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ABSTRACT: What shapes the distribution of nucleotide diversity along the genome? Attempts 

to answer this question have sparked debate about the roles of neutral stochastic processes and 

natural selection in molecular evolution. However, the mechanisms of evolution do not act in 

isolation, and integrative models that simultaneously consider the influence of multiple factors on 

diversity are lacking; without them, confounding factors lurk in the estimates. Here we present a 

new statistical method that jointly infers the genomic landscapes of genealogies, recombination 

rates and mutation rates. In doing so, our model captures the effects of genetic drift, linked selection

and local mutation rates on patterns of genomic variation. Guided by our causal model, we use 

linear regression to estimate the individual contributions of these micro-evolutionary forces to 

levels of nucleotide diversity. Our analyses reveal the signature of selection in Drosophila 

melanogaster, but we estimate that the mutation landscape is the major driver of the distribution of 

diversity in this species. Furthermore, our simulation study suggests that in many evolutionary 

scenarios the mutation landscape will be a crucial force shaping diversity, depending notably on the 

genomic window size used in the analysis. We argue that incorporating mutation rate variation into 

the null model of molecular evolution will lead to more realistic inference in population genomics.
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INTRODUCTION:

Understanding how various evolutionary forces shape genetic diversity (π) is a major goal of 

population genomics (Charlesworth, 2009; Ellegren & Galtier, 2016), with a rich history of studies, 

both theoretical and empirical (Charlesworth & Charlesworth, 2016; Casillas & Barbadilla, 2017). 

For many years, the debate was restricted to the relative importance of genetic drift and natural 

selection to the genome-wide average π (Kimura, 1968; Ohta, 1992). The observation that π does 

not scale linearly with population size across species (Lewontin, 1974) was termed “Lewontin’s 

Paradox”, and recent work has taken a new stab at this old problem (Buffalo, 2021; Galtier & 

Rousselle, 2020). Later on, with recognition that linkage and recombination wrap the genome in 

regions of correlated evolutionary histories (Hudson, 1983; Kaplan & Hudson, 1985), focus shifted 

toward understanding how diversity levels vary along chromosomes of a single species (Pouyet & 

Gilbert, 2020). In 1992, Begun and Aquadro found a positive correlation between π and local 

recombination rate in Drosophila melanogaster (Begun & Aquadro, 1992), which they interpreted 

as the signature of linked selection (Hudson & Kaplan, 1988; Cutter & Payseur, 2013). In the three 

decades since this seminal work, identifying the drivers of the distribution of diversity became a 

leading quest in the field. Nevertheless, this search has so far been incomplete. The literature has 

mostly focused on selection (Comeron, 2014; Elyashiv et al., 2016; McVicker et al., 2009; 

Stankowski et al., 2019) and introgression (Schrider et al., 2018; Stankowski et al., 2019; Hubisz et 

al., 2020), whereas variation in the de novo mutation rate (μ) along the genome has been largely 

ignored, presumably due to challenges in its estimation (Jónsson et al., 2018; Besenbacher et al., 

2019). Yet a recent study based on human trios suggests that the impact of the mutation landscape 

on polymorphism may be greater than previously recognised: up to 46% of the human-chimpanzee 

divergence, and up to 69% of within-human diversity, can potentially be explained by variation in 

de novo mutation rate at the 100 kb scale (Smith et al., 2018). It is unclear, however, how well these

results generalise to species with distinct genomic features and life history traits. The few studies 

conducted in non-human organisms relied on proxies of the local mutation rate such as synonymous
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diversity or divergence with a closely-related outgroup (Castellano, et al., 2018a; Castellano et al., 

2018b). Since these indirect measures of the mutation rate are susceptible to the confounding effect 

of selection (both direct, e.g. codon usage (Lawrie et al., 2013; Machado et al., 2020) and indirect, 

e.g. background selection (Phung et al., 2016)), developing dedicated statistical methods to infer 

mutation rate variation from polymorphism data is of high interest. Through simultaneous inference

of the landscapes of genetic drift, selection, recombination and mutation, confounding factors can 

be better teased apart and, in a second step, the relative contribution of these micro-evolutionary 

forces to the distribution of diversity can be more meaningfully quantified.

Disentangling the effects of multiple forces shaping the evolution of DNA sequences is challenging.

For example, a genomic region with reduced diversity can be explained by either linked selection, 

drift, low mutation rate or a combination thereof. Zeng and Jackson developed a likelihood-based 

framework that jointly infers the effective population size (Ne) (Charlesworth, 2009) and μ with 

high accuracy (Zeng & Jackson, 2018). However, since it relies on the single-site frequency 

spectrum, their method is restricted to unlinked loci. While this approach avoids the confounding 

effect of linkage disequilibrium (Slatkin, 2008), it discards sites in the genome where local variation

in the mutation rate may be relevant. In this article we describe a new model to fill in this gap. We 

have previously described a statistical framework (the integrative sequentially Markovian 

coalescent, iSMC) that jointly infers the demographic history of the sample and variation in the 

recombination rate along the genome (Barroso et al., 2019) via a Markov-modulated Markov 

process. We now further extend this framework to account for sequential variation of the mutation 

rate. This integration allows statistical inference of variation along the genome in both 

recombination and mutation rates, as well as in Times to the Most Recent Common Ancestor, that 

is, the ancestral recombination graph of two haploids (Rosenberg & Nordborg, 2002). Because 

natural selection disturbs τ away from its distribution under neutrality around functionally 

constrained regions of the genome (Palamara et al., 2018; Rasmussen et al., 2014; Stern et al., 
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2019), iSMC offers estimators of all micro-evolutionary forces and we can further use causal 

inference (Pearl & Mackenzie, 2018) to simultaneously estimate their effects on π. Our analyses of 

Drosophila melanogaster reveals the impact of linked selection, however, it suggests that the rate of

de novo mutations is quantitatively the most important factor shaping genetic diversity in this 

species. 

RESULTS:

The sequentially Markov coalescent with heterogeneous mutation and recombination

The sequentially Markovian Coalescent (SMC) frames the genealogical process as unfolding 

spatially along the genome (McVean & Cardin, 2005; Marjoram & Wall, 2006). Its first 

implementation derives the transition probabilities of genealogies between adjacent sites as a 

function of the historical variation of Ne and the genome-average scaled recombination rate

ρ=4×Ne×r  (Li & Durbin, 2011). Model fitting is achieved by casting the SMC as a hidden 

Markov model (HMM) (Dutheil, 2017) and letting the emission probabilities be a function of the 

underlying Time to the Most Recent Common Ancestor (TMRCA, τ) and the scaled mutation rate

θ=4×Ne×μ (see Methods). The SMC has proven to be quite flexible and serves as the 

theoretical basis for several models of demographic inference (Schiffels & Durbin, 2014; Terhorst 

et al., 2017; Sellinger et al., 2020). We have previously extended this process to account for the 

variation of ρ along the genome, thereby allowing for a heterogeneous frequency of transitions 

between local genealogies along the genome (Barroso et al., 2019). In this more general process 

called iSMC (Dutheil, 2020), recombination rate heterogeneity is captured by an auto-correlation 

parameter, where the local ρ is taken from a discrete distribution and the transition between 

recombination rates along the genome follows a first-order Markov process. 

In the general case, the iSMC process is a Markov-modulated Markov process that can be cast as a 

HMM where the hidden states are n-tuples storing all combinations of genealogies and discretised 
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values of each parameter that is allowed to vary along the genome (Dutheil, 2020). If one such 

parameter contributes to either the transition or emission probabilities of the HMM, then the 

parameters that shape its prior distribution can be optimised, e.g. by maximum likelihood (see 

Methods). In the iSMC with heterogeneous recombination (ρ-iSMC) the hidden states are 2-tuples 

containing pairs of genealogies and recombination rates (Barroso et al., 2019). Here, we extend this 

model by allowing the mutation rate to also vary along the genome (Figure 1), following an 

independent Markov process, i.e., letting the hidden states of the HMM be { θ-category, ρ-category, 

genealogy} triplets. The signal that variation in ρ and θ leaves on the distribution of SNPs is 

discernible because their contributions to the likelihood are orthogonal: the recombination and 

mutation rates affect the transition and emission probabilities in the forward algorithm of the HMM,

respectively. Parameter optimisation and subsequent posterior decoding is performed as detailed by 

(Barroso et al., 2019). Under strict neutrality, the inferred θ landscape is an approximation to the 

landscape of de novo mutations (μ). iSMC can therefore be used to infer genome-wide variation in 

mutation rates with single-nucleotide resolution, and statistical noise is reduced by averaging the 

posterior estimates of θ within larger genomic windows.

In order to increase power, we further extend iSMC to accommodate multiple genomes. In this 

augmented model, input genomes are combined in pairs such that the underlying genealogies have a

trivial topology which is reduced to their τ (Figure 1). Although under Kingman’s Coalescent 

(Kingman, 1982) the genealogies of multiple pairs of genomes are not independent, we approximate

and compute the composite log-likelihood of the entire dataset by summing over the “diploid” log-

likelihoods, similarly to MSMC2 (Malaspinas et al., 2016). Furthermore, iSMC enforces all 

diploids to share their prior distributions of τ, ρ and θ so that multiple sequences provide aggregate 

information to our parameter inference; it does not, however, explicitly enforce that they have 

common genomic landscapes. Rather, iSMC uses posterior probabilities to reconstruct 

recombination and mutation maps separately for each diploid. 
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Figure 1. Schematic representation of ρ-θ-iSMC for one pair of genomes. This cartoon model 
has three time intervals, three recombination rate categories and three mutation rate categories. The 
genome-wide distribution of diversity depends on the mutation landscape (top) and on the τ 
landscape (bottom), which is modulated by the recombination landscape (middle). Discretised 
values of these distributions (left) are combined in triplets as the hidden states of our Hidden 
Markov Model (right).

The large variance of the coalescent process results in variation among the posterior landscapes 

inferred from each pair of genomes since their τ landscapes modulate the amount of information 

they contain. To obtain a consensus landscape of the whole sample in order to reduce noise, iSMC 

averages the individual posterior estimates for each site in the genome (see Methods). On the other 

hand, differences in the τ distribution between diploids primarily reflect variance in the coalescent. 

We average these individual landscapes to obtain a measure of drift in neutral simulations, noting, 
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however, that the average τ of the sample also contains information about natural selection 

(Palamara et al., 2018) – a property we exploit in the analyses of Drosophila data.

Mutation rate variation impacts diversity more than linked selection in Drosophila

We sought to quantify the determinants of genome-wide diversity in Drosophila melanogaster using

10 haploid genome sequences from the Zambia population. To infer the genomic landscapes, we 

employed a ρ-θ-iSMC model with five mutation rate classes, five recombination rate classes and 30 

coalescence intervals, leading to 750 hidden states. Owing to the complexity of the model, which 

led to large computation times, we proceeded in two steps: we first estimated model parameters on 

a subset of the data (chromosome arm 2L), and then used the fitted model to infer the landscape of 

mutation, recombination and TMRCA for all autosomes (see Methods). The estimated parameters 

suggested an exponential-like distribution of recombination rates ( α̂ = β̂ = 1.03 for their 

Gamma distribution) whereas the inferred distribution of mutation rates was more tightly centered 

around the mean ( α̂ = β̂ = 2.93 for their Gamma distribution). iSMC also inferred that the 

change in recombination rate across the genome was more frequent (auto-correlation parameter

δ̂ρ ~ 0.9999, corresponding to a change of recombination rate on average every 10 kb) than the 

change in mutation rate (auto-correlation parameter δ̂θ ~ 0.99999, corresponding to a change of 

mutation rate on average every 100 kb). This suggests that our model is mostly sensitive to factors 

that determine large-scale variation in the mutation rate instead of fine-scale sequence motifs such 

as highly mutable triplets (DeWitt et al., 2021; Harris & Pritchard, 2017). Our estimated genome-

wide average ρ̂ (0.036) is in line with previous estimates (Chan et al., 2012), and the coalescence 

rates suggest a relatively recent ~4-fold bottleneck followed by a fast recovery. We used these 

parameters estimated from D. melanogaster to simulate 10 replicate datasets (see Methods). The 

aims of these simulations are (1) to benchmark iSMC’s accuracy in reconstructing the mutation 

landscape; and (2) to understand how the genomic landscapes of ρ, θ and τ interact to influence 
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diversity levels under neutrality, thereby providing a measure of contrast for the analyses of real 

data (where natural selection is present).

We first report strong correlations between simulated and inferred maps, ranging from 0.975 to 

0.989 (Table 1, Figure 2), showing that our model is highly accurate under strict neutrality and 

when mutation rate varies along the genome in Markovian fashion. 

Table 1. Spearman correlations between simulated and inferred mutation maps. All p-values 
are smaller than 2.2e-16.

Replicate/Scale 50 kb 200 kb 1 Mb

Replicate 1 0.9780 0.9850 0.9790

Replicate 2 0.9850 0.9890 0.9750

Replicate 3 0.9780 0.9830 0.9810

Replicate 4 0.9780 0.9820 0.9820

Replicate 5 0.9820 0.9870 0.9830

Replicate 6 0.9840 0.9870 0.9810

Replicate 7 0.9800 0.9870 0.9750

Replicate 8 0.9810 0.9880 0.9820

Replicate 9 0.9830 0.9870 0.9810

Replicate 10 0.9840 0.9890 0.9840

We then used the genomic landscapes from these simulated datasets to investigate how evolutionary

forces shape the distribution of genetic diversity along the genome, measured as π, the average 

heterozygosity of the sample. The structure of our hypothesized causal model of diversity (Figure 

3) suggests the absence of "backdoor paths" creating non-causal associations between ρ, θ, τ and π 

(Pearl & Mackenzie, 2018). Therefore, we represented our model as an ordinary least squares 

regression (OLS) that seeks to explain π as a linear combination of the centered variables ρ, θ and τ,
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Figure 2. iSMC recovers the mutation landscape in simulations. Simulated values are shown by 
the thick black line whereas inferred values are shown, for each replicate, by thin lines in shades of 
red. A, 50 kb scale. B, 200 kb scale. C, 1 Mb scale.
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binned in windows of 50 kb, 200 kb and 1 Mb. Since simulations grant direct access to the true 

genomic landscapes, the ensuing linear model is free of estimation noise in the explanatory 

variables and serves as a ground truth assessment of how neutral evolutionary forces influence 

genetic diversity. In all replicates, we found that model selection using Akaike’s information 

criterion favours a regression with an interaction term between the two variables that directly 

influence π π i=β 1⋅τ i+β 2⋅θ i+β 3⋅ρ i+β 4⋅θ : τ +ϵ i over the simpler model

π i=β1⋅τi+β2⋅θi+β3⋅ρi+ϵi . 

Figure 3. Directed acyclic graphs depicting our causal model for the determinants of genetic 
diversity. A: for a single, hypothetical nucleotide that is independent of any neighbors, its 
probability of heterozigosity is directly influenced by the local mutation rate (θ) and TMRCA (τ), 
which in turn is affected by drift (D) and selection (S). B: when contiguous sites are grouped into 
genomic windows, their correlated histories imply that the local recombination rate (ρ) plays a role 
in determining the variance in drift and the breadth of linked selection via τ, which interacts with 
local θ to influence π.

Fitting this linear model at the 50 kb, 200 kb and 1 Mb scales shows significant and positive effects 

of θ and τ, but not of ρ, on π. This is expected since both deeper ancestry and higher mutation rate 

lead to increased diversity, and the effect of recombination rate on π not only is mediated by τ (thus 

disappearing after conditioning on it in the linear model), but also should not be felt under neutrality

(Figure 3B). There is also a significant and positive effect of the interaction between θ and τ, where
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the effect of the mutation rate on diversity can only be fully manifested if ancestry is deep enough 

(reciprocally, ancestry can only be seen if the local mutation rate is high enough). Strikingly, the 

total variance explained by the model is > 99% at all scales, suggesting that these three landscapes 

are sufficient to describe the genome-wide distribution of diversity. To understand the relative 

contributions of drift, mutation and recombination on local diversity levels, we used type II ANOVA

to partition the R2 contributed by each explanatory variable of our linear model. Our estimates show 

that the θ landscape explains most of the variance in π in our simulated scenario and that its 

contribution increases with the genomic scale (96.3% at 50 kb, 98.6% at 200 kb and 99.3% at 1 Mb,

yellow squares in Figure 4A). On the other hand, the contribution of the τ landscape decreases with

the genomic scale (2.7% at 50 kb, 1% at 200 kb and 0.54% at 1 Mb, blue squares in Figure 4). 

These trends stem from the very fine scale of variation in τ (changing on average every 48.42 base 

pairs due to recombination events in our coalescent simulations, median = 19 base pairs), which 

smooths out more rapidly when averaged within larger windows. Conversely, the broader scale of 

heterogeneity in θ (changing every ~100 kb) makes it comparatively more relevant at larger 

windows. We then fitted such OLS models to the same simulated data except using the genomic 

landscapes as inferred by iSMC. When using the inferred landscapes instead of the true ones the 

sign and significance of the estimated coefficients of the OLS models remained unchanged, but in 

some replicates the residuals of the model were found to be correlated and/or with heterogeneous 

variance. As this violation of the OLS assumption could bias our estimates of the linear coefficients,

we also fitted Generalized Least Squares (GLS) models accounting for both effects, which 

reassuringly produced consistent results. Although co-linearity between τ̂ and θ̂ arises due to 

confounding in their estimation by iSMC, the variance inflation factors are always < 5, indicating 

that the coefficients are robust to this effect (Ferré, 2009). Type II ANOVA using the inferred 

landscapes shows that the contribution of τ̂ is slightly higher than using the true landscapes 

(5.1%, 2.9% and 1.4%, increasing window size) whereas the contribution of contribution of θ̂ is 

slightly lower (92.5%, 95.4% and 97.5%, increasing window size), but the variance explained by 
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each variable largely agrees between the two cases (Figure 4). We conclude that the joint-inference 

approach of iSMC can infer the genomic landscapes of τ, ρ and θ and that our linear model can 

quantify their effect on the distribution of nucleotide diversity.

We finally employed the landscapes obtained with ρ-θ-iSMC to quantify the determinants of 

genome-wide diversity in D. melanogaster. We used our inferred maps to fit an OLS regression of 

the form π i=β1⋅τ̂i+β2⋅θ̂i+β3⋅ρ̂i+β4⋅θ̂ : τ̂+ϵi . As in our simulations, the regression model shows 

positive effects of both τ and θ, but not of ρ, on π across all scales (Table 2). Likewise, a GLS 

model yields the same trends, and the variance inflation factors are < 5, indicating that the estimated

coefficients are robust to co-linearity (Ferré, 2009). Partitioning of variance shows a small 

contribution of τ̂ that decreases with increasing genomic scale (5.9% at 50 kb, 2.1% at 200 kb 

and 2.1% at 1 Mb) whereas the opposite is true for θ̂ (91.7% at 50 kb, 96.7% at 200 kb and 

96.8% at 1 Mb, Figure 4). Our linear model explains > 99% of the variation in π along D. 

melanogaster autosomes, and the effect of our inferred landscapes on diversity are remarkably close

to those from our neutral simulations (Figure 4), suggesting that iSMC is robust to the occurrence 

of selection in this system. Unlike in our neutral simulations, however, in real Drosophila data the 

simple correlation test between ρ̂ and π yields a positive and significant estimate (Spearman’s rho

= 0.20, p-value = 2e-13 at the 50 kb scale; Spearman’s rho = 0.15, p-value = 0.0025 at the 200 kb 

scale; Spearman’s rho = 0.20, p-value = 0.07 at the 1 Mb scale), recapitulating the classic result of 

Begun and Aquadro  (Begun & Aquadro, 1992) and indicating the presence of linked selection. We 

also found a positive correlation between ρ̂ and τ̂ (Spearman’s rho = 0.48, p-value < 2.2e-16 at 

50 kb; Spearman’s rho = 0.45, p-value < 2.2e-16 at 200 kb; Spearman’s rho = 0.48, p-value < 2.2e-

16 at 1 Mb), once again contrasting the results under neutrality and suggesting that the effect of 

linked selection is indeed captured by the distribution of genealogies and modulated by the 

recombination rate (Cutter & Payseur, 2013). Although in SMC-based methods τ is primarily 

influenced by demography (fluctuating population sizes explicitly by use of a Coalescent prior 
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taming the transition probabilities of the HMM (Li & Durbin, 2011; Schiffels & Durbin, 2014) and 

population structure implicitly (Beichman et al., 2018)), it has also been demonstrated to carry the 

signature of selection (Palamara et al., 2018) due to local changes in coalescence rates. We tested 

the sensitivity of our framework to this effect by fitting linear models without τ̂ as an explanatory

variable π i=β1⋅θ̂i+β2⋅ρ̂i+ϵi , hypothesizing that in this case the recombination rate would have a 

significant and positive effect on diversity. Indeed, this is what we found at all genomic scales 

(Table 2), corroborating our interpretation of the causal relationships among ρ, Ne and π in the 

presence of selection (Figure 3B). In summary, our results show that recombination shapes 

diversity via the τ distribution and linked selection, but that in D. melanogaster, the impact of 

selection on the diversity landscape is smaller than that of mutation rate variation. 

Table 2. Coefficient estimates of linear regression models to explain the genome-wide 
distribution of diversity in Drosophila melanogaster.

50 kb scale 200 kb scale 1 Mb scale

OLS OLS OLS

Variable Coefficient p-value Coefficient p-value Coefficient p-value

Theta 0.9746 <2.2e-16 0.9767 <2.2e-16 0.9903 <2.2e-16

Tau 0.0114 <2.2e-16 0.0151 <2.2e-16 0.0098 <2.2e-16

Rho 0.0018 0.0237 0.0016 0.2580 0.0049 0.0748

Theta:Tau 1.0510 <2.2e-16 0.9481 <2.2e-16 0.5321 <2.2e-16

GLS GLS GLS

Variable Coefficient p-value Coefficient p-value Coefficient p-value

Theta 0.9730 <1e-4 0.9729 <1e-4 0.9816 <1e-4

Tau 0.0115 <1e-4 0.0114 <1e-4 0.0106 <1e-4

Rho 0.0014 0.0700 0.0018 0.2300 0.0005 0.8658

Theta:Tau 1.0777 <1e-4 0.9323 <1e-4 0.6656 <1e-4

GLS GLS GLS

Variable Coefficient p-value Coefficient p-value Coefficient p-value

Theta 1.0991 <1e-4 1.0796 <1e-4 1.0840 <1e-4

Rho 0.0529 <1e-4 0.0601 <1e-4 0.0444 <1e-4
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To investigate the signature of selection, we analysed the relationship between the local mutation 

rate and the levels of synonymous (πS) and non-synonymous (πN) diversity across D. melanogaster 

genes (see Methods). We computed these summary statistics across exons and matched their 

coordinates with our 50 kb-scale genomic landscapes to increase resolution (i.e., to maximize 

variation in mutation and recombination rates among genes). We observed a stronger relationship 

between θ̂ and πS (Spearman’s rho = 0.68, 95% CI after 10,000 bootstrap replicates = [0.64, 0.72],

partial correlation accounting for τ̂ ) than between θ̂ and πN (Spearman’s rho = 0.27, 95% CI 

after 10,000 bootstrap replicates = [0.22, 0.32], partial correlation accounting for τ̂ ) indicating 

that selection partially purges the excess of deleterious variants in genes with elevated mutation 

rate, whereas synonymous variants segregate more freely either because they are not directly 

affected by selection (but are still linked to selected sites) or because selection on codon usage 

(Lawrie et al., 2013; Machado et al., 2020) is not as strong as selection on protein function. Since 

synonymous sites are interdigitated with non-synonymous sites, the contrast between their 

correlation tests cannot be explained by a bias in θ̂ in functionally constrained regions of the 

genome. Furthermore, a correlation test between θ̂ and the proportion of exonic sites in the same 

50 kb windows (Spearman’s rho = -0.037, p-value =0.19, partial correlation accounting for τ̂ ) 

fails to reveal a bias in our inference of the mutation rate in regions under stronger background 

selection. Conversely, we observed a negative and significant correlation between τ̂ and the 

proportion of exonic sites (Spearman’s rho = -0.158, p-value = 2.03e-12, partial correlation 

accounting for θ̂ ), as expected since stronger background selection in coding regions should 

reduce the TMRCA more sharply (Palamara et al., 2018). To estimate the effect of these factors on 

more heavily constrained diversity, we fitted linear models considering only 50 kb windows with 

more than 20,000 coding sites. Once again, there were significant and positive effects of both τ̂

and θ̂ , but not of ρ̂ , on π. Moreover, the mutation landscape remains the most important 

factor, explaining 93.2% of the distribution of diversity in gene-rich regions. 
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Figure 4. Variance in the distribution of diversity explained by each genomic landscape. 
Partitioning of variance according to bin size (x-axis, shown in log10 scale), using either simulated 
data (true landscapes: triangles; inferred landscapes: squares) or real Drosophila data (circles). 
Colors represent explanatory variables in the linear model: θ (yellow), ρ (green), τ (blue), θ:τ 
interaction (pink) and the total variance explained by the model (red). 

Mutation rate variation shapes genome-wide diversity in several evolutionary scenarios

Our analyses of Drosophila data and Drosophila-inspired simulations suggest that the mutation 

landscape is by far the most important factor influencing levels of diversity along the genome. But 

are there scenarios where τ has a more pronounced effect on π? We addressed this question by 

exploring the parameter space of our neutral simulations. For fixed values of the long-term average 

population size (Ne = 100,000), the average mutation rate per site per generation (μ = 2e-09), the 

Gamma distribution of scaling factors of θ (α = β = 2.5) and the Gamma distribution of scaling 

factors of ρ (α = β = 1.0), we varied the demographic history (flat Ne; 10-fold bottleneck 0.5 

coalescent time units ago), the average recombination rate per site per generation (r = 1e-08; 1e-09) 

and the average length of genomic blocks of constant θ (50 kb; 500 kb; flat mutation landscape). 
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We reasoned that the extent of the variation in τ along the genome relative to that of θ should 

modulate their relative influence on π. We fitted OLS models to explain π using the true simulated 

landscapes as explanatory variables, and computed their average R2 over all replicates for each 

evolutionary scenario (Figure 5, 6). The OLS models included an interaction term between θ and τ 

but its individual R2 was excluded from the plots because it is overall low (~1%) and of no direct 

interest. We observed clear trends emerging from these simulated data. First, for a given 

demographic history and pattern of variation in the mutation rate, increasing r reduces the influence 

of τ on π. This happens because with high recombination rates the genealogies change more often 

along the genome, thus displaying more homogeneous maps when averaged within windows. 

Second, for a given r and pattern of variation in the mutation rate, τ has a larger impact on π in the 

bottleneck scenario compared to the scenario of constant population size. This happens because 

when Ne varies in time, the distribution of coalescence times may become multi-modal (Hein et al., 

2004) and therefore more heterogeneous along the genome. Third, for a given demographic history 

and r, frequent changes in θ along the genome (on average every 50 kb) reduce its impact on π 

relative to rare changes in θ (on average every 500 kb). This happens because frequent changes in θ 

lead to it being more homogeneous along the genome, for the window sizes used in our analyses. 

Finally, if the mutation landscape is flat, then as expected the variance explained by our linear 

model is entirely attributed to τ. Note that although in our neutral simulations τ varies along the 

genome as a result of genetic drift alone, it still has a non-negligible effect on the distribution of 

diversity in most scenarios (i.e., binning does not lead to completely flat landscapes of genetic 

drift). This is in agreement with an observation that heterogeneous recombination rates lead to 

outliers in genome-wide FST scans, even under neutrality (Booker et al., 2020), which happens 

because the recombination landscape enlarges the variance of the τ distribution by making the 

frequency of genealogy transitions change according to the local ρ. From a practical standpoint, it 

means that drift should not be neglected as an explanation for the distribution of π, especially at 

narrow window sizes (<=10 kb). 
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Figure 5. Variance explained by each genomic landscape under constant Ne scenarios. 
Partitioning of variance according to bin size and genomic parameters (rows = recombination rate, 
columns = scale of mutation rate variation). X-axis is shown in log(10) scale. 

More generally, our simulation study shows that the relative impacts of evolutionary forces on π 

depend primarily on (1) the joint patterns of variation of τ and θ along the genome; and (2) the scale

of the analysis, due to averaging parameter estimates within genomic windows. In light of these 

results, the genome of D. melanogaster – with its high effective recombination rate, broad pattern of

variation in the mutation rate and the relatively smooth demographic history of the Zambia 

population – seems to be particularly susceptible to the effect of the mutation landscape on its 
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distribution of diversity. Yet, since the mutation landscape stood out as the most relevant factor in 

all of the explored scenarios where it was allowed to vary even slightly (Figure 5, 6), we predict 

that it is very likely to shape genome-wide diversity patterns in other species as well.

Figure 6. Variance explained by each genomic landscape under population bottleneck 
scenarios. Partitioning of variance according to bin size and genomic parameters (rows = 
recombination rate, columns = scale of mutation rate variation). X-axis is shown in log10 scale.

 

DISCUSSION:

The relative strengths of selection and drift in shaping patterns of nucleotide diversity have been 

debated for several decades (reviewed in Hey, 1999; and, more recently, Jensen et al., 2019; Kern &

Hahn, 2018), with the contribution of local mutation rate only recently brought to light (Castellano, 

Eyre-Walker, et al., 2018; Harpak et al., 2016; Smith et al., 2018). We were able to employ our 
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extended iSMC model to jointly infer mutation, recombination and TMRCA landscapes and to use 

causal inference to estimate their impact on π along the genome. Our analyses revealed that these 

combined landscapes explained >99% of the distribution of diversity along the Drosophila genome;

when looking into the detailed patterns, we found the footprints of linked selection, but the major 

driver of genome-wide diversity in this species seems to be the mutation landscape. This does not 

imply that selection cannot extend beyond the 18.3% of the Drosophila genome that is exonic 

(Alexander et al., 2010), but rather that variation in the mutation rate is strong enough to contribute 

relatively more to the variation in π, in the genomic scales of analyses that we conducted. Our 

findings, however, contrast with an estimate by Comeron that 70% of the distribution of diversity in

Drosophila can be explained by background selection at the 100 kb scale (Comeron, 2014), where 

the author further argued that many regions of increased diversity may be experiencing balancing 

selection. Instead, we propose that mutation rate variation is responsible for at least some of these 

effects. We believe that such discrepancy between the results is partially due to the B-value statistic 

computed in (Comeron, 2014) not accounting for heterogeneity in the mutation rate along the 

genome, contrary to its original application in humans (McVicker et al., 2009). It is also 

conceivable that selection is not only manifested as distortions in the distribution of genealogies 

(the τ landscape) but also biases our estimate of the mutation landscape. However, based on the 

high similarity between real Drosophila data and our neutral simulations (Figure 4), we argue that 

the bias induced by selection is unlikely to overturn our conclusion of a major impact of the 

mutation landscape on the distribution of diversity. We also note that selection should have a 

stronger impact on π when binning is performed at smaller genomic scales (<=10 kb), which we 

have not explored because estimation noise with iSMC is typically high at such small window sizes.

At larger scales, a putative explanation for our results is that the reduction in τ caused by linked 

selection could be relatively uniform across the chromosomes of species with a compact genome 

and high effective recombination rate. In summary, our results provide evidence that similarly to 

humans (Harpak et al., 2016; Smith et al., 2018), the mutation landscape is a crucial driver of the 
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distribution of diversity in the fruit fly. Our simulation study (Figure 5, 6) further suggests that in 

many evolutionary scenarios the mutation landscape will be the most relevant factor shaping π 

along the genome. Future studies using integrative models like the ones we introduced here and 

applied to species with distinct genomic features and life-history traits will help elucidate how often

– and by how much – the mutation landscape stands out as the main driver of the diversity 

landscape.

It is important to note that our results do not directly argue in favor of either genetic drift or natural 

selection in the classic population genetics debate. Instead, they highlight the importance of a third 

element – the mutation landscape – in shaping patterns of genetic diversity. Nevertheless, the 

mutation landscape may impact the dynamics of natural selection by modulating the rate of 

mutations in genes according to their position in the genome. Consequently, levels of selective 

interference, genetic load and rates of adaptation should vary accordingly (Castellano et al., 2016). 

In D. melanogaster, we inferred a ~10-fold change in mutation rate at the 50 kb scale, meaning that 

the impact of mutation rate variation on selective processes can be substantial. These results open 

intriguing lines of inquiry. First, under what conditions can the shape of the mutation landscape 

itself be selected for? For example, it has been shown that modifiers of the global mutation rate are 

under selection to reduce genetic load (Lynch, 2008; Lynch et al., 2016). It remains to be seen 

whether the position of genes or genomic features correlated with local mutation rate (e.g., 

replication timing (Francioli et al., 2015)) can likewise be optimised. Second, how conserved is the 

mutation landscape across species? Analogous work on the recombination landscape has revealed 

overall fast evolution in mammals and has helped uncover the molecular architecture responsible 

for the placement of double-strand breaks (Berg et al., 2011; Jabbari et al., 2019); it will be 

interesting to test whether mutation events follow a similar pattern, now that the impact of various 

sequence motifs on μ is being more thoroughly investigated (DeWitt et al., 2021; Kim et al., 2021).
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There is an ongoing discussion about incorporating complex demography and background selection 

into the null model of molecular evolution (Comeron, 2014, 2017; Johri et al., 2020), motivated by 

the goal of providing more sensible expectations for rigorously testing alternative scenarios. Our 

results suggest that a more realistic null model should also include variation in the mutation rate 

along the genome. By doing so, genome-wide scans (e.g., looking for regions with reduced 

diversity as candidates for selective sweeps) may become less susceptible to false negatives (in 

regions of high mutation rate) and positives (in regions of low mutation rate), paving the way to 

more robust inference (Booker et al., 2017; Haasl & Payseur, 2016).

METHODS:

Modelling spatial variation in θ

We now introduce our approach to modelling the mutation landscape starting from the original pair-

wise SMC process. Because iSMC models pairs of genomes, the genealogies underlying each 

orthologous site can be conveniently summarized by τ, the time to their most recent common 

ancestor (Li & Durbin, 2011; Schiffels & Wang, 2020). The pair of DNA sequences is described as 

a binary sequence where 0 represents homozygous states and 1 represents heterozygous states (thus,

once genome pairs are established, phasing information is discarded). The probability of observing 

0 or 1 at any given position of the genome depends only on τ and the population mutation rate θ. If 

the hidden state configuration of the model excludes variation in the mutation rate, then θ is 

assumed to be a global parameter such that the emission probabilities of homozygous and 

heterozygous states can be compute for every site as P(0|τ )=e(−θ×τ) , and P(1|τ)=1−e(−θ×τ)  

respectively, as presented by Li & Durbin (2011).

To incorporate spatial heterogeneity in the mutation rate, we set the genome-wide average θ as the 

average number of pair-wise differences between haplotypes, and modulate it by drawing scaling 

factors from a discretised Gamma distribution with mean equal to 1. The parameters shaping this 
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prior distribution are estimated by maximum likelihood together with other parameters of the 

model. We model the changes in mutation rate along the genome as a Markov process with a single 

parameter δθ, the transition probability between any class of mutation rate, independent of the 

genealogical process. The justification for the Markov model is that sites in close proximity are 

expected to have similar mutation rates, for example, as is the case when the efficiency of the 

replication machinery decreases with increasing distance from the start of the replication fork 

(Francioli et al., 2015). Let n(τ) be the number of discretised τ intervals, and n(θ) be the number 

of discretised categories of the prior distribution of scaling factors of θ. The ensuing Markov-

modulated HMM has n=n(τ)
×n(θ) hidden states. The transition matrix for spatial variation in θ is:

Qθ=[
P11 P12 ⋯ P

1 n(θ)

P21 P22 ⋯ P
2 n(θ)

⋮ ⋮ ⋱ ⋮
Pn(θ) 1 Pn(θ)2 ⋯ P

(n(θ )n(θ)
)

] =  [
1−δ

δ θ

n(θ )
−1

⋯
δ θ

n(θ )
−1

δ θ

n(θ )
−1

1−δ θ ⋯
δ θ

n(θ )
−1

⋮ ⋮ ⋱ ⋮
δ θ

n(θ )
−1

δ θ

n(θ )
−1

⋯ 1−δ θ
]

 

where δθ is the auto-correlation parameter. The resulting process is a combination of the SMC and 

the mutation Markov model, so that its transition probabilities are functions of the parameters from 

both processes, that is, the coalescence rates (parameterized by splines), δθ and the global 

recombination rate ρ (Barroso et al., 2019). The forward recursion for this model at genomic 

position i can be written as:

  Fi(τ t ,θm)=(∑k=1

n(θ)

(∑
j=1

n(τ)

Fi−1(τ j ,θk)⋅Pr (τ j→τ t)⋅Pr (θk→θm)))⋅Pr (τt→S i∣θm) (1)

where θm is the product of the genome-wide average mutation rate and the value of the m-th 

discretised category drawn from its prior Gamma distribution. The emission probability of binary 
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state Si depends on the height of the t-th genealogy and the focal mutation rate θm. More 

specifically, the emission probabilities of θ-iSMC are P(0|τ t ,θm)=e(−θm×τt ) , and

P(1|τ t ,θm)=1−e(−θm×τt ) . The forward recursion integrates over all n(θ) categories of θ and over

all n(τ) intervals of τ. In the double-modulated model, where both mutation and recombination are

allowed to vary along the genome, this integration is performed over θ, τ as well as ρ (giving a total 

of n(τ)
×n(θ)

×n(ρ) hidden states). Since spatial variation in ρ contributes to the transition 

probability between genealogies, the forward recursion is now given by:

Fi(τ t ,θm ,ρr)=(∑l=1

n(θ)

(∑k=1

n(ρ)

(∑
j=1

n(τ)

F i−1(τ j ,ρk ,θl)⋅Pr (τ j→τ t∣ρk )⋅Pr (θl→θm)⋅Pr(ρk→ρr))))⋅Pr( τt→S i∣θm)

(2)

To obtain the single-nucleotide landscapes for a given diploid individual, we first compute the 

posterior probability of each hidden state for every site i in the genome using standard HMM 

procedures (Durbin et al., 1998). Afterwards, since in ρ-θ-iSMC the hidden states are triplets 

(Figure 1), computing the posterior average of each variable of interest – ρ, θ or τ – amounts to first

marginalising the probability distribution of its categories and then using it to weight the 

corresponding discretised values (Barroso et al., 2019). Let M̂ be the inferred discretised Gamma 

distribution shaping mutation rate variation, and θ̂l be the product of the estimated genome-wide 

average mutation rate θ̂0 and the value of M̂ inside category l. Similarly, let R̂ be the inferred

discretised Gamma distribution shaping recombination rate variation, and ρ̂k be the product of the

estimated genome-wide average recombination rate ρ̂0 and the value of R̂ inside category k. 

Then the posterior average θ̂ at position i is given by:
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^̄θi=θ̂0⋅∑
l=1

n(θ)

ml⋅(∑
k=1

n(ρ)

∑
j=1

n(τ)

Pi(θl ,ρk , τ j)) (3)

where Pi(θl ,ρk , τ j) is the probability of the triplet {θl ,ρk , τ j } underlying the i-th site. Likewise,

the posterior average ρ̂ at position i is given by:

^̄ρi=ρ̂0⋅∑
k=1

n(ρ )

rk⋅(∑
l=1

n(θ)

∑
j=1

n(τ)

Pi(θl ,ρk , τ j)) (4)

Finally, the posterior average τ̂ at position i is presented in units of 4×Ne generations and 

obtained with:

^̄τi=∑
j=1

n( τ)

τ̂ j⋅(∑
k=1

n( ρ)

∑
l=1

n(θ)

Pi(ml ,r k , τ j)) (5)

We can then bin the inferred single-nucleotide landscapes into windows of length L by averaging 

our site-specific estimates over all sites within each window. A consensus map of the population is 

obtained by further averaging over all n individual (binned) maps in our sample, i.e.:

^̄θpop
L

=
1
n
∑
j=1

n

(
1
L
∑
i=1

L

θ̂i , j) (6)

is our estimate of the consensus mutation rate in a single genomic window of length L, where n is 

the number of pairs of genomes analysed by iSMC, and likewise for ρ and τ:

^̄ρpop
L

=
1
n
∑
j=1

n

(
1
L
∑
i=1

L

ρ̂i , j) (7)
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^̄τpop
L

=
1
n
∑
j=1

n

(
1
L
∑
i=1

L

τ̂ i , j) (8)

Simulation study

Using SCRM (Staab et al., 2015), we simulated 10 haploid sequences of length 30 Mb with 

parameters identical to those inferred from ρ-θ-iSMC in Drosophila melanogaster: θ = 0.0112; ρ = 

0.036; α (continuous Gamma distribution used as mutation rate prior) = 3.0; α (continuous Gamma 

distribution used as recombination rate prior) = 1.0; δθ (mutation rate transition probability) = 1e-

05; δρ (recombination rate transition probability) = 1e-04. Figures 5 and 6 display the mean R2 

value over 10 replicates, but the standard deviation of these estimates are very small and confidence

intervals were therefore omitted. All scripts necessary to reproduce the analyses and figures, as well

as supplementary figures are available at https://github.com/gvbarroso/ismc_dm_analyses

Data analyses 

Model fitting and posterior decoding by ρ-θ-iSMC in Drosophila melanogaster data was performed 

using a hidden-states configuration of 30 τ intervals, five ρ categories and five θ categories. We 

used publicly available data – haplotypes ZI103, ZI117, ZI161, ZI170, ZI179, ZI191, ZI129, ZI138,

ZI198 and ZI206 coming from the Zambia population in the Drosophila Population Genomics 

Project Phase 3 (Lack et al., 2015). Gaps and unknown nucleotides in these FASTA sequences were 

assigned as missing data. For each scale in which the landscapes were binned (50 kb, 200 kb and 1 

Mb), we filtered out windows with more than 10% missing data in the resulting maps. To optimize 

computational time, ρ-θ-iSMC was first fitted to chromosome 2L only. Maximum likelihood 

estimates from this model were then used to perform posterior decoding on all other autosomes. 

Genomic coordinates for coding sequences and their summary statistics (πN, and πS) were taken 

from (Moutinho et al., 2019) . Data analyses procedures (starting from the inferred iSMC 

landscapes) such as building linear models and testing Gauss-Markov assumptions are detailed in 

the script dm_analyses.Rmd, available in the GitHub repository: 
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https://github.com/gvbarroso/ismc_dm_analyses  /r_scripts/analyses  . Intermediate tables are 

provided in the FigShare repository: 10.6084/m9.figshare.13164320.

Linear modelling

When building linear models from real data, we first fitted GLS models independently to each 

autosome arm (2L, 2R, 3L, 3R), correcting for both auto-correlation of and heteroscedasticity of the

residuals. After using Bonferroni correction for multiple testing, we observed (across the autosome 

arms and for different window sizes) significant and positive effects of θ and τ on π, whereas the 

effect of ρ was only significant for chromosome 3L at the 200 kb scale, and the interaction between 

θ and τ is positive and significant except for arms 2R and 3L at the 1 Mb scale (Table S1). Since the

trends in coefficients are overall consistent, we pulled the autosome arms and in the Results section 

we presented linear models fitted to the entire genome, for ease of exposition. Because we cannot 

rely on the GLS to partition the variance explained by each variable using type II ANOVA, we used 

OLS models to compute R2 and restricted the GLS to assess the sign and significance of variables.  

We centered all explanatory variables before fitting the regression models to aid in both 

computation of variance inflation factors and interpretation of the coefficients (due to the 

interaction term between θ and τ). The procedures and intermediate results outlined here are 

detailed in the script dm_analyses.Rmd, available in the GitHub repository:  

https://github.com/gvbarroso/ismc_dm_analyses  /r_scripts/analyses  .

Data and software availability

The iSMC software package and source code is freely available at 

https://github.com/gvbarroso/iSMC

Scripts used to generate our results can be found in https://github.com/gvbarroso/ismc_dm_analyses

Data required to reproduce the results are deposited in FigShare under the DOI 

10.6084/m9.figshare.13164320
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