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Abstract 

 The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic 
and has caused a major health and economic burden worldwide. Understanding how SARS-
CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis 
and assist in development of antiviral therapies. Here we use BioID to map the SARS-CoV-2 
virus-host interactome using human lung cancer derived A549 cells expressing individual 
SARS-CoV-2 viral proteins. Functional enrichment analyses revealed previously reported and 
unreported cellular pathways that are in association with SARS-CoV-2 proteins. We have also 
established a website to host the proteomic data to allow for public access and continued 
analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-
BioID fusion proteins. Collectively, these studies provide a valuable resource to potentially 
uncover novel SARS-CoV-2 biology and inform development of antivirals. 

Introduction 

The 2019 novel coronavirus, SARS-CoV-2, is the causative agent of Coronavirus 
Disease 2019 (COVID-19) responsible for a global pandemic. COVID-19 most often presents as 
a respiratory illness, yet also can cause gastrointestinal and/or neurological symptoms, and 
acute cardiac injury [1-3]. Presently, hundreds of millions of people have been infected with 
SARS-CoV-2 worldwide, and several million people have died as a result. Long-term effects of 
COVID-19 infection are reported by 10-30% of patients, and as millions of people recover from 
COVID-19, questions remain about vertical transmission of COVID-19 infection during 
pregnancy, and post-COVID syndrome symptoms including pulmonary fibrosis, neurological 
defects, and vascular dysfunction [4-10]. While wide-spread vaccination is likely to slow the 
spread of COVID-19, developing treatment strategies for new infections and long-term post-
COVID symptoms will require a thorough understanding of the SARS-CoV-2 virus and how it 
affects patient cell biology.  

A crucial component of the effort to study COVID-19 is the application of technologies 
that reveal how viral proteins behave in host cells. Current efforts to map the SARS-CoV-2 
virus-host interactome have offered great insight into possible pathways directly affected by 
various viral proteins, yet differences in experimental approaches and data analysis methods 
inevitably lead to discrepancies when comparing reported interactomes [11-19]. As with any 
large-scale approach to identifying gene- or protein-networks, false-positives due to background 
contamination can hinder accurate data interpretation; therefore, the use of several approaches 
with multiple replicates by multiple independent studies will be required to ultimately map the full 
SARS-CoV-2 interactome. 

Proximity-dependent labeling of host proteins via BioID or similar promiscuous biotin 
ligases fused to viral proteins has been used to study host-viral protein associations for a 
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number of viruses including herpes simplex virus type 1, Epstein-Barr virus, Zika virus, Ebola 
virus, and coronaviruses [20-24]. Here, we generated A549 human lung cancer cells stably 
expressing BioID-tagged SARS-CoV-2 viral proteins to identify whole-cell proteomic changes 
due to viral protein expression, and to identify specific protein-protein interactions (PPIs) 
between individual SARS-CoV-2 viral proteins and host-cell proteins. We also compared our 
BioID datasets with similar available proximity-based proteome datasets to develop a list of 
high-confidence candidate protein interactors. All of our data is available at 
(https://alexproteomics.shinyapps.io/covid19proteomics/) for further in-depth analysis by the 
scientific community and will serve to further our collective understanding of infection 
mechanisms and guide higher-confidence follow-up studies investigating specific PPIs and 
pathway alterations. 

 

Results 

Development of stable BioID cell lines expressing individual SARS-CoV-2 viral proteins 

The SARS-CoV-2 virus generates two long polypeptides that are cleaved into 16 non-
structural proteins (NSPs) as well as several downstream ORFs encoding 4 structural proteins 
(Spike, Envelope, Membrane, and Nucleocapsid – S, E, M, and N) and 9 accessory proteins. In 
order to identify global cellular changes associated with viral protein expression, as well as 
identify specific viral-host PPIs, the promiscuous biotin ligase BioID2 was fused to either the N- 
or C- terminus of individual SARS-CoV-2 proteins, and stably expressed by retroviral 
transduction in human lung cancer A549 cells (Table S1, Figure 1A). For each construct, we 
included a GGGS linker to alleviate steric hindrance between the BioID ligase and viral protein. 
Each cell line was validated by immunofluorescence (IF) and western blot (WB) for fusion-
protein expression and biotinylation, revealing a wide-range of permissible expression levels 
and overall biotinylation (Figure 1B, Figure S1, S2). Three proteins (Spike, Nsp1, and ORF3b) 
were excluded from this study due to an inability to generate cells stably expressing BioID2-
fusion proteins, leaving us with 26 viral-BioID2 fusion proteins. ORF8, a predicted lumenal 
protein, was tagged with the TurboID ligase that was previously shown to be substantially more 
active in the ER lumen compared to BioID [25]. BioID2-alone was used as a control for these 
viral protein fusions, with the exception of ORF8, for which we utilized a signal sequence-
TurboID-KDEL (TurboID-KDEL) to target and retain the ligase in the ER-lumen. Each cell line 
was processed in triplicate, and subjected to whole-cell lysis for global proteome analysis and 
affinity-purification of biotinylated proteins for identification of PPIs via mass spectrometry.  
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Figure 1. BioID2-viral fusion protein expression in A549 cells. A. Viral proteins were fused to either the N- or C-
terminus of the BioID2 promiscuous biotin ligase. Schematic shows the orientation of NSPs (yellow), structural 
proteins (green), and ORF proteins (purple) fused to BioID2 to scale. B. A549 human lung cells stably expressing 
BioID2-fusion proteins were assessed for fusion-protein expression and localization (red) and promiscuous 
biotinylation (green) following the addition of exogenous biotin. Scale bar 10µm. 
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SARS-CoV-2 Proteomics Website  

 To facilitate the dissemination of our data, we created a highly interactive ShinyApp 
website to allow the scientific community to explore the functional landscape of SARS-CoV-2 
proteome. At https://alexproteomics.shinyapps.io/covid19proteomics we have made all global 
abundance and proximity-labeling MS data publicly available, along with several tools to 
enhance statistical and bioinformatics approaches for analysis and interpretation. The website 
allows users to interactively explore the data, easily set confidence thresholds and run 
functional enrichment analysis using, for example, a hypergeometric test against the Broad 
Institute molecular signature databases (v7.4) including canonical pathways (Reactome, KEGG, 
WikiPathways), Immune collection, chemical and genetic perturbation signatures, regulatory 
transcription factor targets (TFT), oncogenic signatures, and Gene Ontology (Human 
Phenotype, Cellular Component, Biological Process and Molecular Function). In addition, users 
can compare functional enrichment of defined groups of viral proteins using the compareCluster 
function of the clusterProfiler R Bioconductor package. Examples of website functionality are 
shown in Figure 2.        

 

Figure 2. Examples of COVID-19 Proteomics website functionality. A. Volcano plot analysis of changes in global 
protein abundance. B. Half volcano plots showing enriched PPI candidates following BioID method. C. Functional 
enrichment analysis of PPI candidates for single baits. D. Functional enrichment cluster plot for analysis of PPI 
candidates across multiple baits.  

Whole proteome analysis of cells overexpressing individual BioID-viral bait fusion 
proteins  

 In order to better understand the consequences of expressing the viral fusion proteins 
and to assist in interpreting the BioID results, each cell line was lysed and analyzed for global 
changes associated with the expression of individual SARS-CoV-2 viral proteins (Table S2). Not 
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surprisingly, we saw a marked increase in proteins involved in cytokine signaling in immune 
system (HSA-1280215) in response to viral protein expression, including CD70, IRF9, and 
TNFSF9. The most significantly upregulated protein we identified was ITGB3 (logFC = +3.32 to 
+4.78), which has recently been shown to be upregulated in COVID-19 patient lung samples 
and has been hypothesized to be an alternative receptor for the SARS-CoV-2 virus [26, 27]. We 
found this ITGB3 upregulation in cells expressing ORF9c, ORF3a, ORF7b, E-protein, and 
NSP2. Interestingly, the most significantly downregulated proteins (logFC = -2.60 to -9.94) were 
MUC5AC and MUC5B, with dramatic reduction in cells expressing viral NSP12, NSP15, 
ORF7b, NSP3, NSP2, E, ORF9c, and ORF3a. Levels of these proteins were also significantly 
reduced in cells expressing NSP5, NSP6, NSP14, and N-protein, although to a lesser extent. 
MUC5AC/B are proteins involved in mucus secretion in the respiratory tract, and this data 
suggests that several of the SARS-CoV-2 proteins are capable of globally reducing cellular 
MUC5AC/B proteins, even when expressed individually. Proteins involved in DNA replication 
processes were also significantly suppressed, especially by NSP2 expression, including BRCA1 
(NSP2, logFC = -2.58), PRIM2 (NSP2, logFC = -2.56), and CDCA2 (NSP2, logFC = -2.40), 
suggesting that NSP2 may play a key role in directly and/or indirectly disrupting cell cycle 
progression and apoptosis pathways.   

Network analysis of SARS-CoV-2 host interactors reveals novel biology 

In addition to whole-cell proteomic analysis, each stable cell line was subjected to BioID 
proximity-labeling to identify specific viral-host PPIs. Following statistical test, we identified 
3,011 significant viral-host PPIs, with a log2FC≥2.3, p-value≤0.01, at least 2 quantitative peptide 
features and detected in less than 75% of the proximity-labeling CRAPome contaminant 
database experiments. This list of significant PPIs is available in our Covid-19 Proteomics 
website allowing users to interactively explore networks and functions of the detected PPIs. To 
understand the functional and biochemical relationships between the identified SARS-CoV-2 
interactors, we conducted hierarchy and pathway enrichment analyses (see Methods) on a 
subset of 876 proteins uniquely associated with one of the 26 SARS-CoV-2 proteins (Table S3) 
with CrapomeScore ≤0.5 (i.e., detected in 50% or less of the CRAPome proximity-labeling 
experiments, see Methods). These analyses revealed that most identified SARS-CoV-2 
interactors were associated with seven clusters that included host translation machinery, 
endocytosis and vesicle transport, metabolism, glycosylation, cell junctions and ion transport, 
maintenance of homeostasis, and mitochondria function (Figure 3A). Subclusters within host 
translation were processing of mRNAs and non-sense mediated decay (NMD) (p = 1.13-36), 
which is involved in degradation of aberrant self and non-self mRNAs including those of 
coronaviruses [28]. Consistent with previous systems-level studies of SARS-CoV-2, a significant 
number of the interactors were associated with endocytosis and vesicle trafficking pathways, 
including members of the SNARE complex, which are important for membrane fusion of 
vesicles and exocytosis [29], as well as GTPases that regulate vesicle docking and likely 
support SARS-CoV-2 trafficking and egress. Notably we found a highly enriched cluster of 
SARS-CoV-2 interactors involved in cholesterol biosynthesis (p = 1.13-24) (Figure 3B), providing 
further evidence of the importance of this pathway for SARS-CoV-2 replication and highlighting 
potential targets for therapeutic efforts [30]. SARS-CoV-2 interactors were also associated with 
mitochondria function, including proteins of the TIM/TOM complex that mediate mitochondrial 
import (p = 1.44-11), and proteins involved in electron transport chain (p = 2.93-14) and oxidative 
phosphorylation (p = 3.32-7), which could reflect SARS-CoV-2 energetic requirements for 
replication [31]. Notably, our analysis revealed several pathways involved in cell junctions and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.17.460814doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.17.460814
http://creativecommons.org/licenses/by-nc-nd/4.0/


ion transport. These included members of the SWELL complex (Figure 3C), which are involved 
in transport of cGAMP generated upon activation of the immune sensor cGAS by DNA viruses 
or mtDNA release [32], as well as proteins involved in cell adherens junctions (p = 2.01-5), 
previously shown to be targeted by viruses to alter the environment of bystander cells and 
suggested as therapeutic targets to prevent viral spread [33]. In addition, amongst SARS-CoV-2 
interactors were several members of the ABC-transporter family (p = 7.58-12) (Figure 3D), 
involved in translocation of substrates across membranes, and previously linked to development 
of multidrug resistance (MDR) and oxidative stress response to viral and bacterial infection [34]. 
Proteins interacting with SARS-CoV-2 were also associated with the peroxisome (p = 1.88-6). 
SARS-CoV-2 infection has been shown to recruit peroxisomes to viral replication organelles, 
and the association of SARS-CoV-2 with members of the peroxisome could reflect a 
requirement to reduce oxidative stress resulting from the extensive remodeling of cellular 
endomembranes or as a lipid source for viral replication [35, 36]. 

Figure 3. Network analysis of SARS-CoV-2 interactors. The network containing the 876 identified SARS-CoV-2
interactors was subjected to supervised community detection and the resultant hierarchy is shown. Each node
represents a cluster of interconnected proteins and each edge (marked by an arrow) represents containment of one
community (target) by another (source). Indicated are enriched biological processes as determined by gProfiler. (B-E)
Asterisks (*) denote selected zoom-in insets from the hierarchy. Nodes represent human proteins, and edges are
interactions from STRING. 

Focused analysis of individual viral-host protein interactions  

To identify the relationships between discrete SARS-CoV-2 proteins and cellular 
functions, we conducted pathway analyses on the cellular PPI candidates for each viral protein 
(see Methods). In the interest of brevity, we report here on the relationships identified for four 
SARS-CoV-2 viral proteins; however, all BioID data and several tools for pathway analysis have 
been made available on the SARS-CoV-2 proteomics website described above.  

ORF3a 

We identified 68 unique interactors for protein ORF3a, 37 of which were transmembrane 
proteins, including endosomal, lysosomal, and other vesicular proteins. SARS-CoV-2 utilizes 
deacidified lysosomes for egress and, consistent with this process, Orf3a interactors revealed 
enrichment in lysosomal transport proteins, regulators of endosome and lysosome fusion, and 
regulators of pH and ion homeostasis (Figure 4A) [37]. As previously reported, we identified 
HOPS endosomal tethering complex proteins VPS11 and VPS39, as well as WWP1, a HECT 
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ubiquitin ligase that has been previously associated with viral budding via the VPS pathway [11, 
38], but we also identified ORF3a interactors to be involved in cell adhesion and adherens 
junctions, which could be exploited by SARS-CoV-2 to control cell-to-cell communication and 
promote cell spread. These results suggest that ORF3a plays a multifaceted role during viral 
infection, including a major role in membrane reorganization and trafficking, perhaps specifically 
utilizing the HECT/VPS viral budding pathway to enhance viral release.  

ORF6 

We identified 50 candidate interactors for ORF6, a membrane-associated protein 
reported to localize to the ER [39]. In line with previous studies, we identified SEC24A/B, 
proteins associated with COPII-coated vesicle transport, and other SEC complex proteins 
involved in ER homeostasis as associated with ORF6 (Figure 4B) [16, 17]. Other ORF6-
associated proteins included cell cycle regulators of G1 to S phase transition GSPT1 and 
GSPT2, as well as PYCR1, PYCR2, and RRM2B, previously linked to cell cycle arrest at G1 
phase [40]. Several RNA viruses manipulate critical cell cycle regulators or induce cell cycle 
arrest to favor viral replication, including inhibition of early apoptosis in infected cells, evasion of 
immune defenses, or to promote assembly of viral particles [41].  Additionally, several ORF6 
interactors involved in deubiquitylation were identified, potentially suggesting a mechanism for 
deubiquitylation of viral proteins to evade degradation at the proteosome or by autophagy. 
Alternatively, ORF6 could influence deubiquitylation pathways to stabilize cellular factors that 
are supportive of viral replication, including USP5, which acts as a negative regulator of type I 
IFN signaling and has been found to increase in abundance during SARS-CoV-2 replication 
[42]. 

ORF8 

The ORF8 protein has been implicated in modulating innate and adaptive immune 
response, specifically via downregulation of MHC-I [43, 44]. Furthermore, deletion of SARS-
CoV-2 ORF8 lead to a decrease in proinflammatory cytokine release and increases efficacy of 
immune response in COVID-19 patients [45]. In line with this, we identified 64 unique PPIs, 
including 6 proteins involved in type I IFN signaling and 6 proteins involved in O-linked 
glycosylation (Figure 4C). This data supports previous work linking O-linked glycosylation 
process with ORF8 which could serve to evade the immune system using molecular mimicry 
and glycan shielding [11, 18, 46, 47]. Furthermore, the ORF8 dataset was enriched in several 
factors of the innate immune response, including OAS1, OASL, MX1, and PLSCR1, all of which 
are implicated in negative regulation of viral genome replication (GO:0045071), potentially 
supporting ORF8 as a key regulator of host immune response during SARS-CoV-2 infection. 
Additionally, we observed ORF8 associations with proteins implicated in MAPK signaling 
(KRAS, LGALS3, LGALS8 and ARRB2), and dephosphorylation process (MTMR1, MTMR2 and 
MTMR10; p=4.31-4). These proteins play a role in intracellular membrane trafficking, and vesicle 
transport [48] and thus may serve to establish a mechanism for viral spread controlling cell 
signaling, replication and survival. 

 

NSP4 

Coronavirus NSP4 is part of the viral replication complex and rearranges host cell 
membranes to induce double-membrane vesicles for viral replication [49]. Our BioID analysis 
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identified 112 protein candidates uniquely associated with NSP4, including proteins involved in 
membrane lipid biosynthesis pathways, glycerphospholipid metabolism, and members of the N-
glycan precursor biosynthesis machinery (Figure 4D). NSP4 was also associated with proteins 
involved in ubiquitination and proteosome degradation (CUL1, HERC2 and ANAPC2; p= 4.27-4), 
as well as members of the ER-associated protein degradation (ERAD) pathway (SEC61B, 
SEC62, ANAPCP2 and MARCH6; p=8.10-8), suggesting a potential mechanism by which viral 
proteins can evade host-degradation machinery. Association of NSP4 with ERAD proteins could 
suggest antagonism of ERAD-mediated degradation of viral proteins by for instance autophagy, 
or an attempt to manipulate ERAD pathway to degrade immune regulators with antiviral 
properties to facilitate viral trafficking and release [50]. 

 

Figure 4. Enriched pathway analysis of PPIs for selected SARS-CoV-2 viral baits. High-confidence associations 
between indicated SARS-CoV-2 proteins (hexagons) and human proteins (circles/nodes). Node color is proportional 
to the p value (the darkest, the lowest the p value). Human-human interactions as determined by STRING are 
represented by dashed edges. Human-viral interactions are indicated with solid edges and their thickness are 
proportional to the log2FC (the thickest, the highest log2FC). 

Integrated analysis with previously published datasets 

SARS-CoV-2 interaction with the cellular restrictome 

To further explore the interplay of the identified SARS-CoV-2 interactors and the innate immune 
response, we leveraged a recent gain-of-function screen that identified 65 interferon stimulated 
genes (ISG) that act to inhibit SARS-CoV-2 replication [51]. Cross-comparison between these 
two datasets revealed that 7 of these ISGs were found in association with one or more SARS-
CoV-2 proteins, including ISG15, IFIT1, IFIT5, IFITM2, IFITM3, MLKL, and SPATS2L (Table 
S4). Our study revealed an association between viral N and SPAT2SL, an ISG that was found 
to inhibit SARS-CoV-2 RNA replication and is involved in formation of stress granules [51, 52]. 
SARS-CoV-2 has been suggested to antagonize stress granules to evade immune responses 
and these data suggest that N and SPAT2SL interaction could be important for this mechanism 
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[53, 54]. SARS-CoV-2 Orf9c has been recently associated with evasion of immune responses 
though the molecular regulators are yet to be defined [55]. Our study elucidated Or9c in 
association with IFIT5, an ISG that targets non-self RNA for degradation and was found to 
inhibit SARS-CoV-2 replication [51], thus suggesting that this factor could be targeted by Orf9c 
for immune evasion. Finally, Orf8b and Orf9b have been shown to trigger mechanisms of cell 
death [56]. Consistent with those findings, Orf9c was found to associate with the activator of 
necroptosis MLKL [57]. More work will be required to characterize these factors and investigate 
their role in SARS-CoV-2 pathogenesis. 

 

Utilizing previous SARS-CoV-2 BioID interactome datasets to develop a list of high-confidence 
interactions  

In order to develop a high-confidence list of viral-host PPIs, we compared our BioID 
dataset to two previously published proximity-labeling datasets [16, 17]. We were able to 
corroborate 154 unique viral-host PPIs across 13 SARS-CoV-2 viral proteins identified by at 
least one of these reports, with 25 total interactions identified by all three datasets (Table S5). 
Nine ORF9b PPIs were identified by all three reports, including the antiviral signaling protein 
MAVS and mitochondrial fusion/fission proteins MFF, MTFR1L, and USP30. We also further 
substantiated ORF6 involvement in ER to Golgi vesicle transport via manipulation of COPII 
complex (SEC31A, SEC23IP), with a possible role in mediating RABAC1 for vesicle release 
from the Golgi. Recently a fourth epidemic wave of COVID-19 in Hong Kong was attributed to a 
mutation in ORF3a, and another ORF3a mutation was previously associated with higher 
mortality rate [58, 59]. We identified 9 high-confidence ORF3a interactions, including late 
endosome membrane proteins VPS39 and PLD1, as well as endosome recycling proteins 
RAB11FIP1/2/5, which could serve as potential therapeutic targets. Altogether, this comparison 
of similarly produced datasets will allow for higher-confidence follow-up studies based on 
interaction evidence put forth by three separate interactome studies. 

 

Discussion 

Previous attempts to map the SARS-CoV-2 viral interactome have varied in 
experimental approach, data analysis parameters, cell lines used, and specific viral baits [11-
18]. We report here both global proteome analysis and BioID-based proximity interactome 
analysis in human A549 lung cells for all but three SARS-CoV-2 viral proteins and compare this 
data to previously reported COVID-BioID datasets to identify consistently reported candidates. 
We developed a website to host this data to allow for more in-depth analysis of global proteomic 
changes in response to individual viral proteins, analyze enriched interaction candidates, 
pathway enrichment bioinformatics analysis, and comparative analysis to other reported 
datasets including the ISG SARS-CoV-2 inhibitors and previous COVID-BioID datasets. While 
this report primarily discusses unique identifications to highlight the highest-confidence 
interactors, the COVID-19 Proteomics website 
(https://alexproteomics.shinyapps.io/covid19proteomics) will allow for multiplexed and variable 
in-depth analysis of the MS data presented here. This study complements previous proximity 
interactome studies by strengthening confidence in reported interactors, as well as identifying 
new interactors and potentially affected pathways.     
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In this study, we profiled 26 of the 29 known SARS-CoV-2 viral proteins. Consistent with 
previous studies, we noted substantial suppression of NSP1 translation in our NSP1-BioID2 
stable cell line (data not shown) and therefore chose to exclude NSP1 from this study [17, 60]. 
Surprisingly, we were unable to successfully express the Spike protein, which is one of the most 
widely-studied SARS-CoV-2 proteins, and chose not to pursue Spike-BioID due to the extensive 
characterization of Spike already underway (see [61] for review). Finally, the hypothetical 
ORF3b protein was also excluded due to our inability to generate cell lines stably expressing 
this protein. The use of human A549 lung-cancer derived cells for these studies is both a 
strength and a limitation. These cells do retain some fundamental traits of alveolar type-II 
pulmonary epithelial cells; however, A549 cells are not clearly representative of normal human 
pulmonary epithelial cells. 

Our global profiles of human lung cells overexpressing individual SARS-CoV-2 viral 
proteins produced a large dataset of significantly upregulated or downregulated cellular 
proteins, enabling the ability to identify specific viral proteins influencing specific changes in cell 
biology. This data supports previous reports of ITGB3 overexpression in SARS-CoV-2 infected 
cells and tissues, and further identifies the specific viral proteins that could be influencing the 
overexpression. If ITGB3 is indeed working as an alternate receptor for SARS-CoV-2 viral 
uptake, it may be that targeting ITGB3 or the specific viral proteins that upregulate ITGB3 levels 
could have therapeutic benefit to slow cell-to-cell spread of the virus. Additionally, our findings 
that several of the SARS-CoV-2 proteins can reduce cellular levels of MUC5AC/B, possibly via 
increased secretion [62, 63], gives insight into one of the mechanisms by which the virus causes 
devastation of the respiratory system in the most severe COVID-19 cases.   

While previous interactome studies have reported PPI candidates even when identified 
in up to 6 viral protein interactomes [16, 17], we highlighted here only unique protein candidates 
for each viral bait, as to reduce the possibility of capturing promiscuous interactors and keeping 
in mind that due to its limited coding capacity RNA viruses have likely very little functional 
redundancy within their genomes [64, 65]. For this reason, and for brevity, we chose to pursue a 
strict analysis for this report, predominantly focusing on PPIs uniquely identified for each bait. 
Unfortunately, the strict thresholds used for this report returned no significant interactors for 
NSP5 or NSP10; however, further analysis of the data utilizing the website could yield true 
interactors. While this approach should allow for the identification of high-confidence interactors, 
it is important to note that many of the viral proteins reside in the same subcellular 
compartments and would thus likely be proximate to many of the same proteins thus leading to 
their detection. However, it may be that proteins identified by more than one viral bait do have 
unique biological relevance to at least one viral bait, thus we have enabled iBAQ intensity 
analysis on the website to allow for more in-depth comparative analysis of the MS data to reveal 
those more substantial associations. 

Our data further supports previously published studies including the role of ORF3a in 
extensive membrane remodeling and viral budding via interaction with VPS39 and VPS11, and 
suggest potential novel interactions between Orf3a and cell adhesion factors, which are 
important for cell-to-cell communication. In line with previous studies, our ORF6 data supports 
interaction with SEC-complex proteins and suggests novel roles in cell cycle regulation and viral 
immune evasion via deubiquitilation mechanisms [16, 17]. ORF8 is known to play a role in 
immune evasion, and our data supports a possible role in viral immune evasion via O-linked 
glycosylation and suggests immune signaling disruption via interaction with effectors and 
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regulators of the type I IFN response. Our data has demonstrated clear support of previously 
published reports, and our novel findings implicating new roles for SARS-CoV-2 viral proteins 
will allow for an even more comprehensive understanding of how SARS-CoV-2 interacts with 
the host cells. 

As variants arise and COVID-19 infections continue to threaten lives and cause lingering 
effects through post-COVID syndrome, the need for a clear SARS-CoV-2 viral-host interactome 
has never been more evident. The ability to identify crucial viral-host interactions and potentially 
disrupt those interactions with appropriate therapeutics could allow for fast-tracked treatments to 
be made available to those suffering from COVID-19 and long-term symptoms. More studies will 
be needed to verify the viral-host interactions presented here, and drug studies will be 
necessary to assess PPI relevance and effects on SARS-CoV-2 viability, but the resources 
provided here will serve to help guide researchers and provide high-confidence directions for 
future studies.  

 

Materials and Methods 

Plasmids 

SARS-CoV-2 viral proteins were amplified via PCR from Addgene constructs with a 1x 
(GGGS) linker incorporated into each primer set (see Table S1). Amplified PCR products were 
fused to biotin ligases via In-Fusion Recombination into myc-BioID2 pBabe (Addgene #80900; 
XhoI/PmeI), BioID2-HA pBabe (Addgene #120308; BamHI/EcoRI), or TurboID-3xHA pBabe 
(BamHI/EcoRI) [25]. mycBioID2 (Addgene #80900) was used as a control for BioID2 cell lines. 
Human albumin signal sequence-3xHA-TurboID-KDEL pBabe control construct was made by 
two-step In-Fusion Recombination. Human albumin signal sequence and 3xHA-TurboID [25] 
were PCR-amplified with KDEL built into the reverse primer. Fragments were inserted into myc-
BioID2 pBabe, replacing mycBioID2 (Addgene #80900; EcoRI/PmeI). All fusion-protein 
plasmids will be made available on Addgene.  

Cell Culture 

A549 cells were obtained from the American Type Culture Collection (ATCC; CCL-185™). 
Stable cell lines for all constructs were generated using retroviral transduction. HEK293 Phoenix 
cells (National Gene Vector Biorepository, Indianapolis, IN) were transfected with each 
construct using Lipofectamine 3000 (Thermo Fisher Scientific) per manufacturer's 
recommendation. The transfected cells were incubated at 37°C for 6 hours. After 6 hours 
incubation, the transfected cells were replenished with fresh medium and further incubated at 
32°C for 72 h. The culture media was filtered through a 0.45-μm filter and added to A549 cells 
along with Polybrene (4 μg/ml; Santa Cruz Biotechnology, Dallas, TX). At 72 h after 
transduction, puromycin (0.5 μg/ml; Thermo Fisher Scientific) was added to the target cells. The 
expression of fusion proteins and functional biotinylation following addition of 50µM biotin was 
further verified using IF and WB. The stable cell lines were maintained in 5.0% CO2 at 37°C in 
DMEM (HyClone, Logan, UT) supplemented with 10% fetal bovine serum (FBS). All cells were 
tested monthly for mycoplasma contamination. 

Immunofluorescence 
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Cells grown on glass coverslips were fixed in 3% (wt/vol) paraformaldehyde/phosphate-
buffered saline (PBS) for 10 min and permeabilized by 0.4% (wt/vol) Triton X-100/PBS for 15 
min. For labeling fusion proteins, chicken anti-BioID2 (1:5000; BID2-CP-100; BioFront 
Technologies) or mouse anti-hemagglutinin primary antibody was used (HA; 1:1000; 12CA5; 
Covance). The primary antibody was detected using Alexa Fluor 568–conjugated goat anti-
chicken (1:1000; A11041, Invitrogen) or Alexa Fluor 568–conjugated goat anti-mouse (1:1000; 
A11004; Thermo Fisher Scientific). Alexa Fluor 488–conjugated streptavidin (S32354; Thermo 
Fisher Scientific) was used to detect biotinylated proteins. DNA was detected with Hoechst dye 
33342. Coverslips were mounted using 10% (wt/vol) Mowiol 4-88 (Polysciences). 
Epifluorescence images were captured using a Nikon Eclipse NiE (40 ×/0.75 Plan Apo Nikon 
objective) microscope. 

Western Blot Analysis 

To analyze total cell lysates by immunoblot, 1.2 × 106 cells were lysed in SDS–PAGE 
sample buffer, boiled for 5 min, and sonicated to shear DNA. Proteins were separated on 4–
20% gradient gels (Mini-PROTEAN TGX; Bio-Rad, Hercules, CA) and transferred to 
nitrocellulose membrane (Bio-Rad). After blocking with 10% (vol/vol) adult bovine serum and 
0.2% Triton X-100 in PBS for 30 min, the membrane was incubated with appropriate primary 
antibodies: chicken anti-BioID2 (1:5000; BID2-CP-100; BioFront Technologies) or rabbit 
polyclonal anti-hemagglutinin (1:2000; Ab9110; Abcam). The primary antibodies were detected 
using horseradish peroxidase (HRP)–conjugated anti-chicken (1:40,000; A9046; Sigma-Aldrich) 
or anti-rabbit (1:40,000; G21234; Thermo Fisher Scientific). The signals from antibodies were 
detected using enhanced chemiluminescence via a Bio-Rad ChemiDoc MP System (Bio-Rad, 
Hercules, CA). Following detection of each antibody, the membrane was quenched with 30% 
H2O2 for 30 minutes. To detect biotinylated proteins, the membrane was incubated with HRP-
conjugated streptavidin (1:40,000; ab7403; Abcam) in 0.2% Triton X-100 in PBS for 45 min.  

Sample Preparation 

For each large-scale BioID2 pulldown sample, two 10cm dishes at 80% confluency were 
incubated with 50µm biotin for 18 hours, washed twice with PBS, and cell pellets collected for 
automated BioID pulldown at the Proteomics Facility at Sanford Burnham Prebys Medical 
Institute. TurboID samples were prepared similarly, but were treated with 50µm biotin for only 4 
hours. Briefly, cells were lysed in 8M urea, 50 mM ammonium bicarbonate (ABC) and 
benzonase, and the lysate was centrifuged at 14,000 x g for 15 minutes to remove cellular 
debris. Supernatant protein concentration was determined using a bicinchoninic acid (BCA) 
protein assay (Thermo Scientific). Disulfide bridges were reduced with 5 mM tris(2-
carboxyethyl)phosphine (TCEP) at 30°C for 60 min, and cysteines were subsequently alkylated 
with 15 mM iodoacetamide (IAA) in the dark at room temperature for 30 min. Each sample was 
separated into two aliquots, one for whole cell proteome profiling and the other for proximity-
dependent labeling analysis. Whole cell protein lysate was digested overnight with mass spec 
grade Trypsin/Lys-C mix (1:25 enzyme/substrate ratio). Following digestion, samples were 
acidified with formic acid (FA) and subsequently desalted using AssayMap C18 cartridges 
mounted on an Agilent AssayMap BRAVO liquid handling system. Cartridges were sequentially 
conditioned with 100% acetonitrile (ACN) and 0.1% FA, samples were then loaded, washed with 
0.1% FA, and peptides eluted with 60% ACN, 0.1% FA. Finally, the organic solvent was 
removed in a SpeedVac concentrator prior to LC-MS/MS analysis. 

Affinity-purification of biotinylated proteins 
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Affinity purification and digestion of biotinylated proteins were carried out in an automated 
fashion in a Bravo AssayMap platform (Agilent) using AssayMap streptavidin cartridges 
(Agilent). Briefly, cartridges were first primed with 50 mM ammonium bicarbonate, and then 
proteins were slowly loaded onto the streptavidin cartridge. Background contamination was 
removed with 8M urea, 50 mM ammonium bicarbonate. Finally, cartridges were washed with 
Rapid digestion buffer (Promega, Rapid digestion buffer kit) and proteins were subjected to on-
cartridge digestion with mass spec grade Trypsin/Lys-C Rapid digestion enzyme (Promega, 
Madison, WI) at 70°C for 1h. Digested peptides were then desalted in the Bravo platform using 
AssayMap C18 cartridges, and dried down in a SpeedVac concentrator. 

Mass Spectrometry  

Prior to LC-MS/MS analysis, dried peptides were reconstituted with 2% ACN, 0.1% FA and 
concentration was determined using a NanoDropTM spectrophometer (ThermoFisher). Samples 
were then analyzed by LC-MS/MS using a Proxeon EASY-nanoLC system (ThermoFisher) 
coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Peptides 
were separated using an analytical C18 Aurora column (75µm x 250 mm, 1.6 µm particles; 
IonOpticks) at a flow rate of 300 nL/min (60oC) using a 75-min gradient: 1% to 5% B in 1 min, 
6% to 23% B in 44 min, 23% to 34% B in 28 min, and 34% to 48% B in 2 min (A= FA 0.1%; 
B=80% ACN: 0.1% FA). The mass spectrometer was operated in positive data-dependent 
acquisition mode. MS1 spectra were measured in the Orbitrap in a mass-to-charge (m/z) of 375 
– 1500 with a resolution of 60,000 at m/z 200. Automatic gain control target was set to 4 x 105 
with a maximum injection time of 50 ms. The instrument was set to run in top speed mode with 
2-second cycles for the survey and the MS/MS scans. After a survey scan, the most abundant 
precursors (with charge state between +2 and +7) were isolated in the quadrupole with an 
isolation window of 0.7 m/z and fragmented with HCD at 30% normalized collision energy. 
Fragmented precursors were detected in the ion trap as rapid scan mode with automatic gain 
control target set to 1 x 104 and a maximum injection time set at 35 ms. The dynamic exclusion 
was set to 20 seconds with a 10 ppm mass tolerance around the precursor. 

Data Analysis   

All raw files were processed with MaxQuant (version 1.5.5.1) using the integrated Andromeda 
Search engine against a target/decoy version of the curated human Uniprot proteome without 
isoforms (downloaded in January of 2020) and the GPM cRAP sequences (commonly known 
protein contaminants). First search peptide tolerance was set to 20 ppm, main search peptide 
tolerance was set to 4.5 ppm. Fragment mass tolerance was set to 20 ppm. Trypsin was set as 
enzyme in specific mode and up to two missed cleavages was allowed. Carbamidomethylation 
of cysteine was specified as fixed modification and protein N-terminal acetylation and oxidation 
of methionine were considered variable modifications. In addition, the phosphopeptide-enriched 
samples were also searched with phosphorylation of serine, threonine and tyrosine was 
considered as variable modification. The target-decoy-based false discovery rate (FDR) filter for 
spectrum and protein identification was set to 1%. 

Statistical analysis of interactome data was carried out using in-house R script (version 3.5.1, 
64-bit), including R Bioconductor packages such as limma and MSstats. First, peptide 
intensities were log2-transformed and loess-normalized (limma package) across replicates of 
each bait or control batch to account for systematic errors. Note that normalization was not 
carried out across all samples due to significant differences in pulldowns of different baits and/or 
their controls. Testing for differential abundance was performed using MSstats bioconductor 
package based on a linear mixed-effects model. Importantly, the log2FC and pvalue of proteins 
missing completely in one condition (i.e., ORF or control) was imputed as follows. The imputed 
Log2FC of each bait vs control comparison was calculated as the average of the protein 
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intensity (i.e., sum of peptide intensities of a given protein within a given sample) across the 
triplicate of the same bait, divided by 3.3. On the other hand, the imputed pvalue was computed 
by dividing 0.05 by the number of replicates of a given bait the protein was confidently identified. 
Therefore, the imputed log2FC gives a notion of the average protein intensity in a pulldown, 
while the imputed pvalue reports the confidence of identification in the sense of reproducibility of 
detection. In addition, we generated a CrapomeScore for each identified protein in the 
experiment. The CrapomeScore is the fraction of all streptavidin-based experiments in the 
Crapome database (reprint-apms.org) that the prey protein is identified. The CrapomeScore 
ranges from 0 to 1, and a protein with a score of 1 means that it was identified in all streptavidin-
based experiments in the Crapome database. 

Network analysis of SARS-CoV-2 interactors 

A hierarchical model of cellular processes and structures predicted to interact with SARS-CoV-2 
was derived via multi-scale community detection performed on a large protein interaction 
network. We selected a network derived from the STRING database as our starting network: the 
subset of the STRING interactions with a combined confidence score greater than 0.7 (available 
in the Network Data Exchange (NDEx) at https://www.ndexbio.org/viewer/networks/275bd84e-
3d18-11e8-a935-0ac135e8bacf [66, 67]. Then, human proteins interacting with SARS-CoV-2 
proteins were filtered by log2FC≥2.32, p value≤0.01, and n≥2. The specific high-confidence 
interactions also were filtered based on the CRAPome contaminant database with a score ≤0.5 
[68]. A subnetwork "proximal" to those proteins then was identified by network propagation 
using the Cytoscape Diffusion tool [69].  

Multi-scale community detection analysis was performed on this subnetwork using the 
community detection algorithm HiDeF via the Community Detection APplication and Service 
(CDAPS; app available at http://apps.cytoscape.org/apps/cycommunitydetection) [70, 71].  The 
resulting hierarchical model describes "communities" in the network at multiple scales, where 
communities are subnetworks of proteins interacting more with each other than with other 
proteins in the network. The analysis also infers a structure to the network, one in which 
communities are hypotheses for processes or structures that interact with SARS-CoV-2 
proteins. The communities are organized into a hierarchy in which larger communities subsume 
smaller communities [72, 73]. Finally, the hierarchy network (https://doi.org/10.18119/N9531R) 
was styled, communities were subjected to enrichment analysis in GO biological processes 
using the g:Profiler package in CDAPS, p values were calculated based on the hypergeometric 
distribution, and a layout was applied. 

Virus-centric analysis of SARS-CoV-2 interactors 

To provide a visual model that displays high-confidence cellular factors that interact with 
individual SARS-CoV-2 proteins, we utilized the same network derived from the STRING 
database (confidence score >0.7), with protein groups that had degree of connection =1, 
log2FC≥2.32, and p value≤ 0.01. In addition, we filtered for promiscuity using the CRAPome 
repository (CRAPome≤0.5) and included only proteins that were found in 2 or more biological 
replicates [68]. The resultant high-confidence interactors were visualized using Cytoscape 
(v3.8.0) and tested for enrichment in GO biological process terms using the hypergeometric 
distribution [74]. 

Web-based Shiny App 
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An accompanying web-based Shiny application 
(https://alexproteomics.shinyapps.io/covid19proteomics) was created to allow visualization and 
further functional analysis of the BioID and whole cell proteome statistical analysis data. The 
application uses several applications, including clusterProfiler (v3.18.1) for functional analysis 
with the enricher function using the Broad Institute molecular signature databases (v7.4) 
including canonical pathways (Reactome, KEGG, WikiPathways), Immune collection, chemical 
and genetic perturbation signatures, regulatory transcription factor targets (TFT), oncogenic 
signatures, and Gene Ontology (Human Phenotype, Cellular Component, Biological Process 
and Molecular Function).  
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