Feeding ecology of broadbill swordfish

| 1              | Feeding ecology of broadbill swordfish (Xiphias gladius) in the California Current                                                                               |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2              |                                                                                                                                                                  |
| 3              | Antonella Preti <sup>1,2,3*</sup> , Stephen M. Stohs <sup>3</sup> , Gerard T. DiNardo <sup>4</sup> , Camilo Saavedra <sup>5</sup> , Ken MacKenzie <sup>2</sup> , |
| 4              | Leslie R. Noble <sup>6</sup> , Catherine S. Jones <sup>2</sup> , Graham J. Pierce <sup>7,8</sup>                                                                 |
| 5              |                                                                                                                                                                  |
| 6              | <sup>1</sup> Institute of Marine Studies, University of California Santa Cruz, Santa Cruz, California, USA                                                       |
| 7<br>8         | <sup>2</sup> Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK                   |
| 9<br>10        | <sup>3</sup> NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, California, USA                                                                       |
| 10             | <sup>4</sup> SCS Global Services, Emeryville, California, USA                                                                                                    |
| 12<br>13       | <sup>5</sup> Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain                                                                        |
| 13<br>14<br>15 | <sup>6</sup> Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway                                                                               |
| 15<br>16<br>17 | <sup>7</sup> Instituto de Investigaciones Marinas, Vigo, Spain                                                                                                   |
| 18<br>19       | <sup>8</sup> Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, Scotland, UK                                                                             |
| 20<br>21       | *Corresponding author                                                                                                                                            |
| 22             | E-mail: Antonella.Preti@noaa.gov (AP)                                                                                                                            |
| 23             |                                                                                                                                                                  |
| 24             | Abstract                                                                                                                                                         |

The feeding ecology of broadbill swordfish (*Xiphias gladius*) in the California Current was described based on analysis of stomach contents collected by federal fishery observers aboard commercial drift gillnet boats from 2007 to 2014. Prey were identified to the lowest taxonomic level and diet composition was analyzed using univariate and multivariate methods. Of 299 swordfish sampled (74 to 245 cm eye-to-fork length), 292 non-empty stomachs contained remains from 60 prey

Feeding ecology of broadbill swordfish

| 30 | taxa. Diet consisted mainly of cephalopods but also included epipelagic and mesopelagic teleosts.      |
|----|--------------------------------------------------------------------------------------------------------|
| 31 | Jumbo squid (Dosidicus gigas) and Gonatopsis borealis were the most important prey based on the        |
| 32 | geometric index of importance. Swordfish diet varied with body size, location and year. Jumbo squid,   |
| 33 | Gonatus spp. and Pacific hake (Merluccius productus) were more important for larger swordfish,         |
| 34 | reflecting the ability of larger specimens to catch large prey. Jumbo squid, Gonatus spp. and market   |
| 35 | squid (Doryteuthis opalescens) were more important in swordfish diet in inshore waters, while G.       |
| 36 | borealis and Pacific hake predominated offshore. Jumbo squid was more important from 2007-2010         |
| 37 | than in 2011-2014, with Pacific hake the most important prey item in the latter period. Diet variation |
| 38 | by area and year probably reflects differences in swordfish preference, prey availability, prey        |
| 39 | distribution, and prey abundance. The range expansion of jumbo squid that occurred during the first    |
| 40 | decade of this century may particularly explain their prominence in swordfish diet from 2007-2010.     |
| 41 | Some factors that may influence dietary variation in swordfish were identified. Standardization could  |
| 42 | make future studies more comparable for conservation monitoring purposes.                              |
|    |                                                                                                        |

43

### 44 Introduction

45 Broadbill swordfish (Xiphias gladius, hereafter swordfish) are the most widely distributed 46 billfish and occur worldwide in tropical, subtropical and temperate waters from around 50°N to 50°S 47 [1-3]. They co-occur in the California Current Large Marine Ecosystem (CCLME), with several other upper trophic-level predators such as sharks and dolphins [4, 5]. Swordfish are productive predators, 48 49 filling a similar ecosystem role to other large pelagic marine species, including other billfish species, sharks, tunas and dolphins [6]. Swordfish command a high economic value in both commercial and 50 recreational fisheries in all oceans of the world [4]. In the CCLME, swordfish are landed in both the 51 52 U.S.A. and Mexico. In the U.S.A., they are the primary target of the drift gillnet (DGN) fishery that

Feeding ecology of broadbill swordfish

| 53 | operates mainly in the U.S. waters of the Southern California Bight (SCB). Swordfish are also landed    |
|----|---------------------------------------------------------------------------------------------------------|
| 54 | in the historic harpoon fishery, and more recently in the deep-set buoy gear fishery that was developed |
| 55 | as a low-bycatch method to target swordfish during daylight hours [7-9].                                |
| 56 | The swordfish population in the North Pacific is assessed as two stocks, divided by a boundary          |
| 57 | extending from Baja California (25°N x 110°W) to 165°W at the Equator [10, 11]. These are the           |
| 58 | Western and Central North Pacific Ocean (WCNPO) stock and the Eastern Pacific Ocean (EPO) stock         |
| 59 | [3, 12, 13]. The most recent stock assessment indicated that the WCNPO stock, which is the source of    |
| 60 | the DGN fleet swordfish catch, was neither overfished nor experiencing overfishing [13].                |
| 61 | Swordfish are well adapted for survival in a wide range of water temperatures from 5°C to               |
| 62 | 27°C; however, they are generally found in areas with sea surface temperatures (SST) above 13°C         |
| 63 | [14]. They are highly fecund and do not seem to have discrete spawning grounds or seasons [15].         |
| 64 | Swordfish migration patterns have not been described in peer-reviewed publications, although tag        |
| 65 | release and recapture data indicate an eastward movement from the central Pacific, north of Hawaii,     |
| 66 | towards the U.S. West Coast [4]. Swordfish tend to concentrate near underwater features, like           |
| 67 | seamounts and banks, and near oceanographic boundaries where sharp gradients of temperature and         |
| 68 | salinity exist [1], such as convergence zones and strong thermoclines [16]. These regions are known     |
| 69 | for having a relatively high abundance of forage species [17, 18]. Swordfish aggregate along these      |
| 70 | productive thermal boundaries between cold upwelled water and warmer water masses to forage [16,        |
| 71 | 19] and do not travel far during the first year of life [20].                                           |
| 72 | Further insights into foraging come from information on vertical movement patterns.                     |
| 73 | Swordfish display diurnal vertical migration, diving below the deep scattering layer by day and         |
| 74 | returning to shallower depths by night. Daytime depth distribution is hence more variable, including    |
| 75 | periods of basking behavior when swordfish are visibly present at the ocean surface, compared to a      |
|    |                                                                                                         |

Feeding ecology of broadbill swordfish

| 76 | narrow depth range at night when it is concentrated near the surface [21-23]. During dives, swordfish     |
|----|-----------------------------------------------------------------------------------------------------------|
| 77 | can reach depths of up to 1000 m, indicating a tolerance of low water temperatures (c. 5°C).              |
| 78 | Like other billfish, swordfish have a number of adaptations that enhance foraging ability. They           |
| 79 | use their large bill to incapacitate and kill prey [1, 24]. Though they swim relatively fast, their large |
| 80 | size limits maneuverability [25]. Partial endothermy and large eyes enhance foraging at depth [26].       |
| 81 | Swordfish have also evolved a specialized muscle that functions as a brain heater. This                   |
| 82 | mechanism allows them to function in cold water, which is essential to a fast-swimming predator that      |
| 83 | generally hunts on the cooler side of boundaries between oceanic water masses [1, 26-28].                 |
| 84 | Endothermy also has energy costs, suggesting that swordfish may have higher energy needs than             |
| 85 | otherwise similar heterothermic species [24]. Thus, they need to catch more energy-rich prey or           |
| 86 | consume a greater quantity of prey than would be necessary if they were ectothermic.                      |
| 87 | Although they can use their sword to subdue prey items for easier consumption [29],                       |
| 88 | swordfish lack teeth and ingest their food whole, physically limiting the size of prey they can handle.   |
| 89 | By contrast, sharks use their sharp teeth to tear and consume very large prey piecemeal. The              |
| 90 | combination of large size, endothermy, and the lack of slicing teeth possibly places swordfish closer     |
| 91 | to dolphins rather than sharks in terms of foraging ecology. Swordfish diets and prey composition         |
| 92 | have been found to vary by ecosystem. In some regions, swordfish diets presented a prevalence of          |
| 93 | teleosts, while in others cephalopods were most prominent. In a few areas, a similar proportion of        |
| 94 | both prey item groups were observed (Table 1). Several studies considered only the cephalopod             |
| 95 | portion of the swordfish diet and, therefore, are not listed in Table 1 [30-34].                          |
| 96 |                                                                                                           |
| 97 |                                                                                                           |
| 98 |                                                                                                           |

98

Feeding ecology of broadbill swordfish

- 99 Table 1. Proportion of teleosts and cephalopods, by area, in diet of swordfish based on published
- studies. '\*' = highest proportion; W=Western; N=North E=Eastern; S=Southern; Teleo=teleosts; 100
- 101 Ceph=cephalopods.

| Area                                           | Teleo | Ceph | Authors                   |
|------------------------------------------------|-------|------|---------------------------|
| W. N. Atlantic                                 | *     | *    | [29], [35-48]<br>[49, 50] |
|                                                | *     | *    | [51-53]                   |
| E. N. Atlantic                                 |       | *    | [54, 55]                  |
| E. Central Atlantic                            | *     | *    | [56, 57]                  |
| E. Tropical Atlantic                           |       | *    | [58]                      |
| Tropical Atlantic                              | *     |      | [59]                      |
| W. Equatorial Indian Ocean                     | *     |      | [60]                      |
| E. N. Pacific<br>(Channel Islands, California) | *     |      | [61]                      |
| E. N. Pacific                                  | *     | *    | [62]                      |
| (Baja California)                              |       | *    | [63]                      |
| Central N. Pacific<br>(Hawaii)                 |       | *    | [64]                      |
|                                                |       | *    | [65-69]                   |
| E. Pacific (Chile)                             | *     |      | [70]                      |
| E. Pacific (Ecuador)                           |       | *    | [71, 72]                  |
| S. Pacific                                     | *     |      | [73]                      |
| W. N. Pacific                                  |       | *    | [74]                      |
| E. Mediterranean Sea                           |       | *    | [75]                      |
| S. Aegean Sea                                  | *     |      | [76]                      |
| E. Australia                                   |       | *    | [77]                      |

<sup>102</sup> 

Southern California is a foraging ground within the CCLME where swordfish from various regions of the eastern and central north Pacific aggregate. While the CCLME is known to be an

104

important foraging ground for swordfish during certain times of year, the feeding habits of swordfish 105

<sup>103</sup> 

Feeding ecology of broadbill swordfish

- 106 in this region are not well documented, especially in recent years. To date, there have been two
- 107 extensive studies of swordfish feedings habits in the CCLME [62, 63] as well as a few other less
- 108 comprehensive studies [61, 78, 79]. This study aims to expand our knowledge of the feeding ecology
- 109 of swordfish in the CCLME by analyzing the: (1) relative importance of different prey types; and (2)
- 110 dietary variation inter-annually, by sub-period (within years), by area, and in relation to body size.
- 111 The findings of this study can serve to inform the development of alternative approaches to better
- 112 manage this economically and ecologically important species.
- 113

Feeding ecology of broadbill swordfish

### 114 Methods

#### 115 Sampling at sea

| 116 | Federal fishery observers aboard DGN vessels collected swordfish stomachs during the 2007-             |
|-----|--------------------------------------------------------------------------------------------------------|
| 117 | 2014 fishing seasons. The DGN vessels operate within the U.S. EEZ, primarily in the SCB from           |
| 118 | August 15 through January 31. Because the season spans two calendar years, 'year' for this study       |
| 119 | refers to the fishing season, e.g., 2007 refers to August 2007 through January 2008. Sets are          |
| 120 | conducted using 1.8 km long drift gillnets extending from roughly 12 m to 100 m below the surface.     |
| 121 | DGN boats are active at night, setting nets within one hour before sunset and hauling in within one    |
| 122 | hour after sunrise for an average net-soaking time of approximately 12 hours. Hauling can then take 4  |
| 123 | to 6 hours.                                                                                            |
| 124 | Stomach samples were excised at sea, the oesophageal and pyloric ends secured with plastic             |
| 125 | cinch ties, and the stomachs then bagged, labeled and frozen. Additional data recorded at sea included |
| 126 | set and haul-back times, water depth, SST, date, location and fish size.                               |
| 127 |                                                                                                        |

128 **Processing in the laboratory** 

Stomachs were thawed, tamped with absorbent paper to remove excess water, and weighed full. Contents were then removed and the empty stomach lining weighed to obtain overall contents weight. Solid material and slurry were rinsed and sorted using a series of mesh screen sieves with mesh sizes 9.5 mm, 1.4 mm, and 0.5 mm for ease of rinsing mid-sized food boluses without losing some of the smallest items, such as fish otoliths. Degree of prey digestion was estimated using a sixpoint scale as follows: (1) Fresh: head, body, skin and most fins intact though some individuals may be in pieces (i.e., sliced on capture); (2) Intermediate: body and most flesh intact; fins, scales and

Feeding ecology of broadbill swordfish

| 136 | some or all cephalopod skin may be digested; (3) Intact skeleton from head to hypural plate or            |
|-----|-----------------------------------------------------------------------------------------------------------|
| 137 | body/mantle/carapace intact, or easily reconstructed to obtain standard length measurements; (4)          |
| 138 | Unmeasurable body parts only: hard parts cannot be reassembled to obtain standard measurements,           |
| 139 | but higher taxon or species group still identifiable; (5) Digested but identifiable to a higher taxonomic |
| 140 | level (e.g., family); and (6) Fully digested unidentifiable material; slurry. Prey items were then        |
| 141 | separated, identified to the lowest possible taxonomic level using taxonomic keys, enumerated,            |
| 142 | measured and weighed. Fish otoliths and the upper and lower squid beaks were counted in pairs when        |
| 143 | possible, with the highest count representing the minimum number present. These numbers were              |
| 144 | added to the numbers of intact prey. Weights were grouped by taxon (not individually), while lengths      |
| 145 | of all intact individuals within a taxon were measured. Weight of a taxon was the weight of the           |
| 146 | undigested and partially digested items found in the stomach and not based on back-calculations of        |
| 147 | weight at the time of ingestion from measurements of hard parts. This approach was chosen because         |
| 148 | substantial amounts of undigested food remains were found and it is commonly used in studies of fish      |
| 149 | stomach contents [80]. A consequence of this approach is that prey eaten longer ago contribute less to    |
| 150 | the weight.                                                                                               |
| 151 | Partial remains comprising only large chunks (i.e., fist size or greater) or pieces of fish in            |

Partial remains comprising only large chunks (i.e., fist size or greater) or pieces of fish in digestive state 1 or 2 were considered to be the result of swordfish feeding on prey caught in the driftnet and therefore were discarded from the analysis.

Genetic analyses were used to identify diet items that could not be identified visually. Tissue samples for DNA extraction were taken from the interior of the sample to minimize cross contamination with other prey. DNA was extracted using a DNeasy blood and tissue kit (Qiagen) following the manufacture's protocols. The "Barcode" region of the mitochondrial cyctochrome c oxidase I (COI) gene was amplified by polymerase chain reaction (PCR) following [81], using their

Feeding ecology of broadbill swordfish

| 159 | COI-3 primer set with M13 tails. No template negative controls were run for each PCR batch to      |
|-----|----------------------------------------------------------------------------------------------------|
| 160 | monitor for potential DNA contamination of reagents. PCR products were sequenced using BigDye v    |
| 161 | 3.1 dye terminator chemistry (Life Technologies), using the sequencing primers M13F(-21) and       |
| 162 | M13R(-27) following manufacturers' protocols. Aligned and edited sequences were entered into the   |
| 163 | BOLD v4 [82] and matches greater than 98% identity to a single taxon were considered to be the     |
| 164 | correct species assignment for the prey item.                                                      |
| 165 | Secondary prey items (prey of prey) were discarded when found associated with the stomachs         |
| 166 | of fresh prey (e.g., euphausiids in the stomachs of Pacific hake). In other cases, the presence of |
| 167 | secondary prey cannot be ruled out. This is a common issue in diet analysis but is generally       |
| 168 | considered to have only minor consequences for the estimated biomass of different prey categories  |
| 169 | [62, 83].                                                                                          |

170

#### **Data analysis**

Randomized cumulative curves depicting the relationship between number of prev taxa 172 detected and sample size (rarefaction curves) were constructed using the Vegan package [84] in R 173 statistical software [85] to determine the extent to which the sample size characterize the diet [86-90]. 174 For this analysis, the order in which stomach contents were analyzed was randomized 100 times and 175 the mean ( $\pm 2$  standard deviations) number of prey taxa observed was plotted against the number of 176 stomachs examined. A curve approaching an asymptote with low variability indicates that the number 177 of stomachs examined is sufficient to characterize the diet [86]. To complement this visual approach, 178 a method proposed by [91] was used to assess whether the curve had reached an asymptote. 179 Specifically, a straight line was fitted to the rightmost 4 points of the species accumulation curve. If 180 the slope did not differ significantly from zero, then the species accumulation curve was inferred to 181

Feeding ecology of broadbill swordfish

| 182 | have reached an asymptote. For constructing such cumulative prey curves, [91] lumped prey into               |
|-----|--------------------------------------------------------------------------------------------------------------|
| 183 | higher-level taxonomic categories (e.g., crustaceans, teleosts, polychaetes). By contrast, we used the       |
| 184 | lowest taxonomic level to which prey had been identified, making it much less likely that the curves         |
| 185 | would reach an asymptote and assuring that the curves gave a more reliable picture of the adequacy of        |
| 186 | sample size to fully describe diet. Prey identified to species as well as unidentified categories were all   |
| 187 | included in the analysis. In general, if the proportion of unidentified prey species in the diet is low, the |
| 188 | rarefaction curve tends to be a good guide to how many samples are required to sufficiently                  |
| 189 | characterize diet. If the proportion of unidentified species is high, confidence in the curve will be        |
| 190 | lower, but it can remain a helpful tool.                                                                     |
| 191 | The importance of each prey type was summarized using three standard Relative Measures of                    |
| 192 | Prey Quantities (RMPQs): percent frequency of occurrence (%F); percent composition by number                 |
| 193 | (%N); and percent composition by weight (%W) [80, 83, 92, 93]. Stomachs which were empty or                  |
| 194 | contained only slurry and/or detritus were not considered when calculating percentages. Two                  |
| 195 | combined dietary indices (in both cases expressed both in original form and as percentages) were also        |
| 196 | used to rank prey taxon importance, namely the geometric index of importance (GII) and percentage            |
| 197 | GII (%GII) [94], and the index of relative importance (IRI) and percentage IRI (%IRI) [92]. These are        |
| 198 | useful indices to rank prey importance since they take into account both numerical and weight-based          |
| 199 | importance to the diet. Some authors favor GII [95-97] and others favor IRI [98-100], while some             |
| 200 | doubt the merits of all such combined indices (see [83] and references therein). Here, each method           |
| 201 | was used to examine only the ranking of prey types, because the two combined index values are not            |
| 202 | directly comparable.                                                                                         |

203 The GII, in its simplified form, is calculated as:

Feeding ecology of broadbill swordfish

$$GII_{j} = \frac{\begin{pmatrix} n \\ \sum V_{i} \\ i=1 \end{pmatrix}_{j}}{\sqrt{n}}$$

204

where  $GII_i$  = index value for the *j*-th prey category,  $V_i$  = the magnitude of the vector for the *i*-th

RMPQ of the *j*-th prey category, and n = the number of RMPQs used in the analysis (in this case 3,

since we used %W, %N and %F).

208 The %GII<sub>*i*</sub> converts GII<sub>*i*</sub> values to a percentage scale:

209 
$$\%GII_j = \frac{\begin{pmatrix} n \\ \sum V_i \\ i=1 \end{pmatrix}_j}{n}$$

210 The IRI for the *j*-th prey category is calculated as:

211 
$$IRI_j = (\%N_j + \%W_j) * \%F_j$$

The IRI value was also converted to a percentage, which is arguably more useful for comparisons among studies [101]:

214 
$$\% IRI_j = 100 IRI_j / \sum_{j=1}^n IRI_j$$

To analyze overall variation in swordfish diet in relation to body size, fishing area (within the SCB and beyond the SCB areas) and year, samples were categorized into groups: (1) 'Small' (< 165 cm) and 'Large' ( $\geq$  165 cm) size categories, based on eye-to-fork length (EFL), with the cut-off chosen to produce similar samples sizes for each group; (2) 'Within SCB' (east of 120° 30'W) and 'Beyond SCB' (west of 120° 30'W) (this longitude approximately separates the waters in the SCB where the northward flowing California Counter Current influences nearshore oceanography and the more offshore waters affected by the California Current as it moves southward); and (3) 'Year' was

Feeding ecology of broadbill swordfish

| 222 | assigned based on the DGN fishing season, August 15 through January 31, such that all specimens              |
|-----|--------------------------------------------------------------------------------------------------------------|
| 223 | collected in a single fishing season were assigned the year of the season's start date.                      |
| 224 | Differences in diet across size-, area- and year-groups were quantified and their statistical                |
| 225 | significance estimated using bootstrap simulations. In each case of the six most important prey items        |
| 226 | overall, 1000 bootstrap replicates of GII values for both groups were generated (e.g., GII for jumbo         |
| 227 | squid in stomachs of (A) small and (B) large fish) and, for each replicate, it was noted whether GII         |
| 228 | was higher in the first subgroup or in the second subgroup. If the GII value in A was higher than the        |
| 229 | GII value in B in more than 95% of replicates, we argue that the species is significantly more               |
| 230 | important in the diet of group A than in the diet of group B (and vice versa). All measures were             |
| 231 | calculated using R statistical software [85]. No index value was estimated if the sample size was less       |
| 232 | than 10, since small samples are known to produce biased values [102].                                       |
| 233 | To summarize relationships between diet composition in terms of the importance of different                  |
| 234 | prey items (response variables) and potential explanatory factors, redundancy analysis (RDA) was used,       |
| 235 | as implemented in Brodgar 2.7.4 (www.brodgar.com). Rare prey taxa that were found in less than 4             |
| 236 | stomachs were removed prior to this analysis. The swordfish sample comprised 289 individuals (samples        |
| 237 | with food and EFL available) and the effects of 7 explanatory variables were considered: area (east and      |
| 238 | west of 120°30'W), time period (2007, 2008-2010, 2011-2014), half-year (August 15 through November           |
| 239 | 7 and November 8 through January 31), predator size (EFL) and SST (which was available for each haul         |
| 240 | and was measured at the beginning of the set). Years were grouped to avoid an excessive number of            |
| 241 | explanatory variables in relation to the sample size and to retain reasonable sample sizes per group.        |
| 242 | Categorical variables were replaced by "dummy" variables. That is, a variable with X categories is           |
| 243 | replaced by X-1 binary (0-1) variables, each signifying that the original categorical variable takes or does |
| 244 | not take a particular value. In all analyses, only X-1 binary variables are entered because once the value   |

Feeding ecology of broadbill swordfish

| 245 | of all these is specified the value of the last one is already known. Data were transformed using Chord     |
|-----|-------------------------------------------------------------------------------------------------------------|
| 246 | distance [103-105], a method that allows assignment of a low weighting to rare prey species.                |
| 247 | To examine the relationship between the importance of individual prey types and the various                 |
| 248 | explanatory variables, Generalized Additive Modelling (GAM) was used. GAM is an extension of the            |
| 249 | regression-based statistical modelling approach that is suitable when the response variable is not          |
| 250 | (necessarily) normally distributed and there is no reason to expect linear relationships between response   |
| 251 | and explanatory variables. In linear regression, the slope values (regression coefficients) quantify the    |
| 252 | relationships between the response variable and each of the explanatory variables, while GAM uses           |
| 253 | "smoothing" functions to capture these relationships. The default smoothing function used in the GAM        |
| 254 | function in the mgcv package in R [106] (and also used in Brodgar statistical software) is the thin plate   |
| 255 | regression spline. The complexity of the resulting curve is normally determined by the fitting routine      |
| 256 | ("cross-validation") but can be restricted by the user, and is summarized in the "degrees of freedom",      |
| 257 | with high values indicating more complex curves. If the degrees of freedom of a smoother are equal to or    |
| 258 | close to 1, this implies an approximately linear function. When applying GAM, it is necessary to            |
| 259 | consider the distribution of the response variable, which is likely to depend on the nature of the variable |
| 260 | studied. In this study, the data are in the form of prey counts for the main prey species. Some prey        |
| 261 | occurred in large numbers and the distribution of the number of prey per stomach is likely to be strongly   |
| 262 | right-skewed, hence a negative binomial distribution was used. The number of knots, k, was limited to 4     |
| 263 | to avoid overfitting in the case of explanatory variables for which relatively simple relationships would   |
| 264 | be expected, e.g., body size. The forwards selection method was used for model fitting. To avoid the        |
| 265 | model misspecification, the optimal GAM model was validated by checking for influential data points         |
| 266 | and looking for patterns in the distribution of residuals [107, 108]. GAMs were fitted using count data     |
| 267 | for all of the top seven ranked prey items (based on GII).                                                  |

Feeding ecology of broadbill swordfish

# 268 **Results**

## 269 Sample composition

| 270 | A total of 299 broadbill swordfish (Xiphias gladius) stomachs were collected during 103                    |
|-----|------------------------------------------------------------------------------------------------------------|
| 271 | observed DGN trips in the CCLME (Fig 1). Samples were collected from 2007-2014 throughout the              |
| 272 | CCLME but especially in the southeast, where the fishing is mainly concentrated. SST at the time of        |
| 273 | sample collection ranged from 14.3°C to 21.9°C (mean 17.9°C). Swordfish ranged in size from 74 to 245      |
| 274 | cm EFL (Fig 2). [109] provided median body size at sexual maturity (L50) for males (102 cm $\pm$ 2.5 (95   |
| 275 | % CI) cm EFL) and females (144 $\pm$ 2.8 cm EFL). Based on these estimates, almost all the animals in this |
| 276 | study were above the typical size at maturity for males and a majority were above the typical size at      |
| 277 | maturity for females; as noted above, sex was not determined. Of the 299 swordfish stomachs examined,      |
| 278 | 292 contained food remains belonging to 60 different prey taxa overall. Ninety-one percent of the food     |
| 279 | items were in an advanced state of digestion (stages 4 and 5).                                             |
| 280 |                                                                                                            |
| 281 | Fig 1. Collection areas of swordfish used for diet analysis. Number of samples is indicated by             |
| 282 | greyscale in the legend. Map shows the northern part of the CCLME that extends to the tip of Baja          |
| 283 | California.                                                                                                |
| 284 |                                                                                                            |
| 285 | Fig 2. Length-frequency distribution of swordfish sampled in the diet study. N=295. Arrows indicate        |
| 286 | typical sizes at maturity for males and females [109]. Eye-to-fork length is measured in cm. (Size was     |
| 287 | not determined for 4 individuals of the 299 sampled).                                                      |
| 288 |                                                                                                            |
| 289 |                                                                                                            |
| 290 |                                                                                                            |

Feeding ecology of broadbill swordfish

#### 291 Sample size sufficiency

| 292 | The cumulative prey curve did not reach an asymptote for the swordfish stomachs analyzed                     |
|-----|--------------------------------------------------------------------------------------------------------------|
| 293 | (Fig 3). The terminal portion of the curve (4 last points) had a slope that differed significantly from      |
| 294 | zero ( $p = 0.0009$ ). Nevertheless, the fact that the curve starts to asymptote indicates that the majority |
| 295 | of prey taxa present in the diet of the swordfish (at the temporal and spatial scale of the present study)   |
| 296 | are likely to be represented in these analyses.                                                              |
| 297 |                                                                                                              |
| 298 | Fig 3. Cumulative prey curve (rarefaction curve) for swordfish (prey identified at the lowest possible       |

299 taxonomic level).

300

#### 301 Indices of prey importance

Table 2 lists each of the RMPQs for all prey found, as well as the calculated GII, %GII, IRI 302 303 and %IRI values. Rankings of prey taxa based on GII and IRI were nearly identical. Jumbo squid (Dosidicus gigas) was the most important prey item by weight, number and according to the two 304 305 combined indices. The boreopacific gonate squid (Gonatopsis borealis) was the second most 306 important prey according to GII and IRI, and the most important by frequency of occurrence. Other important squid prey included Abraliopsis sp., Gonatus spp. and market squid (Doryteuthis 307 opalescens). Pacific hake (Merluccius productus) was the highest ranked teleost prey species, ranked 308 sixth by GII. Swordfish also preved on barracudinas (Paralepididae), several species of coastal pelagic 309 310 fishes (jack mackerel Trachurus symmetricus, Pacific sardine Sardinops sagax, Pacific saury Cololabis saira, northern anchovy Engraulis mordax), luvar (Luvarus imperialis), king-of-the-salmon 311 (Trachipterus altivelis), halfmoon (Medialuna californiensis) and seven species of the family 312

Feeding ecology of broadbill swordfish

313 Myctophidae (Table 2). Cuts and punctures were apparent on several of prey items.

314

| 315 | <b>Table 2.</b> Quantitative prey composition of the broadbill swordfish ( <i>Xiphias gladius</i> ) in the CCLME. |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 316 | A total of 299 stomachs (292 containing food and 7 without food) was examined. Prey items are                     |
| 317 | shown in order of decreasing GII value. W = weight (g) for the given prey taxon, %W is the same                   |
| 318 | value expressed as a percentage of the total weight summed across all prey taxa, N = number of prey               |
| 319 | individuals, $F =$ frequency of occurrence (number of stomachs in which the prey taxon occurred), %F              |
| 320 | = frequency of occurrence expressed as a percentage of the number of (non-empty) stomachs                         |
| 321 | examined; GII = geometric index of importance (%W+%N+%F)/ $\sqrt{3}$ ; IRI = index of relative                    |
| 322 | importance (%W+%N)*%F.                                                                                            |

| Prey Taxon                                             | W (g)    | %W    | N    | %N    | F   | %F    | GII   | %GII  | IRI     | %IRI  |
|--------------------------------------------------------|----------|-------|------|-------|-----|-------|-------|-------|---------|-------|
| Jumbo squid, <i>Dosidicus</i>                          | 131892.7 | 53.27 | 1061 | 20.23 | 173 | 59.25 | 76.64 | 44.25 | 4354.96 | 56.47 |
| gigas                                                  |          |       |      |       |     |       |       |       |         |       |
| Boreopacific gonate squid,<br>Gonatopsis borealis      | 19949.8  | 8.06  | 884  | 16.86 | 182 | 62.33 | 50.37 | 29.08 | 1552.94 | 20.14 |
| <i>Abraliopsis s</i> p.                                | 45.1     | 0.02  | 464  | 8.85  | 117 | 40.07 | 28.25 | 16.31 | 355.26  | 4.61  |
| Gonatus spp.                                           | 181.6    | 0.07  | 299  | 5.70  | 110 | 37.67 | 25.08 | 14.48 | 217.56  | 2.82  |
| Market squid, <i>Doryteuthis</i><br>opalescens         | 1447.6   | 0.58  | 538  | 10.26 | 88  | 30.14 | 23.66 | 13.66 | 326.81  | 4.24  |
| Pacific hake, <i>Merluccius</i>                        | 36360.1  | 14.69 | 331  | 6.31  | 49  | 16.78 | 21.81 | 12.59 | 352.37  | 4.57  |
| Duckbill barracudina,<br>Magnisudis atlantica          | 4568.6   | 1.85  | 218  | 4.16  | 84  | 28.77 | 20.07 | 11.59 | 172.67  | 2.24  |
| Unidentified Teleostei                                 | 2316.9   | 0.94  | 119  | 2.27  | 65  | 22.26 | 14.70 | 8.49  | 71.35   | 0.93  |
| Chubby pearleye,<br><i>Rosenblattichthys volucris</i>  | 810.6    | 0.33  | 166  | 3.17  | 49  | 16.78 | 11.71 | 6.76  | 58.61   | 0.76  |
| Jack mackerel, <i>Trachurus</i><br>sy <i>mmetricus</i> | 6668.2   | 2.69  | 72   | 1.37  | 28  | 9.59  | 7.88  | 4.55  | 38.99   | 0.5   |
| Nansenia spp.                                          | 510.9    | 0.21  | 124  | 2.36  | 32  | 10.96 | 7.81  | 4.51  | 28.17   | 0.37  |
| Onychoteuthis<br>borealijaponica                       | 656.6    | 0.27  | 60   | 1.14  | 35  | 11.99 | 7.73  | 4.47  | 16.89   | 0.22  |
| Slender barracudina,<br>Lestidiops ringens             | 330.0    | 0.13  | 92   | 1.75  | 29  | 9.93  | 6.82  | 3.94  | 18.75   | 0.24  |
| Pacific pomfret, <i>Brama</i><br><i>japonica</i>       | 5241.6   | 2.12  | 41   | 0.78  | 24  | 8.22  | 6.42  | 3.71  | 23.83   | 0.3   |
| Pacific sardine, <i>Sardinops</i>                      | 1823.1   | 0.74  | 77   | 1.47  | 26  | 8.90  | 6.41  | 3.70  | 19.63   | 0.2   |
| Luvar, <i>Luvarus imperialis</i>                       | 19258.5  | 7.78  | 18   | 0.34  | 7   | 2.40  | 6.07  | 3.51  | 19.47   | 0.23  |
| Pacific saury, <i>Cololabis saira</i>                  | 1366.8   | 0.55  | 76   | 1.45  | 21  | 7.19  | 5.31  | 3.06  | 14.39   | 0.19  |
| Unidentified Scopelarchidae                            | 476.9    | 0.19  | 86   | 1.64  | 20  | 6.85  | 5.01  | 2.89  | 12.55   | 0.10  |
| Cock-eyed squid,<br>Histioteuthis heteropsis           | 1312.2   | 0.53  | 52   | 0.99  | 18  | 6.16  | 4.44  | 2.56  | 9.38    | 0.12  |

Feeding ecology of broadbill swordfish

| Pacific mackerel, <i>Scomber</i><br>japonicus             | 2180.7 | 0.88   | 66  | 1.26 | 16 | 5.48 | 4.40 | 2.54 | 11.72 | 0.15   |
|-----------------------------------------------------------|--------|--------|-----|------|----|------|------|------|-------|--------|
| Sunbeam lampfish,<br>Lampadena urophaos                   | 201.9  | 0.08   | 42  | 0.80 | 18 | 6.16 | 4.07 | 2.35 | 5.44  | 0.07   |
| King-of-the-salmon,                                       | 5577.4 | 2.25   | 25  | 0.48 | 13 | 4.45 | 3.86 | 2.39 | 10.59 | 0.16   |
| <i>Trachipterus altivelis</i><br>Flowervase jewell squid, | 560.1  | 0.23   | 25  | 0.48 | 15 | 5.14 | 3.37 | 1.95 | 3.61  | 0.05   |
| <i>Histioteuthis dofleini</i><br>Unidentified Eucarida    | 5.5    | < 0.01 | 154 | 2.94 | 6  | 2.05 | 2.88 | 1.67 | 6.04  | 0.08   |
| Unidentified Teuthoidea                                   | 202.0  | 0.08   | 15  | 0.29 | 12 | 4.11 | 2.58 | 1.49 | 1.51  | 0.02   |
| Spotted barracudina,<br><i>Arctozenus risso</i>           | 67.9   | 0.03   | 14  | 0.27 | 8  | 2.74 | 1.75 | 1.01 | 0.81  | 0.01   |
| Histioteuthis spp.                                        | 56.7   | 0.02   | 9   | 0.17 | 8  | 2.74 | 1.69 | 0.98 | 0.53  | 0.01   |
| Argonauta sp.                                             | 13.1   | 0.01   | 8   | 0.15 | 8  | 2.74 | 1.67 | 0.97 | 0.43  | 0.01   |
| Striped mullet, <i>Mugil</i><br>cephalus                  | 1737.8 | 0.70   | 8   | 0.15 | 4  | 1.37 | 1.28 | 0.74 | 1.17  | 0.02   |
| Octopoteuthis sp.                                         | 2.1    | < 0.01 | 6   | 0.11 | 6  | 2.05 | 1.25 | 0.72 | 0.24  | < 0.01 |
| Bigfin lampfish,<br>Symbolophorus californiensis          | 5.4    | < 0.01 | 7   | 0.13 | 5  | 1.71 | 1.07 | 0.62 | 0.23  | < 0.01 |
| Sharpchin barracudina,<br>Stemonosudis macrura            | 8.8    | < 0.01 | 8   | 0.15 | 4  | 1.37 | 0.88 | 0.51 | 0.21  | < 0.01 |
| Cranchia scabra                                           | 4.5    | < 0.01 | 5   | 0.10 | 4  | 1.37 | 0.85 | 0.49 | 0.13  | < 0.01 |
| Mexican lampfish,<br><i>Triphoturus mexicanus</i>         | <0.1   | < 0.01 | 4   | 0.08 | 4  | 1.37 | 0.83 | 0.49 | 0.10  | < 0.01 |
| Paralepididae, Barracudinas                               | 111.3  | 0.04   | 7   | 0.13 | 3  | 2.40 | 1.49 | 0.86 | 0.43  | 0.01   |
| Unidentified Euphausiidae                                 | 3.0    | < 0.01 | 6   | 0.11 | 3  | 2.05 | 1.25 | 0.72 | 0.24  | < 0.01 |
| Robust clubhook squid,<br><i>Onykia robusta</i>           | 43.3   | 0.02   | 4   | 0.08 | 3  | 1.37 | 0.85 | 0.49 | 0.13  | < 0.01 |
| Northern anchovy, <i>Engraulis</i><br>mordax              | 1.6    | < 0.01 | 4   | 0.08 | 3  | 1.37 | 0.84 | 0.49 | 0.11  | < 0.01 |
| California smoothtongue,                                  | < 0.1  | < 0.01 | 4   | 0.08 | 3  | 1.37 | 0.83 | 0.49 | 0.10  | < 0.01 |
| <i>Leuroglossus stilbius</i><br>Unidentified Tunicata     | 3.5    | < 0.01 | 3   | 0.06 | 3  | 1.03 | 0.63 | 0.37 | 0.06  | < 0.01 |
| Smalleye squaretail,<br><i>Tetragonurus cuvieri</i>       | 161.9  | 0.07   | 3   | 0.06 | 2  | 1.03 | 0.66 | 0.39 | 0.13  | < 0.01 |
| Onychoteuthis sp.                                         | <0.1   | < 0.01 | 4   | 0.08 | 2  | 1.37 | 0.83 | 0.49 | 0.10  | < 0.01 |
| <i>Japetella</i> sp.                                      | <0.1   | < 0.01 | 4   | 0.08 | 2  | 1.37 | 0.83 | 0.49 | 0.10  | < 0.01 |
| Splitnose rockfish, <i>Sebastes</i><br>diploproa          | 924.2  | 0.37   | 2   | 0.04 | 1  | 0.68 | 0.63 | 0.36 | 0.28  | < 0.01 |
| Northern lampfish,<br>Stenobrachius leucopsarus           | <0.1   | < 0.01 | 2   | 0.04 | 2  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| Octopus rubescens                                         | <0.1   | < 0.01 | 2   | 0.04 | 2  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| Chiroteuthis calyx                                        | < 0.1  | < 0.01 | 2   | 0.04 | 2  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| Albacore, Thunnus alalunga                                | 371.6  | 0.15   | 1   | 0.02 | 1  | 0.34 | 0.30 | 0.17 | 0.06  | < 0.01 |
| Sebastes spp.                                             | 3.0    | < 0.01 | 8   | 0.15 | 1  | 2.74 | 1.67 | 0.97 | 0.42  | 0.01   |
| Halfmoon, <i>Medialuna</i><br>californiensis              | 81.0   | 0.03   | 1   | 0.02 | 1  | 0.34 | 0.23 | 0.13 | 0.02  | < 0.01 |
| Dogtooth lampfish,<br>Ceratoscopelus townsendi            | 1.5    | < 0.01 | 2   | 0.04 | 1  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| Shortbelly rockfish, Sebastes                             | 0.4    | < 0.01 | 2   | 0.04 | 1  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| jordani<br>Leachia dislocata                              | <0.1   | < 0.01 | 2   | 0.04 | 1  | 0.68 | 0.42 | 0.24 | 0.03  | < 0.01 |
| Pacific bonito, <i>Sarda</i>                              | 25.8   | 0.01   | 1   | 0.02 | 1  | 0.34 | 0.21 | 0.12 | 0.01  | < 0.01 |
| <i>chiliensis<br/>Auxis</i> sp.                           | 4.7    | < 0.01 | 1   | 0.02 | 1  | 0.34 | 0.21 | 0.12 | 0.01  | < 0.01 |
| Mastigoteuthis dentata                                    | < 0.1  | < 0.01 | 1   | 0.02 | 1  | 0.34 | 0.21 | 0.12 | 0.01  | < 0.01 |
| Octopus spp.                                              | < 0.1  | < 0.01 | 1   | 0.02 | 1  | 0.34 | 0.21 | 0.12 | 0.01  | < 0.01 |
|                                                           |        |        |     |      |    |      |      |      |       |        |

Feeding ecology of broadbill swordfish

| California headlightfish,                    | <0.1 | < 0.01 | 1 | 0.02 | 1 | 0.34 | 0.21 | 0.12 | 0.01 | < 0.01 |
|----------------------------------------------|------|--------|---|------|---|------|------|------|------|--------|
| <i>Diaphus theta</i><br>Unidentified Isopoda | <0.1 | < 0.01 | 1 | 0.02 | 1 | 0.34 | 0.21 | 0.12 | 0.01 | < 0.01 |

324

325

In general, both large and small swordfish fed on similar prey but some differences were 326 apparent. Based on GII results, jumbo squid was the most important previtem followed by the G. 327 borealis, and Abraliopsis sp., in both size classes. However, northern anchovy was found only in 328 stomachs of the small size group while luvar was eaten only by large swordfish (Table S1 and S2). 329 Jumbo squid, Gonatus spp., and Pacific hake were significantly more important in larger swordfish 330 than smaller swordfish (Table S3). 331 A comparison of the GII results by area indicated that jumbo squid and G. borealis were the 332 two most important prey of swordfish in both areas. The third ranked species were Abraliopsis sp. 333 within the SCB, and Pacific hake beyond the SCB. Striped mullet (Mugil cephalus), northern anchovy 334 335 and *Sebastes* spp. were recorded only within the SCB (Table S4 and S5). Jumbo squid, *Gonatus* spp. and market squid were significantly more important within the SCB than beyond the SCB, while G. 336 borealis and Pacific hake were significantly more important beyond the SCB (Table S6). 337 Between-year comparisons showed that jumbo squid was the first ranked prey, followed by G. 338 borealis, in 2007, 2008, 2010, 2012 and 2013. The importance of jumbo squid, G. borealis, Gonatus 339 spp., market squid and Pacific hake in the diet all varied significantly between years over the study 340 period (Table S15). In 2009, G. borealis was the most important prey followed by jumbo squid. In 341 2011 and 2014, Pacific hake ranked first followed by G. borealis. Pacific hake was not present in the 342 samples from 2008 through 2010. Abraliopsis sp. was important overall (ranked third) but was not 343

present in 2012. *Gonatus* spp. ranked fourth overall but was not present in the diet in 2011 (Table S7-

345 S14).

Feeding ecology of broadbill swordfish

## 346 Redundancy Analysis (RDA)

| 347 | Explanatory variables related to fish length (EFL), area, year and half-year, all significantly                    |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 348 | affected the overall pattern of variation in diet (numerical importance of prey) in swordfish (Table 3).           |
| 349 | Diet was significantly different (versus other years) in 2007 and 2011-2014. The set of explanatory                |
| 350 | variables used explained 6 % of the overall variation in prey counts, with RDA axes 1 and 2                        |
| 351 | accounting for 36.9 % and 23.1 % of this variation respectively. The first two RDA axes thus explain               |
| 352 | around 3.8 % of variation in prey counts, i.e., although significant temporal, spatial and size-related            |
| 353 | variation in diet has been demonstrated, the majority of observed dietary variation remains                        |
| 354 | unexplained.                                                                                                       |
| 355 |                                                                                                                    |
| 356 | Table 3. Results of redundancy analysis (RDA) of variation in diet composition of swordfish (based                 |
| 357 | on prey numbers). Values of $F$ and associated probability ( $p$ -value) are tabulated for two sets of model       |
| 358 | runs. The variable 'year' (fishing season) was divided into three categories (2007, 2008-2010 and                  |
| 359 | 2011-2014) and converted into three (0,1) dummy variables. Since the category may be identified                    |
| 360 | once the values of two of the dummy variables have been defined, all three dummy variables cannot                  |
| 361 | be included in the same run of the model. Left: model runs excluding 2011-2014. Right: model runs                  |
| 362 | excluding 2007. (EFL = eye to fork length, Area = east and west of 120°30'W, Half-year = August                    |
| 363 | 15 <sup>th</sup> through November 7 <sup>th</sup> and November 8 <sup>th</sup> through January 31 <sup>st</sup> ). |

| Variable  | <i>F</i> -statistics | <i>p</i> -value | <i>F</i> -statistics | <i>p</i> -value |
|-----------|----------------------|-----------------|----------------------|-----------------|
| EFL       | 4.117                | 0.005           | 4.254                | 0.005           |
| Area      | 3.896                | 0.005           | 3.895                | 0.005           |
| 2007      | 3.383                | 0.005           |                      |                 |
| Half-year | 2.025                | 0.005           | 2.123                | 0.005           |
| 2011-2014 |                      |                 | 5.016                | 0.005           |
| 2008-2010 | 3.568                | 0.005           | 1.042                | 0.415           |
| SST       | 0.758                | 0.785           | 0.758                | 0.815           |

Feeding ecology of broadbill swordfish

## 365 Generalized Additive Models (GAMs)

| 366 | To investigate sources of variation in the importance of individual prey taxa, binomial GAMs                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 367 | were fitted for presence/absence of each the seven most important prey taxa, as ranked by GII. For                            |
| 368 | jumbo squid, the final model contained significant effects of SST, EFL and year (Table 4). The                                |
| 369 | presence of jumbo squid in swordfish stomachs was highest with SST around 21.5°C, it showed a                                 |
| 370 | linear increase with increasing swordfish length, and it was lowest in 2009 and highest in 2007 (Fig                          |
| 371 | 4 <i>a</i> ). The final model for <i>G. borealis</i> contained effects of year and area (Table 4). The presence of <i>G</i> . |
| 372 | borealis in swordfish stomachs was highest in 2009 and lowest around 2012 (Fig 4b), and was higher                            |
| 373 | beyond the SCB area than within.                                                                                              |
| 374 |                                                                                                                               |
| 375 | Table 4. Effect of explanatory variables on the presence of the main prey taxa in swordfish diet (form                        |
| 376 | and direction of the relationship and statistical significance). The first row for each species-variable                      |
| 377 | combination contains the estimated degrees of freedom (edf) in the case of smoothers. The second                              |
| 378 | row indicates the probability. Only significant effects, retained in the final models, are shown.                             |
| 379 | Swordfish body length was measured as eye-to-fork length (EFL, cm). DE = deviance explained, AIC                              |
| 380 | = value of the Akaike Information Criterion. Blank cells indicate non-significant effects that were                           |
| 381 | dropped during model selection. $1^{st}$ = first half of year, $2^{nd}$ = second half of year; IN=within the SCB,             |
| 202 |                                                                                                                               |

- 382 OFF = beyond the SCB subregion.
- 383

| Swordfish           | EFL      | Year     | SST      | Half-year         | Area     | DE   | AIC    |
|---------------------|----------|----------|----------|-------------------|----------|------|--------|
| Jumbo squid         | 1.0 (+)  | 2.9 (U)  | 2.5 (+)  |                   |          | 25.0 | 1073.6 |
|                     | P<0.0001 | P<0.0001 | P<0.0001 |                   |          |      |        |
| Gonatopsis borealis |          | 2.9 (∩)  |          |                   | OFF>IN   | 14.5 | 963.97 |
|                     |          | P<0.0001 |          |                   | P=0.0105 |      |        |
| Abraliopsis sp.     | 1.0 (+)  | 2.9 (∩)  |          |                   |          | 9.8  | 727.51 |
|                     | P=0.0468 | P=0.0031 |          |                   |          |      |        |
| Gonatus spp.        |          | 2.8 (U)  |          | $1^{st} > 2^{nd}$ |          | 13.4 | 632.83 |
|                     |          | P=0.0058 |          | P=0.0049          |          |      |        |

Feeding ecology of broadbill swordfish

| Market squid         |          | 2.8 (∩)  |                   | IN>OFF   | 21.6 | 683.98 |
|----------------------|----------|----------|-------------------|----------|------|--------|
|                      |          | P<0.0001 |                   | P=0.0050 |      |        |
| Pacific hake         | 2.7 (+)  | 2.0 (+)  |                   |          | 26.6 | 355.48 |
|                      | P=0.0183 | P=0.0004 |                   |          |      |        |
| Duckbill barracudina |          | 2.9 (∩)  | $2^{nd} > 1^{st}$ | OFF>IN   | 20.7 | 496.50 |
|                      |          | P=0.0002 | P=0.0097          | P=0.0053 |      |        |

384

| 385 | For <i>Abraliopsis</i> sp., the final model contained effects of year and length (Fig 4c). The presence |
|-----|---------------------------------------------------------------------------------------------------------|
| 386 | of Abraliopsis sp. in swordfish stomachs was lowest in 2014 and highest in 2012, and showed a linear    |
| 387 | increase with increasing swordfish length (Fig 4c). For Gonatus spp. the final model contained effects  |
| 388 | of year and half-year (Table 4). The presence of Gonatus spp. in swordfish stomachs was highest         |
| 389 | around 2008-2009 and 2014 and was lowest in 2012 (Fig 4d). Numbers of Gonatus spp. were higher          |
| 390 | in the first half-year (August 15 through November 7) than in the second (Table 4).                     |
| 391 | For market squid, the final model contained effects of year and area (Table 4). The presence of         |
| 392 | market squid in swordfish stomachs was highest in 2010 (Fig 4e) and was higher within the SCB area      |

than beyond it. For Pacific hake, the final model contained effects of year and length (Table 4). The

394 presence of Pacific hake in swordfish stomachs was highest in 2012 and showed a positive

relationship with fish length at lengths between around 125 and 150 cm (Fig 4*f*). For duckbill

barracudina, the final model contained effects of year, area, and half-year (Table 4). The presence of

duckbill barracudina in swordfish stomachs was highest in 2009 (Fig 4g). It was greater beyond the

398 SCB area and during the second half of the fishing season (November 8 through January 31).

399

Fig 4. GAM smoothing curves fitted to partial effects of explanatory variables on the presence of 7
prey taxa in the stomach of swordfish. EFL = eye-to-fork length. Dashed lines represent 95%
confidence intervals around the main effects.

Feeding ecology of broadbill swordfish

# 404 **Discussion**

| 405 | Swordfish display several notable adaptations that might be expected to influence their                  |
|-----|----------------------------------------------------------------------------------------------------------|
| 406 | selection of prey items among the range of species present in the CCLME. Swordfish have cranial          |
| 407 | endothermy [27], with brain temperature elevated by up to 10°C-15°C above the temperature of the         |
| 408 | surrounding water when swimming [25], resulting in superior vision. Warming the brain and eyes           |
| 409 | may allow swordfish to remain active and responsive, increasing their visual threshold throughout the    |
| 410 | wide range of temperatures encountered in their vertical and migratory movements, permitting             |
| 411 | exploitation of different environments and prey [25]. The use of the "sword" for immobilizing or         |
| 412 | killing prey has been reported in past studies [29, 41, 46, 50] and a number of prey items in this study |
| 413 | showed signs of being slashed, punctured or cut. The "sword" has a similar hunting function as the       |
| 414 | thresher's tail [110] and can be used to stun fish [111]. Adult swordfish are toothless [112] and        |
| 415 | swallow their prey whole. Interactions between whales and billfish have been occasionally observed       |
| 416 | [113] and records of fractured swords embedded in whales can be found in the literature [114-118]        |
| 417 | but there is no evidence of billfish feeding attacks on whales.                                          |
| 418 | Vertical movements allow pelagic predators to extend their prey base or access different                 |
| 419 | resources. In marine ecosystems, diel changes in distribution or behavior of predators are frequently    |
| 420 | in tune with diel changes in prey distribution, such as vertical migration of organisms associated with  |
| 421 | the deep scattering layer (DSL) [119]. The diurnal vertical distribution of swordfish is region-specific |
| 422 | and likely influenced by both abiotic (temperature, thermocline depth, dissolved oxygen) and biotic      |
| 423 | factors (prey abundance and distribution, body temperature) [21]. Swordfish can feed at great depths     |
| 424 | during diurnal vertical migrations [26] and can feed during both day and night within the DSL [120].     |
| 425 | Electronic tagging studies on swordfish in the CCLME show that these predators are capable of            |

Feeding ecology of broadbill swordfish

| 426 | exhibiting highly variable movements during the day but are consistently found within the upper           |
|-----|-----------------------------------------------------------------------------------------------------------|
| 427 | mixed layer at night [21, 23]. These movements are consistent with those of the DSL.                      |
| 428 | Results of the present study indicate that swordfish fed mainly on cephalopods and teleosts,              |
| 429 | the most important prey taxa being jumbo squid (Dosidicus gigas), Gonatopsis borealis and                 |
| 430 | Abraliopsis sp., while teleosts included both epipelagic and mesopelagic species. Results are thus in     |
| 431 | broad agreement with those from several studies of this species in other regions [34, 50, 55, 62, 63,     |
| 432 | 75, 77], although the relative importance of fish and cephalopods varies between different areas (see     |
| 433 | Table 1).                                                                                                 |
| 434 | Jumbo squid was an important prey item for swordfish in the CCLME, as was also the case for               |
| 435 | several shark species (for mako, blue and bigeye thresher) in the area [5]. This finding is likely linked |
| 436 | to the range expansion of jumbo squid that started around 2002 in the CCLME. These cephalopods,           |
| 437 | rarely found in the CCLME previously, greatly extended their range in the eastern North Pacific           |
| 438 | Ocean during a period characterized by ocean-scale warming, regional cooling, and the decline of          |
| 439 | tuna and billfish populations throughout the Pacific [121, 122]. Jumbo squid belong to the                |
| 440 | Ommastrephidae, a family of largely pelagic squids that includes several species that support             |
| 441 | important commercial squid fisheries around the world [123]. Ommastrephids, in general, have been         |
| 442 | described as the most important cephalopod prey for swordfish in other regions of the world [29, 46,      |
| 443 | 47, 49, 50, 52, 54, 56, 58, 62, 64, 75] in both coastal and pelagic ecosystems.                           |
| 444 | Of the squids eaten by swordfish, while ommastrephids, gonatids and onychoteuthids, are                   |
| 445 | mainly epipelagic and all are powerful swimmers, the histioteuthids are predominantly mesopelagic         |
| 446 | drifters [63], indicating that swordfish can feed in different environments. Since swordfish detect their |

prey visually [26], swordfish may more easily catch fast-swimming, medium to large cephalopods 447

than small, slow-moving prey [63]. 448

Feeding ecology of broadbill swordfish

| 449 | Pacific hake was, overall, the most important teleost species in the diet, based on ranking by           |
|-----|----------------------------------------------------------------------------------------------------------|
| 450 | GII, followed by duckbill barracudina. Scombrids were also present in the diet. Merlucciids,             |
| 451 | paralepidids, and scombrids have been described as important fish prey species of swordfish in a         |
| 452 | number of other studies in different areas [29, 46, 47, 50, 52, 56, 61, 62]. All are abundant species in |
| 453 | coastal pelagic ecosystems where swordfish are usually caught. Seven species of Myctophidae, two         |
| 454 | species of Scopelarchidae and one species of Bathylagidae were present in this study, indicating that    |
| 455 | swordfish forage frequently in mesopelagic waters.                                                       |
| 456 | A number of the most important swordfish prey species are found in or associated with the                |
| 457 | DSL, including jumbo squid, G. borealis and Gonatus spp. squids, barracudinas, and Pacific hake          |
| 458 | [124-130]. Other important prey, like Abraliopsis sp. and market squid, are more epipelagic. The         |
|     |                                                                                                          |

range of prey species eaten, in terms of both prey size and prey habitat, suggests that swordfish havequite flexible foraging strategies.

461

#### 462 **Dietary variation in swordfish**

The importance of several prey taxa varied in relation to swordfish body size, location, year and, in some cases, differed between the first and second half of the fishing season. Jumbo squid, *Gonatus* spp. and Pacific hake were all more important as prey for larger swordfish than for smaller ones. At least in part, this may reflect the ability of larger swordfish to catch and eat large prey. These results differ from those of [62] who did not find variability in diet by size in swordfish off western Baja California.

Jumbo squid, *Gonatus* spp. and market squid were more important inshore (within the SCB)
while *G. borealis* and Pacific hake were more important offshore (beyond the SCB). These

Feeding ecology of broadbill swordfish

471 differences probably reflect prey availability but more information is needed on distribution of472 cephalopods and fish to confirm this.

Significant between-year variation in diet was also apparent. In general, this may reflect long-473 term variation in swordfish preference, prev availability, prev distribution, and prev abundance, but 474 could also be related to changes in fishing locations. According to GII results, jumbo squid was more 475 476 important in swordfish diet from 2007-2010 than in 2011-2014, with Pacific hake being the most important prey item in the latter period. However, GAM analysis shows a peak in jumbo squid for 477 2012, suggesting this species increased in dietary importance after 2010, once other factors are taken 478 479 into account. These results likely relate to the range expansion of jumbo squid that occurred during the first decade of the 2000s and the subsequent decline to lower levels in 2010 in the CCLME [131]. 480 A prolonged decline of jumbo squid landings was observed also in the Gulf of California after El 481 Niño (2009-2010) and was associated with chronic low-wind stress and decreased chlorophyll a 482 [132]. 483

G. borealis, Gonatus spp. and market squid were most important from 2008-2010, a period 484 which included both (cold) La Niña conditions in 2008 and a (warm) El Niño event in 2010. The 485 increased incidence of market squid in swordfish diet coincided with a high abundance of market 486 squid in both midwater trawl surveys and in landings [133]. The commercial squid fishery in 487 California targets spawning aggregations 1–3 km from the shore, around the Channel Islands and near 488 coastal canyons. Catches are highly influenced by El Niño events [134, 135]. The cooler water during 489 490 the La Niña years may have favored higher abundance and therefore higher catches in market squid 491 [136].

492 Northern anchovy is a monitored species under the Pacific Fishery Management Council's
493 Coastal Pelagic Species fishery management plan. It was only found in three stomachs in this study,

Feeding ecology of broadbill swordfish

inside the SCB in 2007 and 2008. [61] examined the stomach contents of 15 swordfish caught near 494 the Southern California Channel Island in fall/winter of 1980 and found that northern anchovy 495 accounted for over 40% of IRI. These differences may be attributed to variations in anchovy 496 abundance over the years. Anchovy were present in higher numbers in the California Current prior to 497 1990 with a peak in catches around 1980 [137]. Catch estimates show that, starting around 2009 to 498 499 2013, northern anchovy biomass dropped to low levels [138]. Analysis of northern anchovy stock size from 1951–2011 suggested that the population was near an all-time low from 2009–2011 [139], and 500 subsequent analysis suggested that the population remained low through 2015 [140]. More recent 501 502 minimum abundance estimates based on acoustic trawl surveys indicate the combined biomass of the Northern and Central stocks rebounded to a range from 0.5 to 1.1 million metric tons in 2018 and 503 2019 [141, 142]. 504

Pacific sardine (the abundance of which until recently was believed to vary inversely with that of anchovy) [143-145] was not present in the diet in 2007 and sardine %F was low for other years of the study. These results are possibly related to the low sardine biomass during the study period [146], but they could be explained also by limited swordfish preference for sardine. [62] reported a low %F for sardine in the diet of swordfish from northern Baja California in 1992-1993, a period when sardine biomass was higher in the area.

511 Future diet studies on swordfish in the CCLME would benefit from more information on prey 512 distribution and abundance (and thus their availability to swordfish) and on the size distribution of 513 available and consumed prey. This would potentially allow elucidation of (multivariate) functional 514 responses (i.e., how numbers of a prey species in the diet relate to its abundance and the abundance of 515 other prey species) [147]. The present study would have benefited from a larger sample size since the 516 rarefaction curve (for number of prey species detected versus sample size) did not reach an asymptote.

Feeding ecology of broadbill swordfish

| 517 | Samples used in this study were collected during the fall/winter period and were fisheries-dependent      |
|-----|-----------------------------------------------------------------------------------------------------------|
| 518 | so information on the diet at other times of the year is lacking. Results are also potentially influenced |
| 519 | by the distribution and targeting of fisheries effort and catch. While additional studies are warranted,  |
| 520 | this study provides the most comprehensive view of swordfish diets in the CCLME to date, allowing         |
| 521 | for comparisons of diet in relation to size, year and area.                                               |
| 522 |                                                                                                           |

### 523 Supporting information

Table S1. Quantitative prey composition of the broadbill swordfish (EFL < 165 cm) in the California</li>
Current. A total of 148 stomachs containing food was examined. Prey items are shown by decreasing
GII value. See methods for description of the measured values.

**Table S2.** Quantitative prey composition of the broadbill swordfish ( $EFL \ge 165$  cm) in the California Current. A total of 140 stomachs containing food was examined. Prey items are shown by decreasing GII value. See methods for description of the measured values.

530 **Table S3.** Comparison of GII for the main prey species between small and medium broadbill

swordfish. Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which each prey type

was in the smaller of two size categories of swordfish. If more than 95% (or fewer than 5%) of runs

show the prey type was more important in the smaller size category of swordfish than in the larger

category, we consider the difference to be significant. S = small (EFL < 165 cm), M = medium (EFL

 $\geq$  165 cm). These results are generally consistent with inferences from non-overlap of 95% CIs.

536 Table S4. Quantitative prey composition of the broadbill swordfish within the SCB subregion. A total

of 199 stomachs containing food was examined. Prey items are shown by decreasing GII value. See

538 methods for description of the measured values.

Feeding ecology of broadbill swordfish

- Table S5. Quantitative prey composition of the broadbill swordfish beyond the SCB subregion. A
  total of 93 stomachs containing food was examined. Prey items are shown by decreasing GII value.
  See methods for description of the measured values.
  Table S6. Comparison of GII for the main prey species between broadbill swordfish within and
- beyond the SCB region. Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which
- each prey type was in each of two categories of swordfish. If more than 95% (or fewer than 5%) of
- runs show the prey type was more important in one region than the other, we consider the difference
- to be significant. East = within the SCB subregion, West = beyond the SCB subregion. These results
- are generally consistent with inferences from non-overlap of 95% CIs.
- 548 **Table S7.** Quantitative prey composition of the broadbill swordfish during year 2007 in the California
- 549 Current. A total of 47 stomachs containing food was examined. Prey items are shown by decreasing
- 550 GII value. See methods for description of the measured values.
- 551 **Table S8.** Quantitative prey composition of the broadbill swordfish during year 2008 in the California
- 552 Current. A total of 16 stomachs containing food was examined. Prey items are shown by decreasing
- 553 GII value. See methods for description of the measured values.
- **Table S9.** Quantitative prey composition of the broadbill swordfish during year 2009 in the California
- 555 Current. A total of 37 stomachs containing food was examined. Prey items are shown by decreasing
- 556 GII value. See methods for description of the measured values.
- **Table S10.** Quantitative prey composition of the broadbill swordfish during year 2010 in the
- 558 California Current. A total of 12 stomachs containing food was examined. Prey items are shown by
- decreasing GII value. See methods for description of the measured values.

Feeding ecology of broadbill swordfish

| 560 | Table S11. | Quantitative prey | composition of the | broadbill swordfish | during year 2011 in the |
|-----|------------|-------------------|--------------------|---------------------|-------------------------|
|-----|------------|-------------------|--------------------|---------------------|-------------------------|

- 561 California Current. A total of 54 stomachs containing food was examined. Prey items are shown by
- 562 decreasing GII value. See methods for description of the measured values.
- **Table S12.** Quantitative prey composition of the broadbill swordfish during year 2012 in the
- 564 California Current. A total of 36 stomachs containing food was examined. Prey items are shown by
- 565 decreasing GII value. See methods for description of the measured values.
- **Table S13.** Quantitative prey composition of the broadbill swordfish during year 2013 in the
- 567 California Current. A total of 56 stomachs containing food was examined. Prey items are shown by
- 568 decreasing GII value. See methods for description of the measured values.
- **Table S14.** Quantitative prey composition of the broadbill swordfish during year 2014 in the
- 570 California Current. A total of 34 stomachs containing food was examined. Prey items are shown by

571 decreasing GII value. See methods for description of the measured values.

572 **Table S15.** Comparison of GII for the main prey species for broadbill swordfish by year group.

573 Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which each prey type was in each

of two categories of swordfish. If more than 95% (or fewer than 5%) of runs show the prey type was

- more important in one year than the other, we consider the difference to be significant. Y1 = Year1
- 576 (2007), Y2 = Year2 (2008-2010), Y3 = Year3 (2011-2014). These results are generally consistent
- 577 with inferences from non-overlap of 95% CIs.

578

Feeding ecology of broadbill swordfish

## 580 Acknowledgements

| 590 | Author Contributions                                                                               |
|-----|----------------------------------------------------------------------------------------------------|
| 589 |                                                                                                    |
| 588 | their careful critiques that helped improve the manuscript.                                        |
| 587 | the draft. Debra Losey helped with library research. We also thank several anonymous reviewers for |
| 586 | Stephanie Flores, Crystal Dombrow, Elan Portner and Ruben Bergtraun provided useful comments on    |
| 585 | Scott Aalbers offered science feedback. Kristen Koch, Annie Yau, Brad Erisman, Heidi Dewar,        |
| 584 | Hochberg and John Hyde helped identify some prey specimen. John Field, Chugey Sepulveda and        |
| 583 | thank several assistant volunteers who helped process the stomach samples. Mark Lowry, Eric        |
| 582 | NMFS Southwest Region Fishery Observer Program and the participating drift gillnet fishermen. We   |
| 581 | This work would not have been possible without the assistance and samples provided by the          |

- 591 Conceptualization: Antonella Preti, Graham J. Pierce
- 592 Data curation: Antonella Preti, Stephen M. Stohs, Graham J. Pierce
- 593 Formal analysis: Antonella Preti, Stephen M. Stohs, Graham J. Pierce, Camilo Saavedra
- 594 **Funding acquisition:** Gerard T. DiNardo

595 Investigation: Antonella Preti

- 596 Methodology: Antonella Preti, Graham J. Pierce, Stephen M. Stohs, Camilo Saavedra
- 597 **Project administration:** Antonella Preti
- 598 Software: Stephen M. Stohs, Antonella Preti, Graham J. Pierce, Camilo Saavedra
- **Supervision:** Graham J. Pierce, Stephen M. Stohs, Ken MacKenzie, Leslie R. Noble, Catherine S.
- 600 Jones
- 601 Validation: Antonella Preti
- 602 Visualization: Antonella Preti

Feeding ecology of broadbill swordfish

- 603 Writing original draft: Antonella Preti
- 604 Writing review & editing: Antonella Preti, Graham J. Pierce, Stephen M. Stohs, Gerard T.
- DiNardo, Camilo Saavedra, Ken MacKenzie, Leslie R. Noble, Catherine S. Jones.
- 606

#### 607 **References**

- 1. Palko BJ, Beardsley GL, Richards WJ. Synopsis of the biology of the swordfish, *Xiphias*
- 609 *gladius* Linnaeus. NOAA Technical Report NMFS Circular 441/FAO Fisheries Synopsis.
- **610 1981; 127.**
- 611 2. Bedford DW, Hagerman FB. Billfish fishery resource of the California current. CalCOFI Rep.
  612 1983; 24:70–78.
- 3. Hinton MG. Status of swordfish stocks in the eastern Pacific Ocean estimated using data from
  Japanese tuna longline fisheries. J Mar Freshw Res. 2003; 54:393-399.
- 4. PFMC (Pacific Fishery Management Council). Fishery management plan and environmental
- 616 impact statement for US West Coast fisheries for highly migratory species. 2003; NOAA
- 617 award No NA03NMF4410067.
- 5. Preti A. Trophic ecology of nine top predators in the California Current. PhD dissertation,
  University of Aberdeen, Scotland, UK. 2020.
- 6. Watters GM, Olson RJ, Francis RC, Fiedler PC, Polovina JJ, Reilly SB, et al. Physical forcing
- and the dynamics of the pelagic ecosystem in the eastern tropical Pacific: simulations with
- ENSO-scale and global-warming climate drivers. Can J Fish Aquat Sci. 2003; 60:1161-1175.
- 623 7. Sepulveda CA, Aalbers SA, Heberer C. Testing modified deep-set buoy gear to minimize
  624 bycatch and increase swordfish selectivity. BREP. 2014a; 1:27-32.

Feeding ecology of broadbill swordfish

| 625 | 8.  | Sepulveda CA, Heberer C, Aalbers SA. Development and trial of deep-set buoy gear for            |
|-----|-----|-------------------------------------------------------------------------------------------------|
| 626 |     | swordfish, Xiphias gladius, in the Southern California Bight. Mar Fish Rev. 2014b; 76 p 28-     |
| 627 |     | 36.                                                                                             |
| 628 | 9.  | PFMC. Agenda Item I.4 Situation Summary: Deep-Set Buoy Gear Authorization - Final               |
| 629 |     | Action. 251st Session of the Pacific Fishery Management Council, San Diego, CA. URL.            |
| 630 |     | 2019; September 11-18.                                                                          |
| 631 | 10. | Ichinokawa M, Brodziak J. Stock boundary between possible swordfish stocks in the               |
| 632 |     | northwest and southeast Pacific judged from fisheries data of Japanese                          |
| 633 |     | longliners. ISC/08/Special Session on Billfish Stock Structure. 2008; 4 p14.                    |
| 634 | 11. | Tagami D, Wang H, Chang Y. Spatial distribution of swordfish catches for longline fisheries     |
| 635 |     | in the Western and Central North Pacific and Eastern Ocean. Working document submitted to       |
| 636 |     | the ISC Billfish Working Group Workshop. 2014.                                                  |
| 637 | 12. | Hinton MG, Maunder MN. Status of swordfish in the Eastern Pacific Ocean in 2010 and             |
| 638 |     | outlook for the future. IATTC Rep. 2011; pp 1-33.                                               |
| 639 | 13. | International Scientific Committee (ISC). North Pacific swordfish (Xiphias gladius) stock       |
| 640 |     | assessment in 2014. Report of the billfish working group. International Scientific Committee    |
| 641 |     | for Tuna and Tuna-like Species in the North Pacific Ocean. 2014; p 85.                          |
| 642 | 14. | Nakamura I. Billfishes of the world, an annotated and illustrated catalogue of marlins,         |
| 643 |     | sailfishes, spearfishes and swordfishes known to date. Rome: FAO Fish Synop. 1985; 5(125).      |
| 644 | 15. | Ward P, Elscot S. Broadbill swordfish: status of the world fisheries. Bureau of Rural Sciences, |
| 645 |     | Canberra. 2000; 208 p.                                                                          |
| 646 | 16. | Ward P, Porter JM, Elscot S. Broadbill swordfish: status of established fisheries and lessons   |
| 647 |     | for developing fisheries. Fish Fish. 2000; 1(4) p 317-336.                                      |

Feeding ecology of broadbill swordfish

| 648 | 17. Sakagawa GT. Trends in fisheries for swordfish in the Pacific Ocean. In: Stroud RH (eds)   |
|-----|------------------------------------------------------------------------------------------------|
| 649 | Planning the future of billfishes. Research and management in the 90s and beyond. Mar Recr     |
| 650 | Fish. 1989; 13:61-79.                                                                          |
| 651 | 18. Sosa-Nishizaki O, Shimizu M. Spatial and temporal CPUE trends and stock unit inferred from |
| 652 | them for the Pacific swordfish caught by the Japanese tuna longline fishery. 1991; Bull Nat    |
| 653 | Res Inst Far Seas Fish 28:75-90.                                                               |
| 654 | 19. Dewees CM. Swordfish. In: Leet WS, Dewees CM, Haugen CW (eds) California living            |
| 655 | marine resources and their utilization. Davis, CA: California Sea Grant Extension Program.     |
| 656 | 1992; p 148-150.                                                                               |
| 657 | 20. Gorbunova NN. Breeding grounds and food of the larvae of the swordfish [Xiphias gladius    |
| 658 | Linné (Pisces, Xiphilidae)]. Probl Ichthyol. 1969; 1883; 9 p 375-387.                          |
| 659 | 21. Sepulveda CA, Knight A, Nasby-Lucas N, Domeier ML. Fine-scale movements of the             |
| 660 | swordfish Xiphias gladius in the Southern California Bight. Fish Oceanogr. 2010; 19(4):279-    |
| 661 | 289.                                                                                           |
| 662 | 22. Dewar H, Prince ED, Musyl MK, Brill RW, Sepulveda C, Luo J, Foley D, Orbesen ES,           |
| 663 | Domeier ML, Nasby-Lucas N, Snodgrass D, Laurs RM, Hoolihan JP, Block BA, McNaughton            |
| 664 | LM. Movements and behaviors of swordfish in the Atlantic and Pacific Oceans examined           |
| 665 | using pop-up satellite archival tags. Fish Oceanogr. 2011; 20(3):219-241.                      |
| 666 | 23. Sepulveda CA, Aalbers SA, Heberer C, Kohin S, Dewar H. Movements and behaviors of          |
| 667 | swordfish Xiphias gladius in the United States Leatherback Conservation Area Fish Oceanogr.    |
| 668 | 2018; 27(4):381-394.                                                                           |
| 669 | 24. Block BA. Endothermy in fish: thermogenesis, ecology and evolution. In: Biochemistry and   |
| 670 | molecular biology of fishes. 1991; (Vol 1 pp 269-311) Elsevier.                                |

Feeding ecology of broadbill swordfish

| 671 | 25. Fritsches KA, Brill RW, Warrant EJ. Warm eyes provide superior vision in swordfishes. Curr    |
|-----|---------------------------------------------------------------------------------------------------|
| 672 | Biol. 2005; 15(1) p 55-58.                                                                        |
| 673 | 26. Carey FG, Robinson BH. Daily patterns in the activities of swordfish, Xiphias gladius,        |
| 674 | observed by acoustic telemetry. Fish Bull US. 1981; 79:277-292.                                   |
| 675 | 27. Carey FG. A brain heater in the swordfish. Science. 1982; 216(4552):1327-9.                   |
| 676 | 28. Carey FG. Through the thermocline and back again. Heat regulation in big fish. Oceanus, Fall. |
| 677 | 1992; p 79-85.                                                                                    |
| 678 | 29. Tibbo SN, Day LR, Doucet WF. The swordfish (Xiphias gladius L.), its life-history and         |
| 679 | economic importance in the Northwest Atlantic. Bull Fish Res Bd Canada. 1961; 130 p 47.           |
| 680 | 30. Aguiar dos Santos R, Haimovici M. The Argentine short-finned squid Illex argentinus in the    |
| 681 | food webs of southern Brazil. Sarsia. 2000; 85(1):49-60.                                          |
| 682 | 31. Santos MB, Clarke MR, Pierce GJ. Assessing the importance of cephalopods in the diets of      |
| 683 | marine mammals and other top predators: problems and solutions. Fish Res. 2001; 52(1-2) p         |
| 684 | 121-139.                                                                                          |
| 685 | 32. Peristeraki P, Tserpes G, Lefkaditou E. What cephalopod remains from Xiphias gladius          |
| 686 | stomachs can imply about predator-prey interactions in the Mediterranean Sea? J Fish Biol.        |
| 687 | 2005; 67(2) p 549-554.                                                                            |
| 688 | 33. Lansdell M, Young J. Pelagic cephalopods from eastern Australia: species composition,         |
| 689 | horizontal and vertical distribution determined from the diets of pelagic fishes. Rev Fish Biol   |
| 690 | Fisher. 2007; 17(2-3) p 125.                                                                      |
| 691 | 34. Logan JM, Toppin R, Smith S, Galuardi B, Porter J, Lutcavage M. Contribution of cephalopod    |
| 692 | prey to the diet of large pelagic fish predators in the central North Atlantic Ocean. Deep Sea    |
| 693 | Res Part II Top Stud. Oceanogr. 2013; 95:74-82.                                                   |

Feeding ecology of broadbill swordfish

| 604 | 25 Coods CD Materials for a history of the gwardfishes. Bon US Comm Fish (1990) 9:297-204        |
|-----|--------------------------------------------------------------------------------------------------|
| 694 | 35. Goode GB. Materials for a history of the swordfishes. Rep US Comm Fish (1880) 8:287-394      |
| 695 | 36. Clarke AH. Notes on the New England fishery for swordfish during the season of 1884. Rept    |
| 696 | US Comm Fish Fish. 1886; 1884, 12:233-239.                                                       |
| 697 | 37. Kingsley JS. The food habits of swordfish. Science. 1922; 56:225-226.                        |
| 698 | 38. Parr AE. Swordfish stomach records. Ibid. 1933; 1933(4):176-179.                             |
| 699 | 39. Gregory WK, Conrad GM. The comparative osteology of the swordfish (Xiphias) and the          |
| 700 | sailfish (Istiophorus). Am Museum Novitates. 1937; 952, 25 p.                                    |
| 701 | 40. Rich WH. The swordfish and the swordfishery of New England. Proc Portland Soc Nat Hist.      |
| 702 | 1947; 4: 1-102.                                                                                  |
| 703 | 41. Bigelow HB, Schroeder WC. Fishes of the Gulf of Maine. US Irish Wildlife Serv Fish Bull.     |
| 704 | 1953; 53, 577 p.                                                                                 |
| 705 | 42. Arata GF Jr. A contribution to the life history of the swordfish, Xiphias gladius. Linnaeus, |
| 706 | from the South Atlantic coast of the United States and the Gulf of Mexico. Bull Marine Sci       |
| 707 | Gulf Caribbean. 1977; 4(3):183-243.                                                              |
| 708 | 43. Scott WB, Crossman EJ. The snake-eel Omochelys cruentifer, in Canadian Atlantic waters.      |
| 709 | Copeia. 1959; 1959(4):344-345.                                                                   |
| 710 | 44. Eschmeyer WN. A deepwater trawl capture of two swordfish, Xiphias gladius, in the Gulf of    |
| 711 | Mexico. Copeia. 1963; 1963(3):590.                                                               |
| 712 | 45. Manday DG. Biologia pesquera del Emperador o pez de España, Xiphias gladius Linneaus         |
| 713 | (Telelstomi: Xiphiidae) en las aguas de Cuba. Poeyana Inst Biol, Acad Cien Rep Cuba, Ser B.      |
| 714 | 1964; 1:1-37.                                                                                    |
| 715 | 46. Scott WB, Tibbo SN. Food and feeding habits of swordfish, Xiphias gladius, in the western    |
| 716 | North Atlantic. J Fish Res Board Can. 1968; 25(5) p 903-919.                                     |

Feeding ecology of broadbill swordfish

| 717 | 47. Scott WB, Tibbo SN. Food and feeding habits of swordfish, Xiphias gladius Linnaeus, in the    |
|-----|---------------------------------------------------------------------------------------------------|
| 718 | Northwest Atlantic Ocean. In: Shomura RS and Williams R (eds) Proc Int billfish symp. Part        |
| 719 | 2: Review and contributed papers. US Dep Commer NOAA Tech Rep NMFS. 1974; SSRF-                   |
| 720 | 675:138-141.                                                                                      |
| 721 | 48. Beckett JS, Freeman HC. Mercury in swordfish and other pelagic species from the western       |
| 722 | Atlantic Ocean. In: Shomura RS, Williams F (eds) Proc of the Int Billfish Symp. Review and        |
| 723 | Contributed Papers, US Dep Comm NOAA Tech Rep NMFS. 1974; SSRF-675:154-159.                       |
| 724 | 49. Toll RB, Hess SC. Cephalopods in the diet of the swordfish, Xiphias gladius, from the Florida |
| 725 | Straits. Fish Bull US. 1981; 2019; 79: 765-774.                                                   |
| 726 | 50. Stillwell CE, Kohler NE. Food and feeding ecology of the swordfish Xiphias gladius in the     |
| 727 | western north Atlantic Ocean with estimates of daily ration. Mar Ecol Prog Ser. 1985; 22, 239-    |
| 728 | 247.                                                                                              |
| 729 | 51. Azevedo M. Information on the swordfish fishery in the Portuguese Continental EEZ. ICCAT      |
| 730 | Collective Vol Scientific Papers. 1989; 32(2):282-286.                                            |
| 731 | 52. Moreira F. Food of the swordfish, Xiphias gladius Linnaeus, 1758, off the Portuguese coast. J |
| 732 | Fish Biol. 1990; 36:623-624.                                                                      |
| 733 | 53. Clarke MR, Clarke DC, Martins HR, Silva HM. The diet of swordfish (Xiphias gladius) in        |
| 734 | Azorean waters. ARQUIPÉLAGO Ciências Biológicas e Marinhas Life and Marine Sciences.              |
| 735 | 1995; 13:53-69.                                                                                   |
| 736 | 54. Guerra A, Simón F, González AF. Cephalopods in the diet of the swordfish, Xiphias gladius,    |
| 737 | from the northeastern Atlantic Ocean. In: Okutani et al. (eds) The recent advances in fisheries   |
| 738 | biology. Tokai Univ Press, Tokyo, Japan. 1993; p 159-164.                                         |
|     |                                                                                                   |

Feeding ecology of broadbill swordfish

| 739 | 55. Chancollon O, Pusineri C, Ridoux V. Food and feeding ecology of Northeast Atlantic            |
|-----|---------------------------------------------------------------------------------------------------|
| 740 | swordfish (Xiphias gladius) off the Bay of Biscay. ICES J Mar Sci. 2006; 63(6) p 1075-1085.       |
| 741 | 56. Hernández-Garcia V. The diet of the swordfish Xiphias gladius Linnaeus, 1758, in the central  |
| 742 | east Atlantic, with emphasis on the role of cephalopods. Fish Bull US. 1995; 93:403-411.          |
| 743 | 57. Velasco F, Quintans M. Feeding habits in pelagic longline fisheries: a new methodological     |
| 744 | approach applied to swordfish (Xiphias gladius) in central eastern Atlantic. ICCAT Coll Vol       |
| 745 | Sci Pap. 2000; 51 p 1705-1717.                                                                    |
| 746 | 58. Maksimov VP. Pitanie bol'sheglazogo tuntsa (Thunnus obesus Lowe) i mmech-ryby (Xiphias        |
| 747 | gladius L.) vostochnoi chasti tropichesko i Atlantiki. Trudy Atlanticheskogo                      |
| 748 | nauchnoissledovatel'skogo instituta rybnogo khozyaistva I okeanografii (Trudy AtlantNIRO)         |
| 749 | XXV:87-99. English Transl: Bull Fish Res B Can Transl Series. 1969; 2248.                         |
| 750 | 59. Cherel Y, Sabatie R, Potier M, Marsac F, Ménard F. New information from fish diets on the     |
| 751 | importance of glassy flying squid (Hyaloteuthis pelagica)(Teuthoidea: Ommastrephidae) in          |
| 752 | the epipelagic cephalopod community of the tropical Atlantic Ocean. Fish Bull. 2007; 105(1) p     |
| 753 | 147-152.                                                                                          |
| 754 | 60. Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, et al. Forage fauna in the diet of |
| 755 | three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial   |
| 756 | Indian Ocean. Fish Res. 2007; 83(1) p 60-72.                                                      |
| 757 | 61. Mearns AJ, Young DR, Olson RJ, Schafer HA. Trophic structure and the cesium-potassium         |
| 758 | ratio in pelagic ecosystems. CalCOFI Rep. 1981; 22 p 99-110.                                      |
| 759 | 62. Markaida U, Sosa-Nishizaki O. Food and feeding habits of swordfish, Xiphias gladius L, off    |
| 760 | western Baja California. Biology and fisheries of Swordfish, Xiphias gladius. NOAA Tech.          |
| 761 | Rep. 1998; 142 p 245-259.                                                                         |

37

| 762 | 63. Markaida U, Hochberg FG. Cephalopods in the diet of swordfish (Xiphias gladius) caught off   |
|-----|--------------------------------------------------------------------------------------------------|
| 763 | the west coast of Baja California, Mexico. Pac Sci. 2005; 59(1):25-41.                           |
| 764 | 64. Seki MP. Trophic relationships of Ommarstrephes bartramii during winter migrations to        |
| 765 | subtropical waters north of the Hawaiian islands. In: Okutani T, O'Dor RK, Kubodera T (eds)      |
| 766 | Recent advances in cephalopod fisheries biology. 1993; p 15-24, Tokai Univ Press, Tokyo.         |
| 767 | 65. LaMonte ER, Marcy DE. Swordfish, sailfish, marlin, and spearfish. Ichthyol Contrib Int Game  |
| 768 | Fish Assoc. 1941; 1(2):1-24.                                                                     |
| 769 | 66. de Sylva DP. Red water blooms off northern Chile, April-May 1956, with reference to the      |
| 770 | ecology of the swordfish and the striped marlin. Pac Sci. 1962; 16:271-279.                      |
| 771 | 67. Ibáñez CM, González C, Cubillos L. Dieta del pez espada Xiphias gladius Linnaeus, 1758, en   |
| 772 | aguas oceánicas de Chile central en invierno de 2003. Investigaciones marinas. 2004; 32(2) p     |
| 773 | 113-120.                                                                                         |
| 774 | 68. Castillo K, Ibáñez CM, González C, Chong J. Diet of swordfish, Xiphias gladius Linnaeus,     |
| 775 | 1758 from different fishing zones off central-Chile during autumn 2004. Rev Biol Mar             |
| 776 | Oceanogr. 2007; 42(2):149-56.                                                                    |
| 777 | 69. Letelier S, Meléndez R, Carreño E, Lopez S, Barría P. Alimentación y relaciones tróficas del |
| 778 | pez espada (Xiphias gladius Linnaeus, 1758), frente a Chile centro-norte durante 2005. Lat       |
| 779 | Am J Aquat Res. 2009; 37(1):107-19.                                                              |
| 780 | 70. Barbieri MA, Canales C, Correa V, Donoso M, Casanga AG, Leiva B, et al. Development and      |
| 781 | present state of the swordfish, Xiphias gladius, fishery in Chile. NOAA Tech Rep NMFS.           |
| 782 | 1998; 142 p 1-10.                                                                                |

| 783 | 71. Rosas-Luis R, Loor-Andrade P, Carrera-Fernández M., Pincay-Espinoza JE, Vinces-Ortega C,      |
|-----|---------------------------------------------------------------------------------------------------|
| 784 | Chompoy-Salazar L. Cephalopod species in the diet of large pelagic fish (sharks and               |
| 785 | billfishes) in Ecuadorian waters. Fish Res. 2016; 173 p 159-168.                                  |
| 786 | 72. Loor-Andrade P, Pincay-Espinoza J, Rosas-Luis R. Diet of the blue shark Prionace glauca in    |
| 787 | the Ecuadorian Pacific Ocean during the years 2013 to 2015. J Appl Ichthyol. 2017; 33(3) p        |
| 788 | 558-562.                                                                                          |
| 789 | 73. Yatsu A. The role of slender tuna, Allothunnus fallai, in the pelagic ecosystems of the South |
| 790 | Pacific Ocean Jpn J Ichthyol. 1995; 41(4):367-377.                                                |
| 791 | 74. Watanabe H, Kubodera T, Yokawa K. Feeding ecology of the swordfish Xiphias gladius in the     |
| 792 | subtropical region and transition zone of the western North Pacific. Mar Ecol Prog Ser. 2009;     |
| 793 | 396(1):111-22.                                                                                    |
| 794 | 75. Bello G. Role of cephalopods in the diet of the swordfish, Xiphias gladius, from the eastern  |
| 795 | Mediterranean Sea. B Mar Sci. 1991; 49(1-2) p 312-324.                                            |
| 796 | 76. Salman A. The role of cephalopods in the diet of swordfish (Xiphias gladius Linnaeus, 1758)   |
| 797 | in the Aegean Sea (Eastern Mediterranean). Bull Mar Sci. 2004; 74(1) p 21-29.                     |
| 798 | 77. Young J, Lansdell M, Riddoch S, Revill A. Feeding ecology of broadbill swordfish, Xiphias     |
| 799 | gladius, off eastern Australia in relation to physical and environmental variables. Bull Mar      |
| 800 | Sci. 2006; 79(3) p 793-809.                                                                       |
| 801 | 78. Fitch JE, Lavenberg RJ. Marine food and game fishes of California, 28, Univ California Press. |
| 802 | 1971.                                                                                             |
| 803 | 79. Frey HW. California's living marine resources and their utilization. Sacramento California    |
| 804 | Dept Fish and Game. 1971; p 148.                                                                  |

Feeding ecology of broadbill swordfish

- 805 80. Hyslop EJ. Stomach contents analysis a review of methods and their application. J Fish
  806 Biol.1980; 17(4) pp 411-429.
- 807 81. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA
  808 barcoding. Mol Ecol Notes. 2007; 7:544–548.
- 809 82. Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode
- 810 Index Number (BIN) system. PLoS ONE. 2013; 8(8):e66213.
- B11 DOI:10.1371/journal.pone.0066213.
- 812 83. Pierce GJ, Boyle PR. A review of methods for diet analysis in piscivorous marine mammals.
- 813 Oceanogr Mar Biol Annu Rev. 1991; 29 pp 409-486.
- 814 84. Oksanen J, Blanchet F, Kindt R, Legendre P, O'Hara RG, Simpson G, et al. Vegan:
- community ecology package. R package, version 1.17-0. Accessible online: <u>http://CRAN.R-</u>
   project.org/package=vegan. 2010.
- 817 85. R Development Core Team. R: A Language and Environment for Statistical Computing,

818 Vienna, Austria: R Foundation for Statistical Computing. 2015.

- 819 86. Hurtubia J. Trophic diversity measurement in sympatric predatory species. Ecology. 1973;
  820 54(4):885-890.
- 87. Ferry LA, Cailliet GM. Sample size and data analysis: Are we characterizing and comparing
  diet properly? In: MacKinley D, Shearer K (eds) Feeding ecology and nutrition in fish.
- 823 International Congress of the Biology of Fishes, American Fisheries. 1996.
- 824 88. Ferry LA, Clark SL, Cailliet GM. Food habits of spotted sand bass (*Paralabrax*
- 825 maculofasciatus, Serranidae) from Bahia de Los Angeles, Baja California. Bull S Calif Acad
- 826 Sci. 1997; 96(1):1-21.

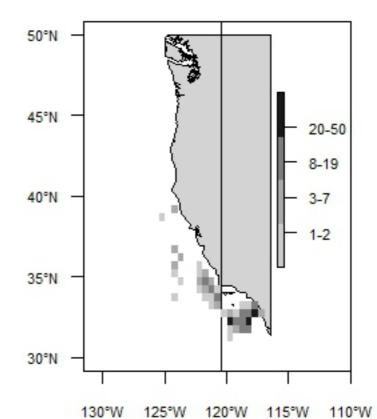
| 827 | 89. Gelsleichter J, Musick JA, Nichols S. Food habits of the smooth dogfish, Mustelus canis,    |
|-----|-------------------------------------------------------------------------------------------------|
| 828 | dusky shark, Carcharhinus obscures, Atlantic sharp nose shark, Rhizoprionodon terranovae        |
| 829 | and the sand tiger, Carcharias taurus, from the northwest Atlantic Ocean. Environ Biol Fish.    |
| 830 | 1999; 54:205-217.                                                                               |
| 831 | 90. Yamaguchi A, Taniuchi T. Food variation and ontogenetic dietary shifts of the star spotted  |
| 832 | dogfish Mustelus manazo at five locations in Japan and Taiwan. Fish Sci. 2000; 66:1039-1048     |
| 833 | 91. Bizzarro JJ, Robinson HJ, Rinewalt CS, Ebert DA. Comparative feeding ecology of four        |
| 834 | sympatric skate species off central California, USA Environ Biol Fish. 2007; 80:197–220.        |
| 835 | 92. Pinkas L, Oliphant MS, Iverson ILK. Food habits of albacore, bluefin tuna, and bonito in    |
| 836 | California waters. Calif Dep Fish Game Fish Bull. 1971; 152:1-105.                              |
| 837 | 93. Bowen SH. Quantitative description of the diet. In: Murphy BR, Willis DW (eds.) Fisheries   |
| 838 | Techniques. American Fisheries Society Bethesd. 1996; pp 513-532.                               |
| 839 | 94. Assis CA. A generalized index for stomach contents analysis in fish. Sci Mar. 1996;         |
| 840 | 60(23):385-389.                                                                                 |
| 841 | 95. Preti A, Soykan CU, Dewar H, Wells RD, Spear N, Kohin S. Comparative feeding ecology of     |
| 842 | shortfin mako, blue and thresher sharks in the California Current. Env Biol Fish. 2012; 95(1) p |
| 843 | 127-146.                                                                                        |
| 844 | 96. Thayer JA, Field JC, Sydeman WJ. Changes in California chinook salmon diet over the past    |
| 845 | 50 years: relevance to the recent population crash. Mar Ecol Prog Ser. 2014; 498 pp 249-261.    |
| 846 | 97. Tripp-Valdez A, Galvan-Magaña F, Ortega-Garcia S. Food sources of common dolphinfish        |
| 847 | (Coryphaena hippurus) based on stomach content and stable isotopes analyses. J Mar Biol         |
| 848 | Assoc UK. 2015; 95(3) pp 579-591.                                                               |

| 849 | 98. Liao H, Pierce CL, Larscheid JG. Empirical assessment of indices of prey importance in the    |
|-----|---------------------------------------------------------------------------------------------------|
| 850 | diets of predacious fish. Trans Am Fish Soc. 2001; 130(4) pp 583-591.                             |
| 851 | 99. George ADI, Abowei JFN, Inko-Tariah MB, Jasper A. The composition in different size           |
| 852 | groups and Index of Relative Importance (Iri) of Callinectes amnicola (De Rochebrune, 1883)       |
| 853 | Food from Okpoka Creek, Niger Delta, Nigeria. Int J Anim Vet Adv. 2009; 1(2) pp 83–91.            |
| 854 | 100. Newman SP, Handy RD, Gruber SH. Diet and prey preference of juvenile lemon sharks            |
| 855 | Negaprion brevirostris. Mar Ecol Prog Ser. 2010; 398 pp 221-234.                                  |
| 856 | 101. Cortés E. A critical review of methods of studying fish feeding based on analysis of stomach |
| 857 | contents: application to elasmobranch fishes. Can J Fish Aquat Sci. 1997; 54:726-738.             |
| 858 | 102. Magurran AE. Measuring Biological Diversity. In: Blackwell, Oxford. 2004.                    |
| 859 | 103. Orlóci L. An agglomerative method for classification of plant communities. J Ecol. 1967;     |
| 860 | 55:193-205.                                                                                       |
| 861 | 104. Cavalli-Sforza LL, Edwards AWF. Phylogenetic analysis: Models and estimation                 |
| 862 | procedures. Evolution. 1967; 32:550-570.                                                          |
| 863 | 105. Legendre P, Gallagher E. Ecologically meaningful transformations for ordination of species   |
| 864 | data. Oecologia. 2001; 129:271-280.                                                               |
| 865 | 106. Wood SN. Thin-plate regression splines. J Royal Stat Soc (B). 2003; 65(1) 95-114.            |
| 866 | 107. Hastie T, Tibshirani RJ. Generalized additive models. New York: Chapman and Hall. 1990.      |
| 867 | 108. Zuur AF, Leno EN, Smith GM. Analysing Ecological Data, Springer. 2007; 680 p.                |
| 868 | 109. DeMartini EE, Uchiyama JH, Williams HA. Sexual maturity, sex ratio, and size composition     |
| 869 | of swordfish, Xiphias gladius, caught by the Hawaii-based pelagic longline fishery. Fish          |
| 870 | Bull. 2000; 98:489-506.                                                                           |
|     |                                                                                                   |

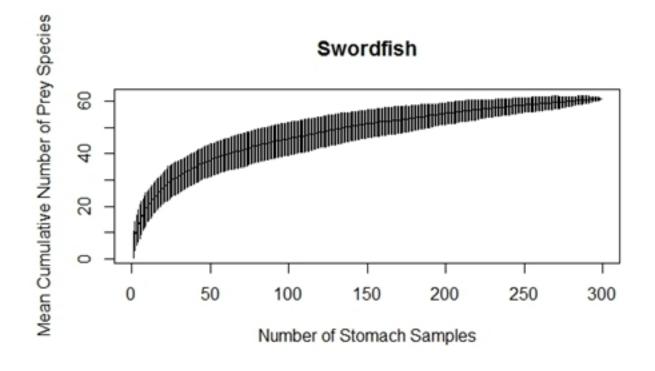
| 871 | 110. Aalbers SA, Bernal D, Sepulveda CA. The functional role of the caudal fin in the feeding    |
|-----|--------------------------------------------------------------------------------------------------|
| 872 | ecology of the common thresher shark Alopias vulpinus. J Fish Biol. 2010; 76(7):1863-1868.       |
| 873 | 111. Schmidt FN, Zimmermann EA, Walsh F, Plumeyer C, Schaible E, Fiedler IA, et al. On the       |
| 874 | Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone               |
| 875 | Structure and Composition Allow for Slashing under Water to Kill or Stun Prey. Adv Sci.          |
| 876 | 2019; 6(12), p 1900287.                                                                          |
| 877 | 112. Fitch JE. Swordfish, Xiphias gladius. In: Calif Dept Fish and Game California ocean         |
| 878 | fisheries resources to the year 1960. State Printer Sacramento. 1960; p 63-64.                   |
| 879 | 113. Major PF. An aggressive encounter between a pod of whales and billfish. Sci Rep Whales      |
| 880 | Res Inst. 1979; 31 p 95-96.                                                                      |
| 881 | 114. Ruud JT. Do swordfish attack the large baleen whales? Norwegian Whaling Gazette. 1952; 4    |
| 882 | p 191.                                                                                           |
| 883 | 115. Brown SG. Swordfish and whales. Norsk Hvaifangst-Tid. 1960; 48(8):345-51.                   |
| 884 | 116. Jonsgård A. Three finds of swords from swordfish (Xiphias gladius) in the Antarctic fin     |
| 885 | whale (Balaenoptera physalus L.) Norsk Hvalfangst-Tid. 1962; 51(7):287-91.                       |
| 886 | 117. Machida S. A swordfish sword found from a North Pacific sei whale. Sci Rep Whales Res       |
| 887 | Inst. 1970; 31:1979, 95-96.                                                                      |
| 888 | 118. Ohsumi S. Find of marlin spears from the Antarctic minke whales. Sci Rep Whales Res Inst.   |
| 889 | 1973; 25:237-239.                                                                                |
| 890 | 119. Neilson JD, Perry RI. Diel vertical migrations of marine fishes: an obligate or facultative |
| 891 | process? Adv Mar Biol. 1990; 26:115-168.                                                         |
| 892 | 120. Abecassis M, Dewar H, Hawn D, Polovina J. Modeling swordfish daytime vertical habitat in    |
| 893 | the North Pacific Ocean from pop-up archival tags. Mar Ecol Prog Ser. 2012; 452:219-236.         |

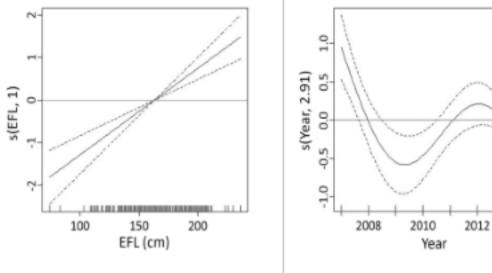
| 121. | Field JC, Baltz K, Phillips AJ, Walker WA. Range expansion and trophic interactions of the                   |
|------|--------------------------------------------------------------------------------------------------------------|
|      | jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep. 2007; 48:131-146.                      |
| 122. | Zeidberg LD, Robison BH. Invasive range expansion by the Humboldt squid, Dosidicus                           |
|      | gigas, in the eastern North Pacific. Proc Natl Acad Sci USA. 2007; 104:12948-12950.                          |
| 123. | Jereb P, Roper CFE. Cephalopods of the world. An annotated and illustrated catalogue of                      |
|      | cephalopod species known to date. Vol 2 Myopsid and Oegopsid squids. FAO Species                             |
|      | Catalogue for Fishery Purposes. FAO Rome. 2010.                                                              |
| 124. | Roper CFE, Young RE. Vertical distribution of pelagic cephalopods. Smithson Contr Zoöl.                      |
|      | 1975; 209:1-51.                                                                                              |
| 125. | Anderson ME. Notes on cephalopods of Monterey Bay, California, with new records for the                      |
|      | area. Veliger. 1977; 21(2):255–262.                                                                          |
| 126. | Magnússon J. The deep scattering layer in the Irminger Sea J Fish Biol. 1996; 49 (Supp                       |
|      | A):182-191.                                                                                                  |
| 127. | Bailey KM, Francis RC, Stevens PR. The life history and fishery of Pacific whiting,                          |
|      | Merluccius productus. CalCOFI Rep. 1982; 23: 81-98.                                                          |
| 128. | Okutani T, Kubodera T, Jefferts K. Diversity, distribution and ecology of gonatid squids in                  |
|      | the subarctic Pacific: a review. Bull Ocean Res Inst Univ Tokyo. 1988; 26:159-192.                           |
| 129. | Markaida U, Sosa-Nishizaki O. Food and feeding habits of jumbo squid Dosidicus gigas                         |
|      | (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico. J Mar Biol Ass UK.                        |
|      |                                                                                                              |
|      | 2003; 83:507-522.                                                                                            |
| 130. | 2003; 83:507-522.<br>Gilly WF, Markaida U, Baxter CH, Block BA, Boustany A, Zeidberg L, et al. Vertical and  |
| 130. |                                                                                                              |
|      | <ol> <li>122.</li> <li>123.</li> <li>124.</li> <li>125.</li> <li>126.</li> <li>127.</li> <li>128.</li> </ol> |

Feeding ecology of broadbill swordfish


| 917 | 131. Bjorkstedt E, Goericke R, McClatchie S, Weber E, Watson W, Lo N, et al. State of the      |
|-----|------------------------------------------------------------------------------------------------|
| 918 | California Current 2010- 2011: regionally variable responses to a strong (but fleeting?) La    |
| 919 | Niña. CalCOFI Rep. 2011; 52:1–33.                                                              |
| 920 | 132. Robinson CJ, Gómez-Gutiérrez J, Markaida U, Gilly WF. Prolonged decline of jumbo squid    |
| 921 | (Dosidicus gigas) landings in the Gulf of California is associated with chronically low wind   |
| 922 | stress and decreased chlorophyll a after El Niño 2009–2010. Fish Res. 2016; 173 p 128-138.     |
| 923 | 133. Ralston S, Dorval E, Ryley L, Sakuma KM, Field JC. Predicting market squid (Doryteuthis   |
| 924 | opalescens) landings from pre-recruit abundance. Fish Res. 2018; 199 p 12-18.                  |
| 925 | 134. Vojkovich M. The California fishery for market squid (Loligo opalescens). CalCOFI Rep     |
| 926 | 39:55–60.                                                                                      |
| 927 | 135. Zeidberg LD, Hamner WM, Nezlin NP, Henry A. The fishery of the California market          |
| 928 | squid, Loligo opalescens (Cephalopoda, Myopsida), from 1981-2003. Fish Bull. 2006;             |
| 929 | 104:46-59.                                                                                     |
| 930 | 136. Zeidberg LD, Butler JL, Ramon D, Cossio A, Stierhoff KL, Henry A. Estimation of           |
| 931 | spawning habitats of market squid (Doryteuthis opalescens) from field surveys of eggs off      |
| 932 | Central and Southern California. Mar Ecol. 2012; 33(3) p 326-336.                              |
| 933 | 137. Barange M, Coetzee J, Takasuka A, Hill K, Gutierrez M, Oozeki Y, et al. Habitat expansion |
| 934 | and contraction in anchovy and sardine populations. Prog Oceanogr. 2009; 83(1-4) p 251-        |
| 935 | 260.                                                                                           |
| 936 | 138. PFMC. Status of the Pacific Coast Coastal Pelagic Species Fishery and Recommended         |
| 937 | Acceptable Biological Catches. Stock Assessment and Fishery Evaluation for 2016. 2017;         |
| 938 | NOAA award No. NA10NMF4410014.                                                                 |
|     |                                                                                                |

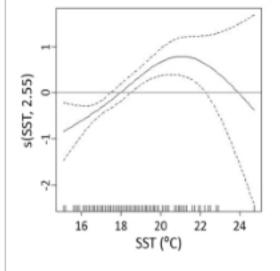
45

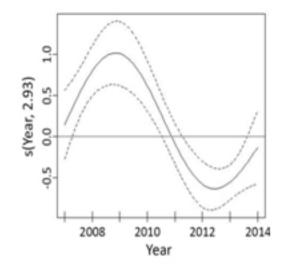

| 939 | 139. MacCall AD, Sydeman WJ, Davison PC, Thayer JA. Recent collapse of northern anchovy     |
|-----|---------------------------------------------------------------------------------------------|
| 940 | biomass off California. Fish Res. 2016; 175 87-94.                                          |
| 941 | 140. Thayer JA, MacCall AD, Sydeman WJ, Davison PC. California anchovy population remains   |
| 942 | low, 2012–2016 CalCOFI Rep. 2017; 58: 1–8.                                                  |
| 943 | 141. Stierhoff KL, Zwolinski JP, Demer DA. Distribution, biomass, and demography of coastal |
| 944 | pelagic fishes in the California Current Ecosystem during summer 2018 based on acoustic-    |
| 945 | trawl sampling. US Dep Comm NOAA Tech Memo. 2019; NMFS-SWFSC-613.                           |
| 946 | 142. Stierhoff KL, Zwolinski JP, Demer DA. Distribution, biomass, and demography of coastal |
| 947 | pelagic fishes in the California Current Ecosystem during summer 2019 based on acoustic-    |
| 948 | trawl sampling. US Dep Comm NOAA Tech Memo. 2020; NMFS-SWFSC-626.                           |
| 949 | 143. McClatchie S, Hendy IL, Thompson AR, Watson W. Collapse and recovery of forage fish    |
| 950 | populations prior to commercial exploitation. Geophys Res Lett. 2017; 44(4) pp 1877-1885.   |
| 951 | 144. Thompson AR, Schroeder ID, Bograd SJ, Hazen EL, Jacox MG, Leising A, et al. State of   |
| 952 | the California Current 2018–19: A novel anchovy regime and a new marine heat wave?          |
| 953 | CalCOFI Rep 60:1–65.                                                                        |
| 954 | 145. Siple MC, Essington TE, Barnett LA, Scheuerell MD. Limited evidence for sardine and    |


- 955 anchovy asynchrony: re-examining an old story. Proc Royal Soc B. 2020; 287(1922) p
- 956 20192781 doi:10.1098/rspb.2019.2781.
- 146. Kuriyama PT, Zwolinski JP, Hill KT, Crone PR. Assessment of the Pacific sardine resource
  in 2020 for US management in 2020-2021. US Dep Comm, NOAA Tech Mem. 2020;
  NMFS-SWFSC-628.

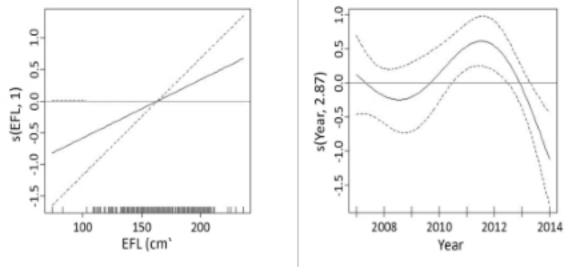
- 960 147. Santos MB, German I, Correia D, Read FL, Cedeira JM, Caldas M, et al. Long-term
- 961 variation in common dolphin diet in relation to prey abundance. Mar Ecol Prog. 2013;
- 962 Ser 481 p 249-268.




#### 40 Female maturity Swordfish 35 30 Number of swordfish 25 20 15 Male maturity 10 5 0 150-159 110-119 130-139 210-219 100-109 120-129 170-179 190-199 220-229 230-239 240-249 140-149 160-169 180-189 200-209 80-89 90-99 70-79 Eye-to-forklength

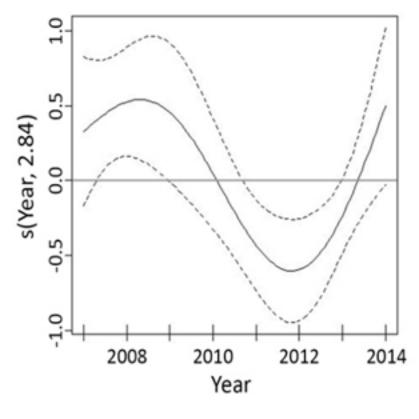






a. Jumbo squid

2014

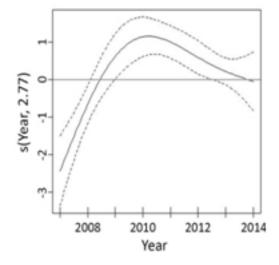


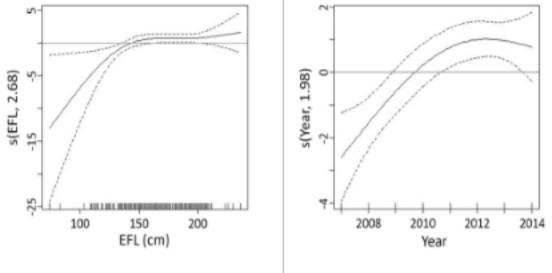



b. Gonatopsis borealis



c. Abraliopsis sp.

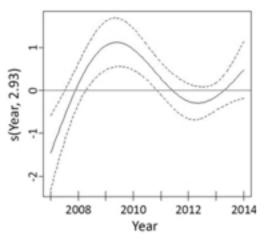



d. Gonatus spp.

# Figure

#### e. Market squid






### f. Pacific hake

### Figure

#### g. Duckbill barracudina

