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Abstract 
 
Children in poverty must contend with systems that do not meet their needs. We 
explored what, at a neural level, helps explain children’s resilience in these contexts. 
Lower coupling between lateral frontoparietal network (LFPN) and default mode network 
(DMN)—linked, respectively, to externally- and internally-directed thought—has 
previously been associated with better cognitive performance. However, we recently 
found the opposite pattern for children living in poverty. Here, we investigated 
trajectories of network coupling over ages 9-13, and their relation to academic 
achievement and attention problems. Critically, we explored if these relations differed 
meaningfully between children above and below poverty. In a pre-registered study, we 
analyzed longitudinal data from the first three yearly timepoints of the ABCD Study (N = 
8366 children at baseline; 1303 below poverty). As predicted, higher LFPN-DMN 
connectivity was linked to worse grades and more attentional problems for children 
living above poverty, while children below poverty showed the opposite tendencies. 
Moreover, this interaction between LFPN-DMN connectivity and poverty status at 
baseline was associated with children’s grades one year later, even controlling for 
baseline grades. Together, these findings suggest that network connectivity is 
differentially predictive of academic performance and attention problems for children 
above and below poverty.   
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Introduction 
 
 Resources are not equally distributed across a nation's population; in the United 
States, the inequity is particularly stark (Zucman, 2019). There is a large body of 
research focused on the detriments of growing up without as many economic and 
educational resources (low socioeconomic status, SES). By comparison, far less 
research has examined how some children in lower-resource contexts are able to adapt 
and ultimately thrive educationally, exhibiting resilience in the face of structural barriers 
to success. Measuring children’s brain function is one way to investigate pathways to 
resilience. For example, one can ask whether children growing up with fewer resources 
rely on the same neural pathways as their well-off peers to perform well in school, or 
whether they achieve the same results through alternate means.  
 A number of brain imaging studies have shown environment-dependent 
differences in neural recruitment during cognitive tasks (Merz et al., 2019). These 
studies suggest that the homes, neighborhoods, and schools that form our lived 
experiences shape our mental and neural processes. This should hardly be surprising, 
given decades of animal research on experience-dependent brain plasticity (DeFelipe, 
2006; Diamond et al., 1964).  
 In this study, we focus on patterns of brain activation that support cognitive task 
performance in childhood, and where they diverge as a function of family income, a 
proxy for resource access. One relevant study found that children from higher- and 
lower-income homes relied on different brain regions to perform well on a working 
memory task (Finn et al., 2017). Children from higher-income families showed more 
overall brain activation during task performance: the more they recruited temporal and 
frontal brain regions, the better they did. Children from lower-income families, on the 
other hand, showed less activation and did better the less they recruited temporal and 
frontal brain regions. Contrastive findings such as these abound; researchers have 
typically found differences in frontal and parietal lobe activation as a function of family 
income, and differences in the ways brain function and structure relates to children’s 
performance on tasks such as working memory, rule learning, reasoning, and attention 
(Leonard et al., 2019; Merz et al., 2019; Sheridan et al., 2012). 
 Another way to test for experience-dependent differences in brain function is with 
resting state functional MRI (rs-fMRI); this method may more closely capture the 
cumulative effect of children’s life experiences and thought patterns. With rs-fMRI, we 
measure children’s unconstrained brain activity while they lie in the MRI scanner. The 
strength of functional connectivity between brain regions—that is, how often they 
fluctuate in tandem at “rest”—is thought to reflect recent history of coactivation of those 
regions. Advantages of this method are that it is not influenced by differences in 
children’s strategy or effort on a particular MRI task, which can be confounds in group 
comparisons. Functional connectivity measured with rs-fMRI is sensitive to current 
mental states (e.g., Liston et al., 2009), but also captures brain network connectivity on 
a broader timescale than a single task performed on a single day (for a review, see 
Guerra-Carrillo et al., 2014).  
 Here, we focus specifically on children’s resting-state functional connectivity 
between several brain networks relevant to cognitive and self-referential processing. 
The lateral frontoparietal network (LFPN) is consistently activated in higher-level 
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cognitive tasks, such as those taxing executive functions or reasoning (Vincent et al., 
2008). In contrast, the default mode network (DMN) is more active during internally 
oriented processing, such as reflecting on one’s self (Raichle et al., 2001), as well as 
during tasks that require thinking outside of the here-and-now, such as thinking about 
the past or future (Spreng, 2012). Task-related fMRI studies have shown that stronger 
activation of the LFPN and stronger deactivation of the DMN is associated with better 
performance on tasks that require focus on externally presented stimuli (Weissman et 
al., 2006). On the other hand, engagement of both the LFPN and DMN is beneficial 
when performing tasks on which intentional mind-wandering is helpful (Christoff et al., 
2009; Dixon et al., 2014; Kucyi et al., 2021).    
 A fairly consistent body of research with higher-income children and adults has 
found that relatively lower functional connectivity between LFPN and DMN is adaptive, 
in terms of cognitive, emotional, and behavioral outcomes (Chai et al., 2014; Lopez et 
al., 2020; Sherman et al., 2014; Whitfield-Gabrieli et al., 2020). Developmentally, both 
network segregation and integration have been reported, depending on the networks 
and the developmental period in question; it is thought that segregation supports 
network specialization (Baum et al., 2017; Grayson & Fair, 2017; Marek et al., 2015; 
Pines et al., 2021). 
 In a prior study, however, we found that lower connectivity between LFPN and 
DMN—an attribute previously linked to better cognitive performance and lower 
attentional problems (Sherman et al., 2014; Whitfield-Gabrieli et al., 2020)—was in fact 
only adaptive for children in families living above poverty (Ellwood-Lowe et al., 2020). 
Children from higher-income families tend to be overrepresented in neuroimaging 
studies, which may help to explain consistent results found previously. For children 
whose families had low incomes relative to their needs, higher LFPN-DMN connectivity 
was associated with marginally better cognitive test performance—perhaps a marker of 
adaptation relative to the demands of children’s environments. Follow-up analyses 
found that even within the group of children in poverty, the direction of the relation 
seemed to differ meaningfully for children below poverty with different sets of 
experiences, such as parent-reported neighborhood safety and the type of school 
children attended. These follow-up analyses are in keeping with other work showing that 
different socioeconomic indicators and early experiences are differentially related to 
neural development (e.g., Elsayed et al., 2021; Johnson et al., 2016; Noble et al., 2015; 
Rakesh, Zalesky, et al., 2021; Taylor et al., 2020; Whittle et al., 2017). Our unexpected 
results suggest that in certain environments it may be adaptive to frequently coactivate 
LFPN and DMN (Ellwood-Lowe et al., 2020).  
 In our prior study, we also explored coupling between these two networks and 
the cingulo-opercular network (CON). This network, sometimes referred to as the 
“salience network,” has been theorized to serve as an interface between LFPN and 
DMN. In particular, it is thought to be involved in alerting LFPN to a salient stimulus that 
may require a controlled response, and thus play an important role in switching from the 
so-called “default” mode to the top-down control mode (Sridharan et al., 2008). In our 
prior study, we found that lower connectivity between CON and LFPN was related to 
better test performance for children, regardless of income levels. For CON-DMN 
connectivity, however, we found a possible group interaction, whereby higher CON-
DMN coupling tended to be associated with better cognitive test scores for children 
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above poverty, but showed the opposite trend for children below poverty. As a result, 
we also examined CON network connectivity here. 
 Our initial study was cross-sectional, focusing on children when they first entered 
the study between ages 9–11; here we sought to track neural differences over three 
timepoints so as to understand whether the observed differences in brain-behavior 
correlations between children above and below poverty diminish, persist, or are 
enhanced as children continue to develop. In the current data, we looked at behavioral 
measures 1-2 years after the first assessment, and neuroimaging measures collected 2 
years after the first assessment. With this longitudinal approach, we were better able to 
examine developmental trajectories between children above and below poverty across 
middle childhood and early adolescence, from ages 9–13. 
 We predicted that these networks would become generally less coupled with one 
another over development, based on some of the prior literature. However, we consider 
three alternative hypotheses for how network coupling interacts with poverty status: 
convergence, divergence, and stability. One possibility is that the dissociation we found 
at baseline between children’s LFPN-DMN connectivity and test performance reflects 
different rates of brain development for children above versus below poverty: that is, 
children in poverty with higher LFPN-DMN connectivity might be showing more 
protracted development, which could be adaptive for them in some way. In this case, we 
would expect LFPN-DMN connectivity (and relations with behavior) to converge over 
development. A second possibility is that, as children continue to lead lives with different 
constraints, their patterns of adaptive behavior or thinking becomes more and more 
distinct. In this case, we would expect the relation between connectivity and 
performance to diverge over development. Finally, a third possibility is that the pattern 
of adaptive connectivity is relatively stable between ages 9–13; that is, the pattern of 
opposite relations between functional connectivity and performance would not change 
over this timeframe. Thus, by looking at longitudinal relations, we can try to disentangle 
these possibilities and better understand whether or how early environment shapes 
developmental trajectories. 
 In our prior work, the behavioral outcome of interest was performance on a 
battery of cognitive tests assessing executive functions and reasoning. Although 
children’s scores on these fairly abstract tasks tend to be predictive of real-world 
outcomes (Firkowska-Mankiewicz, 2011), the metrics that are most relevant to their 
lives are the real-world outcomes themselves. Here, we sought to examine more 
ecologically valid indicators of behavior, namely children’s grades and attention 
problems. Attention problems can pervade many aspects of children's lives, from their 
performance in school to self-esteem to relationships with peers, teachers, and family 
members (Harpin, 2005). Likewise, grades in school are an important marker of future 
educational and career opportunities. However, few studies have related academic 
performance to resting-state connectivity. An exception is Chaddock-Heyman et al. 
(2018), who found that greater network integration at ages 7-9 was associated with 
higher scholastic performance. By using these measures, we seek to better understand 
the neural basis of children's resilience with regard to societal constraints. Importantly, 
these measures—like rs-fMRI—assess functioning over a broader timeframe than their 
score on a set of tests completed on a single day. 
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 In summary, the current pre-registered study had two primary aims. First, we 
sought to conduct longitudinal analyses characterizing trajectories of within-person 
change in network coupling over ages 9-13, as well as their relations to children's 
behavior. We considered three possible outcomes for the comparison between children 
living above and below poverty: convergence, divergence, or stability of the relation 
between connectivity and behavior. Second, we sought to measure children’s grades 
and behavior problems as more real-world and temporally extended indicators of 
performance in their daily lives. We also planned to explore associations between these 
behavioral measures and LFPN-CON and DMN-CON connectivity, and—critically—
whether they differed as a function of poverty status. Unlike studies that have examined 
brain differences between relatively higher- and lower-income children, this study 
included children living below the poverty line, some of whom are able to cope with 
severe adversity.    
 
Methods 
 
Parent study 
 Data were drawn from the Adolescent Brain Cognitive Development (ABCD) 
study, which was designed to recruit a large cohort of children who closely represented 
the United States populations (http://abcdstudy.org; see Garavan et al., 2018). The 
ABCD study is a multisite, longitudinal study intended to run for at least 10 years 
following 11,878 children, recruited at ages 9-11, into late adolescence. A wide variety 
of data are collected on each youth including mental and physical health assessments, 
behavioral data, imaging data, and more. This study was approved by the Institutional 
Review Board at each study site, with centralized IRB approval from the University of 
California, San Diego. Informed consent and assent were obtained from all parents and 
children, respectively. We include data from the first three timepoints: T0 (baseline 
assessment; ages 8.9-11.1), T1 (one-year follow-up; ages 9.1-12.4), and T2 (two-year 
follow-up; ages 10.6-13.6). More specifically, we include behavioral data from T0, T1 
and T2, and functional MRI data from T0 and T2.  
  
Present study 
 
 Planned analyses were pre-registered prior to data access 
(https://aspredicted.org/QWQ_C5N; https://aspredicted.org/NTG_RRB) and analysis 
scripts are available on the Open Science Framework 
(https://osf.io/gcjn8/?view_only=d0f098d6a8ab47d5bf0bbb290141bbd3). The original 
data are available with permissions on the NIMH Data Archive 
(https://nda.nih.gov/abcd). All deviations from the initial analysis plan are fully described 
in the Supplement. 
 Children from the full sample were excluded if they did not provide data on any of 
the measures used in our analyses. Specifically, children were excluded from analyses 
if their caregiver did not provide information about family income, if their resting state 
MRI data at baseline did not meet ABCD’s usability criteria, or if there was no 
information about the child’s age, sex, or family ID (used to track whether participants 
were siblings). After these initial exclusions, children who had data related to attention 
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problems were included in analyses relevant to attention (N = 8366), and those with 
data related to grades in school were included in analyses relevant to grades (N = 7751; 
see Table 1). Because the former group included slightly more children, we used this 
sample when conducting analyses that did not include behavioral data. 

We estimated poverty status for each child based on their combined family 
income bracket, the number of people living in the home, and the average supplemental 
poverty level for the study sites included in the sample, as in our previous work 
(Ellwood-Lowe et al., 2020). Based on the factors used to estimate poverty status, we 
considered children to be living below the poverty line if they were living in a household 
of 4 with a total income of less than $25,000, or a household of 5 or more with a total 
income of less than $35,000 at T0 (Table 1).  

 
 

Timepoint  Attention data 
(N = 8366) 

Grades data 
(N = 7751) 

Above 
poverty 

Below 
poverty 

Above 
poverty 

Below 
poverty 

Baseline 
(T0) 

N 7063 1303 6510 1241 

Sex 
F: 3532 
M: 3531 

F: 653 
M: 650 

F: 3277 
M: 3233 

F: 624 
M: 617 

Age 8.9-11.1 8.9-11.1 8.9-11.1 8.9-11.1 

One-year 
follow-up 

(T1) 

N 6780 1155 5984 1060 

Sex 
F: 3386 
M: 3394 

F: 577 
M: 578 

F: 3018 
M: 2966 

F: 528 
M: 532 

Age 9.1-12.4 9.1-12.4 9.7-12.4 9.7-12.4 

Two-year 
follow-up 

(T2) 

N 4087 640 3663 593 

Sex 
F: 2013 
M: 2074 

F: 309 
M: 331 

F: 1814 
M: 1849 

F: 290 
M: 303 

Age 10.6-13.6 10.6-13.6 10.6-13.6 10.6-13.6 

Table 1. Sample sizes, age, and parent-reported child sex for children above and below 
poverty, at T0, T2, and T2. Sample sizes differ slightly for those analyses focusing on 
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grades and those focusing on attention, based on the number of children providing 
usable data.  
 
 
Behavioral measures 
 
 Children’s cognitive performance was measured at T0 with a cognitive test 
battery that included measures from the NIH Toolbox (http://www.nihtoolbox.org). The 
NIH Toolbox Fluid Cognition composite measure includes two tests of working memory 
(Picture Sequence Memory Test, List Sorting Working Memory Test), two tests of 
executive functions that tap into cognitive flexibility and inhibitory control (Dimensional 
Card Sort and Flanker tasks), and one test of processing speed (Pattern Comparison 
Processing Speed Test). The administered test battery also included the Matrix 
Reasoning Task from the Wechsler Intelligence Test for Children-V (WISC-V), a 
measure of abstract reasoning (Wechsler, 2014). More details on each of these tests 
and their administration in the current study is described elsewhere (Luciana et al., 
2018). 
 Attention and behavioral problems were measured with the Attention subscale of 
the Child Behavior Checklist (CBCL). The CBCL is a standardized form which is used to 
characterize children’s externalizing and internalizing behaviors (Achenbach & Ruffle, 
2000). From the initial baseline assessment onwards, parents completed an automated 
version of the CBCL annually, reporting on their child’s behavior over the past six 
months (Barch et al., 2018). Each item on the CBCL was rated using a three-point 
rating scale: “not true,” “somewhat or sometimes true,” “very true or often true.” There 
were 11 items in the attention subscale. We used the mean of all items at T0, T1, and 
T2, separately, for each child. Higher scores indicated more attentional and behavioral 
problems.  
 Children’s academic performance was measured via parent-reported grades in 
the ABCD Longitudinal Parent Diagnostic Interview for DSM-5 Background Items Full 
(KSAD). Parents were asked what kind of grades their child received on average: 1= 
As/excellent, 2 = B’s/Good; 3 = C’s/Average; 4 = D’s/Below Average; 5 = F’s/Struggling 
a lot; 6 = ungraded, -1 = unapplicable. This question was asked at T0, T1, and T2.  
  
MRI Scan Procedure 
 
Scans were collected on one of three types of 3T scanners (Siemens, Philips, or GE) 
with an adult-size head coil. Resting state scans were completed at T0 and T2. Scans 
were typically completed on the same day as the cognitive battery, but could also be 
completed at a second testing session. After completing motion compliance training in a 
simulated scanning environment, participants first completed a structural T1-weighted 
scan. Next, they completed three to four five-minute resting state fMRI scans, during 
which they were instructed to lay with their eyes open while viewing a crosshair on the 
screen. The first two resting state scans were completed immediately following the T1-
weighted scan; children then completed two other structural scans, followed by one or 
two more resting state scans, depending on the protocol at each specific study site.  
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 Structural and functional images underwent automated quality control procedures 
(including detecting excessive movement and poor signal-to-noise ratios) and visual 
inspection and rating (for structural scans) of images for artifacts or other irregularities 
(described in Hagler et al., 2019); participants were excluded if they did not meet quality 
control criteria, including at least 12.5 minutes of data with low head motion at the time 
of data collection (framewise displacement < 0.2 mm). 
 Scan parameters were optimized to be compatible across scanners, allowing for 
maximal comparability across the 19 study sites. T1-weighted scans were collected 
axially with 1mm3 voxel resolution, 256 x 256 matrix, 8º flip angle, and 2x parallel 
imaging. Other scan parameters varied by scanner platform (Siemens: 176 slices, 256 x 
256 FOV, 2500 ms TR, 2.88 ms TE, 1060 ms TI; Philips: 255 slices, 256 x 240 FOV, 
6.31 ms TR, 2.9 ms TE, 1060 ms TI; GE: 208 slices, 256 x 256 FOV, 2500 ms TR, 2 ms 
TE, 1060 ms TI). fMRI scans were collected axially with 2.4mm3 voxel resolution, 60 
slices, 90 x 90 matrix, 216 x 216 FOV, 800ms TR, 30 ms TE, 52º flip angle, and 6 factor 
MultiBand Acceleration. Head motion was monitored during scan acquisition using real-
time procedures (fMRI Integrated Real-time Motion Monitor; Dosenbach et al., 2017) to 
adjust scanning procedures and collect additional data as necessary (Casey et al., 
2018). This prospective motion correction procedure significantly reduces scan artifacts 
due to head motion (Hagler et al., 2019), which are known to affect functional 
connectivity estimates (Power et al., 2015; Satterthwaite et al., 2013). 
 
Resting state fMRI preprocessing 
 
Data preprocessing was carried out using the ABCD pipeline and carried out by the 
ABCD Data Analysis and Informatics Core; more details are reported by Hagler et al. 
(2019). Briefly, T1-weighted MR images were corrected for gradient nonlinearity 
distortion and intensity inhomogeneity, and rigidly registered to a custom reference 
brain (Friston et al., 1995). These images were run through FreeSurfer’s automated 
brain segmentation to derive white matter, ventricle, and whole brain ROIs.  
 Resting state fMRI data were first corrected for head motion, displacement 
estimated from field map scans, B0 distortions, and gradient nonlinearity distortions, 
and registered to the structural images using mutual information. Initial scan volumes 
were removed, and each voxel was normalized and de-meaned. Signal from estimated 
head motion timecourses (including six motion parameters, their derivatives, and their 
squares), quadratic trends, and mean timecourses of white matter, gray matter, and 
whole brain, plus first derivatives, were regressed out, and frames with more than 
0.2mm displacement were excluded. The data then underwent temporal bandpass 
filtering (0.009 – 0.08 Hz).  
 Next, standard ROI-based analyses were adapted to allow for analysis in surface 
space (Hagler et al., 2019). Specifically, timecourses were projected onto FreeSurfer’s 
cortical surface, upon which 13 functionally defined networks (Gordon et al., 2016) were 
mapped and timecourses for FreeSurfer’s standard cortical and subcortical ROIs 
extracted (Desikan et al., 2006; Fischl et al., 2002). Correlations for each pair of ROIs, 
both within and across each of the 13 networks, were calculated. These pairwise 
correlations were z-transformed and averaged to calculate within-network connectivity 
for each network (the average correlation of each ROI pair within the network) and 
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between-network connectivity across all networks (the average correlation of pairs of 
each ROI in one network with each ROI in another network). Here, we examined 
between-network LFPN-DMN, CON-DMN, and CON-LFPN connectivity. 

Altogether, there was a four-step process for reducing the effect of head motion 
on rs-fMRI results. First there was real-time head motion monitoring and correction, as 
described above. Second, there was a thorough and systematic check of scan quality in 
collaboration with ABCD’s Data Analysis and Informatics Center. Third, signal from 
motion timecourses was regressed out during preprocessing, and frames with greater 
than 0.2mm of framewise displacement were excluded from calculations altogether, as 
were time periods with less than five contiguous low-motion frames. Fourth, a final 
censoring procedure was employed to identify potential lingering effects of motion by 
excluding any frames with outliers in spatial variation across the brain (Hagler et al., 
2019). In combination, these procedures reduce motion artifacts (Power et al., 2014). 
 
Analyses 
 
 Analyses were performed using the software package R (version 4.0.2; R Core 
Team, 2017). To determine whether to include potential covariates in our model, we 
tested whether each of the following variables contributed significantly to model fit: (1) a 
random intercept of study site, (2) a random intercept of families, (3) a fixed effect of 
sex, (4) a fixed effect of child age, and (5) a fixed effect of head motion (mean 
framewise displacement) during the resting state scan. All covariates besides age 
contributed to model fit at a level of p < .05 and were thus retained in final models. 
 To determine significance in our models, we performed nested model 
comparison. In all cases, we compared models without the inclusion of the variable of 
interest to models with this variable included; we calculated whether the variable of 
interest contributed significantly to model fit using the anova function for likelihood ratio 
test model comparison. For models in which the dependent variable was continuous, we 
performed linear mixed effects models using the lme4 package (Bates et al., 2015); for 
models in which this variable was an ordered factor (e.g., grades), we performed 
cumulative link mixed models using the ordinal package (Christensen, 2018). 
 
Longitudinal changes in brain network connectivity 
We examined network changes over early adolescence, and whether these changes 
differed as a function of poverty status. We performed three separate linear mixed 
effects models testing the interaction of timepoint (T0, T2) with poverty status (above, 
below), in association with (1) LFPN-DMN connectivity, (2) CON-DMN connectivity, and 
(3) CON-LFPN connectivity.  
 
Behavioral measures 
We assessed the concurrent and longitudinal relations between cognitive test 
performance and grades, and tested whether the relation varied as a function of poverty 
status. To this end, we conducted cumulative link mixed models to test grades in 
association with an interaction between poverty status and test performance. We had 
preregistered an analysis plan using linear mixed effects models to test these relations. 
However, because grades are a categorical ordered variable, cumulative link mixed 
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models are more appropriate. Thus, we report the latter analyses for all tests including 
grades as an outcome variable. Results are not meaningfully different when performing 
the pre-registered linear mixed effects models. We also calculated pairwise correlation 
values for all behavioral measures: that is, NIH cognitive scores at baseline, grades at 
three timepoints, and attention scores at three timepoints.  
 
Functional connectivity in relation to grades and attention 
We investigated the relation between children’s grades and LFPN-DMN connectivity at 
each timepoint. We performed three separate cumulative link mixed models to 
characterize the relation between children’s academic performance and LFPN-DMN 
connectivity. The first model tested this relation at T0, with an interaction between 
LFPN-DMN connectivity and poverty status. The second and third models tested this 
relation longitudinally, to see whether LFPN-DMN at T0 and its interaction with poverty 
status related to children’s academic performance at T1 and T2, respectively, when 
controlling for children’s academic performance at T0.  
 In one analysis meant to follow up on an interaction, the cumulative link mixed 
model failed to converge; because this analysis was performed only to illustrate the 
direction of the effect for a subgroup, we report beta coefficients for a linear mixed 
effects model for that test and note this in the text. 
 Similarly to our analyses focused on grades, we examined the relation between 
children’s attention problems and LFPN-DMN connectivity at each timepoint. As 
attention was a continuous variable, we performed three separate linear mixed effects 
models testing the interaction between LFPN-DMN connectivity with poverty status, in 
association with (1) attention problems at T0, (2) attention problems at T1, and (3) 
attention problems at T2, controlling for children’s attention at T0.  
 In preregistered secondary analyses, we also examined relations between these 
behavioral measures and CON network connectivity. 
 
Exploratory analyses 
 
We conducted a number of additional analyses, following a similar analytic approach to 
those above, for which we did not have strong predictions. These additional analyses 
are reported in the main text and Supplementary Materials. Those that were not 
preregistered are indicated as exploratory.   
 
Results 
 
Longitudinal changes in network connectivity 
 
First, we examined how network connectivity changes between T0 and T2 in LFPN-
DMN resting-state functional connectivity. We had predicted that these networks would 
become less coupled between ages 9 and 13. However, there was no significant 
change in LFPN-DMN connectivity across the group over the course of the two years, B 
= 0.001, SD = 0.001, 𝜒2 (2) = 1.01, p = .605. Additionally, this relation did not differ as a 

function of poverty status, interaction: B = -0.001, SD = 0.002, 𝜒2 (1) = 0.2, p = .651. 
Rather, we observed marked individual variability in the slope and magnitude of change 
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over time (Figure 1). Given the possibility that high- and low-performing children below 
the poverty line would show different developmental trajectories, we followed up on 
these results with exploratory analyses testing for an interaction between poverty status 
and cognitive test performance on change in functional connectivity in each of these 
networks; no such effect was observed (see Supplement). Thus, the lack of change in 
LFPN-DMN connectivity was consistent across poverty levels and cognitive 
performance.   
 We also examined changes in functional connectivity for CON-DMN and CON-
LFPN, as secondary analyses. Based on prior studies, we expected that these networks 
would become increasingly decoupled during development, for both children above and 
below poverty. On average, CON-DMN connectivity decreased significantly over ages 
9-13, confirming our prediction, B = -0.01, SD = 0.001, 𝜒2 (2) = 61.55, p < .001. Notably, 
this relation interacted significantly as a function of poverty status, interaction: B = -
0.001, SD = 0.002, 𝜒2 (1) = 6.61, p = .010 (Figure 2). While children below poverty did 
not show a significant decrease in connectivity, this change was highly significant for 
children above poverty (below poverty: B = -0.004, SD = 0.003, 𝜒2 (1) = 1.52, p = .217; 
above poverty: B = -0.009, SD = 0.001, 𝜒2 (1) = 56.47, p < .001).  

Similarly, CON-LFPN connectivity decreased significantly across the two years, 
on average, B = -0.005, SD = 0.001, 𝜒2 (2) = 19.28, p < .001. This main effect was 
qualified by a possible interaction as a function of poverty status, interaction: B = 0.005, 
SD = 0.003, 𝜒2 (1) = 3.55, p = .060 (Figure 3). Similar to the pattern for CON-DMN, 

children below poverty did not show a significant decrease in CON-LFPN connectivity, 
but this change was highly significant for children above poverty (below poverty: B = -
0.001, SD = 0.003, 𝜒2 (1) = 0.07, p = .797; above poverty: B = -0.005, SD = 0.001, 𝜒2 
(1) = 19.04, p < .001).  

Thus, both CON-DMN and CON-LFPN network connectivity decreased on 
average over ages 9-13, but these changes were driven by children above poverty. 
Exploratory analyses testing for an interaction between poverty status and cognitive test 
performance revealed no difference in these trajectories as a function of cognitive 
performance (see Supplement).   
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Figure 1. A. LFPN-DMN connectivity for each child, at the baseline (T0) and two-year 
follow-up (T2) assessments. Each line represents a different participant, connecting 
their values at T0 and T2; lighter teal color indicates children above poverty, while 
purple indicates children below poverty. Box plots for both groups at both timepoints 
also displayed. B. Change in LFPN-DMN connectivity for children above (top) and 
below poverty (bottom). Dotted line at zero indicates no change; negative values 
indicate a decrease between T0 and T2. 
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Figure 2. A. CON-DMN connectivity for each child, at the baseline (T0) and two-year 
follow-up (T2) assessments. Each line represents a different participant, connecting 
their values at T0 and T2; lighter teal color indicates children above poverty, while 
purple indicates children below poverty. Box plots for both groups at both timepoints 
also displayed. B. Change in CON-DMN connectivity for children above (top) and below 
poverty (bottom). Dotted line at zero indicates no change; negative values indicate a 
decrease between T0 and T2. 
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Figure 3. Panel A. CON-LFPN connectivity for each child, at the baseline (T0) and two-
year follow-up (T2) assessments. Each line represents a different participant, 
connecting their values at T0 and T2; lighter teal color indicates children above poverty, 
while purple indicates children below poverty. Box plots for both groups at both 
timepoints also displayed. Panel B. Change in CON-LFPN connectivity for children 
above (top) and below poverty (bottom). Dotted line at zero indicates no change; 
negative values indicate a decrease between T0 and T2. 
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Behavioral measures 
 
Most children in our sample were reported by their parents as receiving A’s and B’s, 
although the broader range from A-F was represented. On average, children below 
poverty received lower grades than children above poverty. In terms of attention, most 
children in our sample scored below the clinical range on the CBCL attention subscale 
at T0. On average, children in poverty had more attention problems than children above 
poverty.  
 All three behavioral measures—NIH cognitive test scores, grades, and 
attention—were significantly correlated with one another, although there was a range of 
r-values between concurrently tested variables (Figure 4. Notably, attention was 
relatively weakly correlated with NIH test scores (r = .14 at T0, the timepoint at which 
NIH test scores were available) but moderately concurrently related to grades (r = .36-
.38 across three timepoints). Grades and NIH test scores were also moderately 
correlated (r = .33 at baseline). Thus, although these three variables were interrelated, 
they were by no means redundant with one another. Additionally, we found that 
attention was fairly stable over the three timepoints (r = .68 and .60 for T0 vs. the 1-year 
and 2-year follow-ups, respectively). So, too, were parent-reported grades (r = .74 and 
.68).     
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Figure 4. R-values for correlations among behavioral measures used in the current 
study, for children with data at all three timepoints. For the purposes of correlations, 
grades are treated as a continuous rather than categorical variable; all variables have 
also been recoded so that higher scores indicate better functioning (higher grades, 
fewer attention problems). All correlations are significant to the p < .0001 level. 
 
Academic performance  
 
Next, we tested for cross-sectional and longitudinal relations between parent-reported 
grades and cognitive test scores. We predicted that children’s performance on cognitive 
tests at T0 would be concurrently related with their grades in school. Furthermore, we 
predicted that this relation would differ as a function of poverty status, with children in 
poverty showing a weaker relation. As predicted, higher scores on the NIH composite 
were related to better grades in school concurrently, B = -0.08, SD = 0.004, 𝜒2 (2) = 
752.25, p < .001, and this interacted significantly as a function of poverty status, 
interaction: B = 0.03, SD = 0.01, 𝜒2 (1) = 24.31, p < .001 (Figure 5). Additionally, as 
predicted, the relation between cognitive performance and academic achievement 
differed as a function of poverty status. While the relation was highly significant for 
children above and below poverty, it was stronger for children above poverty (below 
poverty: B = -0.04, SD = 0.01, 𝜒2 (1) = 63.70, p < .001; above poverty: B = -0.08, SD = 
0.004, 𝜒2 (1) = 688.89, p < .001). Thus, children’s performance on cognitive tests at T0 
is concurrently associated with their grades in school, albeit less so for children in 
poverty than those above poverty.  
 We expected to observe a similar pattern of results longitudinally – that is, when 
testing whether cognitive test performance at T0 predicts future academic performance. 
As predicted, we found that higher cognitive test scores were related to higher grades in 
school one year later, controlling for grades at T0, B = -0.05, SD = 0.004, 𝜒2 (2) = 

174.99, p < .001. However, in contrast to our prediction, this relation did not differ 
significantly as a function of poverty status, interaction: B = 0.01, SD = 0.01, 𝜒2 (1) = 
1.07, p = .301 (Figure 5). The same pattern was found at T2, such that higher cognitive 
test scores were related to higher grades two year later, controlling for grades at T0, B = 
-0.04, SD = 0.005, 𝜒2 (2) = 69.15, p <.001, though this relation did not interact 
significantly as a function of poverty status, interaction: B = 0.02, SD = 0.01, 𝜒2 (1) = 
2.93, p = .087. 
 Thus, we found that cognitive test performance is somewhat predictive of 
concurrent and future academic performance, consistent with prior work. This relation 
was stronger for children above poverty at T0, but not longitudinally after controlling for 
T0. Taking into account that grades at the different timepoints were quite strongly 
correlated with one another (Figure 4), we conducted the same longitudinal analyses 
again at T1 and T2 without controlling for grades at T0. These exploratory analyses 
revealed significant interactions between children’s cognitive test performance at T0 
and their poverty status in predicting grades at all three timepoints (interaction at T1: X2 
(1) = 11.73, p = 0.001; interaction at T2: X2 (1) = 9.55, p = 0.002). 
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Figure 5. Relations between children’s test performance at baseline (T0) and their 
grades in school at baseline (T0; left panel), one-year follow-up (T1; center panel), and 
two-year follow up (T2; right panel). Each point represents a different child; lighter teal 
color indicates children above poverty, while purple indicates children below poverty. 
Box plots for both groups at both timepoints are also displayed. 
 
Relations between academic performance and LFPN-DMN connectivity 
 
We next asked whether the concurrent relation between LFPN-DMN connectivity and 
children’s academic performance at T0 differed as a function of poverty status. We 
predicted that higher LFPN-DMN connectivity would be associated with lower grades for 
children above poverty but higher grades for children in poverty. 
 On average, higher LFPN-DMN connectivity was related to worse grades 
concurrently at T0, B = 1.17, SD = 0.51, 𝜒2 (2) = 9.23, p = .010. However, as predicted, 
this relation differed significantly as a function of poverty status, interaction: B = -3.11, 
SD = 1.11, 𝜒2 (1) = 7.94, p = .005 (Figure 6). Higher LFPN-DMN connectivity was 
related to worse grades for children above poverty; by contrast, it was directionally, 
though non-significantly, related to better grades for children below poverty (above 
poverty: B = 1.20, SD = 0.51, 𝜒2 (1) = 5.51, p = .019; below poverty: B = -1.58, SD = 
0.98, 𝜒2 (1) = 2.61, p = .106). Thus, as predicted, LFPN-DMN connectivity was 
differentially associated with academic performance for children above and below 
poverty. 
 We also conducted these analyses longitudinally, to test the hypothesis that 
LFPN-DMN connectivity supports knowledge acquisition over the course of two years. 
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We predicted that LFPN-DMN connectivity at T0 would be longitudinally associated with 
grades at T1 and T2. Consistent with this prediction, we found that higher LFPN-DMN 
connectivity was related to worse grades one year later, controlling for grades at T0, B = 
1.78, SD = 0.61, 𝜒2 (2) = 13.31, p = .001. However, this relation differed significantly as 
a function of poverty status, interaction: B = -4.35, SD = 1.35, 𝜒2 (1) = 10.58, p = .001 
(Figure 6). Specifically, higher LFPN-DMN connectivity appeared to be related to worse 
grades for children above poverty (clmm did not converge, parameters from lmer were 
B = 0.34, SD = 0.12), but directionally related to better grades for children below 
poverty: B = -1.90, SD = 1.05, 𝜒2 (1) = 3.33, p = .068. 
 This pattern did not carry over to the third timepoint: that is, there was no 
significant relation between LFPN-DMN connectivity and grades at T2 after controlling 
for T0 grades, B = 0.11, SD = 0.75, 𝜒2 (2) = 0.88, p = .645, and this relation did not differ 

as a function of poverty status, interaction: B = -1.52, SD = 1.69, 𝜒2 (1) = 0.81, p = .369. 
However, as noted above, grades were quite highly correlated across timepoints; thus, 
we also conducted the same analyses without controlling for grades at T0. These 
exploratory analyses revealed significant interactions between children’s LFPN-DMN 
connectivity and their poverty status in predicting grades at all three timepoints 
(interaction at T1: X2 (1) = 14.35, p < .001; interaction at T2: X2 (1) = 4.73, p = .030). 
 

 
Figure 6. Relations between children’s LFPN-DMN connectivity at baseline (T0), after 
controlling for head motion, and their grades in school at baseline (T0; left panel), one-
year follow-up (T1; center panel), and two-year follow up (T2; right panel). Each point 
represents a different child; lighter teal color indicates children above poverty, while 
purple indicates children below poverty. Box plots for both groups at both timepoints are 
also displayed. 
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Relations between academic performance and CON-LFPN connectivity 
 
Because CON has been posited to play a role in alerting LFPN to external challenges, 
we conducted a preregistered secondary analysis testing whether CON-LFPN 
connectivity was concurrently related to children’s grades. Based on our prior work in 
this sample examining cognitive test performance, we predicted that stronger CON-
LFPN connectivity would be associated with worse academic performance in both 
children above and below poverty. Indeed, we found that on average, higher CON-
LFPN connectivity was related to worse grades concurrently at T0, B = 0.71, SD = 0.48, 
𝜒2 (2) = 6.70, p = .035. This relation did not differ as a function of poverty status, 
interaction: B = -3.11, SD = 1.11, 𝜒2 (1) = 1.51, p = .219; therefore, we did not follow up 
with exploratory longitudinal analyses. 
 
Relations between attention problems and LFPN-DMN connectivity 
 
As with grades, we next tested associations between children’s attention problems at 
T0, T1, and T2, and network connectivity at T0. We predicted that stronger LFPN-DMN 
connectivity would be associated with greater attention problems longitudinally. 
Moreover, given our prior findings, we hypothesized that children below poverty might 
show the opposite pattern, such that higher connectivity would be related to fewer 
attention problems.  
 On average, higher LFPN-DMN connectivity was related to more attention 
problems concurrently, B = 3.57, SD = 1.26, 𝜒2 (2) = 10.33, p = .006; importantly, 

however, this relation differed significantly as a function of poverty status, interaction: B 
= -7.58, SD = 2.95, 𝜒2 (1) = 6.61, p = .010 (Figure 7). While higher LFPN-DMN 
connectivity was related to more attention problems for children above poverty, it was 
not related to attention problems for children below poverty; if anything, however, this 
relation was in the opposite direction (above poverty: B = 3.72, SD = 1.20, 𝜒2 (1) = 9.55, 
p = .002; below poverty: B = -3.70, SD = 3.33, 𝜒2 (1) = 1.24, p = .265).  
 We next tested our hypothesis that higher LFPN-DMN connectivity would be 
associated with more attention problems longitudinally, controlling for attention at T0. 
Contrary to our prediction, we found no significant relation between LFPN-DMN and 
attention either at T1 or T2 when controlling for attention at T0 (T1: B = -0.89, SD = 
0.84, 𝜒2 (2) = 1.49, p = .474; T2: B = -0.14, SD = 1.12, 𝜒2 (2) = 0.17, p = .919). Further, 
this relation did not differ significantly as a function of poverty status at either timepoint 
(interaction at T1: B = 1.98, SD = 2.02, 𝜒2 (1) = 0.97, p = .326; interaction at T2: B = 

1.15, SD = 2.77, 𝜒2 (1) = 0.17, p = .684; Figure 7). There was similarly no interaction at 
either T1 or T2 when not controlling for attention at T0 (interaction at T1: X2 (1) = 0.96, p 
= .328; interaction at T2: X2 (1) = 0.10, p = .925). Thus, individual variability in attention 
problems was linked to LFPN-DMN connectivity only at ages 9-10—and at that time, it 
was linked in opposite directions as a function of poverty status.  
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Figure 7. Relations between children’s LFPN-DMN connectivity at baseline (T0), after 
controlling for head motion, and their attention problems at baseline (T0; left panel), 
one-year follow-up (T1; center panel), and two-year follow up (T2; right panel). Each 
point represents a different child; lighter teal color indicates children above poverty, 
while purple indicates children below poverty. Statistics for the interaction between 
poverty status and attention displayed with and without controlling for T0 attention.  
 
Testing the contribution of CON connectivity to attention problems  
 

CON has been theorized to serve as an intermediary between DMN and LFPN, 
enabling switching attention between internally and externally guided mental status. 
Thus, as secondary analyses, we tested—at baseline—whether these patterns of CON 
connectivity are differentially associated with attention problems for children above and 
below poverty, even after accounting for LFPN-DMN connectivity and its interaction with 
poverty status. The output of the model is displayed in Supplementary Table 1. 
 In this model including all three network pairings, higher LFPN-DMN and CON-
DMN were related to worse attention on average; however, both of these associations 
with attention differed significantly as a function of poverty status (see Supplementary 
Table 1). We found that CON-DMN connectivity was associated with attention problems 
over and above LFPN-DMN connectivity; CON-LFPN connectivity was not.  

As in our previous analyses focused solely on LFPN-DMN, this model showed a 
positive relation between LFPN-DMN connectivity and attention problems for children 
above poverty, but there was no significant relation for children below poverty (above 
poverty: B = 3.53, SD = 1.25, 𝜒2 (1) = 7.91, p = 0.005, below poverty: B = -4.02, SD = 

3.47, 𝜒2 (1) = 1.36, p = 0.243). On the other hand, higher CON-DMN connectivity was 
associated with more attention problems for both children above and below poverty—
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and the association was in fact stronger for children below poverty (above poverty: B = 
3.43, SD = 1.11, 𝜒2 (1) = 9.58, p = 0.002, below poverty: B = 10.14, SD = 3.03, 𝜒2 (1) = 
11.14, p = 0.001). Thus, in our study, the strongest concurrent predictor of attention 
problems among children below poverty was high CON-DMN connectivity. Exploratory 
follow-up analyses showed that this metric was not predictive of future attention 
problems when controlling for initial attention scores, although attention scores were 
moderately correlated over time. However, the interaction by poverty status was stable 
across the three timepoints (interaction at T1: B = 6.35, SE = 2,46, 𝜒2 (1) = 6.65, p = 

.0099; interaction at T2: B = 11.08, SE = 3,12, 𝜒2 (1) = 12.58, p = .0004). 
 
Discussion 
 
 In this study, we sought to investigate trajectories of LFPN and DMN network 
coupling over middle childhood and early adolescence, and their relation to academic 
and behavioral resilience. To this end, we examined rs-fMRI network coupling 
longitudinally in relation to grades and attention problems in a diverse sample of 
participants at three yearly timepoints, spanning ages 9-13 across the sample. The 
central goal of this study was to assess whether associations between functional 
connectivity and performance differ meaningfully between children whose families lived 
above and below poverty. 
 In prior cross-sectional research with the ABCD dataset, also used here, we 
examined associations between brain connectivity and performance on a set of tests of 
executive functioning and reasoning. We replicated a consistent finding in the literature 
(Sherman et al., 2014; Whitfield-Gabrieli et al., 2020): that lower LFPN-DMN 
connectivity related to better cognitive test performance among children above the 
poverty line. By contrast, we found that lower LFPN-DMN connectivity tended to be 
associated with worse performance among children below poverty (Ellwood-Lowe et al., 
2020). Here, we sought to further explore this unexpected result, both by examining the 
effect longitudinally and testing whether it extended to more real-world indicators of 
children's ability to navigate challenges in their lives. 

Based on prior literature (Baum et al., 2017; Grayson & Fair, 2017; Sherman et 
al., 2014), we anticipated that the LFPN and DMN would become less coupled across 
timepoints across the full sample. However, we found that LFPN-DMN connectivity did 
not change consistently over the two-year study period; connectivity decreased for 
some individuals, and increased for others. This null result may reflect the relatively 
brief time window (two years) and/or the particular age range over which we examined 
changes (9-11 at the first timepoint; 10-13 at the third). We note that one prior study 
found increasing segregation between nodes of the DMN and LFPN longitudinally over 
ages 10-11, though this research used a seed-based approach that differed from our 
network-based approach (Sherman et al., 2014) 

Critically, we had posited that developmental trajectories in connectivity might 
differ as a function of children’s poverty status. We considered three hypothetical 
patterns of data to be equally plausible: convergence, divergence, or stability of 
differences in functional connectivity between groups. The data were consistent with the 
third possibility: there was no consistent developmental change across this two-year 
delay for either group. However, because we had seen differential patterns of 
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connectivity across poverty levels as a function of cognitive performance, we 
additionally conducted exploratory analyses testing whether children's cognitive test 
scores at baseline influenced the trajectory of change in connectivity. Contrary to this 
prediction, the trajectories of LFPN-DMN connectivity also did not differ as a function of 
children’s initial cognitive test scores.  
 Other studies have provided evidence of accelerated physical and brain 
development among children growing up in adversity, which could help them to adapt 
more readily to harsher living conditions (Belsky, 2019; Callaghan & Tottenham, 2016; 
Gee et al., 2013; McDermott et al., 2021; Tooley et al., 2021). Here, we do not see 
evidence for accelerated rate of LFPN-DMN network development for children below 
poverty—at least, not at this point in development. However, it is possible that a 
differential trajectory of change is visible earlier in childhood, at a time when networks 
affiliations are changing more markedly and/or more consistently.   

Given the fact that the LFPN and DMN interact with the CON, and that it has also 
been implicated in cognitive functioning, we also explored the development of CON 
connectivity. We found that CON-LFPN and CON-DMN connectivity decreased 
longitudinally, on average. These findings differ from past studies that found increased 
CON integration with other brain networks from ages 8-21 (Lopez et al., 2020) or 10-26 
(Marek et al., 2015). This discrepancy could stem from the fact that our participants 
were at the youngest end of the broad age ranges reported in these cross-sectional 
studies; it is possible that two years was insufficiently long to see significant change. 
Additionally or alternatively, discrepancies in results could be related to the different 
connectivity metrics used across studies. 

Most relevant to our present purposes, we tested whether the trajectory of 
change in between-network connectivity for the CON differed as a function of poverty 
status. Indeed, there was a significant interaction for CON-DMN, and it was trending for 
CON-LFPN. Only the children above poverty showed a decrease in CON-DMN and 
CON-LFPN connectivity. There was no significant change for children below poverty—
and we showed subsequently that this did not depend on cognitive performance. This 
pattern of results suggests that the children living below poverty reached CON network 
maturity slightly earlier, potentially consistent with the accelerated development 
hypothesis. Of note, the rate of network change did not interact with children’s cognitive 
test performance, leaving open what constitutes an “adaptive” rate of development. 
Continuing to follow these trajectories over time would help to confirm this possibility. As 
noted previously, we did not find evidence of accelerated maturation with regards to 
LFPN-DMN during this time period; then again, we found no consistent developmental 
changes within either group. To ascertain which neural systems show accelerated 
maturation in the face of adversity, it will be necessary to test for differential trajectories 
during a dynamic window of development for a given system.   
 Turning to associations with children’s behavioral outcomes, we found that 
having lower LFPN-DMN connectivity was concurrently related to having better 
grades—but only among the children above poverty. For those children living below 
poverty, this association was in the opposite direction. This differential relation as a 
function of poverty status was stable across all three timepoints. Moreover, LFPN-DMN 
connectivity was also differentially predicative of grades one year later for children 
above and below poverty, over and above initial grades—even though the latter were 
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strongly correlated with future grades. When measuring grades two years later, this 
pattern was still present but did not reach significance.  
 The fact that these differences in brain-behavior relations were stable over three 
timepoints results suggests that the high-performing children below poverty did not 
exhibit a pattern of connectivity that was beneficial at age 9-10 but that later became 
detrimental. Instead, there are qualitative differences in what appears to be 
academically adaptive for children above and below poverty; these differences may be 
established earlier in childhood and then remain relatively stable across middle 
childhood and early adolescence.  

We also found that higher CON-LFPN was related to worse academic 
performance for both children above and below poverty, whereas prior evidence 
suggests that higher CON connectivity is related to better executive functioning (Marek 
et al., 2015). As there are a number of possible reasons for these discrepant findings, 
additional work will be needed to reconcile them.  
 With regard to children’s attention problems, our primary hypotheses focused on 
longitudinal associations, given a prior study (Whitfield-Gabrieli et al., 2020). 
Specifically, we sought to replicate the finding that stronger LFPN-DMN connectivity at 
age seven was associated with greater attention problems four years later, controlling 
for attention problems at baseline. If this is a general phenomenon, we would expect 
children below poverty to show the same relation. However, given our prior findings 
regarding differential brain-behavior relations for cognitive performance, children below 
poverty could conceivably show the opposite pattern.  
 Broadly consistent with the prior study (Whitfield-Gabrieli et al., 2020), stronger 
LFPN-DMN connectivity was associated with greater attention problems—but only for 
children above poverty. These results differed in two ways from the prior study (which 
sampled children at age seven and again at age eleven, and which adopted a seed-
based ROI approach). First, the relation was observed cross-sectionally in the present 
study; second, it was not observed longitudinally. The differential effect for children 
above and below poverty also did not endure longitudinally. Secondary and exploratory 
analyses in our study indicate that CON-DMN connectivity is a more reliable marker of 
attention problems than LFPN-DMN connectivity for children below poverty, both 
concurrently and longitudinally. 
 Overall, these results confirmed a prior study suggesting that lower LFPN-DMN 
connectivity is adaptive only for higher-income children (Ellwood-Lowe et al., 2020). 
Here, we extended this result in two ways: first, we show that this is true for more 
ecologically valid measures that capture children’s resilience in real-world contexts. 
Second, we show that the dissociation observed previously is, at the very least, not 
linked to worse outcomes for high-performing children in poverty longer-term.  
 The phenomena established by these initial results across two studies lay a 
foundation for more detailed analysis of functional connectivity. For example, it may be 
useful to explore subnetworks of LFPN and DMN, given distinctions in their 
contributions to cognition (Buckner & DiNicola, 2019; Dixon et al., 2018; Fornito et al., 
2012; Lopez et al., 2020). In addition, it will be important to assess individual-level 
networks (Seitzman et al., 2019), to see whether network boundaries differ meaningfully 
as a function of children’s experiences. Further, it would be interesting to determine 
which specific aspects of children's home environment underlie the effects reported 
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here, given that experiences differ markedly even among children living in poverty 
(DeJoseph et al., 2021; Ellwood-Lowe et al., 2020; Humphreys & Zeanah, 2015; 
McLaughlin et al., 2014; Rakesh, Seguin, et al., 2021; Rakesh, Zalesky, et al., 2021). 
While the differential patterns of brain activity we see here may reflect years of 
childhood experiences, other research has shown that rs-fMRI changes as a function of 
even brief experiences, even in adulthood (Guerra-Carrillo et al., 2014). Similarly, the 
developmental trajectory of brain coupling is likely not immutable; to the extent that an 
individual brain show stability in connectivity over time, this could in large part reflect 
stability in the context in which they live—their challenges and opportunities. 
 On the cognitive side, there is also not a universally strong link between 
performance on tests of executive functioning and more real-world indicators of 
academic and behavioral performance, despite countless studies showing relations 
between them (e.g., Best et al., 2011; Cowan, 2014; St Clair-Thompson & Gathercole, 
2006; Willoughby et al., 2019).We found that cognitive test scores were more highly 
correlated to academic performance in children above than below poverty. This could 
be because of differences in the resources and quality of instruction between schools 
that primarily serve high- versus low-income students (Horng, 2005; Orfield & Lee, 
2005; Reardon & Owens, 2014). Additionally or alternatively, it could be because 
children living in poverty face other forms of discrimination in school that lead them to 
perform worse academically independent of their abilities (Darling-Hammond, 2001; 
Hettleman, 2003; Scott et al., 2020). A similar pattern is true for attention problems, 
such that children in poverty’s behavior problems were less strongly correlated with their 
grades in school.  
 Finally, it is important to note that effect sizes were quite small, and there was 
substantial overlap in network connectivity and its relation to behavior between children 
living above and below poverty. Because children below poverty are typically 
underrepresented in neuroimaging research, we chose to examine them as a separate 
group, defined based on their combined family income and the number of people in their 
household (see also Ellwood-Lowe et al., 2020). Of course, this is a somewhat arbitrary 
distinction based on an estimate of whether a child’s family has the financial resources 
they need to meet their basic needs; more than likely, this dataset includes a substantial 
number of children in poverty who have more common experiences with those above 
poverty, and vice versa. Numerous experiences beyond financial resources shape 
mental processes. In addition, numerous other features of brain structure and function 
contribute to these individual differences in mental processing. 
 Taken together, these results show that the cognitive and neural factors that 
influence achievement are not exactly the same for children above and below poverty. 
Within a deficit framework, a goal toward promoting equity in academic achievement 
might be to “correct” brain networks, such that children below poverty show a pattern 
more closely resembling that of children above poverty. The findings presented here 
complicate this idea, suggesting that in the absence of taking children out of poverty, 
approaches that maximize their specific developmental trajectories and capacities may 
be needed. Our findings also highlight the importance of recruiting diverse samples for 
understanding human development; even among children living within the United 
States, who themselves share many experiences in common, there appear to be 
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important experience-dependent differences in patterns of brain network development 
that support academic and behavioral resilience. 
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