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Abstract 8 

Flux balance analysis (FBA) and associated techniques operating on stoichiometric genome-scale 9 

metabolic models play a central role in quantifying metabolic flows and constraining feasible 10 

phenotypes. At the heart of these methods lie two important assumptions: (i) the biomass 11 

precursors and energy requirements neither change in response to growth conditions nor 12 

environmental/genetic perturbations, and (ii) metabolite production and consumption rates are 13 

equal at all times (i.e., steady-state). Despite the stringency of these two assumptions, FBA has 14 

been shown to be surprisingly robust at predicting cellular phenotypes. In this paper, we formally 15 

assess the impact of these two assumptions on FBA results by quantifying how uncertainty in 16 

biomass reaction coefficients, and departures from steady-state due to temporal fluctuations could 17 

propagate to FBA results. In the first case, conditional sampling of parameter space is required to 18 

re-weigh the biomass reaction so as the molecular weight remains equal to 1 g/mmol, and in the 19 

second case, metabolite (and elemental) pool conservation must be imposed under temporally 20 

varying conditions. Results confirm the importance of enforcing the aforementioned constraints 21 

and explain the robustness of FBA biomass yield predictions.  22 
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 1 

1. Introduction 2 

Flux balance analysis (FBA) encompasses a wide range of computational analyses that operate on 3 

genome-scale metabolic (GSM) models (Lewis et al., 2012; Orth et al., 2010), and provide insights 4 

on maximum theoretical yields of biomass or product per mole of substrate or limiting resource 5 

(Feist and Palsson, 2010), and metabolic activities in the form of intracellular fluxes under 6 

physiological constraints (Long et al., 2017; Mahadevan and Schilling, 2003). Relying on the 7 

solution of a linear programming (LP) optimization formulations (Orth et al., 2010), FBA analyses 8 

have gained broad acceptance due to the tractability and scalability of the calculations and the wide 9 

availability of GSM models for many organisms (Gu et al., 2019). As many as 185 manually 10 

curated GSM models have been reported (as of February 2019 (Gu et al., 2019)) with many 11 

thousands (Gu et al., 2019; Lieven et al., 2020) automatically generated using workflows such as 12 

KBase (Arkin et al., 2018), RAVEN (Wang et al., 2018), and CarveMe (Machado et al., 2018). 13 

GSM models aim to encompass all known biochemical conversions occurring in an organism, the 14 

participating metabolites, reaction stoichiometry, corresponding enzymes, genes encoding them, 15 

and production of biomass constituents in physiologically relevant proportions in cells (Thiele and 16 

Palsson, 2010). FBA predictions have been found to recapitulate growth phenotypes reasonably 17 

well under nutrient-limited conditions (O’Brien et al., 2013) and after adaptive laboratory 18 

evolution (Ibarra et al., 2002). By exploiting the fact that the timescale of organism growth far 19 

exceeds that of cellular biochemical reactions, every metabolite can be assumed to be at a pseudo-20 

steady state, whereby the production equals the consumption flux. FBA also requires the 21 

establishment of an objective function as a teleological driver of cellular metabolism, which is 22 

usually maximizing biomass yield for a given amount of carbon uptake (Feist and Palsson, 2010). 23 

This translates computationally to maximizing flux through an imposed biomass drain (i.e., 24 
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biomass reaction) which serves to sequester metabolites in their physiological ratios. Thus, at the 1 

heart of most FBA studies lie two major assumptions: (i) the biomass precursors and energy 2 

requirements are constant and invariant to changes in growth conditions, environmental, and/or 3 

genetic perturbations; and (ii) metabolites remain at steady-state with no temporal fluctuations in 4 

their concentration or production/consumption rates.  5 

Uncertainty or inaccuracies in biomass composition can arise from limitations in measuring 6 

techniques (Beck et al., 2018; Lange and Heijnen, 2001), and the metabolically and temporally 7 

varying, and/or heterogenous nature of cellular populations (Takhaveev and Heinemann, 2018). 8 

Experimental quantification and modeling of metabolic heterogeneity is important for accurate 9 

cellular characterization (Takhaveev and Heinemann, 2018) and efficient bioprocessing 10 

(González-Cabaleiro et al., 2017). A previous metabolic modeling effort accounting for biomass 11 

composition variability considered biomass coefficients to be binomially distributed 12 

(MacGillivray et al., 2017). However, this effort did not enforce the requirement that the molecular 13 

weight (MW) of the biomass metabolite must always equal 1 gram dry weight (gDW) mmol-1 14 

(Thiele and Palsson, 2010), which is needed to correctly map biomass flux to specific growth rate 15 

(Chan et al., 2017). In addition to the biomass composition, variance in energy demand parameters 16 

can be significant factors controlling predicted maximum theoretical yields. Growth-associated 17 

ATP maintenance (GAM) captures the energy demand per unit of produced biomass (Thiele and 18 

Palsson, 2010) and is embedded within the biomass reaction. Non-growth associated ATP 19 

maintenance (NGAM) accounts for the energy demand associated with cellular processes such as 20 

repair and maintenance (Thiele and Palsson, 2010). GAM and NGAM values are estimated using 21 

regression on growth data from chemostats (Thiele and Palsson, 2010), and are thus subject to 22 

uncertainty due to instrument limitations and population heterogeneity to an even larger extend 23 
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than biomass composition. Capturing uncertainty in ATP maintenance parameters is essential 1 

because fluctuations in energy demand can propagate to other parts of the metabolic network and 2 

ultimately affect the growth and product yield.  3 

The steady-state condition for all metabolites is a fundamental assumption of FBA. However, this 4 

might be too stringent as time-course intracellular metabolomics studies have revealed the 5 

transient nature of metabolite pools (Andreas Angermayr et al., 2016; Kultschar et al., 2019; Qiao 6 

et al., 2020; Yurkovich et al., 2017) as a cellular response to microenvironmental variations 7 

(Schmitz et al., 2017) and over the course of a typical growth cycle (Andreas Angermayr et al., 8 

2016). In addition, periodic variations in metabolism are inherent for many organisms such as 9 

phototrophs whose lifestyle is tailored around light availability and diurnal cycle (Andreas 10 

Angermayr et al., 2016; Diamond et al., 2015). To account for metabolite level fluctuations within 11 

FBA at a given time point, metabolite accumulation/depletion terms (i.e., the right-hand side 12 

(RHS) of mass balance constraints) need to be temporally decoupled. Of course, over time all 13 

imbalances will have to average out for a stable culture. In a previous study by Reznik and 14 

coworkers, allowing for metabolite imbalances was necessary for the FBA model to consistently 15 

capture observed changes in pools of growth-limiting metabolites (Reznik et al., 2013). In another 16 

study, relaxing metabolite balance constraints yielded a better correlation between FBA 17 

predictions and experimentally observed intracellular metabolic fluxes (MacGillivray et al., 2017). 18 

In both studies imbalances for different metabolites were assumed to be independent from one 19 

another. However, even under unsteady-state conditions conserved metabolite pools (CM-pools) 20 

(Famili and Palsson, 2003) must remain invariant. These pools arise because the overall amount 21 

of a particular chemical moiety (such as acyl carrier protein, NAD+/NADH, or folate species) 22 

cannot change (in the absence of active biosynthesis) even under the action of the available 23 
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(exchange) reactions in the system. The mathematical consequence of a CM-pool is that a weighted 1 

sum of the RHS terms for metabolites within the pool must equal zero, consistent with a balance 2 

between all accumulation (positive RHS) and depletion (negative RHS) terms (Cornish-Bowden 3 

and Hofmeyr, 2002; Nikolaev et al., 2005). Thus, any investigation of temporal variation in 4 

metabolite levels and resulting phenotypic effects must directly (or indirectly) account for 5 

relationships embedded within CM-pools. In the past, CM-pools have been found by either 6 

examining the structure of the stoichiometric matrix directly (Cornish-Bowden and Hofmeyr, 7 

2002; De Martino et al., 2014; Famili and Palsson, 2003; Reder, 1988) or examining the feasible 8 

region of optimization problems with stoichiometric restrictions included (Nikolaev et al., 2005). 9 

As many as 74 aggregated CM-pools, whose subsets of members constitute smaller CM-pools, 10 

have been identified for the Escherichia coli genome-scale model iAF1260 (De Martino et al., 11 

2014).  12 

In this study, we first quantify how uncertainty in the biomass constituent coefficients propagates 13 

to FBA results for maximum theoretical biomass yield calculations using the latest E. coli model 14 

iML1515 (Monk et al., 2017). Two cases were considered: (i) naively ignoring and (ii) considering 15 

the need to re-normalize coefficients so that the biomass MW is strictly 1 g mmol-1. Failing to 16 

rescale biomass reaction coefficients resulted in three-fold higher standard deviation (SD) for the 17 

biomass yield upon sampling. Uncertainty in the ATP maintenance parameters had an even greater 18 

impact on the predicted biomass yield SD (i.e., six-fold higher than that of biomass composition 19 

uncertainty). We found, that in general, any injected random noise (i.e., uncertainty) on biomass 20 

coefficients is dampened in the FBA prediction for the biomass yield. This observation is 21 

consistent with the surprising robustness of FBA predictions despite the many assumptions 22 

inherent in the biomass reaction construction and parameterization. However, predicted 23 
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intracellular metabolic fluxes can be quite sensitive to the injected random noise. We also explored 1 

the effect of allowing for deviations from the metabolite steady-state assumption by temporally 2 

relaxing the equality of production and consumption terms (i.e., RHS of balance constraints). We 3 

found that FBA problems with randomly sampled non-zero RHS vectors were (almost) always 4 

infeasible because CM-pool constraints were violated. Projecting all sampled RHS vectors onto 5 

the subspace defined by the CM-pool constraints (thereby ensuring their feasibility) results in a 6 

seemingly feasible FBA problem but unless elemental (i.e., C, N, P, etc.) balance constraints are 7 

explicitly included, undetected elemental balance violations occur. In steady-state FBA, reaction 8 

stoichiometries included in the model are elementally balanced, thus no additional elemental 9 

balance constraints are needed. However, whenever the RHS terms are perturbed away from zero, 10 

the elemental balances are not automatically satisfied thus requiring their explicit inclusion in any 11 

unsteady-state FBA calculations. Additionally, we found that the average FBA predicted biomass 12 

yield is significantly decreased compared to the steady-state case.  This alludes to a strong selection 13 

pressure for strictly maintaining steady-state in metabolite balances, as any departures tend to 14 

handicap the cell with a lower (on average) biomass yield potential. This further bolsters the 15 

underlying assumption of steady-state in FBA and helps explain its effectiveness in predicting 16 

overall cellular phenotypes.  17 

 18 

2. Methods 19 

2.1. Sampling protocol of perturbations in the biomass coefficients and ATP maintenance 20 

We used the latest E. coli model (iML1515) (Monk et al., 2017) in minimal media (M9) with 21 

glucose as carbon source to determine the effect of uncertainty in biomass coefficients on flux 22 

predictions. The engineered reverse beta-oxidation pathway, which is absent in the wild-type strain 23 
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but included in the model, was turned off by setting the upper bounds of the reactions ACACT1r-1 

8r to zero. The lower bound of pyruvate:flavodoxin oxidoreductase (POR5) was also fixed to zero, 2 

as its activity in the reverse direction is only induced by superoxide generators (Nakayama et al., 3 

2013). Model parameters subjected to uncertainty include biomass precursor coefficients, 4 

macromolecular compositions, GAM, and NGAM. Parameters were sampled 10,000 times from a 5 

normal distribution with the mean centered at the original value and relative SD of 5%, 10%, 20%, 6 

and 30% of the original value (hereafter referred to as uncertainty level). During sampling, we 7 

ensured that the following material balances were maintained in the biomass reaction: (i) ATP 8 

hydrolysis recapitulating GAM, (ii) pyrophosphate in RNA and DNA synthesis, and (iii) water in 9 

protein synthesis. Failure to recognize the ATP hydrolysis balance results in a mismatch in ATP 10 

and ADP coefficients resulting in either (i) ATP coefficients being higher and its de novo synthesis 11 

competing with organism growth, or (ii) ADP coefficients being higher creating a metabolic 12 

surplus.  13 

Biomass precursor coefficients and the GAM value were first extracted from the biomass reaction 14 

with lumped coefficients. Then, random sampling of precursor coefficients or the GAM value was 15 

performed. Before reassembling the biomass reaction from sampled parameters, re-normalization 16 

of the biomass MW to 1 g mmol-1 was performed as: 17 

𝑐 =
𝑐

∑ 𝑐  𝑀𝑊∈

 (Eq. 1) 

where 𝐼  is the set of biomass constituents in the biomass reaction, 𝑐  is the randomly 18 

sampled coefficient for metabolite 𝑖, 𝑀𝑊  is the MW of metabolite 𝑖, and 𝑐  is the recalibrated 19 

biomass coefficient for metabolite 𝑖. For macromolecular composition perturbation, the weight 20 

fractions of macromolecular classes were sampled and coefficients of constituents in each class 21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 
 

uniformly scaled. Classification of 66 biomass constituents is provided in Supplementary 1 

Materials 1 for all amino acids, cell wall components, lipids, RNAs, DNAs, inorganic ions, and 2 

cofactors and prosthetic groups. 3 

 4 

2.2. Quantifying uncertainty propagation from biomass coefficients and ATP maintenance to 5 

biomass yield and predicted metabolic fluxes using the standard deviation ratio (SDR) metric  6 

The sampling workflow and propagation of uncertainty is illustrated in Figure 1. For every sample, 7 

a biomass reaction was reconstructed and parsimonious flux balance analysis (pFBA) (Lewis et 8 

al., 2010) was performed to obtain a predicted flux distribution. Maximum glucose uptake rate was 9 

set at 10 mmol gDW-1 h-1. Mean and SD were calculated for the fluxes of every reaction 𝑗 in the 10 

population, and the propagation of uncertainty was quantified using the SD ratio (SDR) defined 11 

as: 12 

𝑆𝐷𝑅 =
∆(𝑆𝐷/𝑀𝑒𝑎𝑛)  

∆(𝑆𝐷/𝑀𝑒𝑎𝑛)
=

∆(𝜎 /𝜇 )

∆(𝜎 /𝜇 )
= 𝑆𝐷𝑅  (Eq. 2) 

 13 

where 𝜎  and 𝜇  are the SD and mean for the pFBA output flux or yield 𝑣, 𝜎  and 𝜇  are the SD 14 

and mean for the input parameter 𝑐 subjected to the injection of normally distributed random noise, 15 

and 𝑆𝐷𝑅  is the rate of change of the output relative SD with respect to the input relative SD. For 16 

example, 𝑆𝐷𝑅  and 𝑆𝐷𝑅  quantify the amplification (or dampening) of the effect of injecting 17 

noise on a parameter 𝑐 on the pFBA predicted biomass yield 𝑣  or metabolic flux 𝑣 , 18 

respectively. SDR was calculated with linear regression for the calculated output over the input 19 

SD.  20 
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NADH, NADPH, and ATP cofactor production flux SDRs (𝑆𝐷𝑅 ) were calculated by 1 

aggregating over all cofactor producing reactions (𝑣 ), 2 

𝑣 = 𝑆 ,  𝑣

∈

 (Eq. 3) 

where 𝐽  is the set of reactions producing a particular cofactor, 𝑆 ,  is the cofactor 3 

stoichiometry in reaction 𝑗, and 𝑣  is the flux through reaction 𝑗. See Supplementary Materials 1 4 

for a list of all ATP, NADPH, and NADH producing reactions.  5 

SDR for the sum of fluxes through alternative (or parallel) pathways was computed in a similar 6 

manner to Eq. 2, by summing all fluxes connecting the same start and end metabolites. This is 7 

done to quantify the uncertainty propagating to the net conversion flux, which is typically more 8 

dampened than to the individually distributed flux components through alternative pathways. See 9 

Supplementary Materials 1 for a list of all “flux sum” quantities and the corresponding reaction 10 

sets.  11 

 12 

2.3. Protocol for sampling departures from the metabolite steady-state and instationary FBA 13 

Departure from metabolite steady-state means one or more RHS terms of the FBA’s mass balance 14 

constraints (Orth et al., 2010) (denoted by 𝑏  for metabolite 𝑖’s balance (Nikolaev et al., 2005)) 15 

may assume non-zero values. A positive (or negative) RHS term indicates metabolite accumulation 16 

(or depletion). Randomly sampled RHS terms (almost) always lead to a setup of an infeasible 17 

optimization FBA problem because CM-pool constraints are consistently violated. These include 18 

CM-pool constraints for a subset of RHS terms corresponding to the conservation of chemical 19 

moieties (e.g., ACP or CoA) in metabolites (De Martino et al., 2014; Nikolaev et al., 2005; Reder, 20 
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1988) that cannot be degraded (and de novo synthesized for some moieties) due to a lack of 1 

degradation (and biosynthesis) pathway in the model (Chan et al., 2017). In addition, some nutrient 2 

metabolites and their derivatives form a CM-pool in a specific growth condition (but not in others) 3 

if the corresponding exchange reactions that supply the required nutrients are blocked. Thus, for 4 

metabolites in CM-pools, their accumulation is coupled with the depletion of other metabolites. 5 

As the first step in identifying these coupled metabolites, we introduce an optimization formulation 6 

called conserved metabolite pool check (CMP-check) that checks whether a given metabolite 𝑖∗ is 7 

part of a CM-pool. The key idea here is to introduce an imbalance 𝜀 denoting accumulation of 8 

metabolite 𝑖∗ (or −𝜀 for depletion), and then determine if (i) it is coupled to steady-state 9 

perturbations to other network metabolites, (ii) can be satisfied through exchange with the growth 10 

medium, or (iii) is always infeasible. Slack variables 𝑠𝑙𝑣  and 𝑠𝑙𝑣  denote positive and negative 11 

departures, respectively, from the steady-state condition for metabolite 𝑖 (𝑖 ≠ 𝑖∗). The objective of 12 

CMP-check is the minimization of the sum of slack variables across all metabolites, thus 13 

identifying the minimal set of coupled (imbalanced) metabolites. The formulation is as follows: 14 

min  𝑠𝑙 + 𝑠𝑙

∈ ,  ∗

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑆 ∗ 𝑣

∈

= 𝜀  

𝑆 𝑣

∈

= 𝑠𝑙𝑣 − 𝑠𝑙𝑣 ,     ∀ 𝑖 ∈ 𝐼\ {𝑖∗} 

𝑣 ≤ 𝑣 ≤ 𝑣 ,                  ∀ 𝑗 ∈ 𝐽 \ {𝐵𝑖𝑜𝑚} 

𝑣 = 0 
0 ≤ 𝑠𝑙𝑣 , 𝑠𝑙𝑣 ≤ 𝑀,            ∀ 𝑖 ∈ 𝐼 

 
 
 
 
 

(CMP-check) 

 15 

where 𝑀 is an arbitrarily large scalar. Flux through the biomass reaction (𝑣 ) was turned off to 16 

prevent metabolite rebalancing through accumulation (or depletion) of the biomass sink flux. 17 
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CMP-check was solved twice for every metabolite 𝑖∗ for both accumulation (using 𝜀) and depletion 1 

(using −𝜀). We used an arbitrarily small value of 0.01 mmol gDW-1 h-1 for 𝜀, and 1,000 mmol 2 

gDW-1 h-1 for 𝑀.  3 

Because generating of CM-pool specific constraints is computationally inefficient for genome-4 

scale models (see Supplementary Text), we hereby introduce a workflow that injects uncertainty 5 

into metabolites’ RHS values and quantifies uncertainty propagating to FBA-predicted biomass 6 

yield while accounting for CM-pools and elemental balance constraints. Imbalances were 7 

introduced to the RHS terms of the metabolite mass balance constraints (i.e., by an amount 𝑏 ) 8 

by sampling from a normal distribution centered at zero at the uncertainty levels 𝜎  of 0.1%, 1%, 9 

and 10% of the glucose uptake rate by mass (i.e., in the unit of gram glucose gDW-1 h-1). We start 10 

from the mass-basis SD 𝜎  (i.e., unit of gram gDW-1 h-1) to avoid the injecting of larger deviation 11 

to metabolites with larger MW values. For example, molar-basis sampling of the accumulation 12 

rate of the metabolite “(O16 antigen) x4 core oligosaccharide lipidA” (o16a4colipa_p), whose 13 

MW is 44-fold higher than that of glucose, will introduce a disproportional drain of resource in 14 

the system. SD in the molar unit (i.e., mmol gDW-1 h-1) (i.e., denoted as 𝜎 ) consistent with the 15 

unit of the RHS term can be calculated using the following equation:  16 

𝜎 = (𝜎 )
.

∗ ∗ 1000 =
∗

.
  (Eq. 5) 

where 𝑀𝑊  is the MW of metabolite 𝑖. Using optimization formulation CMP-check, metabolites 17 

were split into three groups: (i) allowed to only accumulate (i.e., 𝑏 > 0), (ii) allowed to only 18 

go into deficit (i.e., 𝑏 < 0), and (iii) allowed to either accumulate or go into deficit (i.e., 19 

𝑏  ∈ ℝ). Steady-state departure variables 𝑏  were then sampled from a half-normal 20 

distribution for cases (i) and (ii) and from a full normal distribution for case (iii). The normal 21 
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distribution was centered at zero with a SD of 𝜎 . A half-normal distribution is equivalent to a chi-1 

square distribution with a single degree-of-freedom and scaled by 𝜎 .  2 

To obtain a vector 𝒃𝒇𝒆𝒂𝒔 composed of individual RHS terms 𝑏  for FBA, we introduced and 3 

used the Projection Using Linear Programming (PULP) formulation that projects the vector 𝒃𝒓𝒂𝒏𝒅 4 

composed of individual RHS terms 𝑏  to the subspace that satisfies network stoichiometry and 5 

reaction directionality restrictions:  6 

min  𝑀𝑊  (𝑠𝑙 + 𝑠𝑙 )

∈

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑆 𝑣

∈

= 𝑏 ,     ∀ 𝑖 ∈ 𝐼 

𝑏 = 𝑏 + 𝑠𝑙 − 𝑠𝑙 ,                ∀ 𝑖 ∈ 𝐼 
0 ≤ 𝑠𝑙 , 𝑠𝑙 ≤ 𝑀,       ∀ 𝑖 ∈ 𝐼 
𝑣 ≤ 𝑣 ≤ 𝑣 ,             ∀ 𝑗 ∈ 𝐽 \ {𝐵𝑖𝑜𝑚} 
𝑣 = 0 

𝐸 𝑏

∈

= 0, ∀𝑒 ∈ ℰ 

 
 
 
 
 
 

(PULP) 

 7 

where 𝑠𝑙  and 𝑠𝑙  are positive and negative slack variables, respectively, and 𝐸  denotes the 8 

stoichiometry of element or moiety 𝑒 in metabolite 𝑖’s chemical formula. The set of all elements 9 

and moieties collected from the metabolites’ formulae is denoted by ℰ. By minimizing the sum of 10 

slack variables 𝑠𝑙  and 𝑠𝑙 , the initial randomly generated RHS vector 𝒃𝒓𝒂𝒏𝒅 is thus projected onto 11 

the feasible RHS solution space. The last constraint in PULP denotes elemental balance constraints 12 

dictating the conservation of elements, such as C, N, and P.  13 

10,000 RHS vectors (𝒃𝒓𝒂𝒏𝒅) were randomly sampled, as described above, for each uncertainty 14 

level 𝜎  and corresponding feasible RHS vectors (𝒃𝒇𝒆𝒂𝒔) generated using PULP. In order to 15 
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quantify the effect of metabolite concentration departures from the steady-state condition, we 1 

introduce the instationary FBA (iFBA) version of FBA where the RHS terms 𝑏  of mass balance 2 

constraints are set to 𝑏  to yield a feasible optimization problem. The optimization formulation 3 

for a standard growth-maximization iFBA is formulated as: 4 

max  𝑣  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑆 𝑣

∈

= 𝑏  (= 𝑏 ),      ∀ 𝑖 ∈ 𝐼 

𝑣 ≤ 𝑣 ≤ 𝑣 ,      ∀ 𝑗 ∈ 𝐽 
𝑏  ∈  ℝ,     ∀ 𝑖 ∈ 𝐼 

 
 
 

(iFBA) 

 5 
 6 

where 𝐼 and 𝐽 are the set of metabolites and reactions, respectively, 𝑆  is the stoichiometric 7 

coefficient of metabolite 𝑖 in reaction 𝑗, 𝑣  is the flux of reaction 𝑗, 𝑣  is the specific growth 8 

rate or biomass dilution flux, and 𝑣  and 𝑣  are the upper and lower bounds of reaction 𝑗, 9 

respectively. 𝑣  assumes a value of zero for irreversible reactions and an arbitrarily large negative 10 

value for reversible reactions. Then, the mean and SD of 𝑣  normalized by steady-state FBA’s 11 

𝑣  are calculated to quantify the output variation.  12 

Note that in the absence of elemental balance constraints, the RHS vector generated by PULP 13 

(almost) always introduces a net deficit or surplus of chemical elements to the system. We also 14 

run the PULP without the elemental balance constraints yielding elementally imbalanced 𝒃𝒇𝒆𝒂𝒔 15 

for which the elemental surplus for an element 𝑒 normalized by the glucose uptake rate by mass 16 

can be quantified as: 17 

−
𝑀𝑊  ∑ 𝐸  𝑏∈

𝑀𝑊  𝑣 _
 (Eq. 6) 
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 1 

where 𝑀𝑊  is the atomic weight for the element 𝑒, 𝑀𝑊  is the molecular weight of glucose, and 2 

𝑣 _  is the glucose uptake rate. A positive elemental surplus value means more moles of an 3 

element are consumed than produced leading to a metabolic surplus, and vice-versa for a negative 4 

value.  5 

Because metabolites’ formulae are used to derive the elemental balance constraints, the identity of 6 

all generic “R” and “X” groups were disambiguated into 16 specific conserved moieties using the 7 

metabolite names for 278 metabolite formulae in the iML1515 model. For metabolites’ MW used 8 

throughout the analysis, a zero value was arbitrarily assigned for the MW of the conserved moieties 9 

(i.e., formerly “R” and “X” groups) since they are not provided with the model. Thus, the MW of 10 

metabolites with a partially defined formulae, such as acyl carrier protein (i.e., formula 11 

C11H21N2O7PRS) is calculated after omitting undefined groups. Updated metabolite formulae and 12 

their MW values are provided in the Supplementary Materials 2.  13 

 14 

2.4. Software implementations 15 

Sampling of biomass coefficients was carried out using the Python 3.6 package NumPy for normal 16 

distribution sampling (numpy.random.normal) (Virtanen et al., 2020) and COBRApy for flux 17 

balance analysis (Ebrahim et al., 2013). Sampling of metabolite RHS terms was carried out using 18 

the Python 3.6 package SciPy for normal and half-normal distribution sampling (scipy.stats.norm 19 

and scipy.stats.halfnorm) (Virtanen et al., 2020). CMP-check and PULP were implemented in 20 

General Algebraic Modeling System (GAMS) programming language (version 33.2.0, GAMS 21 
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Development Corporation), with IBM ILOG CPLEX (version 12.10.0.0) as the solver. Example 1 

scripts are available at https://github.com/maranasgroup/uncFBA. 2 

 3 

3. Results 4 

We first describe how the injection of normally distributed random noise into biomass coefficients 5 

and ATP demand propagates in FBA predictions towards biomass and metabolic flux predictions, 6 

and assess the sensitivity (or lack thereof) of predicted flux distributions to input parameters.  7 

3.1. Propagation of uncertainty from biomass coefficients and ATP maintenance to FBA 8 

predictions of metabolic fluxes and biomass yield 9 

The overall workflow which is described in detail in the Methods section (Section 2.1 and 2.2) is 10 

illustrated using Figure 1. We quantify how biomass coefficients and/or ATP maintenance 11 

uncertainty is propagated to FBA predicted biomass yield and metabolic fluxes.  12 

 13 

 14 
Figure 1. Overview of the method to inject and quantify propagated uncertainty from biomass 15 
coefficients and ATP maintenance rates to FBA predictions. First, normally distributed uncertainty 16 
is injected to biomass precursor coefficients and ATP maintenance parameters. The biomass 17 
reaction is reassembled while accounting for ATP hydrolysis balance and biomass MW. FBA is 18 
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next carried out using the new biomass reaction and parameter 𝑆𝐷𝑅  quantifies the extent of 1 
uncertainty propagation.  2 
 3 

In all cases, the effect of injecting random noise to the biomass coefficients is dampened in the 4 

biomass yield predictions by FBA. This is because the random introduction of noise causes some 5 

of the coefficients to increase but others to decrease, thus partially counteracting any changes in 6 

the overall demand for biomass formation. This is a consequence of the fact that the biomass flux 7 

is affected by many constituent coefficients and unless they all change in a coordinated manner, 8 

the effect on the biomass flux is attenuated. Even if some random noise injections happen to cause 9 

a coordinated increase in the demand for some constituents for the formation of one unit of 10 

biomass, perturbations for other constituents are likely to cancel them out. Furthermore, as seen in 11 

Figure 2A, by renormalizing the biomass coefficients such that biomass MW is maintained at 1 g 12 

mmol-1, the propagation of uncertainty to the biomass yield is revealed to be even smaller than by 13 

naively ignoring this renormalization. The relative magnitude of the noise amplitude decreases 14 

from 14.9% to 4.9% as quantified by the standard deviation ratio 𝑆𝐷𝑅   metric (Eq. 2). 15 

Uncertainty in the macromolecular composition leads to a higher 𝑆𝐷𝑅  (i.e., 7.1% vs. 4.9%, 16 

see Figure 2B). Note that in a previous study examining biomass coefficient uncertainty 17 

(MacGillivray et al., 2017), the effect of omitting MW-normalization was not detectable because 18 

the imposed uncertainty was much smaller (i.e., between ~10-1 to 10-2 ± 10-6 mmol gDW-1 for most 19 

metabolites) as compared to this study (i.e., between ~10-1 to 10-2 mmol gDW-1 ± 10 to 30%).  20 

 21 
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 1 
Figure 2. Effect of uncertainty in biomass composition and ATP demand on FBA predictions. (A) 2 
Neglecting to reweigh biomass MW to 1 g mmol-1 leads to a 3-fold exaggerated effect to the 3 
biomass yield output. (B) Contribution of individual biomass coefficients (𝑐 ), macromolecular 4 
composition (𝑐 ), GAM (𝑐 ), and NGAM (𝑐 ) uncertainty on biomass yield output. 5 
 6 

SDR metrics for the biomass yield and cofactor net production fluxes are provided in Table 1. We 7 

find that random noise propagation is highly dampened (i.e., SDR < 10% with few exceptions) for 8 

both biomass yield and cofactor fluxes. This may explain why FBA is surprisingly successful at 9 

predicting biomass and/or flux yields despite the highly uncertain and/or variable nature of 10 

required inputs to describe the carbon and energy tally for biomass formation.  Because NADPH 11 

is the primary redox cofactor for biosynthesis of biomass constituents, FBA predicted variance for 12 

the total NADPH synthesis flux (i.e., 𝑆𝐷𝑅 ) under biomass composition uncertainty is 13 

higher than those for biomass, NADH or ATP (see Table 1).  14 

 15 

Table 1. Calculated SDR values for biomass yield and cofactor net production due to propagated 16 
uncertainty from biomass coefficients and ATP maintenance parameters. Do note that biomass 17 
MW is reweighted to 1 g mmol-1 unless mentioned otherwise in the remainder of the manuscript.  18 
 19 
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Sampled parameters 𝑺𝑫𝑹𝒄
𝒗𝑩𝒊𝒐𝒎  𝑺𝑫𝑹𝒄

𝒗𝑵𝑨𝑫𝑷𝑯  𝑺𝑫𝑹𝒄
𝒗𝑵𝑨𝑫𝑯  𝑺𝑫𝑹𝒄

𝒗𝑨𝑻𝑷 
Species composition 
All coefficients 4.9 10.1 5.5 5.9 
All coefficients (unnormalized MW) 14.9 11.2 8.9 10.6 
 
Macromolecular composition* 
All compositions 7.1 16.3 9.6 9.3 
RNA fraction (22%) 5.0 8.2 6.4 7.0 
Lipid fraction (10%) 4.2 0.3 0.8 3.2 
Protein fraction (58%) 1.8 13.9 7.2 5.1 
Inorganic ions fraction (1%) 0.7 0.3 0.4 1.3 
Cell wall fraction (6%) 0.5 2.5 0.3 1.1 
DNA fraction (3%) 0.5 1.2 0.7 0.8 
Cofactors fraction (0.3%) 0.01 0.1 0.1 0.7 
 
ATP maintenance 
Growth-associated (GAM) 28.60 28.48 38.73 46.81 
Non-growth associated (NGAM) 2.92 2.93 3.94 4.94 

 *Number in brackets is the mass fraction of the respective macromolecule class in the iML1515 E. coli GSM’s 1 
biomass reaction [10]. 2 

 3 

In contrast to imposing random noise on all biomass constituent coefficients at the same time, 4 

change in only the GAM requirement causes more pronounced changes in the biomass yield and 5 

cofactor balances (see Table 1 and Figure 2A). This is expected as only a single coefficient for 6 

GAM undergoes a fluctuation causing systemic changes in ATP demand. This offers a cautionary 7 

tale, as a common practice in model reconstruction is to port unchanged ATP maintenance values 8 

from previously built models for related organisms even though GAM values are highly variable 9 

(e.g., yeasts: 23 – 167 (Aung et al., 2013; Dinh et al., 2019; Mishra et al., 2018; Tomàs-Gamisans 10 

et al., 2018, 2016; Torres et al., 2019) & bacteria: 18 – 75 mmol gDW-1 h-1 (Flahaut et al., 2013; 11 

Kavvas et al., 2018; Liao et al., 2011; Monk et al., 2017; Orth et al., 2011; Seif et al., 2019; Thiele 12 

et al., 2011)). Growth conditions such as supplied substrate (Tomàs-Gamisans et al., 2018, 2016) 13 

and nutrient- and oxygen-limited growth (Dinh et al., 2019; Torres et al., 2019) can also cause 14 

significant departures. In contrast, changing only the coefficient for NGAM caused a much smaller 15 
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change in the predicted biomass yield (i.e.,  𝑆𝐷𝑅  of 2.9%). This is a reflection of the relative 1 

demands imposed by GAM and NGAM, respectively, on the consumed glucose (i.e., 27% and 2 

3%). The effect of injecting noise on precursor demands for biomass formation (i.e., coefficients 3 

or macromolecular compositions) was significantly smaller even though a much larger fraction of 4 

glucose (i.e., ~71%) is allocated to their synthesis. Again, the reason for this insensitivity is that 5 

the injection of random noise tends to alter their relative proportions but not the total mass (i.e., 1 6 

gram of precursors to make 1 gram of biomass). In contrast, random noise on GAM or NGAM 7 

requirements directly increases or decreases the net ATP demand without a compensating 8 

mechanism. This implies that random errors for coefficients of multiple biomass constituents in a 9 

genome-scale model are likely to lead to an attenuated response of FBA biomass yield predictions, 10 

whereas systematic errors that directly affect the overall carbon and energy demand will likely 11 

cause changes in FBA prediction in proportion to the magnitude of the error.  12 

Zooming in closer we also examined the sensitivity of the biomass yield upon injecting noise one-13 

at-a-time to macromolecular groups (see Table 1 and Figure 2C). As expected, uncertainty in 14 

macromolecules accounting for a larger fraction of biomass (by mass) gave rise to a higher 15 

𝑆𝐷𝑅  value. These include proteins (58% by weight), RNAs (22% by weight), and lipids 16 

(10% by weight). The relative order is determined not only by the net weight fraction, but also by 17 

the amount of carbon, ATP, and NAD(P)H consumed during biosynthesis. Even though RNAs 18 

and lipids rank after proteins in terms of contributing biomass weight fractions, their uncertainty 19 

propagation has a larger effect in biomass yield (Table 1). This is due to higher cofactor costs when 20 

forming more covalent bonds for larger RNA (C9 – C10) and lipid (C37) molecules compared to 21 

amino acids (C2-C9). Interestingly the effect on NAD(P)H production upon the introduction of 22 

random noise in the lipid fraction is much less than the effect on biomass yield (𝑆𝐷𝑅  = 4.2% 23 
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vs. 𝑆𝐷𝑅  = 0.3% and 𝑆𝐷𝑅  = 0.8%). This is due to cofactor promiscuity in enoyl-ACP 1 

reductase (catalyzing the last step in a fatty acid elongation cycle) (Bergler et al., 1996) allowing 2 

the use of NADH in place of NADPH as the reducing equivalent. As a result, equimolar 3 

consumption of ATP, NADH, and NADPH occurs per fatty acid elongation cycle (out of 16 cycles 4 

in total). The large but almost equimolar total requirement of 18 ATP, 17 NADPH, and 16 NADH 5 

in mol/mol for lipid synthesis could explain the reason for its effect on biomass yield but not 6 

cofactor availability as the equimolar cofactor requirement allows the cofactor load to be 7 

distributed across different cofactor producing parts of the network. In contrast, cofactor demand 8 

of protein synthesis is skewed towards NADPH (e.g., L-methionine requires 8 NADPH, 5 ATP, 9 

and 1 NADH in mol/mol) whereas cofactor demand of RNA synthesis is skewed towards more 10 

ATP (e.g., de novo synthesized ATP requires 6 NADPH and 11 ATP in mol/mol), creating 11 

disproportionally heavier loads to NADPH and ATP, respectively which is reflected in the 12 

calculated SDR (Table 1). This observation is consistent with the experimentally observed 13 

importance of controlling NADPH metabolism in amino acid producing strains of E. coli (Xu et 14 

al., 2018). Lastly, while minor fraction components such as cofactors and inorganic ions are 15 

important to include in expanding the resolution of FBA predictions (Feist and Palsson, 2010), the 16 

effect of introducing noise in their respective biomass coefficients on biomass yield is negligible 17 

as they constitute only a small fraction (i.e., ~1% of biomass by weight, all 𝑆𝐷𝑅  < 1%).  18 

Next, we examined the effect of injecting random noise (one-at-a-time) to biomass coefficients 19 

and quantified the output SDR (see Figure 3A and Supplementary Material 1) to determine 20 

biomass precursors that have a disproportionally large effect on FBA predictions. As seen 21 

previously, uncertainty propagation partially correlates with how much each precursor contributes 22 

to biomass by mass (i.e., gram per gram biomass, %) (see Figure 3B). Exceptions to this general 23 
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trend include the biomass constituents of two phosphoethanolamines (i.e., lipid species) affecting 1 

biomass yield, GTP and ATP (i.e., RNA species) affecting ATP production, and L-methionine and 2 

L-isoleucine (i.e., amino acids) affecting NADPH production due to their differences in cofactor 3 

costs, as explained for macromolecular fraction uncertainty. GTP and ATP biomass coefficient 4 

values also affect NADH production, as NADH fuels oxidative phosphorylation to generate ATP. 5 

Interestingly, NADH production is affected by the L-leucine biomass coefficient because it is 6 

produced in the leucine biosynthesis pathway: one from 3-isopropylmalate dehydrogenase and one 7 

from producing the precursor acetyl-CoA (from pyruvate via pyruvate dehydrogenase). Based on 8 

the reported SDR values (see Supplementary Material 1) this analysis can be used to prioritize 9 

measurements of biomass components that could improve the accuracy of flux and yield 10 

quantification.  11 
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 1 
Figure 3. (A) Responses in output standard deviation for biomass yield and cofactor fluxes due to 2 
“one-at-a-time” noise injection to biomass coefficients. From left to right are responses in the 3 
output standard deviation ratios of biomass yield, ATP, NADH, and NADPH fluxes. (B) Plots of 4 
the aforementioned SDR values vs. coefficient mass fraction by mass in biomass composition. The 5 
dotted lines are the linear regression lines.  6 
 7 

Unlike biomass yield or aggregated demands for cofactors, injecting random noise in biomass 8 

coefficients can cause varied, and in some cases, an amplified effect for some metabolic fluxes 9 

and pathways (see Figure 4). Central metabolism fluxes exhibited higher SDR values under GAM 10 
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uncertainty whereas downstream biosynthesis fluxes had larger SDR under biomass composition 1 

uncertainty. Notably the SDR for the pentose phosphate pathway was consistently high under 2 

either GAM or biomass coefficients uncertainty. Under NGAM uncertainty, as expected, all 3 

reaction 𝑆𝐷𝑅  values were below 25% (median = 2.9%). Even though on average the 4 

uncertainty propagation from biomass composition random noise injection is still less than 5 

proportional for most of the fluxes, it is significantly larger (see Figure 4) than the one for biomass 6 

yield (see Table 1). This implies that biomass composition accuracy is more important for 7 

predicting individual metabolic fluxes using FBA as opposed to the overall biomass yield.  8 

 9 
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 1 
Figure 4. SDR of individual fluxes in central metabolism. Reaction IDs used in the metabolic map 2 
and the bar chart follow the BiGG notation used by the model iML1515 [31]. The last entry, 3 
“median of others”, corresponds to the median SDR for all reactions that are not part of central 4 
metabolism (i.e., mostly biosynthesis reactions).  5 
 6 

Starting from the extracellular glucose node, the phosphotransferase system (PTS) exhibited the 7 

least variation among all reactions upon random noise injection to the parameters (see Figure 4, 8 

reaction GLCptspp in “upper glycolysis”). The maximization of biomass yield in FBA indirectly 9 

couples it with maximal glucose uptake. Further downstream, glucose 6-phosphate (G6P) is 10 

funneled towards either G6P isomerase (PGI, in glycolysis) or dehydrogenase (G6PDH2r, in PPP). 11 
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We found that the flux towards G6PDH2r exhibited about twice the sensitivity to the injected 1 

uncertainty than towards PGI. This is because PGI funnels twice as much flux as G6PDH2r (i.e., 2 

65% vs. 35% of glucose uptake). The split portions rejoin in lower glycolysis, which showed 3 

relatively low sensitivity to parametric uncertainty except for the last pyruvate kinase step (Figure 4 

3). This is because pyruvate is a precursor for many biomass constituents as well as acetyl-CoA 5 

used in TCA cycle to produce additional energy. After pyruvate, fluxes in energy-producing 6 

pathways of TCA cycle and oxidative phosphorylation are relatively sensitive to GAM uncertainty 7 

as the net ATP demand on the system is affected. The pentose phosphate pathway (PPP, producing 8 

NADPH and various biomass precursors) was also affected by GAM uncertainty, as an increase 9 

in energy demand requires more glucose to be utilized to produce ATP, in turn releasing more CO2 10 

as the respiratory byproduct. In particular, transketolase-2 reaction (TKT2) exhibited the highest 11 

sensitivity possibly because it is the only reaction in the pFBA solution connecting PPP to the 12 

fructose-6P (F6P) node, which is a precursor to the murein unit (i.e., a cell wall component) in 13 

biomass. Thus, a coordinated increase or decrease in the demand of PPP metabolites and F6P 14 

affects TKT2 more than other PPP reactions that are not connected to the F6P node. Beyond 15 

glycolysis, a low sensitivity to biomass composition perturbation was observed in the TCA cycle 16 

and oxidative phosphorylation, indicating a relatively stable cellular demand for ATP demand 17 

despite fluctuations in composition that tend to counteract one another.  18 

Biomass coefficient variability can also affect metabolism by activating pathways that did not 19 

carry flux in the pFBA solution using the original biomass coefficients, where a total of 434 20 

reactions carry flux at maximal growth under glucose utilization. Upon injecting noise to biomass 21 

coefficients or GAM uncertainty, this number increases to 471 indicating that alternative pathways 22 

may become active in response to a perturbed biomass composition or ATP demand (see 23 
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Supplementary Text for the list of activated alternative pathways). This implies that changes in the 1 

value of the coefficients in the biomass objective function in pFBA can update the optimality order 2 

of vertices in the polytope describing the phenotypic space. In some cases, activations are trivial 3 

such as switching between quinone and menaquinone but in other cases, physiologically relevant 4 

pathway activations are observed involving the use of an alternative redox cofactor (e.g., NADH 5 

or NADPH) or energy molecule (e.g., ATP or GTP). Other reaction activation cases involve short 6 

linear pathways such as the ones in glycine cleavage (GLYCL), some reactions in one carbon 7 

metabolism (FTHFD, FORtppi, sumFDHxpp; Figure 5), GTP biosynthesis (sumGTPsyn), and 8 

hydrogen peroxide production (SPODM, sumQMOx).  9 

Variability in the coefficients of biomass precursors (such as RNAs) that require one-carbon 10 

moiety in the form of 5,10-methylene-tetrahydrofolate (ml-THF) or 10-formyl-tetrahydrofolate 11 

(10f-THF) (see Figure 5) can have systemic effects through one carbon metabolism. In E. coli, 12 

one-carbon moiety is co-produced from glycine via the glycine hydroxymethyltransferase (see 13 

Figure 5, “primary production”). In most samples, biomass coefficients for precursors requiring 14 

one-carbon moiety are high enough that additional contribution of the moiety from GLYCL is 15 

required (see Figure 5, “secondary production”) and only in limited samples (~6% cases for 10% 16 

and ~30% cases for 30% uncertainty) the moiety was produced in excess. The surplus amount was 17 

degraded to formate (via 10f-THF deformylase (FTHFD)) and subsequently to CO2 (FORtppi, 18 

sumFDHxpp). Interestingly, the activation of this degradation pathway is consistent with the 19 

physiological role of FTHFD in controlling the one-carbon pool (Nagy et al., 1995). Another 20 

pathway activated under biomass coefficient noise injection was in GTP production (sumGTPsyn), 21 

which exhibited a bimodal distribution of flux values across samples. This was due to the presence 22 

of two alternative adenylate kinase reactions phosphorylating AMP which can use either ATP 23 
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(reaction ADK1) or GTP (reaction ADK3) (Rogne et al., 2018). Finally, hydrogen peroxide (H2O2) 1 

production, via quinol monooxidase (sumQMOx) and then superoxide dismutase (SPODM), 2 

followed a normal distribution with a relatively wide spread (~240% 𝑆𝐷𝑅  ). This is because 3 

this pathway is not the sole H2O2 source in the network and is only used in a subset of samples to 4 

supplement production of the biomass constituent Fe3+ (via reaction FESD1s). Overall, analyzing 5 

the activation of pathways upon injection of noise in biomass composition can offer clues as to the 6 

optimality criteria that govern the utilization of specific pathways over others and pinpoint which 7 

alternatives may become activated when the overall carbon and energy demands are altered. 8 

 9 
Figure 5. Overview of the one carbon metabolism pathway. GLYCL (highlighted in green) 10 
complements 10f-THF production whereas its degradation pathway (highlighted in red) is used to 11 
degrade excessive 10f-THF. [p]: in periplasm compartment; THF: tetrahydrofolate; ml-THF: 5,10-12 
methylene-THF; me-THF: 5,10-methenyl-THF; 10f-THF: 10-formyl-THF; Q8: ubiquinone-8; 13 
Q8H2: ubiquinol-8; mQ8: menaquinone-8;  mQ8H2: menaquinol-8; GHMT2r: glycine 14 
hydroxymethyltransferase, GLYCL: glycine cleavage system, MTHFD: methylene-THF 15 
dehydrogenase; MTHFC: methenyl-THF cyclohydrolase; FTHFD: formyl-THF deformylase; 16 
FORtppi: formate transport via diffusion; sumFDHxpp: formate dehydrogenase (Q8 or mQ8). 17 
 18 

3.2. Propagation of temporally decoupled metabolite balances on FBA biomass yield predictions 19 

Equality of production with consumption for all metabolites is a key assumption that imposes 20 

restrictions on FBA outputs. However, metabolism need not obey this stringent criterion at all 21 

time-points of the growth cycle, thereby allowing for some surpluses or deficits that can later be 22 
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evened out. These temporary departures from the strict steady-state assumption may reflect 1 

inherent noise in the rate of reactions (Levine and Hwa, 2007), variability among cellular 2 

subpopulations in a culture (Kumar et al., 2020), coordinated responses to changes in the 3 

microenvironment (Schmitz et al., 2017), or cellular programming (Andreas Angermayr et al., 4 

2016). Sampling unsteady-state regimes may offer the cell an opportunity to jump start metabolism 5 

by depleting a stored metabolite pool (i.e., glycogen storage (Shinde et al., 2020)) or deplete 6 

oxygen before an oxygen-sensitive enzyme is produced (Milligan et al., 2007; Rabouille et al., 7 

2014). Herein we aim to explore the allowed magnitude of these departures and their overall effect 8 

on fitness as quantified by biomass yield. By randomly perturbing the RHS terms of the metabolite 9 

balances we (almost) always end up with an infeasible iFBA problem (see Section 2.3). This 10 

implies that any departure from metabolite steady-state must satisfy the constraints associated with 11 

the conservation of conserved metabolite pools (CM-pools, see Section 2.3).  12 

Ignoring these constraints overestimates the permitted variability in the network and results in 13 

infeasible solutions. One can attempt to classify all metabolites as to their participation CM-pools 14 

by examining one of them at a time (see CMP-check formulation in Section 2.3). Three outcomes 15 

are possible. A metabolite is part of a CM-pool if any accumulation (or depletion) is exactly 16 

balanced by another metabolite’s pool depletion (or accumulation), respectively. Some metabolites 17 

are not a part of any CM-pools as both their accumulation and depletion can be compensated via 18 

exchange with the extracellular medium. Finally, the accumulation or depletion of a metabolite 19 

cannot be re-balanced by perturbing the pool of other metabolites or via exchange with the medium 20 

(see Supplementary Materials 2 for the detailed CMP-check results). We found that the generation 21 

of CM-pool specific constraints scales poorly and becomes computationally inefficient for 22 

genome-scale models. Instead, we chose to indirectly satisfy all such CM-pools by simply 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 
 

projecting all RHS vector samples back to stoichiometric feasibility by minimizing the sum of 1 

violations (see PULP formulation in Section 2.3) while ensuring moiety and elemental balances.  2 

Figure 6 provides a pictorial representation of the PULP optimization formulation. Randomly 3 

sampled RHS terms are projected onto feasible assignments for the RHS vector as dictated by 4 

network stoichiometry and reaction directionalities. This was implemented by adding slack 5 

variables to the randomly sampled RHS terms and employing as the objective function the 6 

minimization of the MW weighted sum of these slack variables. This weighting converts the 7 

projection to a mass-basis (i.e., gram gDW-1 h-1) from a molar-basis (i.e., mmol gDW-1 h-1), thereby 8 

preventing the RHS vector adjustment to bias the accumulation or depletion of metabolites with 9 

higher MWs. The same mass-basis was used to generate RHS random samples (see Section 2.3 10 

for details on the sampling procedure).  11 

 12 
Figure 6. Overview of the method to sample and propagate uncertainty from metabolites unsteady-13 
state. First, an ensemble of 𝒃𝒓𝒂𝒏𝒅 vectors is generated by sampling from a normal distribution 14 
𝒩(0, 𝜎 ). Next, the optimization formulation PULP is used to project (one-at-a-time) the vector 15 
𝒃𝒓𝒂𝒏𝒅 onto the closest RHS vector 𝒃𝒇𝒆𝒂𝒔 that satisfies both the conserved metabolite pools and 16 
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elemental balances. These vectors 𝒃𝒇𝒆𝒂𝒔 are used as inputs for iFBA to generate biomass yield 1 
predictions under RHS uncertainty.  2 
 3 

Feasible RHS vectors 𝒃𝒇𝒆𝒂𝒔 obtained from PULP are then used as inputs to the iFBA optimization 4 

(see Section 2.3) to calculate flux distributions and biomass yields and perform statistical analysis. 5 

Upon plotting the probability distributions of 𝑏 , we find that they remain approximately 6 

normal for most metabolites (see Supplementary Text for a few example histograms). An 7 

important observation is that the 𝒃𝒇𝒆𝒂𝒔 from PULP without the direct inclusion of the elemental 8 

balance constraints (see Section 2.3) introduces elemental imbalances to the iFBA output. This is 9 

because under steady-state FBA, all reactions carry out metabolite conversions that are 10 

automatically elementally balanced, assuming that the model stoichiometry is elementally 11 

balanced (Chan et al., 2017). However, in iFBA the departure vectors 𝒃𝒇𝒆𝒂𝒔 introduce metabolite 12 

surpluses and/or deficits in a manner unconstrained by the model stoichiometric coefficients. The 13 

indirect incorporation of CM-pool constraints based on the PULP projection formulation ensures 14 

that the conservation of moieties (e.g., ACP, CoA, etc.) is maintained but elemental balances are 15 

not necessarily satisfied. This means that elemental balances must be directly imposed in the PULP 16 

formulation (see Section 2.3). To demonstrate what happens when the elemental balance 17 

constraints are not satisfied, we performed calculations using a modified version of PULP where 18 

we maximized growth under unsteady-state, both with and without the elemental balance 19 

constraints (see Figure 7A for an illustration). The upper bound of metabolite accumulation and 20 

depletion rates is set to 0.1% of glucose uptake rate, by mass. As expected, the cell can deplete 21 

some metabolite pools (i.e., 446) to (temporarily) grow faster by 5.4% while accumulating other 22 

metabolites (i.e., 431) (Figure 7B). This is achieved by inducing local imbalances around ATP and 23 

NAD(P)H producing reactions. For example, by depleting fructose-1,6P (fdp), glyceraldehyde-3P 24 
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(g3p) and dihydroxyacetone phosphate (dhap) and simultaneously accumulating downstream 1 

metabolites, the cell can temporarily drive more flux through the payoff phase of glycolysis and 2 

yield up to 0.7% more ATP and 1.7% more NADH (see Figure 7C). However, lack of inclusion 3 

of elemental balances leads to a systematic depletion of metabolite pools (i.e., 1,085 depleted vs. 4 

135 in surplus, respectively). Pool depletion is used as an alternative substrate source thus 5 

bypassing ATP dependent exchange reactions and reaching an erroneously predicted increase in 6 

biomass yield of 112.5% (Figure 7B). Therefore, care must be taken when interpreting unsteady-7 

state FBA results because when casting the RHS vector as an unconstrained optimization variable, 8 

violations of the conserved metabolite pools and elemental balances can occur, leading to 9 

unrealizable flux distributions and an overprediction of the maximum possible biomass yield.  10 

 11 
Figure 7. Maximization of biomass yield under metabolite unsteady-state for the two cases that 12 
enforce (left) or ignore (right) elemental balance constraints. Shown for each case are the numbers 13 
of metabolites depleting or accumulating, biomass yield change, and a closer look at the glycolysis 14 
pathway.  15 
 16 

Neglecting the explicit introduction of elemental balance constraints during sampling using PULP 17 

introduces systematic elemental surplus which artificially boosts biomass yield. Figure 8 illustrates 18 
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biomass yield predictions (i.e., cloud of blue dots) as a function of the percent elemental imbalance 1 

(C, N, P, and S) caused by the sampling without considering elemental balance constraints. Lack 2 

of consideration of carbon elemental balance causes most instances to be in overall carbon deficit 3 

as iFBA maximally drains carbon substrates towards biomass. Despite this negative balance, only 4 

a fraction of iFBA simulations lead to results that exceed steady-state FBA biomass yield. This is 5 

because metabolite imbalances cause biomass constituents to not be produced in the required 6 

ratios. The red vertical streak of points depicts the simulation when the elemental balance 7 

constraints are imposed. As expected, they always satisfy carbon balance and in the great majority 8 

of cases have a significantly decreased biomass yield, alluding to the largely detrimental effect of 9 

departing (even temporarily) from steady-state. Even though N and P are not limiting, as 10 

ammonium and phosphate uptake rates were left unconstrained, some enhancement of biomass 11 

yield as a consequence of their elemental imbalances were still observed (Figure 8). This is because 12 

N and P supplied from the growth medium require energy (i.e., NADPH or ATP) to be assimilated, 13 

which can be bypassed by violating elemental balance constraints and leveraging imbalances in 14 

intracellular metabolites. Note that for nitrogen incorporation through the carrier L-glutamate an 15 

NADPH molecule is required whereas for phosphate incorporation to a molecule an ATP molecule 16 

is typically required. Notably even though sulfur has a similar assimilation energy requirement via 17 

sulphate adenyltransferase requiring 2 ATPs and a GTP, no significant correlation between 18 

biomass yield and sulfur surplus was observed (see Figure 8). This is likely because sulfur accounts 19 

for only 0.8% of the biomass by weight compared to 49.3% for carbon, 15.1% for nitrogen and 20 

9.2% for phosphorous.  21 

  22 
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 1 

 2 

 3 
Figure 8. iFBA calculated biomass yields vs. incurred elemental imbalance as a % of the glucose 4 
uptake by mass upon ignoring (samples in blue) and enforcing (samples in red) elemental balance 5 
constraints.  6 
 7 

Interestingly, we found that average biomass yield is much more sensitive to noise injection to the 8 

RHS vectors of the steady-state constraints than to the biomass composition coefficients. Even for 9 

an injected random noise with a standard deviation of just 0.1% of the glucose uptake rate (by 10 

mass) to the RHS, the average biomass yield for the population decreases by 7.1% from the steady-11 

state yield (Figure 9). More substantial departures from steady-state attained by injecting noise 12 

that is 1% or 10% of the glucose uptake rate, leads to dramatic reductions of the average biomass 13 

yield by 67.9% or 94.8%, respectively. While it is possible for the cell to achieve faster growth by 14 

temporarily leveraging metabolite imbalances (see Figure 7 and 9), the effect is rather small and 15 

temporary since the depleting metabolite pools will likely be exhausted relatively quickly. Because 16 
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there is a significant penalty in the biomass yield whenever even temporary excursions from 1 

steady-state are carried out in a random manner, a strong selection pressure is implied for cells to 2 

maintain exponential growth under steady-state. This further bolsters the steady-state assumption 3 

in FBA in predicting cellular phenotypes under growth pressure over a time span.  4 

 5 

 6 
Figure 9. iFBA-calculated relative biomass yield when subjected to 0.1%, 1%, and 10% 7 
uncertainty in the RHS vector (as a mass % of glucose uptake rate). Biomass yield distributions 8 
are visualized with box plots and the numbers in red are the distribution means.  9 
 10 

4. Discussion 11 

In this work, we systematically quantified the effect of injecting random noise to biomass 12 

coefficient values and to the RHS of the metabolite balance equalities on FBA-predicted individual 13 

metabolic fluxes and biomass yield. Consistent with the robustness of biomass yield predictions 14 

by FBA, we found that random biomass coefficient uncertainty propagates weakly to the predicted 15 

biomass yield. This effect is overestimated by about 3-fold if the biomass coefficients are not 16 

property rescaled so that they correctly map to the MW of the biomass metabolite being 1 g mmol-1. 17 

In contrast, the effect on predicted individual metabolic fluxes can be much more pronounced, and 18 
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in some cases amplified in comparison to the magnitude of the injected noise. Noise injected in 1 

the energy requirement component of the biomass reaction GAM has a proportionate effect on 2 

both FBA predicted biomass yield and metabolic fluxes, alluding to the importance of deriving an 3 

accurate estimate for GAM in metabolic model reconstruction and avoiding whenever possible 4 

direct porting from related organisms. Injection of noise on the RHS of balance constraints 5 

revealed the difficulty of recovering feasible flux distributions as metabolite pool and elemental 6 

balance constraints maintain strict requirements even under unsteady-state conditions. Metabolite 7 

unsteady-state causes dramatic reductions in the predicted average biomass yield even for very 8 

small temporary random departures from steady-state, pointing at a strong selection pressure to 9 

maintain steady-state during exponential growth. Conceptually, this implies that it is best for all 10 

biomass constituents to be available on a “just-in-time” basis to avoid growth arrests because a 11 

single required (core) biomass constituent is missing. Any potential benefit of temporarily boosting 12 

growth by creating a metabolite imbalance through depletion seems to cause a disproportionate 13 

reduction in the long run. The results obtained for both types of uncertainty argue in favor of the 14 

core assumptions of constant biomass composition and steady-state underpinning FBA.  15 

This study revealed a number of best practices (and things to avoid) whenever assessing the impact 16 

of parametric uncertainty on FBA results. Any modification in the biomass reaction should be 17 

accompanied by checking for material balances in the lumped reactions (i.e., ATP hydrolysis for 18 

GAM), processes (i.e., DNA, RNA, and protein synthesis), and re-normalizing biomass MW to 1 19 

g mmol-1. Similarly, updating biomass reaction formulations to account for new processes such as 20 

tRNA-charging of amino acids (Xavier et al., 2017) must be carried out so as mass and charge 21 

balances are conserved. An important observation from this study is that injected noise in biomass 22 

coefficients does not propagate equally to the biomass yield output, but it is dependent on the 23 
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biosynthetic, energy, and cofactor costs for the corresponding biomass constituent. This 1 

establishes a prioritization sequence for experimental determination of various components of the 2 

biomass reaction.  For example, amino acid composition and protein fraction should be prioritized 3 

in order to obtain accurate NADPH yield prediction whereas lipid species composition and fraction 4 

are important for accurate biomass yield prediction. Priority should also be given to 5 

macromolecular composition as their uncertainty propagation affects FBA-predictions to a larger 6 

extent than individual biomass coefficients. To this end, a pipeline was recently put forth 7 

(Simensen et al., 2021) to robustly measure macromolecular composition in E. coli.  8 

Special considerations are also required when exploring departures from metabolite steady-states, 9 

as violating CM-pool equality constraints will cause the optimization problems to become 10 

infeasible. This can be a problem when incorporating experimental measurements of concentration 11 

changes to iFBA to quantify the RHS imbalance for metabolites that are parts of CM-pools. 12 

Missing or imprecise measurements could render the experimentally derived RHS vector unusable, 13 

and may require steady-state departures of unmeasured metabolite(s) to achieve a feasible solution 14 

(Bordbar et al., 2017). To this end, PULP can be a useful tool for projecting experimental 15 

measurements back to the feasible RHS solution space. Explicit inclusion of elemental balances 16 

within PULP is necessary to avoid elemental imbalances in the predicted flux distribution as under 17 

unsteady-state conditions the model stoichiometry cannot solely maintain elemental balancing 18 

leading to systematic depletions.  19 

The methods developed here enable the prediction of flux phenotypes subject to an input of 20 

parametric uncertainty. They are also applicable to the study of systems that exhibit periodic 21 

variations in their metabolism (Andreas Angermayr et al., 2016) or the study of non-growing cells 22 

that only exhibit metabolite concentration fluctuations (Yurkovich et al., 2017). The assumption 23 
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of normality for the injected uncertainty can be easily removed by generating samples conforming 1 

to any probability distribution. For example, one can assess what input probability distribution 2 

recovers the observed bimodal distributions of phenotypes (Elsafadi et al., 2016; Schmitz et al., 3 

2017). Overall, the methods presented in this work could be used to further studies investigating 4 

metabolic flux and yield variation under parametric uncertainty in FBA.  5 

 6 
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