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Abstract

Improved understanding of the genomic variants that allow Mycobacterium tuberculosis
(Mtb) to acquire drug resistance, or tolerance, and increase its virulence are important
factors  in  controlling  the  current  tuberculosis  epidemic.  Current  approaches  to  Mtb
sequencing  however  cannot  reveal  Mtb’s  full  genomic  diversity  due  to  the  strict
requirements of low contamination levels, high Mtb sequence coverage, and elimination of
complex regions.

We  developed  the  XBS  (compleX  Bacterial  Samples)  bioinformatics  pipeline  which
implements joint calling and machine-learning-based variant filtering tools to specifically
improve variant detection in the important  Mtb  samples that do not meet these criteria,
such as those from unbiased sputum samples. Using novel simulated datasets, that permit
exact  accuracy  verification,  XBS  was  compared  to  the  UVP  and  MTBseq  pipelines.
Accuracy statistics showed that all  three pipelines performed equally well for sequence
data that resemble those obtained from high depth coverage and low-level contamination
culture isolates. In the complex genomic regions however, XBS accurately identified 9.0%
more single nucleotide polymorphisms and 8.1% more single nucleotide insertions and
deletions than the WHO-endorsed unified analysis variant pipeline. XBS also had superior
accuracy for sequence data that resemble those obtained directly from sputum samples,
where depth of coverage is typically very low and contamination levels are high. XBS was
the only pipeline not affected by low depth of coverage (5-10×), type of contamination and
excessive contamination levels  (>50%).  Simulation results  were confirmed using WGS
data from clinical  samples,  confirming the superior  performance of  XBS with  a higher
sensitivity  (98.8%)  when  analysing  culture  isolates  and  identification  of  13.9% more
variable  sites  in  WGS  data  from  sputum  samples  as  compared  to  MTBseq,  without
evidence for false positive variants when ribosomal RNA regions were excluded. 

The  XBS  pipeline  facilitates  sequencing  of  less-than-perfect  Mtb samples.  These
advances  will  benefit  future  clinical  applications  of  Mtb sequencing,  especially  whole
genome sequencing directly from clinical specimens, thereby avoiding in vitro biases and
making many more samples available for drug resistance and other genomic analyses.
The additional genetic resolution and increased sample success rate will improve genome-
wide association studies and sequence-based transmission studies.

Impact statement

Mycobacterium tuberculosis (Mtb) DNA is usually extracted from culture isolates to obtain
high quantities of non-contaminated DNA but this process can change the make-up of the
bacterial  population  and  is  time-consuming.  Furthermore,  current  analytic  approaches
exclude complex genomic regions where DNA sequences are repeated to avoid inference
of  false  positive  genetic  variants,  which  may  result  in  the  loss  of  important  genetic
information.

We  designed  the  compleX  Bacterial  Sample  (XBS)  variant  caller  to  overcome  these
limitations. XBS employs joint variant calling and machine-learning-based variant filtering
to  ensure  that  high  quality  variants  can  be  inferred  from  low  coverage  and  highly
contaminated genomic sequence data obtained directly from sputum samples.
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Simulation  and  clinical  data  analyses  showed  that  XBS  performs  better  than  other
pipelines as it  can identify more genetic variants and can handle complex (low depth,
highly  contaminated)  Mtb  samples.  The  XBS  pipeline  was  designed  to  analyse  Mtb
samples but can easily be adapted to analyse other complex bacterial samples.

Data summary

Simulated sequencing data have been deposited in SRA BioProject PRJNA706121. All 
detailed findings are available in the Supplementary Material. Scripts for running the XBS 
variant calling core are available on https://github.com/TimHHH/XBS
The authors confirm all supporting data, code and protocols have been provided within the
article or through supplementary data files.
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INTRODUCTION

Genetic approaches are increasingly used in tuberculosis research and for the diagnosis
of  drug  resistant  tuberculosis.  Whole  genome  sequencing  (WGS)  of  Mycobacterium
tuberculosis (Mtb)  aims  to  investigate  the  entire  genome  of  the  Mtb strain  to
comprehensively assess all known drug resistance conferring regions, provide maximum
resolution for genetic transmission studies, and investigate the role of genomic variants
using genome wide association studies [1]. The three key problems facing the current Mtb
WGS approaches are the need for high quantities of Mtb DNA, presence of contaminant
bacterial and human DNA, and the presence of complex regions in the Mtb genome.

Mtb is notoriously difficult  to sequence directly from clinical samples because the DNA
from human cells, bacteria and viruses outnumbers that from Mtb bacilli. This results in
insufficient template  Mtb DNA and low genomic depth of coverage when sequenced [2].
Mtb WGS  therefore  primarily  uses  cultured  isolates,  which  requires  a  harsh
decontamination step followed by a lengthy (2 to 4 weeks) incubation to generate high
quantities of  Mtb.  The decontamination step not only reduces the presence of bacteria
other than Mtb, but may also reduce the Mtb load [3]. The culture step can increase the
presence of certain strains over others due to stochastic processes or when certain strains
are better suited at growing in culture media [4,5]. These processing steps thus result in a
population bias, where the inferred in vitro Mtb population may not truly represent the in
vivo population.  To  generate  a  rapid  and  unbiased  result,  Mtb would  thus  ideally  be
sequenced directly from the clinical sample.

Despite  decontamination,  a  small  proportion  of  contaminants  may  persist  in  the  DNA
extracted from the culture isolate. Current  Mtb bioinformatic pipelines use in silico meta-
genomic classification software to identify these contaminants and exclude samples with a
high proportion of  contaminant  DNA. For  example the unified analysis variant  pipeline
(UVP) uses a cut-off of maximum 10% contamination [6],  which may exclude valuable
samples from analysis. In addition to the low contamination threshold, the Mtb community
has adopted relatively high standards for genome coverage, with 30× to 50× and up to
100× depth being the most commonly used. A Poisson distribution however reveals that a
mean depth of coverage of 15.8× results in 95% of the genome being covered by 10× or
more reads (Lander and Waterman 1988), which should be sufficient for accurately calling
majority variants in a haploid genome.

A third problem that complicates Mtb WGS is the abundance of complex regions including
repeats,  transposons, duplicates and phage genes, and the numerous PE/PPE genes.
These complex regions are generally excluded from analyses by Mtb pipelines. The core
genome multi-locus sequence typing (cgMLST) method goes even further as only the most
trustable regions are analysed by cgMLST [7]. While these strategies ensure the accuracy
of the genome assembly and variant calling, they can result in the loss of a significant
proportion of genomic information (~9% when using the UVP pipeline [6]) that may be
important  for  defining  transmission  events  and  identification  of  variants  that  affect
pathogenicity.

There is thus a need for novel bioinformatics tools that overcome the current requirements
of  low  contamination,  high  Mtb DNA sequence  coverage  and  exclusion  of  complex
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genomic regions [8]. The Genome Analysis ToolKit (GATK), originally designed for human
genome studies (i.e. diploid), now allow for processing of haploid genomes such that of
Mtb. The Base Quality Score Recalibration and Indel Realigner tools and single sample
variant  calling  using  the  now  superseded  Unified  Genotyper  tool  have  already  been
applied in  Mtb genome studies [6,9]. The GATK’s ‘Germline short variant discovery Best
Practices workflow’ however includes joint genotyping and machine-learning-based variant
filtering and has seen little to no implementation in bacterial and  Mtb genome assembly
pipelines. The major advantage of joint variant calling, as opposed to single sample variant
calling, is a greater sensitivity for variants at low frequency in the population and detection
of variants in low coverage samples for which there would be insufficient confidence if the
sample  had  been  analysed  on  its  own  [10].  Joint  variant  calling  also  enables  the
calculation of various statistical annotations (including depth of coverage, strand bias and
read mapping quality) for alleles in the population rather than for those in a single strain.
These population variants are more numerous and their  annotations suffer  from fewer
stochastic  deviations,  thereby  improving  subsequent  variant  filtering.  The  machine-
learning-based variant filtering (VQSR) in the GATK [11]  eliminates the need for hard-
filtering of variants, which is commonly applied through the use of rather arbitrary cut-offs
for strand bias and coverage depth. 

We hypothesize that the GATK’s tools are suitable for distinguishing contaminant variants
from Mtb and to score and identify variants in complex regions of the  Mtb genome. We
developed a novel Mtb pipeline integrating the GATK’s tools to improve the identification of
genetic variants in less-than-perfect Mtb samples and thereby greatly increase our power
to capture the diversity of within-patient and within-bacterial genetic information. We also
tested the variant calling core of this pipeline for its accuracy to identify genetic variants in
comparison to existing pipelines.

METHODS

Development of the XBS pipeline

The  compleX  Bacterial  Sample  (XBS)  pipeline  was  designed  to  perform  analyses  of
Illumina  FASTQ  sequence  data.  The  pipeline  was  primarily  designed  to  analyse  Mtb
samples but can easily be adapted to analyse other complex bacterial samples. XBS was
realised through coupling  published software  packages with  custom Bash and Python
scripts.

Pipelines  typically  start  with  identifying  the  level  of  contaminants  and/or  removing
contaminants before mapping the sequence reads. In XBS, all  FASTQ sequence data,
whether single read or paired-end, are directly mapped to the reference genome (H37Rv:
NC_000962.3) however using BWA mem [12] (Figure 1). XBS does not employ an adapter
trimming step because BWA mem locally aligns sequence reads, which masks the portions
of the read that do not align well with the reference genome. Skipping the step of removing
contaminants  saves  considerable  computing  time  but  does  require  sophisticated
downstream variant filtering to distinguish genuine Mtb variants from those introduced by
contaminants.
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Next, the mapped sequence library is merged with other independently mapped sequence
libraries  from  the  same  sample  using  Samtools  (https://www.htslib.org/).  The  GATK
MarkDuplicates (Picard) is then used to mark duplicated reads in the merged bam file.
Unlike other Mtb pipelines XBS does not employ Base Quality Score Recalibration (BQSR)
to avoid that variants in contaminant DNA are interpreted as systematic error by BQSR
which would result in reduced base qualities, including for genuine Mtb variants.

The  mapped  sequences  are  then  locally  reassembled  to  correctly  identify  possible
haplotypes and their variants using the GATK HaplotypeCaller. At this point, the statistics
of depth of coverage, breadth of coverage, multiple infection and level of nontuberculous
Mycobacteria  (NTM)  contamination  are  assessed  to  judge  if  a  sample  is  suitable  for
subsequent  joint  variant  calling.  The  coverage  statistics  are  inferred  using  the  GATK
CollectWgsMetrics  (Picard).  Quality  approved  samples’  Genomic  Variant  Call  Format
(GVCF) files are then merged with the GATK CombineGVCFs and the genotypes are joint
called using the GATK GenotypeGVCFs.  This  results  in  a VCF file  with  the unfiltered
variants for all quality approved samples. GATK is run with a ploidy of 1 for the variant
calling processes so that the allele with the highest confidence is identified as the allele
representing the haploid genotype for each variant site.

Next,  the machine-learning-based variant filtering (VQSR) in the GATK is employed to
identify the likely true variants [11]. This step requires a truth set of variants known to occur
in  Mtb,  which  can  for  example  consist  of  DR conferring  mutations.  Single  nucleotide
polymorphisms (SNPs) and insertions and deletions (INDELs) are processed separately
for variant filtering. The annotated statistics calculated during the genotyping are used to
build a positive statistical model for the variants in the dataset that also occur in the truth
set.  Similarly,  a  negative  variant  model  is  built  for  the  variants  with  the  most  inferior
annotated statistics. The remaining variants not consulted for either the positive or the
negative model construction are then confidence scored according to the placement of
their  annotated statistics  in  relation  to  these models.  To  identify  as  many  variants  as
possible, variants are then filtered by applying a target sensitivity of 99.9%, calculated as
the percentage of identified variants from the present truth-set variants. The filtered SNP
and INDEL VCFs are then further processed as appropriate for constructing annotated
phylogenies  and  inferences of  multiple  infection,  drug  (hetero-)resistance,  lineage and
transmission clusters.

In silico development of a simulated dataset

A dataset of 1,200 simulated samples representing 50,000 SNPs, 2,500 insertions and
2,500 deletions was developed (Figure 2). Of these, 600 were designed to resemble WGS
data from mono-culture isolates and 600 to resemble WGS data obtained directly from
sputum samples, the latter including high levels of various contaminants.

First,  a  set  of  50  simulated strains  with  the  exact  mutations  known in  respect  to  the
reference genome was created  in silico  using SNP Mutator v.1.2.0 [13]. Each simulated
genome was created by randomly introducing 1000 SNPs, 50 single nucleotide insertions
and  50  single  nucleotide  deletions  in  H37Rv (NC_000962.3).  Multi-nucleotide  INDELs
could  not  be  introduced  using  the  SNP  Mutator  software.  SNPs  and  INDELs  were
introduced randomly  throughout  each simulated strain  genome to  ensure  that  random
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bases were affected and/or introduced and to create genetically varying strains. The GATK
LeftAlignAndTrimVariants was used so that the truth set its INDELs were in the standard
notation.

For  each dataset,  100 strains  were  randomly  drawn from the  50 simulated strains  to
ensure that some strains and their variants occurred more than once, as would be the
case for clinical datasets were specific strains and drug resistance variants often occur
more  than  once.  To  simulate  WGS  data  obtained  from  culture  isolates,  6  datasets
representing 5×, 10×, 20×, 30×, 50× or 100× depth were generated using a 100 randomly
drawn simulated strains each (Figure 2). In order to investigate the impact of low-level
contamination, no or low-level contamination (0, 1, 2, 3, 4, or 5%) and contamination type
was randomly assigned to each of the simulated strains. The eight contamination types
used  were  Mycobacterium  intracellulare (NC_016946.1),  Mycobacterium  abscessus
(NC_010397.1, including plasmid),  Mycobacterium avium (NC_002944.2), the three most
common  NTM,  Pseudomonas  aeruginosa (NC_002516.2)  and  Staphylococcus
epidermidis  (NC_004461.1),  Homo sapiens  (GRCh38), a mixture of the three NTM (M.
intracellulare, M. abcessus and M. avium) and a mixture of all six contaminants. Because it
was not possible to represent the full diverse spectrum of contaminating bacteria in the
simulations, Pseudomonas aeruginosa and Staphylococcus epidermidis were selected as
these are the most  common bacterial  contaminants [2],  NTMs were included because
these pose a serious challenge for Mtb variant calling. The simulated samples included no
or low-level contamination in order to resemble WGS data from culture isolates and to be
able to investigate the effect of the various low levels of such contamination. Simulated
contaminant sequence reads were added to the simulated  Mtb reads so that the final
contamination level matched the assigned contamination percentage. 

ART v.2.5.8 software [14] was then used to emulate Illumina 150 bp paired-end sequence
reads with an HiSeq error profile and a Poisson distributed 300bp average library insert
size for each simulated strain and its contaminant(s). In total, 600 cultured WGS samples
were generated in six datasets of 100 simulated samples with each dataset representing a
different level of coverage (5×, 10×, 20×, 30×, 50× or 100× depth) to allow assessment of
the relation between coverage and accuracy of variant identification.

To simulate Mtb WGS data obtained directly from sputum samples, another six datasets
were  generated,  each  with  a  set  number  of  paired-end  sequence  reads  per  sample,
ranging from 500,000 to 3,000,000 PE reads (Figure 2).  Mtb and contamination levels
were randomly sampled from a beta distribution around 0.01 to 78.63% Mtb DNA to match
levels observed for direct-from-sputum WGS data [8]. The contamination type was either
P. aeruginosa, S. epidermidis, H. sapiens, a mixture of P. aeruginosa, S. epidermidis and
H. sapiens or a NTM mixture (M. intracellulare, M. abcessus or M. avium up to 20% of the
Mtb fraction with the remaining contamination consisting of P. aeruginosa,  S. epidermidis
or H. sapiens). 

ART v.2.5.8 software [14] was used as described previously to emulate sequence reads
for each simulated strain and its contaminant(s). In total, 600 simulated WGS data directly
from sputum samples were generated in six datasets of  100 simulated samples, each
dataset representing a number of paired-end sequence reads and had various levels and
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types of contamination, allowing the study of the relation between contaminant nature,
read number and variant identification.

Assessment of XBS pipeline performance 

The performance of XBS was compared to UVP [6] and MTBseq [15], two well-established
and commonly used  Mtb pipelines .  Each pipeline was evaluated using their  standard
settings.  For  UVP,  variants  in  the  GATK  filtered  VCF  file  were  used  for  accuracy
calculations. For MTBseq, two approaches were assessed. In ‘MTBseq-basic’, the ‘GATK
position variants’ file was used for accuracy calculations. In ‘MTBseq-exrep’, the variants
marked ‘repetitive’ in MTBseq’s ‘MTB_Gene_Categories.txt’ were excluded to assess the
effect  of  this  commonly  applied  filtering  step.  From here  on  XBS,  UVP and  the  two
MTBseq approaches will be referred to as pipelines.

For XBS, VQSR was run with a truth set consisting of 5,000 SNPs, 250 insertions and 250
deletions randomly selected from the mutations known to occur in the 50 simulated strains.
The truth set therefore represented 10% (5,500/ 55,000) of the total variants introduced in
silico. The GATK VariantRecalibrator was run to score each SNP according to the inferred
positive and negative models, built on the depth, mapping quality, mapping quality rank-
sum and quality by depth statistical annotations. These annotations were processed in an
allele specific fashion to distinguish between genuine and contaminant variants occurring
on  the  same  genomic  location.  Annotations  that  showed  insufficient  variance,  as
determined by VQSR, were excluded. A logit transform and jitter were applied to improve
mapping quality-based filtering. The FS, ReadPosRanksum and SOR annotations were
excluded because they are more applicable for real sequence than for simulated data.
Where possible, four Gaussians were used for the positive model. The GATK ApplyVQSR
was applied with a truth sensitivity level of 99.9%. The same process was followed for
INDELs except that allele specificity was disabled and, where possible, two Gaussians
were used for the positive model. The MQ annotation was not taken into consideration
following the GATK Best Practices Workflow for Germline short variant discovery. To avoid
over-representation of contaminant alleles in the filtered dataset, INDELs in the sputum
simulations were filtered using a VQSLOD score of 0 rather than a truth sensitivity level.
This ensures that only those INDELs that are most likely to fall in the positive and not the
negative  model  are  kept.  The  resulting  SNP and  INDEL variants  were  used  for  the
accuracy calculations. Version 4.1.9.0 of the GATK was used.

The six datasets simulating WGS from culture were analysed using all four pipelines (XBS,
MTBseq-basic,  MTBseq-exrep,  UVP).  The  six  datasets  simulating  WGS  from  sputum
samples  only  by three pipelines as UVP can not  analyse samples with  contamination
exceeding 10%. The inferred variants identified by each pipeline were compared with the
truth  in  terms of  genome position and allelic  nature (bases involved and length).  The
pipeline’s accuracy was calculated in terms of precision, recall and their harmonic mean
(F1 score). 

For simulation of WGS from culture isolates, accuracy scores were averaged over the 100
samples in each dataset  and calculated for  each combination of variant  type (SNP or
INDEL) and genomic region (complete, complex or non-complex). F1 scores were plotted
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for the four pipelines at six levels of depth for the complete genome, and for complex and
non-complex regions separately. UVP’s list of excluded loci was used to define regions as
complex, these were filtered using the GATK SelectVariants.

For simulation of WGS from sputum, the range of F1 scores was calculated, separately for
SNPs and INDELs, and the proportion of samples with an F1 score >0.9 was estimated.
The number of Mtb reads was converted to the theoretical depth of coverage (number of
simulated Mtb reads multiplied by average read length) and plotted against F1 scores for
each pipeline,  contamination level  and type after  excluding samples with  a theoretical
coverage of <20× so that the lesser performance of such samples did not distort these
figures. 

Plots were created in R using the ggplot2 and gridExtra packages.

Analysis of WGS from clinical samples

The  performance  of  the  XBS variant  caller  was  examined  using  two  published  WGS
datasets  obtained  from  clinical  samples  and  compared  to  UVP  and  MTBseq.  Data
published by Roetzer et al. [16] was used to test the pipelines’ sensitivity by identifying a
set of known variants (Sanger confirmed) in DNA extracted from cultured Mtb samples.
Data from Goig et al. [8] was used to evaluate the ability to call variants in WGS data from
DNA extracted directly  from sputum.  Only samples with  ≥5× genomic coverage depth
(S02,  S26,  S17,  S21,  S31,  S20,  S27,  S67,  S09  and  S69)  were  analysed  to  ensure
sufficient width of coverage and prevent problems with phylogenetic inference. A reference
set of 125 diverse cultured Mtb strains with high coverage WGS data was included in the
analyses to provide a reference in  the phylogenetic tree and increase the variation in
statistical  annotations, thereby improving VQSR for XBS. XBS VQSR was run in SNP
mode with a truth-set containing lineage and DR variants [17–19]. These variants reflect
the diversity of  the bacterium (Mtb lineages) and the entirety of  the genome, enabling
VQSR to build a model to identify variants in exactly such regions and as such avoid bias.
The variants from the Goig et al. and reference dataset were converted to FASTA format,
where positions represented by fewer than 95% of the samples were excluded. MTBseq
and UVP were run in default mode.

IQ-TREE v2.1.2 was used to  construct  the  Maximum Likelihood trees [20]  which  was
plotted with Figtree v1.4.3 [21] and the resulting branch lengths were used to evaluate the
potential presence of false positive variants.

RESULTS

Pipeline performance for analysis of WGS data from simulated culture 
isolates

At the highest coverage (100×) and with the low levels of contamination (≤5%), all pipeline
approaches detected very few false positives and missed few variants, resulting in a 100%
precision for SNPs and INDELs across the genome, except for UVP which obtained a
slightly  lower  precision  of  98% for  SNP calling  (Tables  1  and 2).  Recall  scores  were
highest  for  XBS and MTBseq-basic  (97-99% for  the  SNPs and INDELs)  compared to
MTBseq-exrep and UVP which missed some variants (92% for SNPs and 91% for INDELs
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by MTBseq-exrep; 90% for SNPs and 89% for INDELs by UVP). The overall variant calling
accuracy was highest  for  XBS and MTBseq-basic  (F1 score  0.99 for  SNPs,  ≥0.98 for
INDELs), somewhat lower for MTBseq-exrep (F1 score 0.96 for SNPs, 0.95 for INDELs),
and lowest for UVP (F1 score 0.94 for SNPs and INDELs) (Figure 3).  At 100× coverage
MTBseq-basic  identified  an  average  9.2%  more  true  positive  SNPs  and  9.8%  more
INDELS per genome when compared to UVP (Table 1 and 2). XBS identified an average
9.0% more true positive SNPs and 8.1% more INDELs per genome when compared to
UVP at 100× coverage.

Lowering the depth of  Mtb genome coverage from 100× to 20× had minimal effect on
accuracy scores. XBS’s precision and recal did not change and the F1 score deviated by ≤
0.01 for SNPs and INDELs. The performance of MTBseq-basic and MTBseq-exrep also
did not differ for these lower coverages with similar precision for SNPs and INDELs, a drop
in recall by 2% for SNPs and 3% for INDELs, and the F1 score lowered by 0.01 for both
SNPs and INDELs. UVP’s accuracy statistics did not change for INDELs, but precision,
recall and F1 score for SNPs dropped slightly by 4%, 1% and 0.01, respectively.

At depths ranging from 20× to 100×, the performance for SNP and INDEL calling in the
non-complex regions of the Mtb genome was high for all  four pipelines (Figure 4 and
Supplementary  Table  1).  Performance for  variant  calling  in  the  complex  regions was
similar for  MTBseq-basic and XBS, with an average SNP and INDEL precision of 100%,
recall around 91% and the F1 around 0.95. Accuracy statistics for variant calling in the
complex regions could not be calculate for UVP as complex regions are excluded from
from its standard output. MTBseq-exrep’s exclusion of repetitive regions was less strict
than UVP’s excluded loci and hence the former was able to identify a small number of
variants in the complex regions.

At 10× depth of coverage, all four pipelines retained their precision but recall was affected.
UVP and both MTBseq approaches missed many variants resulting in a recall of around
50% for SNPs and INDELs. Consequently, F1 scores dropped drastically for MTBseq-basic
(0.69 for SNPs and 0.66 for INDELs), MTBseq-exrep (0.66 for SNPs and 0.63 for INDELs)
and UVP (0.64 for both SNPs and INDELs). In contrast, XBS’s accuracy remained high,
with recall at 99% for SNPs and 98% for INDELs and F1 scores of 0.99 for SNPs and
INDELs (Figure 3). Only at an Mtb genome coverage of 5× was the performance of XBS
noticeably affected,  although performance remained largely  accurate  with  F1 scores of
0.96 for SNPs and 0.95 for INDELs, a precision of 100% for both, and recall of 93% for
SNPs and 91% for INDEL calling. XBS’s ability to call variants in both low coverage and
complex regions was retained (Figure 4).

The  type  of  low-level  contaminant  (M.  intracellulare,  M.  abscessus,  M.  avium,  P.
aeruginosa, S. epidermidis, H. sapiens, NTM mixture or mixture of all 6 contaminants) only
affected  the  F1 estimates  of  UVP due  to  false  positive  SNP calls  when  NTMs or  S.
epidermidis were present (Supplementary Figure 1 and Supplementary Table 1). The level
of  contamination  (varying  from  0-5%)  also  only  affected  UVP’s  performance,  with  a
decrease in precision and SNP F1 scores at higher levels of contamination (Supplementary
Figure 2 and Supplementary Table 1). 
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Pipeline performance for analysis of WGS data from simulated sputum 
samples

XBS  outperformed  both  MTBseq  approaches  when  analysing  the  data  simulated  to
represent WGS directly from sputum. For SNPs, F1 scores ranged from 0.63-0.84 for XBS
compared to 0.33-0.58 for MTBseq-basic and 0.31-0.59 for MTBseq-exrep. Using XBS, 49
to 77% of samples achieved F1 scores above 0.90, compared to 20 to 53% and 15 to 45%
for MTBseq-basic and MTBseq-exrep, respectively. (Table 1 and 2). For INDELs F1 scores
ranged from 0.61-0.81 for XBS, 0.32-0.63 for MTBseq-basic and 0.31-0.60 for MTBseq-
exrep. Using XBS, 47 to 73 % of samples achieved F1 scores above 0.9, compared to 21
up to 58% and 16 up to 53% for MTBseq-basic and MTBseq-exrep, respectively. Plotting
the  theoretical  depth  of  coverage  against  F1 score  showed that  XBS calls  SNPs and
INDELs with higher accuracy at low genomic depth of coverage compared to both MTBseq
approaches (Figure 5). 

SNP accuracy  of  XBS  was  unaffected  by  contamination  level  or  type  (Figure  6).  In
contrast, accuracy for MTBseq-basic and MTBseq-exrep depended on type and level of
contamination.  H.  sapiens contamination  did  not  affect  the  F1 score, S.  epidermidis
lowered the F1 score to  0.90 when the contamination level  was ≥50%, and NTM and
bacterial/human contamination  mixtures  reduced the  F1 score  when the  contamination
level was  ≥75%. For INDELs, the MTBseq-basic pipeline performed slightly better than
XBS when Mtb depth of coverage was ≥20×, with average F1 scores of 0.99 for MTBseq-
basic,  0.95 for  MTBseq-exrep and 0.96 for  XBS respectively.  (Supplemental  Figure 3,
Figure 5B).

Pipeline performance for analysis of WGS data from clinical culture 
isolates

MTBseq and XBS could analyse all samples from the Roetzer et al. dataset, whereas UVP
excluded 33 of the 86 (38%) of samples. Of the 85 Sanger confirmed mutations, MTBseq-
basic recovered 81, MTBseq-exrep 79, UVP 61 and XBS 84, corresponding to sensitivities
of 95.3, 92.9, 71.8 and 98.8% respectively (Supplementary Table 3). The single variant
missed by XBS was located right on the border of a repetitive region, resulting in reads
with sub-optimal mapping qualities.

Pipeline performance for analysis of WGS data from clinical sputum 
samples

UVP failed to analyse any sample included in the Goig et al. dataset as the contamination
levels was above the 10% threshold for all samples. For the 10 Goig et al. samples and
the 125 reference samples, XBS reported 11,977 variant positions (after exclusion of the
ribosomal RNA regions), 13.9% more than the 10,514 variants reported by MTBseq. The
number of variants called by MTBseq further reduced to 10,114 when variants within 12bp
of each other were excluded. 

There was no evidence of false positive variants when using XBS (no obvious branch
extension  for  any sputum samples)  with  the  highly conserved ribosomal  RNA regions
removed  (Figure  7).  When  including  the  genes  coding  for  ribosomal  RNA obvious
extended  branch  lengths  were  present  for  three  samples  (S02,  S26  and  S20,
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Supplemental Figure 4) due to VQSLOD scores for such variants that had fallen just within
the within the positive VQSR model. When using MTBseq, there were also no obvious
branch extensions but one sample (S26) showed a shorter branch length compared to its
nearest-neighbours in the phylogenetic tree. This was the case for FASTA files in- and
excluding SNPs within 12bp distance from each other (Supplementary Figures 5 and 6).

DISCUSSION 

We  developed  XBS  and  applied  the  joint  variant  calling  and  machine-learning-based
variant filtering approaches, initially designed for human genome analyses, to a pipeline
for  Mtb WGS analyses.  Using 1,200 simulated samples representing characteristics of
WGS data from Mtb culture or directly from sputum samples, we demonstrated that XBS
increases the performance in  variant  calling compared to  existing pipelines (UVP and
MTBseq), especially for WGS data from less-than-perfect, contaminated low Mtb burden
samples. The strain simulation, variant calling and filtering approach presented here may
also benefit the study of other bacteria where sequence coverage, complex genomes or
contamination hinder accurate genetic variant identification.

We showed that  current  pipeline approaches perform well  for  SNP and INDEL calling
when sequencing DNA extracts from decontaminated cultures with high (≥20×) depth, but
accuracy decreases when depth of coverage is low (5-10×) or contamination levels are
high (>50%). The novel XBS pipeline substantially outperformed other MTB pipelines for
SNP  and  INDEL  calling  in  Mtb at  low  coverage  depth  culture  samples  and  highly
contaminated, low coverage depth sputum samples.

When analysing WGS data from culture isolates at the current standard 30 to 100× depth
coverage, all pipelines accurately called SNP and INDEL (F1  scores >0.90). Of the three
pipelines assessed, UVP’s performance was slightly inferior given its lower precision (false
positives variants) at higher (5%) contamination, particularly when the contaminant was an
NTM. XBS and MTBseq-basic were not affected by low level (0-5%) contamination levels
and identified on average 9% more SNPs and INDELs compared to UVP by investigating
Mtb’s  complex  genomic  regions.  Identifying  9%  more  variants  could  greatly  benefit
transmission and genome-wide association studies. 

At lower coverage (<20×), XBS was the only pipeline that could accurately call SNPs and
INDELs,  likely  due  to  the  joint  calling  and  filtering  processes  that  permit  lower  allele
coverages. XBS’s accuracy remained high at 5× depth, where the modest drop in F1 score
was due to a slightly lower recall rate and difficulty in accurately calling genuine INDELs
due to coverage gaps. This is expected as, according to the Poisson distribution, only
99.3% of  the  genome is  covered by at  least  one read at  5× coverage.  The low-level
contamination simulated for the culture samples did not affect the accuracy of the XBS or
MTBseq pipelines. The UVP pipeline was however affected by both the level and the type
of low-level contamination, such effects have been observed previously [22]. Considering
these findings it is understandable that UVP uses a strict contamination cut-off, but the
other pipelines show that variants can be identified more accurately despite the absence of
such cut-offs. Sequencing at 5× depth using XBS resulted in average SNP F1 score of 0.96
(minimum 0.95) and average INDEL F1 scores of 0.95 (minimum 0.91), whereas the F1
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scores of the other pipelines were ≤0.10 for both SNPs and INDELs. Such low-coverage
sequencing could lower the costs by a factor of 10 compared to standard 50× coverage
sequencing. In combination with low-cost library preparations, which is the main driver of
sequencing cost, this could open the door to large-scale population sequencing projects in
high TB-burden settings. 

WGS data obtained directly from sputum is characterized by a low number of  Mtb reads
(theoretical  coverage),  a  high  the  level  of  contamination,  and  presence  of  a  mix  of
contaminants. The novel XBS pipeline showed superior performance for analysing such
impure sequencing data. Due to the joint calling approach, XBS could analyse samples
with much lower genomic coverage than the two MTBseq approaches. XBS successfully
identified SNPs and INDELs in an average 73% of samples with 2,5 to 5 million paired-end
reads, where MTBseq-basic only successfully analysed 50% and MTBseq-exrep 45% of
such samples. By employing VQSR filtering, which identifies contaminant reads based on
a multitude of statistical annotations, XBS’s performance was not affected by level or type
of contaminants. Hard filtering, as is implemented in MTBseq-basic and -exrep, was not
sufficient  at  high  levels  (>50%) of  contamination  because contaminant  alleles may be
interpreted as the most likely and therefore genuine allele, leading to false positives, once
they  reach  coverage  levels  greater  than  the  Mtb allele.  For  MTBseq,  the  type  of
contaminant affected the accuracy. High levels of human DNA did not affect accuracy as
these are  unlikely  to  map to  the  reference genome,  but  S.  epidermidis contamination
started to have an effect from 50% upwards as contaminant alleles then outnumber that of
Mtb. The  NTM-mix  only  affected  accuracy  at  high  contamination  despite  NTMs great
genome  similarity.  This  counterintuitive  finding  is  likely  because  high  levels  of
contamination  are  required  before  one  of  the  NTM  contaminants  present  in  the  mix
approach 50% allele frequency. 

Since  it  cannot  be  said  exactly  which  samples  underperform  in  terms  of  variant
identification accuracy in a clinical dataset, it is best to ensure an acceptable minimum
accuracy instead.  When employing XBS on WGS data from real-life sputum, our data
suggests that it may be prudent to restrict the analyses to those samples that present a
coverage of ≥10×. A 10× cut-off would result in average SNP F1 scores of 0.99, minimum
0.98,  and  average  INDEL F1 scores  of  0.97,  minimum 0.91,  for  60% (60/100)  of  the
samples in the 3,000,000 PE read dataset. MTBseq-basic would result in average SNP F1

scores of 0.91, minimum 0.53, and average INDEL F1 scores of 0.95, minimum 0.69, for
the same samples. 

Comparisons  of  the  performance  of  Mtb  pipelines  is  important  but  hampered  by  the
absence  of  large  datasets  for  which  the  true  variants  are  known.  To  date,  studies
assessing the performance of  Mtb pipelines have compared pipelines’ ability to identify
transmission clusters as established through contact tracing or older molecular methods,
or by comparing the detection of genomic drug resistance in relation to phenotypic tests or
Sanger-confirmed  variants  [6,15,23,24].  These  approaches  suffer  from  important
limitations.  Contact  tracing  is  complex  and  may  not  necessarily  identify  all  clusters
correctly [25]. Older molecular methods have significantly lower resolution than WGS so
that all  pipelines call  clusters identified by these older methods with relative ease [26].
Using genomic drug resistance to compare pipelines is affected by the reference drug
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resistance mutation list used by each pipeline, whereas focussing on a limited number of
Sanger-confirmed variants is  not  representative for  the entire  genome.  The only  other
study that used simulated read datasets to compare combinations of mapper, caller and
filtering methods found that the GATK variant caller in combination with VQSR consistently
had the highest  precision scores [27],  supporting the findings of our study.  This  study
however had multiple limitations. First, the GATK calling was performed for one sample at
a time, which is not optimal for VQSR or low coverage samples. Second, for the VQSR
truth sets, half of the samples’ variants with the best quality score were taken, an approach
is problematic when high frequency contaminant alleles are present. Third, the use of the
clinical CDC1551 strain prohibited accuracy assessment for the complex regions as the
exact  location  of  CDC1551  variants  in  relation  to  H37Rv  cannot  be  established  with
certainty for complex regions.

We successfully overcame the limitations of prior Mtb pipeline accuracy studies by using
an  in silico approach to construct a fully representative variant truth set. The simulated
dataset resembled clinical datasets by ensuring that some strains occurred once while
others occurred several times. VQSR benefited from the presence of clonal strains as it
improves the identification of variants in low coverage samples observed in other samples.
Our datasets simulating culture isolates represented the range of depth (5 to 100×) and
low levels of contamination (0-5%). Our simulated sputum datasets contained more than
21.4% contamination (mean 82.12%, maximum 99.99%) and thus very low levels of  Mtb
DNA, which correspond to the findings of a recent study of the clinical samples where
most (51%) WGS data showed less than 5% Mtb DNA sequence reads [8]. The use of the
simulated datasets allowed us not only to accurately quantify the performance of different
pipelines for variant calling throughout the entire genome, including the complex regions,
but also assess the effect of important characteristics that determine accuracy such as
mycobacterial burden, level and type of contamination. 

The excellent performance of XBS for the analysis of complex samples was confirmed
when analysing WGS data obtained from clinical samples. The analyses of the WGS data
from clinical  culture  isolates  showed that  XBS outperformed other  pipelines  (including
pipelines not investigated in this study) in terms of sensitivity (Supplementary Table 3). The
high specificity  of  XBS matches the findings of  the culture simulations where the four
pipeline approaches show similar recall scores. The analysis of WGS data obtained from
DNA extracted directly from sputum samples confirmed that only XBS and MTBseq, but
not UVP, could successfully analyse such data. While both pipeline showed high specificity
(no evidence of false positive variants resulting in branch extension on phylogeny), the
performance of XBS was superior to MTBseq as it allowed the identification of 13.9% more
variants.

Several limitations remain to the novel XBS variant caller. First, XBS (and other pipelines)
cannot analyse samples when NTM contaminant sequences exceed 20%. Such samples
would require analyses by programs such as QuantTB that can potentially filter out NTM
contaminants before Mtb variant identification as they resemble multiple infections [28].
Second, XBS requires multiple samples for each run. Previously inferred Genomic VCF’s
can however be included from the Combine VCF step just before the VQSR, eliminating
the need to batch new samples. Third, the highly conserved ribosomal RNA regions had to
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be excluded for  optimal  specificity  as  sequences in  these regions from contaminating
bacteria can map to the Mtb reference genome with very high confidence, making the
variants in such regions indistinguishable in terms of the statistical annotations used by
VQSR. Eliminating these regions may result  in some loss of  the genomic information,
albeit small as this region represent only 0.1% of the genome Fourth, we used H37Rv as
the reference genome for all analysis. If the Mtb ancestral genome would be used as the
reference genome instead a VQSR truth-set could be constructed by aligning the ancestral
genome  to  H37Rv and  translating  the  latter  its  lineage  and  DR truth  variants.  When
applying the XBS approach to other bacteria, one should employ well-established variants
that occur throughout the entire genome for constructing the VQSR truth set. Finally, we
were  not  able  to  compare  the  run  time  of  XBS to  the  other  pipelines  as  there  were
important  differences  in  the  analyses  run  other  than  the  variant  calling  core  and  the
number of samples analysed differed due to pipeline restrictions. However, elimination of
the adapter removal and base recalibration steps reduces the overall processing time and
exclusion of meta-genomic classification further reduces computing time. It also prevents
the need for computing infrastructure with large memory requirements. 

Direct-from-sputum WGS data contains a wealth of diverse bacterial contaminants besides
that of human origin and all these contaminants occur at widely varying levels. It was not
possible  to  represent  this  endless  variety  of  bacterial  contaminants  in  our  simulation
experiments  hence  the  most  commonly  observed  bacterial  contaminants  where  used
instead [2], NTMs were included because these pose a serious challenge for Mtb variant
calling. Contaminant levels were simulated to match levels observed for genuine sputum
samples [8]. As such it was possible to study the effect of the various contaminants and
their  levels  on  variant  calling,  this  would  not  have  been  possible  had all  the  endless
contaminants observed for direct-from-sputum samples been used. To show that XBS was
able  to  handle  such genuinely  diverse  contamination  two clinical  WGS datasets  were
studied,  one  from  cultured  samples  and  one  direct-from-sputum.  Further  studies  are
required to study the effect of the full diversity of contaminants that are observed for direct-
from-sputum samples.

In conclusion, all pipelines studied (MTBseq, UVP, XBS) accurately analysed WGS data
from Mtb culture isolates. Only XBS and MTBseq could accurately identify variants in low
Mtb coverage and highly contaminated samples and XBS achieved higher performance
parameters  of  all  pipelines  studies.  High  performance  at  low  depth  could  decrease
sequencing cost and improve WGS analysis directly from sputum samples. The accurate
identification of variants in the complex genomic Mtb regions allow for improved resolution
in  transmission  studies  through increased genetic  resolution and creates  the ability  to
explore the functional role of variants in these complex regions. Taken together, the novel
XBS pipeline sets the stage for the next generation of Mtb WGS studies.

Authors and contributors

THH, RMW and AVR conceptualised the project and methodology. THH and LV curated
the data and designed and scripted the software. RMW and AVR acquired the funding.
THH, LV, RMW and AVR wrote, reviewed and edited the manuscript.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460612
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding information

This work was supported by the Research Foundation Flanders (FWO) [grant  number
FWO Odysseus G0F8316N].

Acknowledgements

We would  like  to  thank the  members  of  the  Tuberculosis  Omics  ResearCH (TORCH)
consortium  for  helpful  discussions  and  particularly  Elise  De  Vos  for  discussions
surrounding sputum simulation. We thank the reviewers for helpful comments and Galo A.
Goig et al. for providing additional direct-from-sputum sequencing data.

582

583

584

585
586

587

588
589
590
591

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460612
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

 

1. Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium 
tuberculosis: current standards and open issues. Nat. Rev. Microbiol. 2019; 17:533–545

2. McClean M, Stanley T, Stanley S, et al. Identification and characterization of 
breakthrough contaminants associated with the conventional isolation of Mycobacterium 
tuberculosis. J. Med. Microbiol. 2011; 60:1292–1298

3. Rachow A, Saathoff E, Mtafya B, et al. The impact of repeated NALC/NaOH-
decontamination on the performance of Xpert MTB/RIF assay. Tuberculosis 2018; 110:56–
58

4. Farmanfarmaei G, Kamakoli MK, Sadegh HR, et al. Bias in detection of Mycobacterium 
tuberculosis polyclonal infection: Use clinical samples or cultures? Mol. Cell. Probes 2017; 
33:1–3

5. Nimmo C, Shaw LP, Doyle R, et al. Whole genome sequencing Mycobacterium 
tuberculosis directly from sputum identifies more genetic diversity than sequencing from 
culture. BMC Genomics 2019; 20:389

6. Ezewudo M, Borens A, Chiner-Oms Á, et al. Integrating standardized whole genome 
sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance 
knowledgebase. Sci. Rep. 2018; 8:1–10

7. Kohl TA, Diel R, Harmsen D, et al. Whole-genome-based Mycobacterium tuberculosis 
surveillance: a standardized, portable, and expandable approach. J. Clin. Microbiol. 2014; 
52:2479–2486

8. Goig GA, Cancino-Muñoz I, Torres-Puente M, et al. Whole-genome sequencing of 
Mycobacterium tuberculosis directly from clinical samples for high-resolution genomic 
epidemiology and drug resistance surveillance: an observational study. The Lancet 
Microbe 2020; 1:e175–e183

9. Kato-Maeda M, Ho C, Passarelli B, et al. Use of whole genome sequencing to 
determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS 
One 2013; 8:e58235

10. Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant 
discovery to tens of thousands of samples. BioRxiv 2017; 201178

11. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nat. Genet. 2011; 43:491

12. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv Prepr. arXiv1303.3997 2013; 

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460612
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Davis S, Pettengill JB, Luo Y, et al. CFSAN SNP Pipeline: an automated method for 
constructing SNP matrices from next-generation sequence data. PeerJ Comput. Sci. 2015;
1:e20

14. Huang W, Li L, Myers JR, et al. ART: a next-generation sequencing read simulator. 
Bioinformatics 2012; 28:593–594

15. Kohl TA, Utpatel C, Schleusener V, et al. MTBseq: a comprehensive pipeline for whole 
genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ 2018; 
6:e5895

16. Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional 
genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal 
molecular epidemiological study. PLoS Med 2013; 10:e1001387

17. Coll F, McNerney R, Guerra-Assunção JA, et al. A robust SNP barcode for typing 
Mycobacterium tuberculosis complex strains. Nat. Commun. 2014; 5:1–5

18. Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi-and 
extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2018; 50:307–316

19. Napier G, Campino S, Merid Y, et al. Robust barcoding and identification of 
Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome 
Med. 2020; 12:1–10

20. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient 
methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020; 37:1530–
1534

21. Rambaut A. FigTree v.1.4.3. https://github.com/rambaut/figtree/

22. Goig GA, Blanco S, Garcia-Basteiro AL, et al. Contaminant DNA in bacterial 
sequencing experiments is a major source of false genetic variability. BMC Biol. 2020; 
18:1–15

23. Schleusener V, Köser CU, Beckert P, et al. Mycobacterium tuberculosis resistance 
prediction and lineage classification from genome sequencing: Comparison of automated 
analysis tools. Sci. Rep. 2017; 7:1–9

24. Jajou R, Kohl TA, Walker T, et al. Towards standardisation: Comparison of five whole 
genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked 
tuberculosis cases. Eurosurveillance 2019; 24:

25. Nikolayevskyy V, Kranzer K, Niemann S, et al. Whole genome sequencing of 
Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: a 
systematic review. Tuberculosis 2016; 98:77–85

26. Meehan CJ, Moris P, Kohl TA, et al. The relationship between transmission time and 
clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine 2018; 
37:410–416

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460612
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Walter KS, Colijn C, Cohen T, et al. Genomic variant-identification methods may alter 
Mycobacterium tuberculosis transmission inferences. Microb. Genomics 2020; 
6:mgen000418

28. Anyansi C, Keo A, Walker BJ, et al. QuantTB--A method to classify mixed 
Mycobacterium tuberculosis infections within whole genome sequencing data. BMC 
Genomics 2020; 21:80

664

665

666

667
668
669
670

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.16.460612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460612
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures and tables

Table 1: SNP calling accuracies across the entire genome for four Mtb pipelines.

Table 2: INDEL calling accuracies across the entire genome for four Mtb pipelines.

Figure 1: Flow chart for XBS’s variant calling core.

Figure 2: Flow chart for dataset construction.

Figure 3: Performance (F1 scores) of four bioinformatic pipelines for SNP calling in
simulated Mtb culture isolates at six levels of depth of Mtb genomic coverage.

Figure 4: Performance (F1 scores) of four bioinformatic pipelines for SNP calling in
simulated  Mtb culture  isolates  at  six  levels  of  depth  of  Mtb genomic  coverage,
stratified by complex and non-complex regions of the genome.

Figure 5: Performance (F1 scores) of different bioinformatic pipelines for SNP and
INDEL calling from contaminated sputum samples at various levels of theoretical
depth of Mtb genomic coverage.

Figure 6: Performance (F1 scores) of three bioinformatic pipelines for SNP calling in
sputum samples with minimum 20× Mtb coverage and various types and levels of
contamination. 

Figure 7: XBS Maximum Likelihood tree showing the location of Goig et al.’s sputum
samples (marked in red) in relation to the reference dataset. 
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