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Abstract 
Nucleotide-level control over DNA sequences is poised to power functional genomics studies 
and lead to new therapeutics. CRISPR/Cas base editors promise to achieve this ability, but 
the determinants of their activity remain incompletely understood. We measured base editing 
frequencies in two human cell lines for two cytosine and two adenine base editors at 
~14,000 target sequences. Base editing activity is sequence-biased, with largest effects from 
nucleotides flanking the target base, and is correlated with measures of Cas9 guide RNA 
efficiency. Whether a base is edited depends strongly on the combination of its position in 
the target and the preceding base, with a preceding thymine in both editor types leading to a 
wider editing window, while a preceding guanine in cytosine editors and preceding adenine 
in adenine editors to a narrower one. The impact of features on editing rate depends on the 
position, with guide RNA efficacy mainly influencing bases around the centre of the window, 
and sequence biases away from it. We use these observations to train a machine learning 
model to predict editing activity per position for both adenine and cytosine editors, with 
accuracy ranging from 0.49 to 0.72 between editors, and with better generalization 
performance across datasets than existing tools. We demonstrate the usefulness of our 
model by predicting the efficacy of potential disease mutation correcting guides, and find that 
most of them suffer from more unwanted editing than corrected outcomes. This work 
unravels the position-specificity of base editing biases, and provides a solution to account for 
them, thus allowing more efficient planning of base edits in experimental and therapeutic 
contexts.
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Introduction 
The CRISPR/Cas toolkit has enabled increasingly fine control over DNA sequences [1]. This 
technology has already uncovered myriad findings in basic research, identified new cancer 
targets, and offered novel therapeutic avenues for genetic disorders [2–5]. However, the 
limitation of generating only insertions and deletions without templated repair, and the 
stochasticity of outcomes have motivated the development of alternative effector proteins 
such as base editors [6–10] for more precise genome manipulation.  
 
Base editors reduce the range of mutations generated by Cas9 to primarily base 
substitutions, and alter DNA without potentially apoptosis-inducing double strand breaks. 
They consist of a catalytically inactive Cas9 fused to a deaminase and domains that 
modulate the DNA repair pathways [8,9]. There are two main classes of base editor: adenine 
base editors that convert adenines into guanines using an adenosine deaminase, and 
cytosine base editors that convert cytosines into thymines using a cytidine deaminase [11]. 
Once at the target determined by the gRNA, the base editor deaminates suitable 
nucleotides, which are then converted to another base via DNA repair. The original reports 
of feasibility [8,9] have been built on to develop increasingly precise and active enzymes 
[11–16], and also to expand to C to G editing [17,18].  
 
While powerful, base editors have variable efficacy across loci and within the target 
[8,9,19,20], as well as unintended activity [15,19–24]. The window of activity for the most 
popular base editors is in positions 4 to 8 of the target sequence [8,9,19,20] (“canonical 
window”), where the protospacer-adjacent motif is at position 21-23. First reports have 
attributed some of the variability of base editing efficacy across loci to the APOBEC 
deaminating domain [25,26], which has a preferred TCW sequence motif, but other sources 
of variation are less understood. Unintended edits can be frequent, both via off-target editing 
at unintended locations in the genome [15,21–24], and via bystander editing of bases near 
the target [19,20,24]. Both types of unintended edits depend on the targeted sequence and 
position within it [8,9,19,20,22,24]. However, the interplay of position, sequence, and other 
features that drive variation in editing rate, and could help predict editing outcomes, remains 
poorly characterized. 
 
Here, we measure the editing frequency of two cytosine base editors (BE4GamRA [27] and 
FNLS [27]) and two adenine base editors (ABE8e [28] and ABE20m [16]) at thousands of 
target sites, and uncover new sequence biases that strongly confound the known position-
specific editing rates. We use this understanding to build position-specific models of base 
editing and present a new tool that accurately predicts editing frequency across a range of 
datasets. 
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Results 

Target base context and gRNA efficacy influence editing rate 
We set out to quantify the sequence- and gRNA- dependent frequency of editing by cytosine 
and adenine base editors. We chose two cytosine base editors to screen: FNLS [27], a 
version of the BE3 editor with an altered nuclear localization signal, and BE4GamRA [27] 
(hereafter referred to as BE4), an optimization of BE4Gam [29]. We also chose two adenine 
editors: ABE8e [28] and ABE8.20-m [16] (hereafter referred to as ABE20m), both directed 
evolutions of ABE7.10 [9] with mutations selected for increased editing efficiency. Following 
[30], we employed a library of self-targeting constructs which encode both a protospacer 
adjacent motif-endowed target sequence embedded within 79nt of randomized sequence 
context, and an expression cassette for a gRNA matching the target. After introducing these 
constructs into cells, and allowing editing to occur, we sequenced the targets (Figure 1A). 
We measured base editing frequency in the K562 and HEK293T human cell lines, with a 
median screen coverage of 890x for cytosine editors and 470x for adenine editors, and 
sequencing coverage of 1500x (Methods, Supplementary Data). After filtering, we recovered 
the fraction of edited reads (“editing rate”) for each base of 14,409 target sequences, and 
observed excellent reproducibility between replicates (Combined Pearson’s R across all 
positions from 0.73 to 0.91, Figure S1A-D).  
 
We uncovered both known and novel biases in base editing outcomes. The median editing 
rate across targets was highest at position 6 of the sequence for all editors, and decreased 
with distance from this position (Figure 1B). Cytosines and adenines in the canonical window 
(positions 4 to 8) were substantially edited, with rates above 20% of that at position 6, while 
those outside the canonical window had rates below 10% (Figure 1B). The editing rate per 
cytosine did not change depending on the number of cytosines in the window for cytosine 
editors (editing rate per cytosine between 0.04 and 0.05 for BE4, Figure S1E), but 
decreased with more editable adenines in the window for adenine editors (from 0.13 with 
only one adenine to 0.08 with six adenines in ABE8e, Figure S1E). When multiple editable 
bases were present, editing rates were highly correlated for neighbouring bases (average 
Pearson’s R=0.74 across all editors, Figure S1F), but only moderately correlated otherwise 
(average Pearson’s R=0.42 across all editors, Figure S1F).  
 
Unintended edits accounted for 35%-42% of all mutated reads across editors (Figure 1C). 
The most frequent unintended editing event in cytosine editors were C to T edits outside the 
canonical window (15% and 17% of all mutated reads in BE4 and FNLS, respectively). G to 
A editing outside the window was the second most common unintended edit in BE4 (6% of 
all mutated reads) and was relatively frequent in FNLS as well (3.6%), consistent with editing 
on the opposite strand (Discussion). We also observed frequent transversion edits in 
cytosine editors, accounting for 6.8% of all mutated reads in BE4 (3.5% C to A, 3.3% C to G) 
and 14.5% in FNLS (6.2% C to A, 8.3% C to G). The adenine editors had different biases, 
with the most common unintended edits in both being A to G and G to A outside the 
canonical window (27% and 4% of all mutated reads in ABE8e, 17% and 5% in Abe20m). 
Transversion edits were less common in adenine editors, accounting for less than 1% of 
mutated reads in both ABE8e and ABE20m. All remaining substitutions combined comprised 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460622
http://creativecommons.org/licenses/by-nd/4.0/


less than 9% of mutated reads in any editor, with less than 2% of the total each (Figure 1C), 
and their rates outside the window were consistent with those measured in control cells 
without base editors (Figure S1G). Finally, insertion and deletion frequency in the target 
window remained below 0.5% (Figure S1H), and we do not consider them further. Overall, 
nearly two thirds of observed edits were the intended transitions in the canonical window, 
and the bias towards intended transitions was smaller outside of the window. 
 

 
Figure 1. (a) A method for high throughput measurement of base editor outcomes. (1) Constructs 
containing both a gRNA and its target sequence (matched colors) in variable context (gray boxes) are 
cloned into target vectors containing a human U6 promoter (green). (2) The constructs are packaged 
into lentiviral particles and used to infect cells that either express base editor protein or have been 
transfected with base editor protein. (3) The base editors (C to T as an example here) generate base 
substitutions in the target. (4) DNA from cells is extracted, the target sequence and context are 
amplified with common primers, and the mutations in the target are determined by sequencing. (b) C 
to T and A to G editing is highest at positions 4-8 in the target sequence. Median C to T (blue bars) or 
A to G (red bars) editing activity (y-axis) at positions 1-20 in the target sequence (x-axis). Error bars: 
95% confidence intervals from 1000 bootstrap samples. Black dashed line: 20% of the maximum 
editing value found at any position. (c) Intended edits in the canonical window are the most frequent 
outcome for both cytosine and adenine editors. Cumulative frequency (y-axis) of substitution type 
(color) in the canonical window (position 4-8, left bars) and outside (right bars) for all four editors (x-
axis). (d) Median base editing rate across targets (y-axis) is influenced by preceding base (x-axis). 
Error bars: 95% confidence intervals from 1000 bootstrap samples.  
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Besides position in the targeted sequence, the other known influences of editing frequency 
are the identity of flanking bases and the gRNA efficacy [8,19,20]. For all editors, the rate of 
the intended substitution was highest when it was preceded by a thymine (155%, 70%, 25% 
and 52% increase compared to the other three bases, in BE4, FNLS, ABE8e and ABE20m, 
respectively; t test p < 10-20 in each), consistent with the editing motifs of APOBEC [26] and 
tadA [31]. C to T editing by cytosine editors was lower when preceded by a guanine (82% 
and 63% decrease in BE4 and FNLS respectively, t test p < 10-20, Figure 1D). A to G editing 
by adenine editors was lowest when preceded by an adenine (37% and 44% decrease in 
ABE8e and ABE20m, t test p < 10-4, Figure 1D). Editing by all effectors increased when a 
cytosine followed the edited base and decreased when followed by an adenine. In general, 
the TNC motif was consistently amongst the best edited sequences.  
 
Sequence identity was important for several unintended substitutions as well (Figure S1I). In 
particular, C to G transversions by cytosine editors increased over 4-fold at the TCT motif, 
and were more frequent when the C was followed by a T. This effect was recently used to 
develop C to G editors elsewhere [32–34]. Furthermore, there is evidence that the cytosine 
base editors also operate on the opposite strand, as G to A edits were found in much greater 
quantity in cytosine editors than in controls with only wild-type Cas9 (Figure 1C), and these 
edits also mirrored motif preferences, albeit with lesser effect on the opposite strand (300% 
increase in TC to TT in BE4, 50% increase in GA to AA). In summary, the base preceding 
the edited base has the strongest effect on editing activity for intended transitions, and the 
base following has an effect on transversions as well. 
 
Measures of Cas9 gRNA efficacy were also informative about base editing efficacy. 
Predictions from two computational models of gRNA quality (DeepSpCas9 [35] and 
RuleSet2 [36]), as well as the empirically measured wtCas9 mutation efficiency [30] were 
correlated with C to T editing frequency in cytosine editors (Pearson’s R=0.13, 0.05 and 
0.14, respectively in BE4; 0.11, 0.03, 0.12 for FNLS; p < 0.01 in both) and A to G frequency 
in adenine editors (Pearson’s R=0.10, 0.11 and 0.09 for ABE8e; 0.11, 0.11 and 0.12 in 
ABE20m; p < 0.01 in both). The top decile of guides as scored by DeepSpCas9 were edited 
70% more frequently than the bottom decile in BE4 (35%, 11% and 20% in FNLS, ABE8e 
and ABE20m, respectively, Figure S1J). Similarly, the RuleSet2 scores and measured Cas9 
mutation efficacies were 27% and 62% higher respectively in the top decile of scores 
compared to the bottom one in BE4 (13% and 25% in FNLS; 23% and 9% in ABE8; 33% 
and 24% in ABE20m; Figure S1J). Finally, for better expression from the U6 promoter, the 
first nucleotide of each guide RNA was changed to a guanine, as has been recommended 
for genome-wide screens [37]. Targets with a G at position 1 therefore have an improved 
guide-target match, and this increased editing by 20% over targets that did not start with a 
G. Thus, we successfully captured independent gRNA- and sequence-dependent biases that 
affected editing rate, with magnitudes of known effects consistent with existing studies 
[19,20] (Figure S2E-G). 

Sequence effect depends on edited position 
Surprisingly to us, the influence of flanking sequence on editing rate differed substantially 
across edited positions. For C to T edits using cytosine editors, the preceding guanine and 
thymine had the strongest marginal effect on editing rate. The detrimental impact of a 
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preceding G was larger away from the canonical window center, with a 49% decrease in 
median editing at position 6 in BE4, but an 89% decrease at position 9 compared to other 
preceding bases (35% and 93%, respectively, in FNLS; Figure 2). Similarly, a preceding T 
resulted in a 45% higher median editing rate at position 6, but a 1900% increase at position 
2 (32% and 1800% in FNLS; Figure 2). Preceding thymines had a similar effect on A to G 
editing for adenine editors, with a 10% increase in editing at position 6 for ABE8e (22% for 
ABE20m) and 377% increase at position 2 (366% for ABE20m; Figure 2). Cumulatively, 38% 
of all C to T editing by BE4 across positions 4 to 8 was of the cytosine in the TC 
dinucleotide, but this increased to 73% for positions not in the 4 to 8 range, where activity 
was otherwise low (35% and 75% in FNLS; Figure 3B). This strong preference indicates the 
preceding thymine as a major driver of out-of-window cytosine editing. The preceding T 
effect was less prominent for the adenine editors, shifting the A to G editing rate from 30% in 
the window to 47% outside of it in ABE8e (33% and 54% in ABE20m, Figure 3B). 
 

 
Figure 2. Position-dependent effect of the preceding base. Percentage change in editing rate (y-axis, 
logarithmic intervals) from having a base preceding the target base (color, rows) compared to all other 
bases, at different positions in the target sequence (x-axis) for all editors (a-d). 
 
Position-dependent sequence biases were also present for unintended edits. C to G editing 
rate in cytosine editors was higher when preceded by a T (88% increase at position 5 and 
1186% at position 9 for BE4, S2A, 71% and 1347% for FNLS, Figure S2B), and lower with a 
preceding G (38% decrease at position 5, 93% decrease at position 9 for BE4, S2A, 28% 
and 96% for FNLS, Figure S2B). In addition to the preceding base, a following T increased C 
to G editing across all positions in cytosine editors, with over 115% increase at position 6 in 
BE4 (Figure S2A). G to A editing is also increased by a following A, consistent with a TC 
motif on the opposite strand. Altogether, several unintended edits, especially in cytosine 
editors, exhibited substantial sequence bias that varied across the target (Figures S2A-D). 
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The large variation in editing rate due to the preceding base suggests a more nuanced 
redefinition of the cytosine and adenine editing windows. A threshold of 20% of maximum 
editing for the target produces the canonical window for marginal editing, but gives different 
editing windows when stratifying by the preceding base. In cytosine editors, the window for 
cytosines preceded by Cs is positions 4-8, consistent with the canonical window, while a 
preceding A leads to a window of 4-7. However, with a preceding T, the window broadens to 
positions 3-9, and a preceding G shrinks it to positions 5-7 (Figure 3C). Similar trends hold 
for adenine editors, where the A to G window stretched from positions 3 to 11 when 
adenines were preceded by a T, but was reduced to positions 4 to 8 when preceded by an A 
or G (Figure 3C). These biases were also present in other large scale measurements of 
editing rates [19,20] (Figure S2E). 
 
Motivated by the position-dependent sequence effects, we next queried whether the impact 
of features that capture aspects of gRNA sequence and secondary structure also varies 
along the target. For cytosine editors, correlation between gRNA features and editing 
efficacy was strongest at position 6 (Pearson’s R=0.22, 0.12, 0.27 for DeepSpCas9 score, 
RuleSet2 score and measured Cas9 mutation efficacy respectively in BE4, Figure 3D), but 
declined with increasing distance from this position. Interestingly, this trend did not hold for 
the adenine editors, with the largest correlation between A to G editing and the metrics 
occurring earlier in the sequence for DeepSpCas9 & RuleSet2 scores, or staying consistent 
across the sequence for the measured Cas9 mutation efficacy (Figure 3D). These effects 
were also present in other datasets (Figure S2G). Finally, a G at position 1 in the target was 
associated with increased editing at positions 3 and 4 in all editors and extending to 
positions 5 and 6 in cytosine editors (Figure 3D). These patterns of feature relevance 
suggest that gRNA features add bias to the already high editing rates at central positions 
(especially for cytosine editors), but are less relevant elsewhere. Conversely, sequence bias 
is lowest centrally, but dominates at outside positions. 
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Figure 3. (a) Preceding thymines are a driver of out-of-window cytosine editing. Median editing rate 
across targets (y-axis), for every preceding base (colors), inside and outside canonical target window 
(x-axis), for cells with base editors (BE4, FNLS, ABE8e, ABE20m) and wild type ones without (WT) 
compared to the total fraction of C to T or A to G edited reads in the experiment. Canonical window: 
positions 4-8. Error bars: 95% confidence intervals from 1000 bootstrap samples. (b) Same as (a), but 
fraction of editing outcomes of the total. (c) Window of editing changes depending on the base 
preceding the edited one. Median editing rate (y-axis) of bases at positions -5 to 17 in the target (x-
axis) for each preceding base type (colors) for each editor (panels). Black dashed line: 20% of the 
maximum editing rate at any position for all preceding bases. Linked dots: positions at which editing is 
above 20% of the maximum. (d) Correlation between gRNA quality and editing rate depends on the 
position. Pearson's R (color) between measures of gRNA quality (y-axis) and the position of the 
edited base in the target sequence (x-axis) for each editor (panels).  

We can accurately predict per-position editing  
Given the improved understanding of position-dependent editing rates, we proceeded to 
build a position-specific editing model. To better generalize across cell types, we combined 
our data with previously published datasets [19,20], and trained FORECasT-BE, a gradient 
boosted tree model [38], to predict the normalized editing frequency at positions 3-10 in the 
target sequence, as well as total fraction of reads edited at any position. Inputs to this model 
are nucleotide identities at each position in the guide and the melting temperature between 
the guide and target (Methods). When evaluated on the test set of guides from our 
experiment only, FORECasT-BE achieved a Pearson’s R of 0.72 across all positions in BE4 
(0.71, 0.49, 0.56 in FNLS, ABE8e and ABE20m, respectively, Figure 4A), with highest 
accuracies at outside positions (Figure S3B). Feature importances in the model reflected the 
identified sequence biases, with the identity of the base preceding the edited one being most 
important (Figure S3C-D). We incorporated FORECasT-BE into a command line tool 
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(available at https://github.com/ananth-pallaseni/FORECasT-BE) and a web application 
(available at https://partslab.sanger.ac.uk/FORECasT-BE), which can be used to predict 
base editing rates for cytosine and adenine editors. 
 
Recently, other methods have been developed for base editing rate prediction. We 
compared the performance of FORECasT-BE to BE-HIVE [19] that supports both adenine 
and cytosine editing, and DeepCBE [20], which supports cytosine editing only. These 
models predict both a total editing rate per guide, as well as a set of specific outcomes, so 
we evaluate them separately for these tasks. First, we predicted the total fraction of reads 
mutated across all positions, and observed improved performance of FORECasT-BE relative 
to other models on our data (Pearson’s R of 0.73 for cytosine editors and 0.77 for adenine 
editors for FORECasT-BE, 0.60 and 0.60 for BE-HIVE, and 0.60 for DeepCBe on cytosine 
editors). Next, we restricted evaluation to guides with only a single editable base in the 3-10 
window (“single cytosine/adenine test set”), and compared editing rates predicted by 
FORECasT-BE with outcome predictions (as opposed to total rate predictions) from other 
models at each position. Our model achieved the highest correlation between measured and 
predicted cytosine and adenine editing at every position, with lowest improvement over other 
models at position 6 (Pearson’s R of 0.68, 0.54 and 0.47 for FORECasT-BE, DeepCBE and 
BE-HIVE respectively for cytosine editors, Figure 4B; 0.41 and 0.22 for FORECasT-BE and 
BE-HIVE on adenine editors, Figure 4C) and increasing advantage away from it (Pearson’s 
R of 0.87, 0.73 and 0.59 at position 3 for cytosine editors Figure 4B; 0.71, 0.42 in adenine 
editors, Figure 4C).  
 
We then performed the same position-specific editing rate comparison on guides with one or 
more cytosines/adenines in the editing window (“multi-cytosine/adenine test set”). We 
observed similar patterns across positions (Pearson’s R of 0.55, 0.48 and 0.45 on cytosine 
editors at position 6, Figure 4B; 0.81, 0.68 and 0.66 for cytosine editors at position 3, Figure 
4B; 0.30 and 0.22 on adenine editors for FORECasT-BE and BE-HIVE at position 6, Figure 
4C; 0.67 and 0.20 on adenine editors at position 3, Figure 4C). Finally, we considered a 
combined test set from three studies, and found that while each model performs best on 
data from the study it was trained on, FORECasT-BE performed well on all of them (at least 
90% of the dataset maximum Pearson’s R in all cases, Figure S3E-H), and other models 
failed to generalize (less than 80% of the dataset maximum Pearson’s R on at least one 
dataset).  
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Figure 4. (a) FORECasT-BE accurately predicts editing rate. Measured (x-axis) and predicted (y-axis) 
standardized editing rate (Methods) for guide RNAs (markers) at the different editing window positions 
(panels) on the multi-cytosine (left panels) or multi-adenine (right panels) test set. Dashed line: y=x. 
Label: Pearson’s R between measured and predicted scores. (b-c) FORECasT-BE outperforms 
existing prediction models. Pearson’s R between measured and predicted editing rate (color) at 
different positions in the target (x-axis) for FORECasT-BE and two existing models (y-axis) for 
cytosine editors (b) and adenine editors (c). Top panel: evaluated on a subset of guides containing 
only single cytosine in positions 3-10. Bottom panel: evaluated on all guide RNAs. (d) FORECasT-BE 
accurately predicts endogenous editing rate. Measured (x-axis) and predicted (y-axis) standardized 
editing rate (Methods) for guide RNAs (markers) at the different genomic positions tested in the Song 
et al. dataset. Dashed line: y=x. Label: Pearson’s R between measured and predicted scores. (e) 
Substantial editing of non-targeted cytosines and adenines for pathogenic corrections. Predicted 
fraction of impure edits in positions 3-10, (y-axis; orange bars) and correction edits (y-axis; blue bars) 
for increasing number of editable cytosines (top) or adenines (bottom) in the window (x-axis). Error 
bars: 95% confidence intervals from 1000 bootstrap samples. 
 
We next tested whether our model generalizes to measurements at endogenous sequences 
from Song et al. [20], comprising 170-230 guides per editable target position in HCT116 and 
HEK293T cells. Correlation between predicted and observed editing on this dataset was 
0.65 for all editors and positions (Figure 4D), and when stratified by position, ranged from 
0.34 in the center to 0.79 at the edges of the window using cytosine editors (0.53 in center 
and 0.53 at the edges using adenine editors, S3I). This performance was similar to that of 
other models on the same dataset, with our model improving predictions away from the 
window center (Figure S3J). 
  
Finally, we used FORECasT-BE to predict point mutation correction purity in disease-
relevant contexts. We predicted outcomes at 13,591 pathogenic SNPs from ClinVar which 
fall within positions 3-10 of a possible target, and can be converted with cytosine or adenine 
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editors [39]. We assumed a 50% conversion rate at position 6, which is the current 
expectation in a clinical scenario [19], and does not impact the resulting purities. Altogether, 
64% of cytosine-targeting guides and 41% of adenine-targeting ones were predicted to have 
more combined editing of nearby cytosines than the targeted SNP (Figure 4E). The correlation 
between the expected number of unintended edits and the number of targetable bases in the 
window was 0.75 for cytosine-targeting guides and 0.76 for adenine-targeting guides, 
indicating that more targetable bases are expected to produce more unintended edits. While 
SNP correction purity is influenced by window position and nearby targetable bases (Figure 
S3K), we identified 108 cytosine-targeting guides and 421 adenine-targeting guides that 
were predicted to correct the disease-relevant mutations with over 80% purity, and also were 
in the top 10% of correction efficiencies, and therefore may make reasonable therapeutic 
targets. For sites where this is not the case, our model can help predict the most frequent 
unintended edits, which can then be checked for their effect on the protein sequence. 

Discussion 
We reported strong position-dependent biases in the determinants of base editing rates from 
a large survey of editing outcomes in novel and published datasets of cytosine and adenine 
base editors. Our findings indicate a nuanced action of cytosine editing. The editing window 
depends on the preceding base, with TC or TA dinucleotides edited beyond the canonical 
positions 4 to 8. Transversion edits were moderately frequent, and also position-dependent 
with a strong bias from the following base. In general, as much as 30% of overall editing on 
average is either out-of-window or not the intended substitution, with out-of-window edits 
more frequent if following thymines. All the findings on position dependence also held in 
existing large-scale datasets that were generated using different base editor proteins, cell 
lines, and target libraries.  
 
We incorporated these insights into a predictive model, FORECasT-BE, trained on multiple 
datasets to robustly predict cytosine and adenine editing, and found it to be the most 
accurate model for edits in our K562 and HEK293T data. In comparing models trained on 
different datasets, we found that diverse training data, as used for FORECasT-BE, improves  
generalization performance on other data as well. The dataset specificities could be driven 
by a wide complement of factors ranging from cell type and repair activity to the effector 
protein used, its delivery mechanism, the guide RNA expression method, etc., which require 
further study with richer data, and including endogenous and in vivo contexts. Models that 
generalize beyond a single dataset, such as FORECasT-BE will prove a useful tool when 
more bespoke ones are not available.  
 
Both existing and our new models achieved more accurate predictions at positions further 
away from the canonical window center. Editing at central positions in our data was as 
reproducible as for outside positions (Figure S1A-D), so increased measurement noise is 
unlikely to be the cause. Taken in conjunction with the increased correlation between gRNA-
level features and editing at central positions, it is likely that these patterns arise from 
different strengths of sequence effect on mutation generation, where the target base context 
has a large influence outside the window and the gRNA features matter more at the center. 
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Using FORECasT-BE, we find that most pathogenic SNPs that could be reverted using 
cytosine base editors are expected to have more unintended edits than clean conversions, 
but identify 108 guides for C to T editing and 421 guides for A to G editing with promise to 
cleanly correct their targets. The editing of non-targeted cytosines presents a hurdle for 
clinical use of base editors. While the technology develops to address these issues, 
predictive models will remain essential to identify unintentional edits in advance, to 
potentially account for their effects [40], and to evaluate the pathogenicity of a guide when 
planning therapies. 
 
As base editors are already used in genetic screens [41], have demonstrated feasibility in 
preclinical settings [42–44], and will likely soon advance into clinical trials, there is a need for 
better understanding of editing determinants and more accurate models of their effects. This 
work, and predictive outcome models in general, will be necessary to support the use of 
base editing in scientific and therapeutic applications.  
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Methods 

Cell culture and cell line generation 
K562 cells were cultured in RPMI and HEK293FT cells were cultured in Advanced DMEM 
(Gibco). In both cases supplemented with 10% FCS, 2 mM glutamine, 100 U/ml penicillin 
and 100 mg/ml streptomycin. Cells were cultured at 37°C, 5% CO2. K562 cells 
endogenously expressing BE4 and FNLS were generated by infecting K562 cells with a 
lentiviral vector carrying a base editor and puromycin resistance genes (pLenti-BE4GamRA-
P2A-Puro, Addgene 112673; pLenti-FNLS-P2A-Puro, Addgene 110841) [27]. Lentivirus was 
produced and wildtype K562 cells were infected as described below. 24 h later selection with 
2 μg/ml puromycin was started. After one week, the selection was stopped and cells were 
expanded. After 10 days of expansion, cells were treated for an additional 3 days with 0.5 
μg/ml puromycin to enrich for cells with desired constructs. 

Lentiviral library 
The lentiviral library used in this study was the same one used in Allen et al., 2019 [30]. 
Briefly, the library uses the pKLV2-U6gRNA5-PGKpuro2ABFP-W [45] backbone and 
encodes 41,630 gRNA-target constructs. The gRNA is 23 nt (including protospacer-adjacent 
motif) and the target sequence is 79 nt flanked with PCR priming sites.  

Lentivirus production and titration 
Lentivirus was produced using HEK293FT cells that were transfected with Lipofectamine 
LTX (Invitrogen). 5.4 μg of a lentiviral vector, 5.4 μg of psPax2 (Addgene 12260), 1.2 μg of 
pMD2.G (Addgene 12259) were mixed in 3 ml Opti-MEM together with 12 μl PLUS reagent 
and incubated for 5 min at room temperature. 36 μl of the LTX reagent was added and the 
mix was incubated for another 30 min at room temperature. 3 ml of the transfection mix was 
then added to 80% confluent cells in 10 ml DMEM media in a 10-cm dish. After 48 h the 
supernatant was collected and stored at 4°C. Fresh media was added to the cells and 
harvested 24 h later. The supernatants from both harvests were mixed and centrifuged 
overnight at 6,000g at 4°C and then for another 2 h at 20,000g. The supernatant was 
removed and the viral pellets were resuspended in DPBS resulting in 50x concentration of 
the virus. The virus was stored at -80 °C. The procedure was scaled up accordingly for a 
larger production of virus. 
 
For virus titration, K562 cells were seeded into a 96-well plate at 5x104 cells/well. Increasing 
amounts of virus and 8 μg/ml polybrene (hexadimethrine bromide, Sigma) were added to 
each well. The plate was centrifuged at 1000g for 30 minutes at room temperature. The cells 
were resuspended and cultured for 72 h before harvesting for FACS analysis. The viral titer 
was estimated based on BFP+ cells and scaled up for the following screens. Data was 
analyzed by FlowJo.  
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Screening 
All cell lines were infected aiming at a multiplicity of infection (MOI) of 0.8 and a coverage of 
800x. Each cell line was infected twice and treated as two biological replicates.  
 
For cytosine base editor screens, K562-BE4 and K652-FNLS cells were seeded at a 
concentration of 1.5x105 cells/ml. Cells were cultured for 27 days and samples were 
harvested at 3, 6, 10, 14, 17, 21, 24 and 27 days post-infection. Cells were passaged to 
maintain higher coverage than at the time of infection. At 4 days post-infection, a subsample 
of cells was harvested for FACS analysis to estimate the MOI based on BFP+ cells. The 
data was analysed with FlowJo.  
 
For adenine base editor screens, 293FT cells were cultured in media containing 2 μg/ml 
puromycin for one week to select for infected cells. 6x107 cells were then seeded into six 
tissue culture dishes with 150 mm diameter in 20 ml media. 24h later the media was 
refreshed with 15 ml of media. Transfection mixes were prepared in two steps (protocol 
adapted from [46]). First, 16 ml of Opti-MEM was mixed with 72 µg of base editor encoding 
plasmid (ABE8e, Addgene #138489 or ABE8.20-m, Addgene #136300), 8 µg of pCS-GFP 
plasmid and 800µl Plus reagent. Secondly, 16ml Opti-MEM was mixed with  400 µl 
Lipofectamine 3000 (Invitrogen) and 1600 µl Lipofectamine LTX. The two solutions were 
mixed together, incubated for 30 minutes at room temperature and 3.2 ml of the transfection 
mix was transferred to each tissue culture plate. 48h later 15 ml of media was added to cells. 
After 14h cells were harvested and a subsample of cells were used to check for transfection 
efficiency via flow cytometry. The data was analysed with FlowJo.  

Sequencing library preparation 
Genomic DNA extraction and sequencing library preparation for the main screens were done 
as described in Allen et al., 2019 [30]. Briefly, to amplify the target sequence from the gDNA, 
primers P1 and P2 (Table S1) were used with the Q5 Hot Start High-Fidelity 2X Master Mix 
(NEB). To ensure coverage for each sample, 416 μg of gDNA was used as template and 
each PCR reaction was run in 50 μl aliquots containing no more than 5 μg DNA. The PCR 
reaction was column-purified with the QIAquick PCR Purification Kit (Qiagen). Sequencing 
adaptors and barcodes were added with a second round of PCR using the KAPA HiFi 
HotStart ReadyMix (Roche), primers P3 and P4 (Table S1) and 1 ng of template DNA. 
Amplicons were purified with Agencourt AMPure XP beads in 1.2:1 ratio (beads to PCR 
reaction volume), quantified with the Quant-iT™ High-Sensitivity dsDNA Assay Kit 
(Invitrogen). The amplicons for the BE4 and FNLS screens were sequenced using a 
NovaSeq S4 XP and the ABE8e and ABE20m screens used a HiSeq4000.  

To measure mismatch rate between guides and targets, we amplified the target region 
together with the guide sequence from the genomic DNA in one of the cell pools above 
before editing occurred using primers P5 and P6 (Table S1). The sequencing library was 
prepared as described before, using 104 μg of gDNA as template for the PCR. Sequencing 
adaptors and barcodes were added with a second round of PCR using the KAPA HiFi 
HotStart ReadyMix (Roche), primers P3 and P4 and 1 ng of template DNA. The libraries 
were sequenced with a HiSeq 2500 using paired end sequencing, such that the forward 
reads covered the guide region and the reverse reads covered the target.  
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Data processing 
We assigned reads to guides, and generated outcome profiles using the custom processing 
pipeline from Allen et al., 2019 [30]. Outcome profiles for a guide are represented by pairs of 
mutations and the number of guide reads which had that unique mutation. For convenience, 
we also stored a matrix of the fraction of guide reads containing every possible base 
substitution at every position in the target sequence (12 substitutions x 79 positions). 
 
To ensure adequate coverage, we first removed guides with less than 100 reads in any 
sample (timepoint or replicate) from the analysis.  
 
For BE4 and FNLS, we calculated the correlation of C to T editing at positions 4 to 8 
between two replicate screens at each timepoint and found that replicates agreed with each 
other less at the later timepoints (Figure S4B). We speculate that this is due to the toxicity of 
the editors, an argument that is supported by the decrease in average C to T editing at 
timepoints 21-27 (Figure S4A). Thus we chose to combine timepoints 10-17 (which were 
highly correlated, Figure S4B) in our BE4 and FNLS data, by pooling together all the reads 
assigned to the same guide in each timepoint and treating this as a single screen. We then 
calculated the between-replicate correlation of C to T editing on the dataset of combined 
timepoints at positions 4 to 8, and found that replicates were very similar (Median Pearson’s 
R across positions of 0.87 and 0.91 in BE4 and FNLS, respectively, Figure S1A-B).  
 
For all editors, we chose to combine the replicates using the same method as with 
timepoints, by adding read counts.  
 
After taking guides common to the relevant timepoints, removing guides with under 100 
reads and only retaining guides for which we had guide-target mismatch information, we are 
left with 14,000 guides. 

Correcting for mismatched guide-target pairs 
To correct for recombination during infection of the guide library, which results in guide-
target mismatch in some cells, we calculated the guide-target match rate for each guide 
using data from a long-range PCR on an early time point in one cell pool. The reads were 
assigned to guides by first checking if the forward read was a direct match to any of our 
guide sequences and, if matched, that read was assigned to that target. If the read was not a 
perfect match, we checked if the middle 10 bases of the read matched the middle 10 bases 
of any of our guides, as this stretch of bases could uniquely identify 82% of our guides. Once 
the forward PCR reads were assigned to guides, we aligned the expected target of the 
assigned guide with the sequence of the reverse read using the pairwise2 method from 
Biopython [47]. Gaps were given a penalty of -1 and extending a gap was given a penalty of 
-0.1 (pairwise2.align.globalxs(guide1, guide2, -1, -0.1)). Random alignments of different 
targets in the dataset to the wrong guide all had scores below 41 (Figure S4C), so we set a 
threshold of 50 to call a match, and any reads with an alignment score under this were 
considered mismatched from recombination. We calculated the guide-target match rate for a 
guide as the fraction of matched reads for that guide. 
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To correct for recombination mismatch, we scaled the total number of reads in the base 
editing experiment for each guide by its guide-target match rate to get the number of reads 
that came from matching constructs. The number of reads with edits was left unchanged 
under the assumption that the constructs matched to be able to create an edit.. 

Measures of gRNA efficacy 
DeepSpCas9 scores and RuleSet2 scores were calculated using the 20 nucleotides of the 
target sequence. DeepCas9 scores were obtained from the batch prediction tool offered at 
http://deepcrispr.info/DeepSpCas9 with default settings, and RuleSet2 scores were 
computed using the software from [36], also with default settings. Empirically measured 
Cas9 mutation efficacy was obtained from [30], which used the same guide library as this 
study in K562 cells. 

Other base editing efficiency datasets 
Data were downloaded from [20] and [19] and used to calculate editing rates for each 
substitution at each position for every guide. We used the mES-BE4 and mES-ABE datasets 
from [19] as the closest match to our editors, and for its high concordance of replicates. 
 
We selected guides which had cytosines or adenines at the specified position and 
standardized the editing rates by subtracting the mean at that position and dividing by the 
standard deviation. We then appended our BE4 dataset, our FNLS dataset, the mES-BE4 
dataset from [19] and the cytosine dataset from [20] together to get a combined cytosine 
dataset; then we combined our ABE8e dataset, our ABE20m dataset, the mES-ABE dataset 
from [19] and the adenine dataset from [20] to get a combined adenine dataset.  

Creating training datasets 
We maintained the train/test set distinction provided in the Song et al. data, and randomly 
partitioned the Arbab et al. data into training and test sets with 90% for training and 10% for 
testing. We randomly separated the guides in our experiment into a training set consisting of 
90% of the guides and a test set consisting of the remaining 10% of guides, such that no 
guide was present in both sets. In order to allow generalizability across experiments, we 
standardized real editing rates at each position by subtracting the mean edit rate at that 
position and dividing by the standard deviation at that position. Guides were converted into 
feature vectors by first one-hot encoding the 20 nt guide sequence and then appending the 
melting temperature of the 20 nt guide sequence as calculated using the Biopython [47] 
MeltingTemp function.  

Modelling editing rate 
We trained and evaluated models with one-hot encoded sequence features and different 
sets of guide efficacy features on the training set, using 5-fold cross validation, to select the 
final set of features used. We found that all combinations of melting temperature, 
DeepSpCas9 score and RuleSet2 score produced similar contributions to predictive 
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accuracy and functioned as proxies for each other, so we chose to use melting temperature 
alone. 
 
We predicted standardized editing rate for base editing efficacy at each position using 
gradient-boosted trees, as implemented in the Scikit-learn package [48]. One gradient-
boosted tree model was trained per position. For each one, we chose to use 100 shallow 
trees (n_estimators), with maximum depth 4 (max_depth), a minimum of two samples per 
leaf node (min_samples_leaf) and a learning rate of 0.1. These values were obtained 
through 5-fold cross-validation on the training set, independently testing values more 
extreme than the selection in both directions (n_estimators 10 to 1000, max_depth 1 to 10, 
min_samples_leaf 1 to 50, learning rate 0.001 to 1). After training the final models on the full 
training set, we evaluated their performance on the test set by calculating the correlation 
between the predicted standardized rate and the measured standardized rate.  

Comparisons with other models of editing rate 
We compare FORECasT-BE to two other models, BE-HIVE [19] and DeepCBE [20]. 
Predictions for DeepCBE were obtained using the batch prediction tool offered at 
http://deepcrispr.info/DeepBaseEditor/, while those for BE-HIVE were obtained by running 
the BE-HIVE scripts from https://github.com/maxwshen/be_predict_efficiency. For BE-HIVE, 
we specified a mean of 0.5 and a standard deviation of 0.25 as the scaling parameters; 
these linearly scale the outputs and do not affect the correlations to true editing rates. When 
using the BE-HIVE model to evaluate guides from the Song et al. study, we padded the 
given 30nt sequences with As to create the required 50nt input. 

Endogenous data comparison 
Editing information on endogenous base editing outcomes was obtained from [20] and 
editing rates for each substitution at each position for every guide were calculated as above. 
We predicted the per-position editing rate on guides in this dataset to get standardized 
predictions, and scaled them back into efficiencies using the per-position means and 
standard deviations obtained from the Song screening dataset [20]. 

Prediction in disease contexts 
A set of guides targeting pathogenic SNPs correctable by a C to T or A to G substitution was 
obtained from [39]. We predicted standardized efficiencies for positions 3-10 in this guide set 
and scaled them into real efficiencies by assuming a mean of 50% editing at position 6 to 
match the maximum rate in [19]. We computed the predicted correction efficiency as the rate 
of C to T or A to G editing at the position of the SNP in the guide, and the expected number 
of unintended edits as the sum of predicted C to T or A to G editing at other positions. 
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