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23 Abstract

24 The copper biotic ligand model (BLM) has been used for environmental risk assessment by taking 

25 into account the bioavailability of copper in freshwater. However, the BLM-based environmental 

26 risk of copper has been assessed only in Europe and North America, with monitoring datasets 

27 containing all of the BLM input variables. For other areas, it is necessary to apply surrogate tools 

28 with reduced data requirements to estimate the BLM-based predicted no-effect concentration 

29 (PNEC) from commonly available monitoring datasets. To develop an optimized PNEC estimation 

30 model based on an available monitoring dataset, an initial model that considers all BLM variables, 

31 a second model that requires variables excluding alkalinity, and a third model using electrical 

32 conductivity as a surrogate of the major cations and alkalinity have been proposed. Furthermore, 

33 deep neural network (DNN) models have been used to predict the nonlinear relationships between 

34 the PNEC (outcome variable) and the required input variables (explanatory variables). The 

35 predictive capacity of DNN models in this study was compared with the results of other existing 

36 PNEC estimation tools using a look-up table and multiple linear and multivariate polynomial 

37 regression methods. Three DNN models, using different input variables, provided better 

38 predictions of the copper PNECs compared with the existing tools for four test datasets, i.e., 

39 Korean, United States, Swedish, and Belgian freshwaters. The adjusted r2 values in all DNN 

40 models were higher than 0.95 in the test datasets, except for the Swedish dataset (adjusted r2 > 

41 0.87). Consequently, the most applicable model among the three DNN models could be selected 

42 according to the data availability in the collected monitoring database. Because the most simplified 

43 DNN model required only three water quality variables (pH, dissolved organic carbon, and 

44 electrical conductivity) as input variables, it is expected that the copper BLM-based risk 

45 assessment can be applied to monitoring datasets worldwide.
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69 1. Introduction

70 The copper biotic ligand model (BLM) is used to assess environmental risks and toxicity for copper 

71 based on its bioavailability because the toxicity of copper in aquatic systems is highly dependent 

72 on site-specific water chemistry. The model assumes that the binding of free copper ions to biotic 

73 ligands, together with the competitive effects of major cations, determines copper toxicity [1, 2]. 

74 There are a number of essential input variables (pH, dissolved organic carbon (DOC), major 

75 cations, and alkalinity) required to derive the predicted no-effect concentration (PNEC) and an 

76 effective environmental quality standard based on the copper BLM. However, monitoring 

77 databases containing all BLM input variables are available only for a few regions, such as the 

78 United States and Europe. Regulatory monitoring databases, which are not intended for use in 

79 BLM-based risk assessments, contain only general water quality variables and hazardous 

80 substances as monitoring variables. 

81 Although existing PNEC estimation tools can produce uncertain results due to the use of only a 

82 few assessment parameters, a BLM-based risk assessment can be conducted in regions where not 

83 all of the data required as BLM input variables are available. The Bio-met look-up table, the 

84 Environment Agency metal-bioavailability assessment tool (mBAT), which uses a multivariate 

85 polynomial function, and PNEC-pro, which uses multiple linear regression (MLR), require pH, 

86 DOC, and Ca, as the most influential variables to determine BLM-based PNECs [3-5]. However, 

87 the use of Ca as a representative variable of the major cations and alkalinity in existing tools has 

88 not significantly broadened the ecoregion for which BLM-based risk assessments can be applied. 

89 The Ca content may or may not be included as a common regulatory monitoring variable in 

90 different ecoregions. There is a need for new input variables that can act as a surrogate for the 

91 major cations and alkalinity within water quality variables while maintaining a good predictive 
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92 capacity for the BLM-based PNECs. In this study, electrical conductivity was considered a 

93 surrogate variable and is one of the recommended variables used to estimate the values of a missing 

94 BLM variable [6, 7]. 

95 New PNEC estimation models should be developed using a method that minimizes the remaining 

96 uncertainty by using the input variables from available monitoring datasets. In this study, a deep 

97 neural network (DNN) was used rather than the statistical methods that are applied in existing tools. 

98 The DNN was expected to provide an optimized predictive capacity for the nonlinear relationship 

99 between the BLM-based PNEC and the BLM input variables. The DNN is an approximator of 

100 universal function. It is an artificial neural network consisting of multiple hidden layers between 

101 the input and output layers, and therefore complex nonlinear relationships can be modeled by 

102 stacking more hidden layers [8]. 

103 Another factor determining the predictive capacity of the PNEC estimation model is that the 

104 dataset used to develop it must be sufficiently representative of freshwater chemistry. In the dataset 

105 used for the development of Bio-met and mBAT, Peters et al. (2011) assumed that most of the Mg, 

106 Na, and alkalinity could be determined from Ca concentrations [9]. This means that a dataset 

107 consisting of a combination of only three variables (pH, DOC, and Ca) would not cover the full 

108 range of BLM input variables. The dataset used for the development of PNEC-pro is from a 

109 monitoring database from the Netherlands. Further validation is therefore necessary to apply 

110 PNEC-pro to ecoregions with different water chemical properties. As a result, simulation data with 

111 full coverage of the domain of BLM input variables is needed for the development of the PNEC 

112 estimation model. 

113 The aim of this study was to develop an optimized PNEC estimation model depending on the 

114 available monitoring dataset. For this purpose, a realistic training dataset with sufficiently 
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115 representative freshwater chemistry was built to combine all the BLM input variables, and three 

116 different models with a different number of input variables were proposed by the DNN. The most 

117 simplified model required only general water quality parameters, such as pH, DOC, and electrical 

118 conductivity, and could be used for copper BLM-based risk assessments using various monitoring 

119 datasets that are available worldwide. 

120

121 2.  Materials and methods

122 2.1. Calculation of the BLM-based PNECs for copper 

123 A general formula for a copper BLM (the Daphnia magna BLM) is shown in Eq 1 [10]. According 

124 to the European Union Risk Assessment Report (EU-RAR) [11], the acute D. magna BLM was 

125 used as the chronic fish BLM as follows:

126

𝐸𝐶50𝐶𝑢2+

=  
𝑓50%

𝐶𝑢𝐵𝐿

(1 ―  𝑓50%
𝐶𝑢𝐵𝐿) ∙  𝐾𝐶𝑢𝐵𝐿

 ∙  

{1 +  𝐾𝐶𝑎𝐵𝐿 ∙  (𝐶𝑎2+) +  𝐾𝑀𝑔𝐵𝐿 ∙  (𝑀𝑔2+) +  𝑘𝑁𝑎𝐵𝐿 ∙  (𝑁𝑎+) +  𝐾𝐻𝐵𝐿 ∙  (𝐻+)}
{1 +  𝑅𝐶𝑢𝑂𝐻𝐵𝐿 ∙  𝐾𝐶𝑢𝑂𝐻 ∙  (𝑂𝐻―) +  𝑅𝐶𝑢𝐶𝑂3𝐵𝐿  ∙   𝐾𝐶𝑢𝐶𝑂3 ∙  (𝐶𝑂2―

3 )}

            (1)

127 where 𝑓50%
𝐶𝑢𝐵𝐿 is the fraction of the total number of copper-binding sites occupied by copper at the 

128 50% toxic effect, and 𝐾 represents biotic ligand constants, such as  𝐾𝐶𝑎𝐵𝐿, 𝐾𝑀𝑔𝐵𝐿, 𝐾𝑁𝑎𝐵𝐿, 𝐾𝐻𝐵𝐿, 

129 𝑅𝐶𝑢𝑂𝐻𝐵𝐿 (𝐾𝐶𝑢𝑂𝐻BL / 𝐾𝐶𝑢BL), and 𝑅𝐶𝑢𝐶𝑂3𝐵𝐿 (𝐾𝐶𝑢𝐶𝑂3BL / 𝐾𝐶𝑢BL). The formula for the chronic D. 

130 magna BLM is shown in Eq 2 [12]. 

131 21𝑑 ― 𝐸𝐶50𝐶𝑢2+ =  
𝑓50%

𝐶𝑢𝐵𝐿

(1 ―  𝑓50%
𝐶𝑢𝐵𝐿) ∙  𝐾𝐶𝑢𝐵𝐿

 ∙  
1 + 471 {1 +  𝐾𝐻𝐵𝐿 ∙   10―6.8 } ∙  (𝑁𝑎+) +  𝐾𝐻𝐵𝐿 ∙  (𝐻+)

{1 +  𝑅𝐶𝑢𝑂𝐻𝐵𝐿 ∙  𝐾𝐶𝑢𝑂𝐻 ∙  (𝑂𝐻―) +  𝑅𝐶𝑢𝐶𝑂3𝐵𝐿  ∙   𝐾𝐶𝑢𝐶𝑂3 ∙  (𝐶𝑂2―
3 )}            

132 (2)

133 To calculate the BLM-based PNEC in the training and test datasets, site-specific chronic toxicity 

134 values were calculated from toxicity data for 27 aquatic organisms provided by the EU-RAR [11] 
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135 . The biotic ligand and inorganic stability constants for each BLM were applied to three taxonomic 

136 groups, algae, invertebrates, and vertebrates, and are shown in S1 Table. The BLM-based PNECs 

137 were derived by applying an assessment factor of one to the fifth percentile value (HC5) in the 

138 species sensitivity distribution. 

139

140 2.2. Training and test datasets

141 The training data for DNN model development were built by simulating BLM-based PNECs based 

142 on the combination of BLM input variables, including various water chemistry parameters. A 

143 monitoring database of Korean freshwater parameters was used to establish the domain range of 

144 the training dataset, in which real correlations between BLM input variables were taken into 

145 account. The combination of BLM variables was generated from the linear regressions between 

146 each variable, and the extent of the domain range was determined by a factor of five of the linear 

147 regression results. 

148 Monitoring databases for four ecoregions were used as test datasets. The Korean dataset contained 

149 764 individual samples from the Han River, Guem River, Yeongsan River, and Seomjin River 

150 collected from a search of the Environmental Digital Library of the Ministry of Environment from 

151 2014 to 2016 (https://library.me.go.kr). The Swedish dataset contained 4,639 individual samples 

152 (999 river samples, 1,914 Malar Lake samples, and 1,726 tributary samples) collected from the 

153 Swedish river monitoring program of the Swedish University of Agricultural Sciences from 1997 

154 to 2020 (https://www.slu.se/vatten-miljo). The United States dataset included 279 samples 

155 collected in the water monitoring datasets of the Oregon Department of Environmental Quality 

156 Water Monitoring Data Portal (https://www.oregon.gov/deq/Data-and-

157 Reports/Pages/default.aspx) and included 84 samples collected from the draft technical support 
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158 document of the United States Environmental Protection Agency (US EPA, 2016). The Belgian 

159 dataset contained 3,187 individual samples reported by Nys et al. (2018) [13].

160

161 2.3. The DNN models

162 To estimate the BLM-based PNECs in the available monitoring dataset, an initial model that 

163 considered all BLM variables, a second model that required variables excluding alkalinity, and a 

164 third model using pH, DOC, and electrical conductivity were developed by a DNN. Optimization 

165 of the architecture of the DNN models, which is an artificial neural network composed of several 

166 hidden layers between an input layer and an output layer, was performed empirically. The numbers 

167 of layers and nodes, which are the main hyperparameters that determine the DNN architecture, 

168 were established to minimize the training and validation losses during a fixed period within the 

169 search range of hyperparameters, as shown in Table 1. A DNN is generally considered to have at 

170 least two hidden layers, and generalization is better with a feedforward neural network with two 

171 hidden layers than with one layer according to Thomas et al. (2017) [8]. In this study, the training 

172 and validation losses converged to low values when the input layer had three, five, or six nodes, 

173 the three hidden layers had 20, 15, or 10 nodes, and the output layer had one node. In addition, 

174 these losses decreased stably at a learning rate of 0.005. If the learning rate was 0.1, the losses did 

175 not decrease, and if it was less than 0.0001, the losses decreased slowly. The loss values for training 

176 were calculated as follows: 

177

𝑛

𝑙=1

{𝑙𝑜𝑔10(𝑡ℎ𝑒 𝐵𝐿𝑀_𝑏𝑎𝑠𝑒𝑑 𝑃𝑁𝐸𝐶) ― 𝑙𝑜𝑔10(𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑁𝐸𝐶 𝑏𝑦 𝐷𝑁𝑁)}2                 (3)

178 Losses are reduced more by the AdaMax algorithm, which is a variant of the AdaM algorithm 

179 based on the infinity norm, than by the AdaM algorithm and the stochastic gradient descent method 
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180 [14]. The AdaMax algorithm extends the part of the algorithm that adjusts the learning rate based 

181 on the L2 norm in the AdaM algorithm to the Lp norm. 

182 Two different types of activation functions were considered for the DNNs. The sigmoid activation 

183 function has traditionally been used as a bounded and monotonically increasing differentiable 

184 function. As a remedy for vanishing gradients, the rectified linear unit (ReLU) function [15] has 

185 computational advantages over the sigmoid activation function, according to Schmidt-Hieber 

186 (2020) [16]. The training and validation losses were reduced more reliably when using the sigmoid 

187 function for the first and second hidden layers, and ReLU for the last hidden layer, than when 

188 using ReLU for all layers. The epoch, which is the number of iterations of the process of updating 

189 the neural network parameters to the loss decreases, was 20,000. For training the dataset, 70% of 

190 the randomly shuffled data were used for training and the remaining 30% for validation. The DNN 

191 models were implemented using Pytorch version 1.8.1 in Python v3.7 software.

192

193 2.4. Data Treatment and Statistics

194 The HC5 for the derivation of PNEC for copper was calculated assuming a log-normal distribution 

195 of species sensitivity in the ETX 2.0 software [17]. Normality tests, such as the Anderson–Darling, 

196 Kolmogorov–Smirnov, and Cramer von Mises tests, were performed using ETX 2.0 software. A 

197 speciation model, such as the Windermere Humic Aqueous Model 7 (WHAM), is required to 

198 estimate the site-specific free ion activities for copper and the major cations in training and test 

199 datasets [18]. Some element-specific parameters were changed from WHAM-provided values to 

200 copper BLM-provided constants (S1 Table). Humic acid and fulvic acid, as input variables of the 

201 WHAM, were assumed to be 0.001% and 50% of the DOC concentration, respectively, according 

202 to the EU-RAR [11]. The predictive capacity of PNEC estimation tools, including the newly 
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203 developed DNN models, was compared using the Akaike information criterion (AIC), residual 

204 standard error (RSE), and adjusted r2 value. All statistics were calculated using Python v3.5 

205 software. 

206 MLR was performed to determine the appropriate electrical conductivity in the training dataset 

207 from the combination of BLM variables, i.e., Ca, Mg, Na, pH, and DOC. The most relevant BLM 

208 variables were selected for inclusion in the MLR function for electrical conductivity. The general 

209 formula for MLR was as follows: 

210 Electrical Conductivity = a + (𝑏 ∙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1) + (𝑐 ∙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2) + … +  (𝑓 ∙  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒5)              

211 (4)

212 The calculation was completed using a function in R (The R Project for Statistical Computing). 

213 Whether the predictive capacity of the MLR model was dependent on the type of BLM variable 

214 considered was determined by the AIC [19]. 

215

216 3. Results 

217 3.1. The development of DNN model for the estimation of the BLM-based PNECs 

218 The DNN models were developed using the training data for the simulated BLM-based PNECs 

219 with various combinations of BLM input variables, in which the domain ranges of input variables 

220 reflected water chemistry monitoring data from the northern hemisphere. The real correlations 

221 among the BLM variables shown in S1 Fig were taken into account to establish the domain range 

222 of the training dataset. The extent of these domain ranges was determined by a factor of five of the 

223 linear regression results between each variable. The Mg, Na, and K concentrations and alkalinity 

224 were generated from the correlations with Ca (Fig 1A). From the combination of these generated 
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225 variables, only combinations within the domain range were selected to calculate the BLM-based 

226 PNEC for copper (Fig 1B). The pH and DOC ranges were 5.5–9.9 and 0.1–50 mg L−1, respectively. 

227 The electrical conductivity estimation model for generating electrical conductivity values from the 

228 training dataset was developed by MLR with simplified BLM input variables, using three 

229 monitoring datasets (n = 5,682) for Korean, Swedish, and the United States freshwaters. Each of 

230 the three models required a different number of BLM variables. The first model considered five 

231 BLM variables (Ca, Mg, Na, alkalinity, and pH), the second model excluded pH, and the third 

232 model excluded pH and alkalinity. The S2 Table shows good agreement between the measured 

233 electrical conductivity and the electrical conductivity calculated by the three models (adjusted r2 

234 = 0.959–0.959). As a result, electrical conductivity values in the training dataset were generated 

235 using a simplified three-variable (Ca, Mg, and Na) model (Fig 1C). 

236 To develop an optimized PNEC estimation model based on an available monitoring dataset, the 

237 DNN(a) model that considered all BLM variables, the DNN(b) model that required all variables 

238 excluding alkalinity, and the DNN(c) model that used electrical conductivity as a surrogate of the 

239 major cations and alkalinity, were proposed. All of the different DNN models showed a sharp 

240 decrease in validation loss after approximately 1,000 epochs without overfitting and flattened out 

241 after 10,000 epochs (Fig 2). When the PNECs predicted by the DNN(a), DNN(b), and DNN(c) 

242 models within the training dataset were compared with the BLM-based PNECs, the adjusted r2 

243 values were 0.994, 0.990, and 0.965, respectively. As a result, all of the DNN models used in this 

244 study were considered sufficiently trained until two constant losses occurred. 

245

246 3.2. Comparison of PNEC estimation tools with newly developed DNN models
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247 The four test datasets, Korean, United States, Belgian, and Swedish freshwaters, were used to 

248 evaluate the predictive capacity of the DNN models and the existing PNEC estimation tools. The 

249 differences in water chemistry properties among these four test datasets are shown in S2 Fig as a 

250 histogram of the frequency versus concentration of each variable. Korean freshwater had the 

251 lowest Ca and DOC concentrations (95th percentile: 16 mg Ca L−1 and 8.5 mg DOC L−1) and the 

252 highest pH (95th percentile: 8.9). Swedish freshwater had the lowest sodium concentration (95th 

253 percentile: 26 mg Na L−1), and Belgian freshwater had the lowest alkalinity (95th percentile: 13 mg 

254 CaCO3 L−1). United States freshwater had the highest alkalinity (95th percentile: 169 mg CaCO3 

255 L−1). The application coverage of the DNN model for various water chemistry conditions was 

256 dependent on the range of variables in the simulated training dataset. This dataset was considered 

257 to be more broadly representative of the water chemistry range compared with the test datasets, 

258 and these results affected the predictive capacity of the DNN models (Fig 3). 

259 Evaluation of the predictive capacity of the three DNN models in this study and comparison of the 

260 results with those obtained by existing tools were performed for four ecoregions (test datasets), 

261 and the results are shown in Table 2. For Korean freshwater, comparison of the predictive capacity 

262 among the PNEC estimation models is shown in Fig 4. The DNN(a) model provided good 

263 predictions (adjusted r2 = 0.987, p < 0.01). The DNN(b) and DNN(c) models provided predictions 

264 similar to those of DNN(a) (adjusted r2 = 0.968 and 0.978, respectively, p < 0.01). Among the 

265 existing models, PNEC-pro provided less reliable predictions (adjusted r2 = 0.537, p < 0.05), 

266 whereas Bio-met and mBAT provided good predictions (adjusted r2 = 0.904 and 0.937, p < 0.01). 

267 For Swedish freshwater, a comparison of the predictive capacity between the PNEC estimation 

268 models is shown in Fig 5. The DNN(a) model also provided good predictions (adjusted r2 = 0.974, 

269 p < 0.01). The coefficients of determination of the DNN(b) and DNN(c) models were similar 
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270 (adjusted r2 = 0.872 and 0.885, respectively, p < 0.01), and were lower than those of DNN(a). For 

271 the existing models, the coefficients of determination were lower than 0.7 (adjusted r2 = 0.670 for 

272 Bio-met, 0.529 for PNEC-pro, and 0.516 for mBAT, p < 0.05). 

273 For United States freshwater, a comparison of the predictive capacity among the PNEC estimation 

274 models is shown in Fig 6. The three DNN models provided good predictions (adjusted r2 = 0.989 

275 for DNN(a), 0.974 for DNN(b), and 0.975 for DNN(c), p < 0.01). Among the existing tools, Bio-

276 met and mBAT provided good predictions (adjusted r2 = 0.929 and 0.926, respectively, p < 0.01), 

277 whereas PNEC-pro provided less reliable predictions (adjusted r2 = 0.421, p < 0.05). 

278 For Belgian freshwater, a comparison of the predictive capacity among the PNEC estimation 

279 models is shown in Fig 7. The coefficients of determination of the three DNN models and Bio-met 

280 were > 0.9 (adjusted r2 = 0.972 for DNN(a), 0.95 for DNN(b), 0.954 for DNN(c), and 0.93 for Bio-

281 met, p < 0.01). The mBAT also provided good predictions (adjusted r2 = 0.873, p < 0.01), whereas 

282 PNEC-pro provided less reliable predictions (adjusted r2 = 0.273, p < 0.05). 

283 Consequently, all PNEC estimation models based on the DNN method provided good predictions 

284 in the four ecoregions (Table 2). The DNN(a) model using all BLM input variables had the lowest 

285 AIC and RSE values and the highest adjusted r2. The DNN(c) model using the variables of 

286 electrical conductivity, pH, and DOC had the second lowest AIC and RSE values and the second 

287 highest adjusted r2. The DNN(b) model using five BLM variables (excluding alkalinity) also 

288 provided good predictions, which were very similar to those of DNN(c). 

289 Among the existing PNEC estimation tools, the lowest AIC and highest adjusted r2 values were 

290 obtained for Bio-met, based on the look-up table method, while the second lowest AIC and second 

291 highest adjusted r2 were obtained for mBAT, based on a multivariate polynomial function with 
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292 interaction terms. Compared with the other models, PNEC-pro, based on MLR, had a less reliable 

293 predictive capacity for the test datasets. 

294

295 4. Discussion

296 4.1. The development of DNN model for the estimation of the BLM-based PNECs 

297 To develop an optimized PNEC estimation model based on available monitoring datasets, the 

298 DNN(a) model that considered all BLM variables, the DNN(b) model that required all variables 

299 excluding alkalinity, and the DNN(c) model that used electrical conductivity as a surrogate of the 

300 major cations and alkalinity were proposed. These three types of BLM-based PNEC estimation 

301 models, using training dataset with various water chemistries, were developed by a DNN to 

302 optimize the prediction of nonlinear relationships between input variables (explanatory variables) 

303 and BLM-based PNECs (dependent variables). The learning result of the DNN(a) model was 

304 predicted to be within a factor of two of that of the BLM-based PNEC for 100% of the data in the 

305 training dataset (n = 107,712) (Fig 2). This was an expected result because the DNN used for 

306 model development was a universal approximation function and was the result of the excellent 

307 learning of nonlinear relationships based on large amounts of simulated data. Because simulation 

308 data with full coverage of the domain of input variables were used as the training dataset, there 

309 was no need to use additional validation and test datasets. The learning results of the DNN(b) and 

310 DNN(c) models were predicted to be within a factor of two of the BLM-based PNECs for 98.5% 

311 and 88.3% of the data, respectively. 

312 Among the existing PNEC estimation tools, mBAT was developed using a multivariate polynomial 

313 function to predict the nonlinear relationships between input variables (pH, DOC, and Ca) and the 

314 BLM-based PNECs for copper [4]. Although two functions were proposed for Ca (> and < 6 mg 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460690doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460690
http://creativecommons.org/licenses/by/4.0/


15

315 L−1) to counteract low Ca concentrations, the validation results of the prediction accuracy for 

316 PNECs within the dataset used for development have not been described. PNEC-pro was 

317 developed by a simple MLR using monitoring data (n = 241) from the Netherlands and provides 

318 validation results for the prediction accuracy (adjusted r2 = 0.882) [5]. After determining the MLR 

319 function from the learning data of this study, the validation results are shown in S3 Fig. The 

320 adjusted r2 value was 0.838, which was lower than that of the DNN models (adjusted r2 = 0.965 

321 for DNN(c) using three variables, Fig 2C). As a result, the DNN models including the most 

322 simplified model can be considered the most appropriate method to optimize the prediction of the 

323 nonlinear relationship between the required input variables and the BLM-based PNECs in a large 

324 training dataset reflecting water chemistry monitoring data from the northern hemisphere. 

325

326 4.2. Comparison of existing PNEC estimation tools with newly developed DNN models

327 A copper BLM-based PNEC has been proposed in Europe and the United States for environmental 

328 risk assessment, taking into account the site-specific bioavailability of copper [11, 19]. To derive 

329 the BLM-based PNEC, monitoring datasets including all BLM input variables (pH, DOC, major 

330 cations, and alkalinity) are essential for estimating water chemistry speciation, such as the activity 

331 of free copper ions, copper speciation, and major cations. However, these datasets are available 

332 only in a few regions, such as the United States and Europe. Because some BLM variables may be 

333 missing from available datasets, several methods have been proposed to estimate the values of the 

334 missing variables [6, 9]. 

335 To simulate the derivation of BLM-based PNECs that require all of these input variables, 

336 simplified and user-friendly PNEC estimation tools using a reduced number of variables (e.g., Bio-

337 met, mBAT, and PNEC-pro) have been proposed [3-5]. Among these tools, the minimum data 
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338 requirements for Bio-met and mBAT are pH, DOC, and Ca. pH affects copper toxicity in aquatic 

339 organisms and is routinely measured in field samples using a variety of water quality measurement 

340 instruments. DOC in freshwater can bind copper and reduce the interaction between free copper 

341 ions and aquatic organisms. Non-linear relationships among pH, copper toxicity, and the binding 

342 properties of DOC have been reported in EU-RARs [11]. Although the Ca concentration or 

343 hardness is a less influential variable than pH and DOC, it is a more statistically effective variable 

344 for PNEC than other cations and alkalinity [5]. In addition, it has been reported that an increase in 

345 the Ca concentration does not result in an increase in PNEC [9]. However, it may or may not be 

346 included as a general water quality variable in regulatory monitoring databases. Therefore, Bio-

347 met and mBAT, which only require the concentration of Ca among the major cations, do not 

348 significantly broaden the ecoregion where a BLM-based risk assessment can be applied. Because 

349 Ca, Mg, and Na are monitoring variables that can be measured by the same analyzer in one sample, 

350 it may be more efficient to improve the predictive capacity by using the concentrations of all 

351 available major cations. In PNEC-pro, if Ca is not considered an input variable, the accuracy 

352 (adjusted r2) is less than 0.8 [5]. 

353 As a result, to apply a BLM-based risk assessment over a wider ecoregion, the major cations should 

354 be excluded from the minimum data requirements, and surrogate variables contributing to the good 

355 predictions for the BLM-based PNEC are required. In this study, electrical conductivity was 

356 considered a surrogate of the major cations and alkalinity. Electrical conductivity is typically 

357 included as a water quality variable in general regulatory water quality-monitoring databases. 

358 Electrical conductivity is one of the variables recommended for estimating the concentrations of 

359 missing BLM variables via its linear relationships with BLM variables [6, 7].  
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360 In the test datasets (four ecoregions), PNEC predictions were less reliable by the existing PNEC 

361 estimation tools than by the three different DNN models (Table 2). This was likely because the 

362 training datasets used for the development of each existing tool were not sufficiently representative 

363 of the different water chemistries, and the statistical and look-up table methods used for PNEC 

364 estimation provided limited predictive capacities for the nonlinear relationships between PNEC 

365 and BLM variables. Therefore, in this study, a training dataset representative of various freshwater 

366 chemistries was built for the DNN models. Its subsequent use resulted in a wide range of 

367 applications and good predictive capacity. 

368 To design a representative training dataset, the frequencies of each BLM input variable and their 

369 relationships were investigated in the Korean freshwater monitoring database (S1 Fig). The 

370 domain ranges for water chemistry variables were determined from the abovementioned results 

371 (Fig 1). The pH conditions were generated as continuous values rather than multiple level 

372 conditions with intervals because pH was the only variable that had a non-linear relationship with 

373 PNEC. Another 9,792 combinations of Ca, Mg, Na, K, alkalinity, and DOC were generated 

374 assuming the same pH. Then 9,792 continuous pH variations were generated within the pH 

375 condition interval. These values were randomly arranged and added to the combined data of other 

376 variables. 

377 The datasets used to develop the existing tools did not cover the full domain range of BLM input 

378 variables. For the mBAT training dataset, the Mg and Na concentrations and alkalinity were 

379 determined by Ca according to Peters et al. (2011) [9] and therefore consisted of a combination of 

380 only three variables: pH, DOC, and Ca. For the Bio-met training dataset, the Mg concentration 

381 was considered to be Ca-dependent, the Na concentration was considered to be dependent on four 

382 other factors, and alkalinity was determined to be dependent on pH as well as three other factors. 
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383 The pH conditions of Bio-met were determined at 21 levels ranging from 6.0 to 8.5, while mBAT 

384 did not describe the pH conditions in detail. PNEC-pro, which was developed using monitoring 

385 data rather than simulation data, requires data from a wider ecoregion than just the Netherlands, 

386 the basis of its development. 

387 To generate electrical conductivity data for the training dataset in this study, the use of MLR-based 

388 models to estimate electrical conductivity from BLM input variables has been proposed. To 

389 develop these models, the monitoring datasets from Korea, the United States, and Sweden were 

390 used because they included all BLM input variables and electrical conductivity. The final 

391 estimation model for electrical conductivity using Ca, Mg, and Na in Table 2 had a good predictive 

392 capacity, within a factor of two for 99.2% of the electrical conductivity data measured in the three 

393 ecoregions (n = 5,682) (S4 Fig). As a result, because the range of water chemistry data in the final 

394 training dataset with electrical conductivity covered the ranges of BLM input variables in the four 

395 test datasets (Korean, Swedish, United States, and Belgian freshwaters), it was considered to be 

396 sufficiently representative of the freshwater chemistry (Fig 3). 

397 Better predictions of the copper PNECs were obtained from the three different types of DNN 

398 models trained and validated using the representative simulation training dataset than from the 

399 existing tools in the four test datasets (Korean, United States, Swedish, and Belgian freshwaters). 

400 The adjusted r2 values were higher than 0.95 in all but the Swedish freshwater dataset. Although 

401 the minimum adjusted r2 value in Swedish freshwater was 0.87, it was higher than the results 

402 obtained using the existing tools. The use of reduced input variables for the DNN(b) and DNN(c) 

403 models in Swedish freshwater, which had a lower pH and major cation concentration compared 

404 with the other regions, was probably why the adjusted r2 values (0.87 and 0.89, respectively) were 

405 lower than the value of 0.97 obtained with the DNN(a) model using all BLM variables (S2 Fig). 
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406 The mBAT and PNEC-pro predictions were less accurate than those of the DNN models, 

407 indicating that general statistical methods (multivariate polynomial regression and MLR) were not 

408 sufficient for predicting the nonlinear relationships between input variables and PNECs. A look-

409 up table method, such as Bio-met, was expected to have a higher predictive capacity when used as 

410 the training dataset in this study, while the PNEC calculation performed in Excel required a 

411 considerable amount of time. The water chemistry conditions did not match the conditions in the 

412 training dataset, and its prediction accuracy was expected to be lower than that calculated by the 

413 DNN. 

414 An important finding was the similar prediction accuracy in the test datasets of the three DNN 

415 models using different types of input variables to develop optimized PNEC estimation models 

416 depending on the available monitoring datasets. This means that even with reduced input variables, 

417 a good prediction capacity can be expected by a DNN model that includes the key input variables 

418 for a BLM. In particular, the DNN(c) model, which was selected as the most simplified surrogate 

419 tool, was shown to have a predictive capacity similar to that of the DNN(a) model, which provided 

420 the best prediction. Electrical conductivity played an important role as a variable acting as a 

421 surrogate for the major cations and alkalinity. Although there is further scope to reduce the 

422 uncertainty in the predicted PNECs by the DNN(c) model at a low pH and Ca concentration, such 

423 as in the Swedish freshwater, it is necessary to assess the environmental risk for copper using 

424 DNN(a) from all measured input variables. Consequently, according to the variables in the 

425 available monitoring databases, the most applicable model could be selected from among the three 

426 DNN models. 

427 It is possible to reduce the uncertainty in the BLM-based PNECs estimated by the final surrogate 

428 tool in a specific region using a monitoring database containing the concentration of total organic 
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429 carbon (TOC) rather than DOC. Both electrical conductivity and pH can be measured in field 

430 samples using commonly available water quality instruments and are included in most regulatory 

431 monitoring databases. The organic carbon concentration in freshwater is usually measured as TOC 

432 in monitoring databases unless the database is used for the purpose of bioavailability-based risk 

433 assessments. Among the test datasets in this study, the datasets from Korea, the United States, and 

434 Belgium included DOC concentrations for bioavailability-based risk assessments. The DOC 

435 concentration in the Swedish dataset was estimated by applying the 0.8 ratio, which is the simplest 

436 method of estimating DOC from TOC concentrations [11, 20]. However, the DOC concentration 

437 in Korean rivers is 64.3–79% of the TOC concentration, according to Kim et al. (2007) [21]. For 

438 surface waters in Poland and Germany, the DOC concentration range was 80–92% of the TOC 

439 concentration [22]. Thus, the observed DOC may be used to reduce the uncertainty of the BLM-

440 based PNEC estimated using a surrogate tool. 

441

442 5. Conclusion

443 This study developed three different types of DNN models, each requiring different input 

444 variables, which provide better predictions of the BLM-based PNECs for copper than existing 

445 PNEC tools in various ecoregions. The most applicable model among the three DNN models can 

446 be selected according to the available variables in monitoring databases. Furthermore, it is 

447 expected that the most simplified DNN model, using only general water quality variables (pH, 

448 DOC, and electrical conductivity), will enable the copper BLM-based risk assessment to be applied 

449 to monitoring datasets worldwide. 

450
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563 List of figures:

564 Fig 1. Domain range of input variables in the training dataset used for the development of DNN 

565 (deep neural network-based) models as PNEC estimation tools. The dashed lines indicate a factor 

566 of five from the linear relationships between variables in Korean freshwaters. The first generated 

567 data (cross) are shown in Panel A. The selected data (cross) from the generated data and with the 

568 data removed (triangles) outside the domain range are shown in Panel B. The generated electrical 

569 conductivity data (cross) added to the selected data are shown in Panel C. 

570 Fig 2. The training and validation results for the DNN(a) model with all BLM variables (A), 

571 DNN(b) with all BLM variables except alkalinity (B), and DNN(c) with the three variables of pH, 

572 DOC, and electrical conductivity (C). The average loss per epoch for the training and validation 

573 steps is shown in the right panels. The validation for the three different types of DNN models 

574 within the training dataset is shown in the left panels. The blue solid line indicates loss per epoch 

575 for training steps, and the red dashed line indicates loss per epoch for validation steps. The black 

576 solid line indicates a perfect match between the simulated and predicted BLM-based PNECs. The 

577 black dotted line indicates an error of a factor of two between simulated and predicted BLM-based 

578 PNECs. Adj. r2 = adjusted r2 value.

579 Fig 3. Radar chart showing the ratios of pH and log10 values (different BLM input variables) of 

580 four different test datasets to those of the training dataset. The BLM input variables in the training 

581 dataset are marked by light shading. The BLM variable ratios in the test datasets are marked as the 

582 95th percentile within the test datasets by dark shading. Train = training dataset; KR = Korean 

583 freshwater; BEL = Belgian freshwater; US = United States freshwater; SWE = Swedish freshwater.

584 Fig 4. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 

585 Korean freshwater. The BLM-based PNECs were derived from 764 individual samples collected 
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586 in 2014, 2015, and 2016. Panels A, B, and C show PNECs (plus) estimated by the deep neural 

587 network-based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, and F show 

588 PNECs (open circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = adjusted 

589 r2 value.

590 Fig 5. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 

591 Swedish freshwater. The BLM-based PNECs were derived from 4,639 individual samples (999 

592 river samples, 1,914 Malar Lake samples, and 1,726 tributary samples) collected in the Swedish 

593 river monitoring program of the Swedish University of Agricultural Sciences from 1997 to 2020. 

594 Panels A, B, and C show PNECs (plus) estimated by deep neural network-based DNN(a), DNN(b), 

595 and DNN(c), respectively. Panels D, E, and F show PNECs (open circle) estimated by Bio-met, 

596 mBAT, and PNEC-pro, respectively. Adj. r2 = adjusted r2 value.

597 Fig 6. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 

598 United States freshwater. The BLM-based PNECs were derived from 363 samples collected by 

599 the Oregon Department of Environmental Quality Water Monitoring Data Portal and the National 

600 Waters Information System. Panels A, B, and C show PNECs (plus) estimated by the deep neural 

601 network-based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, and F show 

602 PNECs (open circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = adjusted 

603 r2 value.

604 Fig 7. Comparison of the test results of the surrogate models for copper BLM-based PNECs in 

605 Belgian freshwater. The BLM-based PNECs were derived from 3,187 individual samples collected 

606 by Nys et al. (2018). Panels A, B, and C show PNECs (plus) estimated by the deep neural network-

607 based models DNN(a), DNN(b), and DNN(c), respectively. Panels D, E, and F show PNECs (open 

608 circle) estimated by Bio-met, mBAT, and PNEC-pro, respectively. Adj. r2 = adjusted r2 value.
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678 Table 1. Ranges for deep learning hyperparameter optimization and hyperparameter 
679 configuration. 

Hyperparameter Value Search range
Learning rate 0.005 0.1, 0.01, 0.005, 0.001, 0.0005

Optimization method AdaMax AdaM, AdaMax, SGD

Number of hidden layers 3 1, 2, 3, 5

Number of hidden units {20, 15, 10} {20, 15, 10}, {64, 128, 32}

Activation functions of 
hidden layers {sigmoid, sigmoid, ReLU}

{Sigmoid, Sigmoid, Sigmoid}, 
{Sigmoid, Sigmoid, ReLU},
{ReLU, ReLU, Sigmoid}, 
{ReLU, ReLU, ReLU}

Batch size Maximum Maximum

Number of epochs 20,000 500–40,000

680 SGD = stochastic gradient descent; ReLU = rectified linear unit
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694 Table 2. Comparison of newly developed deep neural network models with the existing 
695 predicted no-effect concentration estimation tools 

Model Method Training 
dataset

Input variable Test 
dataset

Adj. r2 AIC RSE

DNN(a) Deep Simulation pH, Ca, Mg, Korea 0.987 −1419 0.056
neural data Na, DOC, US 0.988 −690 0.044
network (n = 107,712) Alkalinity Sweden 0.974 −7315 0.035

Belgium 0.972 −4924 0.053
DNN(b) pH, Ca, Mg, Korea 0.968 −1125 0.078

Na, DOC US 0.974 −565 0.065
Sweden 0.872 −4133 0.070
Belgium 0.950 −4138 0.086

DNN(c) pH, DOC, Korea 0.978 −1255 0.069
EC US 0.975 −573 0.090

Sweden 0.885 −4348 0.073
Belgium 0.954 −4257 0.068

Bio-met Look-up Simulation pH, DOC, Korea 0.903 −766 0.125
table data Ca US 0.928 −408 0.109

(n = 23,054) Sweden 0.670 −2228 0.125
Belgium 0.930 −3674 0.082

mBAT Multivariate Simulation pH, DOC, Korea 0.937 −909 0.107
polynomial data Ca US 0.925 −402 0.119
function (n = 8,400) Sweden 0.516 −1456 0.159

Belgium 0.873 −2848 0.110
PNEC Multiple Measured DOC Korea 0.534 −243 0.346
-pro linear data in (pH, Ca, US 0.413 −74 0.407

regression Netherland Mg, Na) Sweden 0.528 −1504 0.138
(n = 241) Belgium 0.271 −428 0.261

696 EC = electrical conductivity; Adj. r2 = adjusted r2 value; AIC = Akaike information criterion; 
697 RSE = residual standard error.

698
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