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24 Abstract 

25 The feeding ecology of broadbill swordfish (Xiphias gladius) in the California Current was 

26 described based on analysis of stomach contents collected by federal fishery observers aboard 

27 commercial drift gillnet boats from 2007 to 2014. Prey were identified to the lowest taxonomic level 

28 and diet composition was analyzed using univariate and multivariate methods. Of 299 swordfish 

29 sampled (74 to 245 cm eye-to-fork length), 292 non-empty stomachs contained remains from 60 prey 
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30 taxa. Diet consisted mainly of cephalopods but also included epipelagic and mesopelagic teleosts. 

31 Jumbo squid (Dosidicus gigas) and Gonatopsis borealis were the most important prey based on the 

32 geometric index of importance. Swordfish diet varied with body size, location and year. Jumbo squid, 

33 Gonatus spp. and Pacific hake (Merluccius productus) were more important for larger swordfish, 

34 reflecting the ability of larger specimens to catch large prey. Jumbo squid, Gonatus spp. and market 

35 squid (Doryteuthis opalescens) were more important in swordfish diet in inshore waters, while G. 

36 borealis and Pacific hake predominated offshore. Jumbo squid was more important from 2007-2010 

37 than in 2011-2014, with Pacific hake the most important prey item in the latter period. Diet variation 

38 by area and year probably reflects differences in swordfish preference, prey availability, prey 

39 distribution, and prey abundance. The range expansion of jumbo squid that occurred during the first 

40 decade of this century may particularly explain their prominence in swordfish diet from 2007-2010. 

41 Some factors that may influence dietary variation in swordfish were identified. Standardization could 

42 make future studies more comparable for conservation monitoring purposes.  

43

44 Introduction

45 Broadbill swordfish (Xiphias gladius, hereafter swordfish) are the most widely distributed 

46 billfish and occur worldwide in tropical, subtropical and temperate waters from around 50°N to 50°S 

47 [1-3]. They co-occur in the California Current Large Marine Ecosystem (CCLME), with several other 

48 upper trophic-level predators such as sharks and dolphins [4, 5]. Swordfish are productive predators, 

49 filling a similar ecosystem role to other large pelagic marine species, including other billfish species, 

50 sharks, tunas and dolphins [6]. Swordfish command a high economic value in both commercial and 

51 recreational fisheries in all oceans of the world [4]. In the CCLME, swordfish are landed in both the 

52 U.S.A. and Mexico. In the U.S.A., they are the primary target of the drift gillnet (DGN) fishery that 
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53 operates mainly in the U.S. waters of the Southern California Bight (SCB). Swordfish are also landed 

54 in the historic harpoon fishery, and more recently in the deep-set buoy gear fishery that was developed 

55 as a low-bycatch method to target swordfish during daylight hours [7-9].

56 The swordfish population in the North Pacific is assessed as two stocks, divided by a boundary 

57 extending from Baja California (25ºN x 110ºW) to 165ºW at the Equator [10, 11]. These are the 

58 Western and Central North Pacific Ocean (WCNPO) stock and the Eastern Pacific Ocean (EPO) stock 

59 [3, 12, 13]. The most recent stock assessment indicated that the WCNPO stock, which is the source of 

60 the DGN fleet swordfish catch, was neither overfished nor experiencing overfishing [13]. 

61 Swordfish are well adapted for survival in a wide range of water temperatures from 5°C to 

62 27°C; however, they are generally found in areas with sea surface temperatures (SST) above 13°C 

63 [14]. They are highly fecund and do not seem to have discrete spawning grounds or seasons [15]. 

64 Swordfish migration patterns have not been described in peer-reviewed publications, although tag 

65 release and recapture data indicate an eastward movement from the central Pacific, north of Hawaii, 

66 towards the U.S. West Coast [4]. Swordfish tend to concentrate near underwater features, like 

67 seamounts and banks, and near oceanographic boundaries where sharp gradients of temperature and 

68 salinity exist [1], such as convergence zones and strong thermoclines [16]. These regions are known 

69 for having a relatively high abundance of forage species [17, 18]. Swordfish aggregate along these 

70 productive thermal boundaries between cold upwelled water and warmer water masses to forage [16, 

71 19] and do not travel far during the first year of life [20].

72 Further insights into foraging come from information on vertical movement patterns. 

73 Swordfish display diurnal vertical migration, diving below the deep scattering layer by day and 

74 returning to shallower depths by night. Daytime depth distribution is hence more variable, including 

75 periods of basking behavior when swordfish are visibly present at the ocean surface, compared to a 
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76 narrow depth range at night when it is concentrated near the surface [21-23]. During dives, swordfish 

77 can reach depths of up to 1000 m, indicating a tolerance of low water temperatures (c. 5°C).

78 Like other billfish, swordfish have a number of adaptations that enhance foraging ability. They 

79 use their large bill to incapacitate and kill prey [1, 24]. Though they swim relatively fast, their large 

80 size limits maneuverability [25]. Partial endothermy and large eyes enhance foraging at depth [26].

81 Swordfish have also evolved a specialized muscle that functions as a brain heater. This 

82 mechanism allows them to function in cold water, which is essential to a fast-swimming predator that 

83 generally hunts on the cooler side of boundaries between oceanic water masses [1, 26-28]. 

84 Endothermy also has energy costs, suggesting that swordfish may have higher energy needs than 

85 otherwise similar heterothermic species [24]. Thus, they need to catch more energy-rich prey or 

86 consume a greater quantity of prey than would be necessary if they were ectothermic.

87 Although they can use their sword to subdue prey items for easier consumption [29], 

88 swordfish lack teeth and ingest their food whole, physically limiting the size of prey they can handle. 

89 By contrast, sharks use their sharp teeth to tear and consume very large prey piecemeal. The 

90 combination of large size, endothermy, and the lack of slicing teeth possibly places swordfish closer 

91 to dolphins rather than sharks in terms of foraging ecology. Swordfish diets and prey composition 

92 have been found to vary by ecosystem. In some regions, swordfish diets presented a prevalence of 

93 teleosts, while in others cephalopods were most prominent. In a few areas, a similar proportion of 

94 both prey item groups were observed (Table 1). Several studies considered only the cephalopod 

95 portion of the swordfish diet and, therefore, are not listed in Table 1 [30-34].

96

97

98
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99 Table 1. Proportion of teleosts and cephalopods, by area, in diet of swordfish based on published 

100 studies. ‘*’ = highest proportion; W=Western; N=North E=Eastern; S=Southern; Teleo=teleosts; 

101 Ceph=cephalopods.

Area Teleo Ceph Authors

[29], [35-48]W. N. Atlantic *
* [49, 50]

* * [51-53]
E. N. Atlantic

* [54, 55]

E. Central Atlantic * * [56, 57]

E. Tropical Atlantic * [58]

Tropical Atlantic * [59]

W. Equatorial Indian Ocean * [60]

E. N. Pacific 
(Channel Islands, California) * [61]

* * [62]E. N. Pacific 
(Baja California) * [63]

Central N. Pacific 
(Hawaii) * [64]

* [65-69] 
E. Pacific (Chile)

* [70]

E. Pacific (Ecuador) * [71, 72]

S. Pacific * [73]

W. N. Pacific * [74]

E. Mediterranean Sea * [75]

S. Aegean Sea * [76]

E. Australia * [77]

102

103 Southern California is a foraging ground within the CCLME where swordfish from various 

104 regions of the eastern and central north Pacific aggregate. While the CCLME is known to be an 

105 important foraging ground for swordfish during certain times of year, the feeding habits of swordfish 
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106 in this region are not well documented, especially in recent years. To date, there have been two 

107 extensive studies of swordfish feedings habits in the CCLME [62, 63] as well as a few other less 

108 comprehensive studies [61, 78, 79]. This study aims to expand our knowledge of the feeding ecology 

109 of swordfish in the CCLME by analyzing the: (1) relative importance of different prey types; and (2) 

110 dietary variation inter-annually, by sub-period (within years), by area, and in relation to body size. 

111 The findings of this study can serve to inform the development of alternative approaches to better 

112 manage this economically and ecologically important species.

113
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114 Methods

115 Sampling at sea

116 Federal fishery observers aboard DGN vessels collected swordfish stomachs during the 2007-

117 2014 fishing seasons. The DGN vessels operate within the U.S. EEZ, primarily in the SCB from 

118 August 15 through January 31. Because the season spans two calendar years, ‘year’ for this study 

119 refers to the fishing season, e.g., 2007 refers to August 2007 through January 2008. Sets are 

120 conducted using 1.8 km long drift gillnets extending from roughly 12 m to 100 m below the surface. 

121 DGN boats are active at night, setting nets within one hour before sunset and hauling in within one 

122 hour after sunrise for an average net-soaking time of approximately 12 hours. Hauling can then take 4 

123 to 6 hours. 

124 Stomach samples were excised at sea, the oesophageal and pyloric ends secured with plastic 

125 cinch ties, and the stomachs then bagged, labeled and frozen. Additional data recorded at sea included 

126 set and haul-back times, water depth, SST, date, location and fish size.   

127

128 Processing in the laboratory 

129  Stomachs were thawed, tamped with absorbent paper to remove excess water, and weighed 

130 full. Contents were then removed and the empty stomach lining weighed to obtain overall contents 

131 weight. Solid material and slurry were rinsed and sorted using a series of mesh screen sieves with 

132 mesh sizes 9.5 mm, 1.4 mm, and 0.5 mm for ease of rinsing mid-sized food boluses without losing 

133 some of the smallest items, such as fish otoliths. Degree of prey digestion was estimated using a six-

134 point scale as follows: (1) Fresh: head, body, skin and most fins intact though some individuals may 

135 be in pieces (i.e., sliced on capture); (2) Intermediate: body and most flesh intact; fins, scales and 
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136 some or all cephalopod skin may be digested; (3) Intact skeleton from head to hypural plate or 

137 body/mantle/carapace intact, or easily reconstructed to obtain standard length measurements; (4) 

138 Unmeasurable body parts only: hard parts cannot be reassembled to obtain standard measurements, 

139 but higher taxon or species group still identifiable; (5) Digested but identifiable to a higher taxonomic 

140 level (e.g., family); and (6) Fully digested unidentifiable material; slurry. Prey items were then 

141 separated, identified to the lowest possible taxonomic level using taxonomic keys, enumerated, 

142 measured and weighed. Fish otoliths and the upper and lower squid beaks were counted in pairs when 

143 possible, with the highest count representing the minimum number present. These numbers were 

144 added to the numbers of intact prey. Weights were grouped by taxon (not individually), while lengths 

145 of all intact individuals within a taxon were measured. Weight of a taxon was the weight of the 

146 undigested and partially digested items found in the stomach and not based on back-calculations of 

147 weight at the time of ingestion from measurements of hard parts. This approach was chosen because 

148 substantial amounts of undigested food remains were found and it is commonly used in studies of fish 

149 stomach contents [80]. A consequence of this approach is that prey eaten longer ago contribute less to 

150 the weight.  

151 Partial remains comprising only large chunks (i.e., fist size or greater) or pieces of fish in 

152 digestive state 1 or 2 were considered to be the result of swordfish feeding on prey caught in the 

153 driftnet and therefore were discarded from the analysis. 

154 Genetic analyses were used to identify diet items that could not be identified visually. Tissue 

155 samples for DNA extraction were taken from the interior of the sample to minimize cross 

156 contamination with other prey. DNA was extracted using a DNeasy blood and tissue kit (Qiagen) 

157 following the manufacture’s protocols. The “Barcode” region of the mitochondrial cyctochrome c 

158 oxidase I (COI) gene was amplified by polymerase chain reaction (PCR) following [81], using their 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460689


Feeding ecology of broadbill swordfish

9

159 COI-3 primer set with M13 tails. No template negative controls were run for each PCR batch to 

160 monitor for potential DNA contamination of reagents. PCR products were sequenced using BigDye v 

161 3.1 dye terminator chemistry (Life Technologies), using the sequencing primers M13F(-21) and 

162 M13R(-27) following manufacturers’ protocols. Aligned and edited sequences were entered into the 

163 BOLD v4 [82] and matches greater than 98% identity to a single taxon were considered to be the 

164 correct species assignment for the prey item.

165 Secondary prey items (prey of prey) were discarded when found associated with the stomachs 

166 of fresh prey (e.g., euphausiids in the stomachs of Pacific hake). In other cases, the presence of 

167 secondary prey cannot be ruled out. This is a common issue in diet analysis but is generally 

168 considered to have only minor consequences for the estimated biomass of different prey categories 

169 [62, 83]. 

170

171 Data analysis 

172 Randomized cumulative curves depicting the relationship between number of prey taxa 

173 detected and sample size (rarefaction curves) were constructed using the Vegan package [84] in R 

174 statistical software [85] to determine the extent to which the sample size characterize the diet [86-90]. 

175 For this analysis, the order in which stomach contents were analyzed was randomized 100 times and 

176 the mean (± 2 standard deviations) number of prey taxa observed was plotted against the number of 

177 stomachs examined. A curve approaching an asymptote with low variability indicates that the number 

178 of stomachs examined is sufficient to characterize the diet [86]. To complement this visual approach, 

179 a method proposed by [91] was used to assess whether the curve had reached an asymptote. 

180 Specifically, a straight line was fitted to the rightmost 4 points of the species accumulation curve. If 

181 the slope did not differ significantly from zero, then the species accumulation curve was inferred to 
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182 have reached an asymptote. For constructing such cumulative prey curves, [91] lumped prey into 

183 higher-level taxonomic categories (e.g., crustaceans, teleosts, polychaetes). By contrast, we used the 

184 lowest taxonomic level to which prey had been identified, making it much less likely that the curves 

185 would reach an asymptote and assuring that the curves gave a more reliable picture of the adequacy of 

186 sample size to fully describe diet. Prey identified to species as well as unidentified categories were all 

187 included in the analysis. In general, if the proportion of unidentified prey species in the diet is low, the 

188 rarefaction curve tends to be a good guide to how many samples are required to sufficiently 

189 characterize diet. If the proportion of unidentified species is high, confidence in the curve will be 

190 lower, but it can remain a helpful tool.  

191 The importance of each prey type was summarized using three standard Relative Measures of 

192 Prey Quantities (RMPQs): percent frequency of occurrence (%F); percent composition by number 

193 (%N); and percent composition by weight (%W) [80, 83, 92, 93]. Stomachs which were empty or 

194 contained only slurry and/or detritus were not considered when calculating percentages. Two 

195 combined dietary indices (in both cases expressed both in original form and as percentages) were also 

196 used to rank prey taxon importance, namely the geometric index of importance (GII) and percentage 

197 GII (%GII) [94], and the index of relative importance (IRI) and percentage IRI (%IRI) [92]. These are 

198 useful indices to rank prey importance since they take into account both numerical and weight-based 

199 importance to the diet. Some authors favor GII [95-97] and others favor IRI [98-100], while some 

200 doubt the merits of all such combined indices (see [83] and references therein). Here, each method 

201 was used to examine only the ranking of prey types, because the two combined index values are not 

202 directly comparable.     

203 The GII, in its simplified form, is calculated as:
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204

205 where GIIj = index value for the j-th prey category, Vi = the magnitude of the vector for the i-th 

206 RMPQ of the j-th prey category, and n = the number of RMPQs used in the analysis (in this case 3, 

207 since we used %W, %N and %F).

208 The %GIIj converts GIIj values to a percentage scale:

209

210 The IRI for the j-th prey category is calculated as:

211 IRIj = (%Nj + %Wj) * %Fj                     

212 The IRI value was also converted to a percentage, which is arguably more useful for comparisons 

213 among studies [101]:

214 %IRIj = 100 IRIj /                            

215 To analyze overall variation in swordfish diet in relation to body size, fishing area (within the 

216 SCB and beyond the SCB areas) and year, samples were categorized into groups: (1) ‘Small’ (< 165 

217 cm) and ‘Large’ (≥ 165 cm) size categories, based on eye-to-fork length (EFL), with the cut-off 

218 chosen to produce similar samples sizes for each group; (2) ‘Within SCB’ (east of 120º 30’W) and 

219 ‘Beyond SCB’ (west of 120º 30’W) (this longitude approximately separates the waters in the SCB 

220 where the northward flowing California Counter Current influences nearshore oceanography and the 

221 more offshore waters affected by the California Current as it moves southward); and (3) ‘Year’ was 
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222 assigned based on the DGN fishing season, August 15 through January 31, such that all specimens 

223 collected in a single fishing season were assigned the year of the season’s start date.

224 Differences in diet across size-, area- and year-groups were quantified and their statistical 

225 significance estimated using bootstrap simulations. In each case of the six most important prey items 

226 overall, 1000 bootstrap replicates of GII values for both groups were generated (e.g., GII for jumbo 

227 squid in stomachs of (A) small and (B) large fish) and, for each replicate, it was noted whether GII 

228 was higher in the first subgroup or in the second subgroup. If the GII value in A was higher than the 

229 GII value in B in more than 95% of replicates, we argue that the species is significantly more 

230 important in the diet of group A than in the diet of group B (and vice versa).  All measures were 

231 calculated using R statistical software [85]. No index value was estimated if the sample size was less 

232 than 10, since small samples are known to produce biased values [102].

233 To summarize relationships between diet composition in terms of the importance of different 

234 prey items (response variables) and potential explanatory factors, redundancy analysis (RDA) was used, 

235 as implemented in Brodgar 2.7.4 (www.brodgar.com). Rare prey taxa that were found in less than 4 

236 stomachs were removed prior to this analysis. The swordfish sample comprised 289 individuals (samples 

237 with food and EFL available) and the effects of 7 explanatory variables were considered: area (east and 

238 west of 120°30’W), time period (2007, 2008-2010, 2011-2014), half-year (August 15 through November 

239 7 and November 8 through January 31), predator size (EFL) and SST (which was available for each haul 

240 and was measured at the beginning of the set). Years were grouped to avoid an excessive number of 

241 explanatory variables in relation to the sample size and to retain reasonable sample sizes per group. 

242 Categorical variables were replaced by “dummy” variables. That is, a variable with X categories is 

243 replaced by X-1 binary (0-1) variables, each signifying that the original categorical variable takes or does 

244 not take a particular value. In all analyses, only X-1 binary variables are entered because once the value 
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245 of all these is specified the value of the last one is already known. Data were transformed using Chord 

246 distance [103-105], a method that allows assignment of a low weighting to rare prey species.  

247 To examine the relationship between the importance of individual prey types and the various 

248 explanatory variables, Generalized Additive Modelling (GAM) was used. GAM is an extension of the 

249 regression-based statistical modelling approach that is suitable when the response variable is not 

250 (necessarily) normally distributed and there is no reason to expect linear relationships between response 

251 and explanatory variables. In linear regression, the slope values (regression coefficients) quantify the 

252 relationships between the response variable and each of the explanatory variables, while GAM uses 

253 “smoothing” functions to capture these relationships. The default smoothing function used in the GAM 

254 function in the mgcv package in R [106] (and also used in Brodgar statistical software) is the thin plate 

255 regression spline. The complexity of the resulting curve is normally determined by the fitting routine 

256 (“cross-validation”) but can be restricted by the user, and is summarized in the “degrees of freedom”, 

257 with high values indicating more complex curves. If the degrees of freedom of a smoother are equal to or 

258 close to 1, this implies an approximately linear function. When applying GAM, it is necessary to 

259 consider the distribution of the response variable, which is likely to depend on the nature of the variable 

260 studied. In this study, the data are in the form of prey counts for the main prey species. Some prey 

261 occurred in large numbers and the distribution of the number of prey per stomach is likely to be strongly 

262 right-skewed, hence a negative binomial distribution was used. The number of knots, k, was limited to 4 

263 to avoid overfitting in the case of explanatory variables for which relatively simple relationships would 

264 be expected, e.g., body size. The forwards selection method was used for model fitting. To avoid the 

265 model misspecification, the optimal GAM model was validated by checking for influential data points 

266 and looking for patterns in the distribution of residuals [107, 108]. GAMs were fitted using count data 

267 for all of the top seven ranked prey items (based on GII).
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268 Results

269 Sample composition

270 A total of 299 broadbill swordfish (Xiphias gladius) stomachs were collected during 103 

271 observed DGN trips in the CCLME (Fig 1). Samples were collected from 2007-2014 throughout the 

272 CCLME but especially in the southeast, where the fishing is mainly concentrated. SST at the time of 

273 sample collection ranged from 14.3°C to 21.9°C (mean 17.9°C). Swordfish ranged in size from 74 to 245 

274 cm EFL (Fig 2). [109] provided median body size at sexual maturity (L50) for males (102 cm ± 2.5 (95 

275 % CI) cm EFL) and females (144 ± 2.8 cm EFL). Based on these estimates, almost all the animals in this 

276 study were above the typical size at maturity for males and a majority were above the typical size at 

277 maturity for females; as noted above, sex was not determined. Of the 299 swordfish stomachs examined, 

278 292 contained food remains belonging to 60 different prey taxa overall. Ninety-one percent of the food 

279 items were in an advanced state of digestion (stages 4 and 5). 

280

281 Fig 1. Collection areas of swordfish used for diet analysis. Number of samples is indicated by 

282 greyscale in the legend. Map shows the northern part of the CCLME that extends to the tip of Baja 

283 California.

284

285 Fig 2. Length-frequency distribution of swordfish sampled in the diet study. N=295. Arrows indicate 

286 typical sizes at maturity for males and females [109]. Eye-to-fork length is measured in cm. (Size was 

287 not determined for 4 individuals of the 299 sampled).

288

289

290
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291 Sample size sufficiency 

292 The cumulative prey curve did not reach an asymptote for the swordfish stomachs analyzed 

293 (Fig 3).  The terminal portion of the curve (4 last points) had a slope that differed significantly from 

294 zero (p = 0.0009). Nevertheless, the fact that the curve starts to asymptote indicates that the majority 

295 of prey taxa present in the diet of the swordfish (at the temporal and spatial scale of the present study) 

296 are likely to be represented in these analyses.

297

298 Fig 3. Cumulative prey curve (rarefaction curve) for swordfish (prey identified at the lowest possible 

299 taxonomic level).

300

301 Indices of prey importance

302 Table 2 lists each of the RMPQs for all prey found, as well as the calculated GII, %GII, IRI 

303 and %IRI values. Rankings of prey taxa based on GII and IRI were nearly identical. Jumbo squid 

304 (Dosidicus gigas) was the most important prey item by weight, number and according to the two 

305 combined indices. The boreopacific gonate squid (Gonatopsis borealis) was the second most 

306 important prey according to GII and IRI, and the most important by frequency of occurrence. Other 

307 important squid prey included Abraliopsis sp., Gonatus spp. and market squid (Doryteuthis 

308 opalescens). Pacific hake (Merluccius productus) was the highest ranked teleost prey species, ranked 

309 sixth by GII. Swordfish also preyed on barracudinas (Paralepididae), several species of coastal pelagic 

310 fishes (jack mackerel Trachurus symmetricus, Pacific sardine Sardinops sagax, Pacific saury 

311 Cololabis saira, northern anchovy Engraulis mordax), luvar (Luvarus imperialis), king-of-the-salmon 

312 (Trachipterus altivelis), halfmoon (Medialuna californiensis) and seven species of the family 
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313 Myctophidae (Table 2). Cuts and punctures were apparent on several of prey items.

314

315 Table 2. Quantitative prey composition of the broadbill swordfish (Xiphias gladius) in the CCLME. 

316 A total of 299 stomachs (292 containing food and 7 without food) was examined. Prey items are 

317 shown in order of decreasing GII value. W = weight (g) for the given prey taxon, %W is the same 

318 value expressed as a percentage of the total weight summed across all prey taxa, N = number of prey 

319 individuals, F = frequency of occurrence (number of stomachs in which the prey taxon occurred), %F 

320 = frequency of occurrence expressed as a percentage of the number of (non-empty) stomachs 

321 examined; GII = geometric index of importance (%W+%N+%F)/√3; IRI = index of relative 

322 importance (%W+%N)*%F.

323

Prey Taxon W  (g) %W N %N F %F GII %GII IRI %IRI

Jumbo squid, Dosidicus 
gigas

131892.7 53.27 1061 20.23 173 59.25 76.64 44.25 4354.96 56.47

Boreopacific gonate squid, 
Gonatopsis borealis

19949.8 8.06 884 16.86 182 62.33 50.37 29.08 1552.94 20.14

Abraliopsis sp. 45.1 0.02 464 8.85 117 40.07 28.25 16.31 355.26 4.61

Gonatus spp. 181.6 0.07 299 5.70 110 37.67 25.08 14.48 217.56 2.82

Market squid, Doryteuthis 
opalescens

1447.6 0.58 538 10.26 88 30.14 23.66 13.66 326.81 4.24

Pacific hake, Merluccius 
productus

36360.1 14.69 331 6.31 49 16.78 21.81 12.59 352.37 4.57

Duckbill barracudina, 
Magnisudis atlantica

4568.6 1.85 218 4.16 84 28.77 20.07 11.59 172.67 2.24

Unidentified Teleostei 2316.9 0.94 119 2.27 65 22.26 14.70 8.49 71.35 0.93

Chubby pearleye, 
Rosenblattichthys volucris

810.6 0.33 166 3.17 49 16.78 11.71 6.76 58.61 0.76

Jack mackerel, Trachurus 
symmetricus

6668.2 2.69 72 1.37 28 9.59 7.88 4.55 38.99 0.51

Nansenia spp. 510.9 0.21 124 2.36 32 10.96 7.81 4.51 28.17 0.37

Onychoteuthis 
borealijaponica

656.6 0.27 60 1.14 35 11.99 7.73 4.47 16.89 0.22

Slender barracudina, 
Lestidiops ringens

330.0 0.13 92 1.75 29 9.93 6.82 3.94 18.75 0.24

Pacific pomfret, Brama 
japonica

5241.6 2.12 41 0.78 24 8.22 6.42 3.71 23.83 0.31

Pacific sardine, Sardinops 
sagax

1823.1 0.74 77 1.47 26 8.90 6.41 3.70 19.63 0.25

Luvar, Luvarus imperialis 19258.5 7.78 18 0.34 7 2.40 6.07 3.51 19.47 0.25

Pacific saury, Cololabis saira 1366.8 0.55 76 1.45 21 7.19 5.31 3.06 14.39 0.19

Unidentified Scopelarchidae 476.9 0.19 86 1.64 20 6.85 5.01 2.89 12.55 0.16

Cock-eyed squid, 
Histioteuthis heteropsis

1312.2 0.53 52 0.99 18 6.16 4.44 2.56 9.38 0.12
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Pacific mackerel, Scomber 
japonicus 

2180.7 0.88 66 1.26 16 5.48 4.40 2.54 11.72 0.15

Sunbeam lampfish, 
Lampadena urophaos

201.9 0.08 42 0.80 18 6.16 4.07 2.35 5.44 0.07

King-of-the-salmon, 
Trachipterus altivelis

5577.4 2.25 25 0.48 13 4.45 3.86 2.39 10.59 0.16

Flowervase jewell squid, 
Histioteuthis dofleini

560.1 0.23 25 0.48 15 5.14 3.37 1.95 3.61 0.05

Unidentified Eucarida 5.5 <0.01 154 2.94 6 2.05 2.88 1.67 6.04 0.08

Unidentified Teuthoidea 202.0 0.08 15 0.29 12 4.11 2.58 1.49 1.51 0.02

Spotted barracudina, 
Arctozenus risso

67.9 0.03 14 0.27 8 2.74 1.75 1.01 0.81 0.01

Histioteuthis spp. 56.7 0.02 9 0.17 8 2.74 1.69 0.98 0.53 0.01

Argonauta sp. 13.1 0.01 8 0.15 8 2.74 1.67 0.97 0.43 0.01

Striped mullet, Mugil 
cephalus

1737.8 0.70 8 0.15 4 1.37 1.28 0.74 1.17 0.02

Octopoteuthis sp. 2.1 <0.01 6 0.11 6 2.05 1.25 0.72 0.24 <0.01

Bigfin lampfish, 
Symbolophorus californiensis

5.4 <0.01 7 0.13 5 1.71 1.07 0.62 0.23 <0.01

Sharpchin barracudina, 
Stemonosudis macrura

8.8 <0.01 8 0.15 4 1.37 0.88 0.51 0.21 <0.01

Cranchia scabra 4.5 <0.01 5 0.10 4 1.37 0.85 0.49 0.13 <0.01

Mexican lampfish, 
Triphoturus mexicanus

<0.1 <0.01 4 0.08 4 1.37 0.83 0.49 0.10 <0.01

Paralepididae, Barracudinas 111.3 0.04 7 0.13 3 2.40 1.49 0.86 0.43 0.01

Unidentified Euphausiidae 3.0 <0.01 6 0.11 3 2.05 1.25 0.72 0.24 <0.01

Robust clubhook squid, 
Onykia robusta

43.3 0.02 4 0.08 3 1.37 0.85 0.49 0.13 <0.01

Northern anchovy, Engraulis 
mordax

1.6 <0.01 4 0.08 3 1.37 0.84 0.49 0.11 <0.01

California smoothtongue, 
Leuroglossus stilbius

<0.1 <0.01 4 0.08 3 1.37 0.83 0.49 0.10 <0.01

Unidentified Tunicata 3.5 <0.01 3 0.06 3 1.03 0.63 0.37 0.06 <0.01

Smalleye squaretail, 
Tetragonurus cuvieri

161.9 0.07 3 0.06 2 1.03 0.66 0.39 0.13 <0.01

Onychoteuthis sp. <0.1 <0.01 4 0.08 2 1.37 0.83 0.49 0.10 <0.01

Japetella sp. <0.1 <0.01 4 0.08 2 1.37 0.83 0.49 0.10 <0.01

Splitnose rockfish, Sebastes 
diploproa

924.2 0.37 2 0.04 1 0.68 0.63 0.36 0.28 <0.01

Northern lampfish, 
Stenobrachius leucopsarus

<0.1 <0.01 2 0.04 2 0.68 0.42 0.24 0.03 <0.01

Octopus rubescens <0.1 <0.01 2 0.04 2 0.68 0.42 0.24 0.03 <0.01

Chiroteuthis calyx <0.1 <0.01 2 0.04 2 0.68 0.42 0.24 0.03 <0.01

Albacore, Thunnus alalunga 371.6 0.15 1 0.02 1 0.34 0.30 0.17 0.06 <0.01

Sebastes spp. 3.0 <0.01 8 0.15 1 2.74 1.67 0.97 0.42 0.01

Halfmoon, Medialuna 
californiensis

81.0 0.03 1 0.02 1 0.34 0.23 0.13 0.02 <0.01

Dogtooth lampfish, 
Ceratoscopelus townsendi

1.5 <0.01 2 0.04 1 0.68 0.42 0.24 0.03 <0.01

Shortbelly rockfish, Sebastes 
jordani

0.4 <0.01 2 0.04 1 0.68 0.42 0.24 0.03 <0.01

Leachia dislocata <0.1 <0.01 2 0.04 1 0.68 0.42 0.24 0.03 <0.01

Pacific bonito, Sarda 
chiliensis

25.8 0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

Auxis sp. 4.7 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

Mastigoteuthis dentata <0.1 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

Octopus spp. <0.1 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

California flashlightfish, 
Protomyctophum crockeri

<0.1 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01
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California headlightfish, 
Diaphus theta

<0.1 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

Unidentified Isopoda <0.1 <0.01 1 0.02 1 0.34 0.21 0.12 0.01 <0.01

324

325

326 In general, both large and small swordfish fed on similar prey but some differences were 

327 apparent. Based on GII results, jumbo squid was the most important prey item followed by the G. 

328 borealis, and Abraliopsis sp., in both size classes. However, northern anchovy was found only in 

329 stomachs of the small size group while luvar was eaten only by large swordfish (Table S1 and S2). 

330 Jumbo squid, Gonatus spp., and Pacific hake were significantly more important in larger swordfish 

331 than smaller swordfish (Table S3).

332 A comparison of the GII results by area indicated that jumbo squid and G. borealis were the 

333 two most important prey of swordfish in both areas. The third ranked species were Abraliopsis sp. 

334 within the SCB, and Pacific hake beyond the SCB. Striped mullet (Mugil cephalus), northern anchovy 

335 and Sebastes spp. were recorded only within the SCB (Table S4 and S5). Jumbo squid, Gonatus spp. 

336 and market squid were significantly more important within the SCB than beyond the SCB, while G. 

337 borealis and Pacific hake were significantly more important beyond the SCB (Table S6).

338 Between-year comparisons showed that jumbo squid was the first ranked prey, followed by G. 

339 borealis, in 2007, 2008, 2010, 2012 and 2013. The importance of jumbo squid, G. borealis, Gonatus 

340 spp., market squid and Pacific hake in the diet all varied significantly between years over the study 

341 period (Table S15). In 2009, G. borealis was the most important prey followed by jumbo squid. In 

342 2011 and 2014, Pacific hake ranked first followed by G. borealis. Pacific hake was not present in the 

343 samples from 2008 through 2010. Abraliopsis sp. was important overall (ranked third) but was not 

344 present in 2012. Gonatus spp. ranked fourth overall but was not present in the diet in 2011 (Table S7-

345 S14).
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346 Redundancy Analysis (RDA)  

347 Explanatory variables related to fish length (EFL), area, year and half-year, all significantly 

348 affected the overall pattern of variation in diet (numerical importance of prey) in swordfish (Table 3). 

349 Diet was significantly different (versus other years) in 2007 and 2011-2014. The set of explanatory 

350 variables used explained 6 % of the overall variation in prey counts, with RDA axes 1 and 2 

351 accounting for 36.9 % and 23.1 % of this variation respectively. The first two RDA axes thus explain 

352 around 3.8 % of variation in prey counts, i.e., although significant temporal, spatial and size-related 

353 variation in diet has been demonstrated, the majority of observed dietary variation remains 

354 unexplained. 

355

356 Table 3. Results of redundancy analysis (RDA) of variation in diet composition of swordfish (based 

357 on prey numbers). Values of F and associated probability (p-value) are tabulated for two sets of model 

358 runs. The variable ‘year’ (fishing season) was divided into three categories (2007, 2008-2010 and 

359 2011-2014) and converted into three (0,1) dummy variables. Since the category may be identified 

360 once the values of two of the dummy variables have been defined, all three dummy variables cannot 

361 be included in the same run of the model. Left: model runs excluding 2011-2014. Right: model runs 

362 excluding 2007. (EFL = eye to fork length, Area = east and west of 120°30’W, Half-year = August 

363 15th through November 7th and November 8th through January 31st).

Variable F-statistics p-value F-statistics p-value
EFL 4.117 0.005 4.254 0.005
Area 3.896 0.005 3.895 0.005
2007 3.383 0.005
Half-year 2.025 0.005 2.123 0.005
2011-2014     5.016 0.005
2008-2010     3.568 0.005 1.042 0.415
SST 0.758 0.785 0.758 0.815

364
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365 Generalized Additive Models (GAMs)

366 To investigate sources of variation in the importance of individual prey taxa, binomial GAMs 

367 were fitted for presence/absence of each the seven most important prey taxa, as ranked by GII. For 

368 jumbo squid, the final model contained significant effects of SST, EFL and year (Table 4). The 

369 presence of jumbo squid in swordfish stomachs was highest with SST around 21.5°C, it showed a 

370 linear increase with increasing swordfish length, and it was lowest in 2009 and highest in 2007 (Fig 

371 4a). The final model for G. borealis contained effects of year and area (Table 4). The presence of G. 

372 borealis in swordfish stomachs was highest in 2009 and lowest around 2012 (Fig 4b), and was higher 

373 beyond the SCB area than within. 

374

375 Table 4. Effect of explanatory variables on the presence of the main prey taxa in swordfish diet (form 

376 and direction of the relationship and statistical significance). The first row for each species-variable 

377 combination contains the estimated degrees of freedom (edf) in the case of smoothers. The second 

378 row indicates the probability. Only significant effects, retained in the final models, are shown. 

379 Swordfish body length was measured as eye-to-fork length (EFL, cm). DE = deviance explained, AIC 

380 = value of the Akaike Information Criterion. Blank cells indicate non-significant effects that were 

381 dropped during model selection. 1st = first half of year, 2nd = second half of year; IN=within the SCB, 

382 OFF = beyond the SCB subregion.

383
Swordfish EFL Year SST Half-year Area DE AIC
Jumbo squid 1.0 (+) 2.9 (∪) 2.5 (+)   25.0 1073.6
 P<0.0001 P<0.0001 P<0.0001     
Gonatopsis borealis      OFF>IN 14.5 963.97
  P<0.0001   P=0.0105   
Abraliopsis sp. 1.0 (+)      9.8 727.51
 P=0.0468 P=0.0031      
Gonatus spp.  2.8 (∪)  1st>2nd  13.4 632.83
  P=0.0058  P=0.0049    
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Market squid      IN>OFF 21.6 683.98
  P<0.0001   P=0.0050   
Pacific hake 2.7 (+) 2.0 (+)    26.6 355.48
 P=0.0183 P=0.0004      
Duckbill barracudina     2nd>1st  OFF>IN 20.7 496.50

  P=0.0002  P=0.0097 P=0.0053   
384

385 For Abraliopsis sp., the final model contained effects of year and length (Fig 4c). The presence 

386 of Abraliopsis sp. in swordfish stomachs was lowest in 2014 and highest in 2012, and showed a linear 

387 increase with increasing swordfish length (Fig 4c). For Gonatus spp. the final model contained effects 

388 of year and half-year (Table 4). The presence of Gonatus spp. in swordfish stomachs was highest 

389 around 2008-2009 and 2014 and was lowest in 2012 (Fig 4d). Numbers of Gonatus spp. were higher 

390 in the first half-year (August 15 through November 7) than in the second (Table 4). 

391 For market squid, the final model contained effects of year and area (Table 4). The presence of 

392 market squid in swordfish stomachs was highest in 2010 (Fig 4e) and was higher within the SCB area 

393 than beyond it. For Pacific hake, the final model contained effects of year and length (Table 4). The 

394 presence of Pacific hake in swordfish stomachs was highest in 2012 and showed a positive 

395 relationship with fish length at lengths between around 125 and 150 cm (Fig 4f). For duckbill 

396 barracudina, the final model contained effects of year, area, and half-year (Table 4). The presence of 

397 duckbill barracudina in swordfish stomachs was highest in 2009 (Fig 4g). It was greater beyond the 

398 SCB area and during the second half of the fishing season (November 8 through January 31).

399

400 Fig 4. GAM smoothing curves fitted to partial effects of explanatory variables on the presence of 7 

401 prey taxa in the stomach of swordfish. EFL = eye-to-fork length. Dashed lines represent 95% 

402 confidence intervals around the main effects.

403

a b
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404 Discussion 

405 Swordfish display several notable adaptations that might be expected to influence their 

406 selection of prey items among the range of species present in the CCLME. Swordfish have cranial 

407 endothermy [27], with brain temperature elevated by up to 10°C-15°C above the temperature of the 

408 surrounding water when swimming [25], resulting in superior vision. Warming the brain and eyes 

409 may allow swordfish to remain active and responsive, increasing their visual threshold throughout the 

410 wide range of temperatures encountered in their vertical and migratory movements, permitting 

411 exploitation of different environments and prey [25]. The use of the “sword” for immobilizing or 

412 killing prey has been reported in past studies [29, 41, 46, 50] and a number of prey items in this study 

413 showed signs of being slashed, punctured or cut. The “sword” has a similar hunting function as the 

414 thresher’s tail [110] and can be used to stun fish [111]. Adult swordfish are toothless [112] and 

415 swallow their prey whole. Interactions between whales and billfish have been occasionally observed 

416 [113] and records of fractured swords embedded in whales can be found in the literature [114-118] 

417 but there is no evidence of billfish feeding attacks on whales. 

418 Vertical movements allow pelagic predators to extend their prey base or access different 

419 resources. In marine ecosystems, diel changes in distribution or behavior of predators are frequently 

420 in tune with diel changes in prey distribution, such as vertical migration of organisms associated with 

421 the deep scattering layer (DSL) [119]. The diurnal vertical distribution of swordfish is region-specific 

422 and likely influenced by both abiotic (temperature, thermocline depth, dissolved oxygen) and biotic 

423 factors (prey abundance and distribution, body temperature) [21]. Swordfish can feed at great depths 

424 during diurnal vertical migrations [26] and can feed during both day and night within the DSL [120]. 

425 Electronic tagging studies on swordfish in the CCLME show that these predators are capable of 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460689


Feeding ecology of broadbill swordfish

23

426 exhibiting highly variable movements during the day but are consistently found within the upper 

427 mixed layer at night [21, 23]. These movements are consistent with those of the DSL.

428 Results of the present study indicate that swordfish fed mainly on cephalopods and teleosts, 

429 the most important prey taxa being jumbo squid (Dosidicus gigas), Gonatopsis borealis and 

430 Abraliopsis sp., while teleosts included both epipelagic and mesopelagic species. Results are thus in 

431 broad agreement with those from several studies of this species in other regions [34, 50, 55, 62, 63, 

432 75, 77], although the relative importance of fish and cephalopods varies between different areas (see 

433 Table 1).

434 Jumbo squid was an important prey item for swordfish in the CCLME, as was also the case for 

435 several shark species (for mako, blue and bigeye thresher) in the area [5]. This finding is likely linked 

436 to the range expansion of jumbo squid that started around 2002 in the CCLME. These cephalopods, 

437 rarely found in the CCLME previously, greatly extended their range in the eastern North Pacific 

438 Ocean during a period characterized by ocean-scale warming, regional cooling, and the decline of 

439 tuna and billfish  populations throughout the Pacific [121, 122]. Jumbo squid belong to the 

440 Ommastrephidae, a family of largely pelagic squids that includes several species that support 

441 important commercial squid fisheries around the world [123]. Ommastrephids, in general, have been 

442 described as the most important cephalopod prey for swordfish in other regions of the world [29, 46, 

443 47, 49, 50, 52, 54, 56, 58, 62, 64, 75] in both coastal and pelagic ecosystems. 
444 Of the squids eaten by swordfish, while ommastrephids, gonatids and onychoteuthids, are 

445 mainly epipelagic and all are powerful swimmers, the histioteuthids are predominantly mesopelagic 

446 drifters [63], indicating that swordfish can feed in different environments. Since swordfish detect their 

447 prey visually [26], swordfish may more easily catch fast-swimming, medium to large cephalopods 

448 than small, slow-moving prey [63].
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449 Pacific hake was, overall, the most important teleost species in the diet, based on ranking by 

450 GII, followed by duckbill barracudina. Scombrids were also present in the diet. Merlucciids, 

451 paralepidids, and scombrids have been described as important fish prey species of swordfish in a 

452 number of other studies in different areas [29, 46, 47, 50, 52, 56, 61, 62]. All are abundant species in 

453 coastal pelagic ecosystems where swordfish are usually caught. Seven species of Myctophidae, two 

454 species of Scopelarchidae and one species of Bathylagidae were present in this study, indicating that 

455 swordfish forage frequently in mesopelagic waters. 

456 A number of the most important swordfish prey species are found in or associated with the 

457 DSL, including jumbo squid, G. borealis and Gonatus spp. squids, barracudinas, and Pacific hake 

458 [124-130]. Other important prey, like Abraliopsis sp. and market squid, are more epipelagic. The 

459 range of prey species eaten, in terms of both prey size and prey habitat, suggests that swordfish have 

460 quite flexible foraging strategies. 

461

462 Dietary variation in swordfish

463 The importance of several prey taxa varied in relation to swordfish body size, location, year 

464 and, in some cases, differed between the first and second half of the fishing season. Jumbo squid, 

465 Gonatus spp. and Pacific hake were all more important as prey for larger swordfish than for smaller 

466 ones. At least in part, this may reflect the ability of larger swordfish to catch and eat large prey. These 

467 results differ from those of [62] who did not find variability in diet by size in swordfish off western 

468 Baja California.

469 Jumbo squid, Gonatus spp. and market squid were more important inshore (within the SCB) 

470 while G. borealis and Pacific hake were more important offshore (beyond the SCB). These 
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471 differences probably reflect prey availability but more information is needed on distribution of 

472 cephalopods and fish to confirm this.

473 Significant between-year variation in diet was also apparent. In general, this may reflect long-

474 term variation in swordfish preference, prey availability, prey distribution, and prey abundance, but 

475 could also be related to changes in fishing locations. According to GII results, jumbo squid was more 

476 important in swordfish diet from 2007-2010 than in 2011-2014, with Pacific hake being the most 

477 important prey item in the latter period. However, GAM analysis shows a peak in jumbo squid for 

478 2012, suggesting this species increased in dietary importance after 2010, once other factors are taken 

479 into account. These results likely relate to the range expansion of jumbo squid that occurred during 

480 the first decade of the 2000s and the subsequent decline to lower levels in 2010 in the CCLME [131]. 

481 A prolonged decline of jumbo squid landings was observed also in the Gulf of California after El 

482 Niño (2009-2010) and was associated with chronic low-wind stress and decreased chlorophyll a 

483 [132]. 

484 G. borealis, Gonatus spp. and market squid were most important from 2008-2010, a period 

485 which included both (cold) La Niña conditions in 2008 and a (warm) El Niño event in 2010. The 

486 increased incidence of market squid in swordfish diet coincided with a high abundance of market 

487 squid in both midwater trawl surveys and in landings [133]. The commercial squid fishery in 

488 California targets spawning aggregations 1–3 km from the shore, around the Channel Islands and near 

489 coastal canyons. Catches are highly influenced by El Niño events [134, 135]. The cooler water during 

490 the La Niña years may have favored higher abundance and therefore higher catches in market squid 

491 [136].

492 Northern anchovy is a monitored species under the Pacific Fishery Management Council’s 

493 Coastal Pelagic Species fishery management plan. It was only found in three stomachs in this study, 
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494 inside the SCB in 2007 and 2008. [61] examined the stomach contents of 15 swordfish caught near 

495 the Southern California Channel Island in fall/winter of 1980 and found that northern anchovy 

496 accounted for over 40% of IRI. These differences may be attributed to variations in anchovy 

497 abundance over the years. Anchovy were present in higher numbers in the California Current prior to 

498 1990 with a peak in catches around 1980 [137]. Catch estimates show that, starting around 2009 to 

499 2013, northern anchovy biomass dropped to low levels [138]. Analysis of northern anchovy stock size 

500 from 1951–2011 suggested that the population was near an all-time low from 2009–2011 [139], and 

501 subsequent analysis suggested that the population remained low through 2015 [140]. More recent 

502 minimum abundance estimates based on acoustic trawl surveys indicate the combined biomass of the 

503 Northern and Central stocks rebounded to a range from 0.5 to 1.1 million metric tons in 2018 and 

504 2019 [141, 142]. 

505 Pacific sardine (the abundance of which until recently was believed to vary inversely with that 

506 of anchovy) [143-145] was not present in the diet in 2007 and sardine %F was low for other years of 

507 the study. These results are possibly related to the low sardine biomass during the study period [146], 

508 but they could be explained also by limited swordfish preference for sardine. [62] reported a low %F 

509 for sardine in the diet of swordfish from northern Baja California in 1992-1993, a period when sardine 

510 biomass was higher in the area.

511 Future diet studies on swordfish in the CCLME would benefit from more information on prey 

512 distribution and abundance (and thus their availability to swordfish) and on the size distribution of 

513 available and consumed prey. This would potentially allow elucidation of (multivariate) functional 

514 responses (i.e., how numbers of a prey species in the diet relate to its abundance and the abundance of 

515 other prey species) [147]. The present study would have benefited from a larger sample size since the 

516 rarefaction curve (for number of prey species detected versus sample size) did not reach an asymptote. 
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517 Samples used in this study were collected during the fall/winter period and were fisheries-dependent 

518 so information on the diet at other times of the year is lacking. Results are also potentially influenced 

519 by the distribution and targeting of fisheries effort and catch. While additional studies are warranted, 

520 this study provides the most comprehensive view of swordfish diets in the CCLME to date, allowing 

521 for comparisons of diet in relation to size, year and area.

522

523 Supporting information

524 Table S1. Quantitative prey composition of the broadbill swordfish (EFL < 165 cm) in the California 

525 Current. A total of 148 stomachs containing food was examined. Prey items are shown by decreasing 

526 GII value. See methods for description of the measured values.

527 Table S2. Quantitative prey composition of the broadbill swordfish (EFL ≥ 165 cm) in the California 

528 Current. A total of 140 stomachs containing food was examined. Prey items are shown by decreasing 

529 GII value. See methods for description of the measured values.

530 Table S3. Comparison of GII for the main prey species between small and medium broadbill 

531 swordfish. Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which each prey type 

532 was in the smaller of two size categories of swordfish. If more than 95% (or fewer than 5%) of runs 

533 show the prey type was more important in the smaller size category of swordfish than in the larger 

534 category, we consider the difference to be significant. S = small (EFL < 165 cm), M = medium (EFL 

535 ≥ 165 cm). These results are generally consistent with inferences from non-overlap of 95% CIs.

536 Table S4. Quantitative prey composition of the broadbill swordfish within the SCB subregion. A total 

537 of 199 stomachs containing food was examined. Prey items are shown by decreasing GII value. See 

538 methods for description of the measured values.
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539 Table S5. Quantitative prey composition of the broadbill swordfish beyond the SCB subregion. A 

540 total of 93 stomachs containing food was examined. Prey items are shown by decreasing GII value. 

541 See methods for description of the measured values.

542 Table S6. Comparison of GII for the main prey species between broadbill swordfish within and 

543 beyond the SCB region. Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which 

544 each prey type was in each of two categories of swordfish. If more than 95% (or fewer than 5%) of 

545 runs show the prey type was more important in one region than the other, we consider the difference 

546 to be significant. East = within the SCB subregion, West  = beyond the SCB subregion. These results 

547 are generally consistent with inferences from non-overlap of 95% CIs.

548 Table S7. Quantitative prey composition of the broadbill swordfish during year 2007 in the California 

549 Current. A total of 47 stomachs containing food was examined. Prey items are shown by decreasing 

550 GII value. See methods for description of the measured values.

551 Table S8. Quantitative prey composition of the broadbill swordfish during year 2008 in the California 

552 Current. A total of 16 stomachs containing food was examined. Prey items are shown by decreasing 

553 GII value. See methods for description of the measured values.

554 Table S9. Quantitative prey composition of the broadbill swordfish during year 2009 in the California 

555 Current. A total of 37 stomachs containing food was examined. Prey items are shown by decreasing 

556 GII value. See methods for description of the measured values.

557 Table S10. Quantitative prey composition of the broadbill swordfish during year 2010 in the 

558 California Current. A total of 12 stomachs containing food was examined. Prey items are shown by 

559 decreasing GII value. See methods for description of the measured values.
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560 Table S11. Quantitative prey composition of the broadbill swordfish during year 2011 in the 

561 California Current. A total of 54 stomachs containing food was examined. Prey items are shown by 

562 decreasing GII value. See methods for description of the measured values.

563 Table S12. Quantitative prey composition of the broadbill swordfish during year 2012 in the 

564 California Current. A total of 36 stomachs containing food was examined. Prey items are shown by 

565 decreasing GII value. See methods for description of the measured values.

566 Table S13. Quantitative prey composition of the broadbill swordfish during year 2013 in the 

567 California Current. A total of 56 stomachs containing food was examined. Prey items are shown by 

568 decreasing GII value. See methods for description of the measured values.

569 Table S14. Quantitative prey composition of the broadbill swordfish during year 2014 in the 

570 California Current. A total of 34 stomachs containing food was examined. Prey items are shown by 

571 decreasing GII value. See methods for description of the measured values.

572 Table S15. Comparison of GII for the main prey species for broadbill swordfish by year group. 

573 Values of mean GII, bootstrapped 95% CIs and % bootstrap runs in which each prey type was in each 

574 of two categories of swordfish. If more than 95% (or fewer than 5%) of runs show the prey type was 

575 more important in one year than the other, we consider the difference to be significant. Y1 = Year1 

576 (2007), Y2 = Year2 (2008-2010), Y3 = Year3 (2011-2014). These results are generally consistent 

577 with inferences from non-overlap of 95% CIs.

578

579
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