distribution of all identified peptides. c) Potential increase in the size of the 551 
database of known ligands from this study, assuming that all newly identified sequences are true 552 
ligands. The number of known ligands for each allele was extracted from the IEDB database by 553 
counting unmodified antigens and antigens with major modifications, namely oxidized 554 
methionine and phosphorylated serine, threonine, and tyrosine. 555 
  556 
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 557 
Figure 2 – Unsupervised clustering revealed potential false positives and multiple motif 558 
specificities. a) Single 9-mer motif identified for HLA-A*11:01 together with predicted binding 559 
affinities (IC50, nM unit). b) Two motifs identified for HLA-A*36:01, one of which consists 560 
mainly of tryptic peptides and exhibits lower affinities (higher IC50 value indicates lower 561 
affinity). The top motif is expected to be a false positive. c) Two distinct motifs identified for 562 
HLA-B*14:02 with arginine at different residue positions but similar predicted affinities. d) 563 
Distributions of predicted percentage rank (% rank) of eluted ligand for clustered peptides and 564 
outlier peptides. A higher % rank indicates lower binding affinity. Bin size is 2%. e) 565 
Distributions of predicted percentage rank of eluted ligand for peptides from various sources. Bin 566 
size is 1%. 567 
  568 
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 569 
Figure 3 – HLA binding assay for HLA-B*14:02. Peptide synthesis and binding assay were 570 
performed by ProImmune, Ltd. (see Methods). a) Distributions of binding scores, measured as 571 
the percentages of the binding activity compared to a positive control, for clustered peptides (n = 572 
46) and outlier peptides (n = 13). b) Comparison of predicted percentage ranks of eluted ligand 573 
(% rank) and binding scores. The orange and red dashed lines indicate the 2% rank and 0.5% 574 
rank thresholds for weak and strong binders, respectively. The left panel shows the full range 575 
of % rank while the right panel shows the zoomed-in at % rank below 10%. 576 
  577 
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 578 
Figure 4 – Comparison of SMSNet and PEAKS on multi-allelic HLA class I peptidomics 579 
sample. a) Overlap of identified peptides between SMSNet, the de novo-assisted database search 580 
mode of PEAKS (PEAKS-DB), and the fully de novo mode of PEAKS (PEAKS-DeNovo). b) 581 
Histograms show the distributions of predicted binding scores, calculated as the maximum score 582 
over HLA-A*01:01, HLA-B*08:01, and HLA-C*07:01 which are expressed in the cells, for 583 
peptides identified by SMSNet and PEAKS-DB. Heatmaps show the association between 584 
predicted binding scores and peptide identification confidence scores reported by each software. 585 
c) Similar visualizations for peptides identified by PEAKS-DeNovo, peptides identified in 586 
common by PEAKS-DeNovo and SMSNet, and peptides fully identified by the de novo 587 
sequencing step of SMSNet (SMSNet can identify the full sequences of some peptides without 588 
relying on reference database).  589 
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 590 
Figure 4 – Comparison of SMSNet and PEAKS on multi-allelic HLA class II peptidomics 591 
sample. a) Overlap of identified peptides between SMSNet, the de novo-assisted database search 592 
mode of PEAKS (PEAKS-DB), and the fully de novo mode of PEAKS (PEAKS-DeNovo). b) 593 
Histograms show the distributions of predicted binding scores, calculated as the maximum score 594 
over HLA-DPA1*01:03, HLA-DPB1*04:01/02:01, HLADQA1*05:01/05:01, HLA-595 
DQB1*02:01/02:01, and HLADRB1*03:01/03:01 which are expressed in the cells, for pepides 596 
identified by SMSNet, PEAKS-DB, and PEAKS-DeNovo. Heatmaps show the association 597 
between predicted binding scores and peptide identification confidence scores reported by each 598 
software. 599 
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Supplementary Tables 

Supplementary Table 1 – List of all identified peptides together with predicted binding affinities 

and outlier detection results from mono-allelic peptidomics data of 88 HLA class I alleles 

Supplementary Table 2 – Percentages of outlier peptides for HLA class I alleles with low 

percentage of tryptic peptides 

Supplementary Table 3 – HLA-B*14:02 binding assay results for selected 59 peptides 

Supplementary Table 4 – SMSNet and PEAKS identification results for multi-allelic B-

lymphoblastoid cell line 
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Supplementary Figures 

 

Supplementary Figure 1 – Extents of tryptic peptide contaminations in HLA peptidomics data. 

Data for the top 7 alleles with more than 20% contaminations are shown. The table lists the 

numbers of all identified peptides and tryptic peptides for each allele. Each boxed region 

contains the 9-mer motif profiles and distributions of predicted binding affinity for each allele, 

sorted in the same order as shown in the table from left to right.  
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Supplementary Figure 2 – HLA alleles do not exhibit stronger affinities toward observed 

tryptic peptides than toward random tryptic peptides. Scatter plot shows the median 

predicted binding affinity (IC50, nM unit) between observed tryptic peptide-HLA allele pairs (x-

axis) and that between random tryptic peptide-HLA pairs. Each data point represents one HLA 

allele. Higher IC50 value indicates lower affinity. Random tryptic peptides were selected from 

observed tryptic peptides in peptidomics data of all HLA alleles. Orange data points indicate the 

few HLA alleles that exhibit significantly stronger affinities toward tryptic peptides identified 

from the corresponding peptidomics data (Benjamini-Hochberg adjusted Mann-Whitney U test 

p-value < 0.05). 
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Supplementary Figure 3 – HLA alleles with multiple, clearly distinct motif specificities. Each 

boxed region contains motifs of the indicated HLA allele. Each 9-mer motif is shown alongside 

the distribution of predicted binding affinity (IC50, nM unit). 
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Supplementary Figure 4 – HLA alleles with multiple related motif specificities. Each boxed 

region contains motifs of the indicated HLA allele. Each 9-mer motif is shown alongside the 

distribution of predicted binding affinity (IC50, nM unit). These motifs possess similar anchor 

residues at the 2nd position or shifted to the 1st position. 
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