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Abstract

With the increasing amount of high-throughput sequencing data becoming avail-
able, the proper integration of differently sized and heterogeneous molecular and
clinical groups of variables has become crucial in cancer survival models. Due to
the difficulty of multi-omics integration, the Cox Proportional-Hazards (Cox PH)
model using clinical data has remained one of the best-performing methods [Her-
rmann et al., 2021]. This motivates the need for new models which can successfully
perform multi-omics integration in survival models and outperform the Cox PH
model. Furthermore, there is a strong need to make multi-omics models more
sparse and interpretable to encourage their usage in clinical settings. We developed
a novel neural architecture, termed Supervised Hierarchical Autoencoder (SHAE),
based on supervised autoencoders and Sparse-Group-Lasso regularization. Our new
method performed competitively with the best performing statistical models used
for multi-omics survival analysis. Moreover, it outperformed the Cox PH model
using clinical data across all 17 cancers from The Cancer Genome Atlas (TCGA)
considered in our work. We further showed that surrogate linear models for SHAE
trained on a subset of multi-omics groups achieved competitive performance at
consistently high sparsity levels, enabling usage within clinics. Alternatively, sur-
rogate models can act as a feature selection step, permitting improved performance
in arbitrary downstream survival models. Code for the reproduction of our results
is available on Github.

1 Introduction

Accurate prediction of survival times is essential for clinicians and researchers to decide treatment
and identify which variables drive survival. The Cox Proportional-Hazards (Cox PH) model [Cox,
1972, Breslow, 1975] is still the de facto standard model for survival analysis today, despite proposals
for various other methods such as random survival forests [Ishwaran et al., 2008], boosting [Hothorn
et al., 2010] and neural networks [Ching et al., 2018].

Survival analysis of cancer patients can be particularly challenging due to the heterogeneous nature
of the disease, even for patients suffering from the same type of cancer [Polyak et al., 2011, Fisher
et al., 2013, Melo et al., 2013]. With the advent of high throughput sequencing technologies,
researchers hoped to leverage the information inherent in biological data such as gene expression,
DNA methylation, and others (jointly referred to as multi-omics) to help explain and mitigate this
heterogeneity.
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However, even using the wealth of newly available biological data in large scale projects such as
The Cancer Genome Atlas Program (TCGA) [Tomczak et al., 2015], significant improvements
in performance in cancer survival analysis as measured by performance metrics such as Harrell’s
concordance [Harrell et al., 1982] or the brier score [Brier et al., 1950] have been elusive.1 Herrmann
et al. [2021] showed that the Cox PH model using clinical data outperformed most other methods,
even when these were designed to integrate multi-omics data.

1.1 Multi-omics survival models

There have been various proposals for statistical and neural network-based models that perform
multi-omics integration in the context of (cancer) survival analysis. Hornung and Wright [2019]
proposed five variations of the random forest algorithm [Breiman, 2001], all of which change the
split point selection by taking into account that the input variables belong to different groups (e.g.,
multi-omics data). BlockForest, their best performing method, statistically significantly outperformed
random survival forest in their work [Hornung and Wright, 2019] and was shown to outperform
the clinical Cox PH model on TCGA by Herrmann et al. [2021]. Boulesteix et al. [2017] proposed
a modified Lasso regularized Cox PH model that scales the Lasso penalty λ with a group-specific
penalty factor that can be chosen through a priori knowledge or using cross-validation. The authors
showed that their new model termed ipfLasso performed better than the standard Lasso regularized
Cox PH model in simulations and on TCGA. Klau et al. [2018] introduced a sequential Lasso
regularized Cox PH approach based on offsetting, priorityLasso, which considers input groups one at
a time in order and uses the previous model prediction as an unregularized offset for the next model.
PriorityLasso outperformed Lasso regularized Cox PH and offers clinicians the advantage of deciding
which variables to preferentially include in the model [Klau et al., 2018].

Cheerla and Gevaert [2019] proposed a novel neural network architecture that integrates gene
expression, miRNA, clinical data, and whole slide images to predict cancer survival on 20 TCGA
cancers. Their model benefitted (that is, exhibited an increased concordance index) from pan-cancer
training relative to training solely on each cancer type for most considered cancers. Kim et al. [2020]
proposed an architecture based on a variational autoencoder (VAE) [Kingma and Welling, 2013] on
which they applied transfer-learning. They trained their VAE on 20 TCGA cancers and transferred
the weights of the first two layers to their survival model, which they then fine-tuned on each of the
same ten TCGA cancers on which cox-nnet was benchmarked [Ching et al., 2018]. Their model
outperformed both cox-nnet and regularized Cox PH on seven out of ten cancers when trained on
gene expression data only. Huang et al. [2019] modeled TCGA breast cancer survival by integrating
miRNA, mRNA, copy number variation, and mutation data. They proposed an architecture that takes
the mRNA-seq eigengene matrix and the miRNA-seq eigengene matrix; both passed through a hidden
layer individually (i.e., miRNA does not interact with mRNA). Afterward, a final layer predicts the
relative risk from the output of the hidden layer of miRNA, the hidden layer of mRNA, copy number
variation, mutation, and selected clinical variables. Their new model outperformed random survival
forest, regularized Cox PH, and deepsurv [Katzman et al., 2018].

1.2 Sparse group Lasso regularized models

An alternative architecture-agnostic method for incorporating knowledge about input feature groups is
(Sparse-)Group-Lasso regularization. Sparse-group Lasso [Friedman et al., 2010a, Simon et al., 2013]
(SGL) regularization is a convex combination of the Lasso [Tibshirani, 1996] and the group-Lasso.
Initially introduced by Friedman et al. [2010a], SGL regularization promotes sparsity both within
groups (through the Lasso) and between groups (through the Group-Lasso).

Lemsara et al. [2020] proposed a multi-modal autoencoder, deemed PathME, which leverages SGL
between different multi-omics feature groups to perform, in combination with sparse non-negative
matrix factorization, clustering of TCGA patients. Xie et al. [2019] used Group-Lasso regularization
to propose an architecture similar to Ching et al. [2018] but designed for multi-omics integration.
The authors showed that group-Lasso regularization prevented overfitting (relative to Lasso and
using no regularization) and statistically significantly outperformed the same architecture with Lasso
regularization on three out of 14 considered TCGA cancers.

1From here on out, we will use concordance index and Harrell’s concordance interchangeably.
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1.3 Autoencoders

Autoencoders have also been widely used for multi-omics integration and cancer survival analysis
more broadly. Tong et al. [2020] explored multi-modal autoencoders for the integration of multi-
omics data in breast cancer survival. They proposed two architectures, each of which has a dedicated
autoencoder per modality. The first, termed CrossAE, tries to reconstruct both its own input and
all other input groups. Afterward, CrossAE mean-pools the latent representations and uses the
result to predict the relative risk. In their second architecture, ConcatAE, each autoencoder only
reconstructs its input. Afterward, the model concatenates all latent representations and uses them to
predict the relative risk. When comparing different combined multi-omics groups and their different
architectures, ConcatAE performed the best on TCGA breast cancer when integrating methylation
and miRNA and using PCA for dimensionality reduction.

Instead of using autoencoders solely for dimension reduction, their reconstruction loss can also
act as a regularizer to be trained jointly with a supervised loss. Le et al. [2018] showed that
these models have good theoretical properties and that training such an autoencoder (deemed a
supervised autoencoder) performed as well or better than neural networks that optimized only a
supervised loss on the respective supervised task. Thus, the reconstruction loss can be treated as a
form of regularization, the level of which is a hyper-parameter. Le et al. [2018] found that when
Ltotal = Lreconstruction + αLsupervised, levels of α around 0.01 were optimal on their datasets. Tan et al.
[2020] presented an application of supervised autoencoders on TCGA data. The authors tried to
predict binarized clinical endpoints (e.g., overall survival, disease-free survival) from TCGA data
using methylation, miRNA, mRNA, and reversed-phase protein arrays (RPPA). They trained one
supervised autoencoder for each omics group and fused their latent spaces using mean-pooling, from
which they then predicted the endpoints. Using this architecture, they outperformed other machine
learning models such as random forests and SVMs.

Our work explored a neural network-based approach to multi-omics integration, which leverages hi-
erarchical supervised autoencoders [Le et al., 2018] combined with sparse group Lasso regularization
[Simon et al., 2013] to achieve competitive performance on TCGA. In particular, we showed that
neural models could perform as well or better than BlockForest and its variants, even without transfer
learning. Furthermore, we studied how training surrogate models on a subset of all multi-omics
groups could help transfer multi-omics models to clinical settings by achieving close to state-of-the-
art results at very high sparsity. In addition, we partially reframed multi-omics integration as feature
selection, showing that fitting arbitrary survival models on a suitable feature set partially closes the
performance gap to integrative models.

2 Methods

2.1 Architecture

We developed a novel method, termed SHAE (Supervised Hierarchical Autoencoder) for multi-omics
integration in cancer survival models, which builds on hierarchical multi-modal autoencoders and
Sparse-Group-Lasso regularization (Figure 1). Our models have two levels of autoencoders. On the
first level, each input group m ∈M has a separate autoencoder that compresses the features of each
group (X(mi)) into a latent space m̃i. Since we modeled survival using supervised autoencoders, we
also introduced linear layers from each latent space to a predicted relative risk φ̂i(m̃i). On the second
level, another autoencoder takes the concatenation of all latent spaces C = [m̃1, ..., m̃|M |] from all
first-level autoencoders and compresses them into another latent space C̃ used for the final prediction
of the relative risk for each patient ϕ̂(C̃). The hierarchical aspect of our model was partially inspired
by Simidjievski et al. [2019], who provided an overview of different possible architectures of VAEs
for multi-omics integration.

We also explored a residual variant of SHAE (Figure 1). We fed the first modality (m1, clinical data
in our case) into our model and skipped it to the final layer in this variant. Using this skipping, we
hoped to achieve two goals:

1. The model could still take clinical data into account within the second-level autoencoder,
which might help other features, both with the reconstruction and for learning a better latent
space for survival prediction.
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2. This may aid performance since clinical data (in most datasets) contains valuable survival
information.

This residual idea was heavily inspired by the favoring approach of BlockForest [Hornung and Wright,
2019] and resnets [He et al., 2016]. We used the mean squared error (MSE) as our reconstruction loss
for all autoencoders and the Breslow approximation of the negative partial log-likelihood as the loss
for all predicted relative risk values. Let A denote the set of all linear layers in our networks and let B
be the linear regularized using SGL (blue edges in Figure 1). We regularized all linear layers a ∈ A\B
with L2 regularization and layer B with SGL. Let δi be the event indicator for patient i where δi = 1
if patient i experienced the event during the study and δi = 0 otherwise. Further, supposing that Xi is
the time of the event, we let Ti = min(Xi, Si) where Si is the time at which patient i was censored.
ξ and γ are hyper-parameters controlling the strength of the reconstruction regularization 2. λ1, λ2
are hyper-parameters controlling the strength of the L2 and SGL regularization respectively and α is
a trade-off hyper-parameter between the Lasso (α = 1) and the Group Lasso (α = 0). X(m1) denotes
the first input modality and X̂(m1) denotes a reconstruction of the first input modality. Then, the full
loss (1) for SHAE becomes:

Ltotal

(
ϕ̂, φ̂1, ..., φ̂|M |, X, X̂, C, Ĉ

)
= Lcox(U, δ, ϕ̂) + ξ ·MSE(C, Ĉ)

+

|M |∑
q=1

(
Lcox(T, δ, φ̂q) + γ ·MSE

(
X(mq), X̂(mq)

))
+ λ1

∑
a∈A\B

||a||2F + λ2(1− α)
∑

m∈{m1,...,m|M|}

√
|m|||B(m)||F

+ λ2α||B||1,1

(1)

Where ||.||F denotes the Frobenius norm, Lcox is the Breslow approximation of the negative partial
log-likelihood, and ||.||1,1 denotes the entrywise matrix L1 norm. MSE denotes the mean-squared
error, and B(m) is a submatrix of B with only those columns corresponding to inputs of modality m.
Ui = min(Ti, Xi), is the observed time until a patient was either right-censored Ci or experienced
the event Ti (death, in this setting).

We developed all neural nets using Pytorch [Paszke et al., 2019] and skorch [Tietz et al., 2017]. We
defaulted to scaling the supervised loss by multiplying it by the batch size (i.e., ξ = γ = batch size)
since we found this worked well initially and saved one hyper-parameter. For both SHAE and SHAE
residual, we performed standardization of all features before fitting the model. Further, we used
batch normalization [Ioffe and Szegedy, 2015] and Parametric Rectified Linear Units for non-linear
activations [He et al., 2015]. We used the Adam optimizer [Kingma and Ba, 2014] for training
our models and trained for 25 epochs, with a batch size equal to the size of the dataset (i.e., no
batching) and an initial learning rate of 0.01 (the highest learning rate before the training loss started
diverging for most cancers). We tuned the regularization parameters λ1, λ2 ∈ {1e−2, 1e−3, 1e−4}
using cross-validation. Since our models employ batch normalization, research suggests that it
may be possible to fix the learning rate given the right level of weight decay due to their strong
interdependence in the presence of batch normalization, even in adaptive methods like Adam [Hoffer
et al., 2018, Van Laarhoven, 2017]. Thus, we tuned only the regularization parameters and not the
learning rate. All latent space sizes were set to 64, and all encoders (and, by symmetry, decoders) were
set to have one hidden layer with 128 nodes. While all of these architectural hyper-parameters were
trainable in our implementation, we did not tune these in order not to complicate the hyper-parameter
search space.

We included both SHAE and SHAE residual in our benchmarks, where the clinical input variable
group was skipped for SHAE residual.

2Instead of down-weighting the supervised loss, as Le et al. [2018] did, we upweighted the reconstruction
loss.
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Optional residual layer

Figure 1: Architecture diagram of SHAE. Grey edges denote L2 regularization, blue edges SGL
regularization. Let X(mi) denote the part of X which corresponds to the i-th input variable group,
X̂(mi) a reconstruction of the same. m̃i is the latent space of an autoencoder taking X(mi) as its
input and C = [m̃1, ..., m̃|M |] is a concatenation of all first level latent spaces. φ̂1, ..., φ̂m as well
as ϕ̂ are predicted log-partial hazards based on their respective inputs. C̃ is the latent space of the
second-level autoencoder that takes C as its input.

2.2 Reference models

For reference models, we used the best performing model from the benchmark study of Herrmann
et al. [2021], BlockForest (BF), as well as RandomBlock favoring (RBF)3. Favoring refers to the
model always considering a particular block of variables in the split-point selection (most often
clinical variables). RBF and BF were implemented using the blockForest package. For RBF, we
favored clinical variables.

We also included a random survival forest method (RSF) and a Lasso Regularized Cox PH (Lasso) as
two benchmark methods that did not use the group structure information present in the multi-omics
variables. Lastly, we included a Ridge regularized Cox PH using only the clinical variables (Clin.
Cox PH). We opted for a Ridge regularized model since this allowed us to prevent convergence issues
often seen with one-hot encoded categorical clinical variables. RSF was implemented using ranger
[Wright and Ziegler, 2017] while Lasso and Cox PH were both implemented using glmnet [Friedman
et al., 2010b, Simon et al., 2011]. Lasso and Cox PH were set to standardize their input matrices,
while no further preprocessing was performed for RSF, BF and RBF.

2.3 Datasets

We benchmarked all models on the TCGA dataset. We followed the approach of Herrmann et al.
[2021] in selecting cancers with at least 100 samples (after preprocessing in our case) and an average
event ratio ≥ 5% to ensure there were enough patients and enough events to calculate meaningful
concordance values. Further, we used GISTIC 2.0 for copy number variation (CNV) data [Mermel
et al., 2011] and the number of non-silent MC3 mutation calls per gene per patient [Ellrott et al.,
2018], the former of which is taken from Xenabrowser [Goldman et al., 2020], with mutation coming

3RandomBlock is an alternative version of BlockForest - Hornung and Wright [2019] showed that it outper-
formed BF when clinical variables were favored with multi-omics data on TCGA.
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Table 1: Summary information of all 17 considered TCGA datasets used in our study. TCGA cancer
abbreviations used for space, please refer to https://gdc.cancer.gov/resources-tcga-users/tcga-code-
tables/tcga-study-abbreviations for a full overview. Tabel format adapted from [Herrmann et al.,
2021].

Cancer n p Event ratio clinical mRNA CNV methylation miRNA mutation RPPA

BLCA 325 84380 0.44 9 20225 24776 22124 740 16317 189
BRCA 765 80668 0.13 9 20227 24776 19371 737 15358 190
COAD 284 82221 0.22 16 17507 24776 21424 740 17569 189
ESCA 118 75752 0.36 17 19076 24776 21941 737 9012 193
HNSC 201 79286 0.60 16 20169 24776 21647 735 11752 191

KIRC 309 74652 0.28 14 20230 24776 19456 735 9252 189
KIRP 199 76294 0.15 5 20178 24776 21921 738 8486 190
LGG 395 78254 0.22 15 20209 24776 21564 740 10760 190

LUAD 338 82999 0.40 11 20165 24776 21059 739 16060 189
PAAD 100 76654 0.58 26 19932 24776 21586 732 9412 190

SARC 190 76068 0.36 45 20206 24776 21724 739 8385 193
SKCM 238 85254 0.52 3 20179 24776 21635 741 17731 189
STAD 304 80860 0.42 7 16765 24776 21506 743 16870 193
UCEC 392 84130 0.16 24 17507 24776 21692 743 19199 189

OV 161 72763 0.58 17 19064 24776 19639 731 8347 189

LIHC 157 76247 0.51 3 20078 24776 21739 742 8719 190
LUSC 280 82125 0.41 20 20232 24776 20659 739 15510 189

from PANCANATLAS [Chang et al., 2013].4 In addition, we considered miRNA, mRNA, DNA
methylation, RPPA, and clinical data, all of which are also taken directly from the PANCANATLAS.
We log-transformed both mRNA and miRNA expression. Otherwise, no further preprocessing of the
datasets was performed.

For comparability, we used the same clinical variables as Herrmann et al. [2021], with the caveat that
we dropped clinical variables missing for more than five patients. Categorical clinical variables were
one-hot encoded. We excluded molecular variables if they were missing for more than one patient to
preserve as many patients as possible. Table 1 shows an overview of all TCGA datasets which were
used in our study.

2.4 Performance metric

Similar to other works [Cheerla and Gevaert, 2019, Kim et al., 2020, Tong et al., 2020], we used
Harrell’s concordance (2) [Harrell et al., 1982] to measure the performance of our models, where
φ̂i is an estimated score for patient i (where higher estimated score implies higher estimated risk),
Ui = min(Ti, Ci) is the time until a patient was either censored (Ci) or experienced the event (Ti).
We have δ = 0 for censored patients and δ = 1 otherwise. Equivalently, Harrell’s concordance is the
ratio of concordant pairs and all comparable pairs.

Concordance(U, δ, φ̂) =

∑n
i=1

∑n
j=1 1(Ti > Tj)1(φ̂i < φ̂j)δj∑n
i=1

∑n
j=1 1(Ti > Tj)δj

(2)

2.5 Validation

We tuned all models using nested cross-validation with five inner folds or out-of-bag error (for random
forest-based methods) to choose the best parameters to refit on the outer fold. We used the glmnet
internal cv.glmnet function to optimize the regularization parameter for Cox PH and Lasso. BF and
RBF were tuned using the blockForest::blockfor function. For RSF, we tuned the mtry parameter
using the tuneRanger::tuneMtryFast function. For SHAE and SHAE residual, we tuned only the
regularization parameters λ1, λ2 ∈ {1e− 2, 1e− 3, 1e− 4}, while setting the other parameters to
the defaults detailed in Section 2.1.

4Mutation calls were calculated from the PANCANATLAS MAF file using Maftools [Mayakonda et al., 2018].
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For all cancers in our dataset, we performed outer five-fold cross-validation, twice repeated, giving
us a total of ten outer splits per cancer. For statistical significance testing, we tested for an overall
difference between models by adopting the same approach as Hornung and Wright [2019]. We
calculated the mean concordance per model per cancer (17 in total) and treated these mean values
as independent between datasets. We then ran a one-sided paired t-test with a null hypothesis of
non-inferiority of each benchmark model relative to SHAE and SHAE residual. The alternative
hypothesis was that our model performed better than the respective benchmark method. We thus
performed a total of ten tests (SHAE and SHAE residual compared to each of the five reference
models), for which we corrected using Bonferroni-Holm [Holm, 1979]. We report both the raw
p-values and p-values after correction.

2.6 Surrogate models

For enhanced clinical applicability, we chose to fit global surrogate Lasso models on the predictions
of SHAE and SHAE residual. We fitted the models using python-glmnet [Friedman et al., 2010b] on
clinical and gene expression data only and predicted the outputs of the full multi-omics SHAE and
SHAE residual models. We did not penalize the clinical variables, as they are generally known to
contain much prognostic information. We then compared the performance of these surrogate models
to the reference models fitted on only clinical and gene expression data to investigate whether the
surrogate model learned multi-omics specific information (which might show up in terms of increased
test concordance) even though it did not have access to them in training directly.

Our approach in predicting the relative risk estimated by SHAE (residual) is somewhat reminiscent of
pseudo-value methods in survival analysis, which replace right-censored survival data with jackknife
pseudo-observations, thus enabling a change in model class to perform regression instead of survival
analysis [Zhao and Feng, 2020, Klein and Andersen, 2005]. However, note that our approach does
not have any statistical guarantees (as far as we know) that some of the other pseudo-value techniques
do. We also emphasize that care must be taken when interpreting the pseudo hazard ratios obtainable
by analyzing the coefficients of the surrogate models. In effect, these cannot be directly interpreted
as hazard ratios but rather as a prediction of the hazard ratio which would have been predicted by
SHAE (residual).

Alternatively, we can also frame the surrogate models as a feature selection technique, discovering the
main features learned to be essential by our multi-omics methods. We can then refit a survival model
such as an RSF, or a Ridge regularized Cox PH model on the feature set selected by the surrogate
models. While this can also be powerful, we note that it does not allow for a transfer of multi-omics
information (as the downstream survival model must be fit on the original survival data, thus not
enabling a transfer from the SHAE (residual) predictions).

3 Results

3.1 Performance on TCGA

Overall, both SHAE and SHAE residual clinical (residual SHAE) statistically significantly outper-
formed both RSF and Lasso after multiple testing correction (Table 2). The comparison to the other
baseline models was more subtle, as none of the other p-values was statistically significant after
correction. Still, both of our proposed models outperformed BF and Cox PH in terms of overall
concordance (Figure 2A) and in terms of rank across datasets (Figure 2B). There were no strong
differences between the concordance of our models and that of RBF as all of them perform roughly
equally (Figure 2A). RBF had the lowest (that is, best) rank across datasets however (Figure 2B).

For computation times, both SHAE and residual SHAE ran much faster than RBF and BF (Figure
S1), with both SHAE models being around a factor of four times faster than RBF across datasets.5
Thus, SHAE achieved comparable performance to RBF in considerably faster computation times. Of
course, RSF, Lasso and Cox PH all ran much faster than any of the multi-omics models, although
this came at the price of decreased concordance.

5Timing benchmarks were performed on the Euler cluster of ETH Zurich using eight CPU cores with 4096
MHz, using tictoc [Izrailev, 2021] in R and timeit.default_timer in Python. Note that we did not use a GPU for
the benchmarks.
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Figure 2: Performance of all models on TCGA. A: Overall test concordance across across the 17
TCGA cancers. B. Mean test concordance rank per cancer across the 17 TCGA cancers (lower is
better).

Table 2: P-values of testing non-inferiority of each reference method (rounded to four digits).

model comparison model p-value (before correction) p-value (after correction)

SHAE (ours) BF 0.0978 0.3912
SHAE (ours) Cox PH 0.0265 0.1456
SHAE (ours) Lasso 0.0007 0.0048
SHAE (ours) RB favoring 0.6403 1.0000
SHAE (ours) RSF 0.0002 0.0023

SHAE residual (ours) BF 0.1089 0.3912
SHAE residual (ours) Cox PH 0.0243 0.1456
SHAE residual (ours) Lasso 0.0006 0.0048
SHAE residual (ours) RB favoring 0.6725 1.0000
SHAE residual (ours) RSF 0.0003 0.0024

3.2 Surrogate model performance

The performance of our Lasso surrogate models of SHAE (residual) exceeded that of any other model
trained on clinical and gene expression (Figure 3A) except BF. All multi-omics models and surrogate
models beat Lasso, RSF and Cox PH when trained on clinical and gene expression only (Figure 3A).
We note that the good performance of the surrogate models was not merely due to the favoring of
clinical variables, as a Lasso model fitted on clinical and gene expression, which did not penalize
clinical variables underperformed both of our surrogates (Figure S2).

While the training R2 of our surrogate models was generally quite good (Figure S3), the test R2

was much more mixed (Figure S4). This suggests that while the models effectively reproduced the
predictions of SHAE on the training set, they struggled to do so on the test set for certain cancers.
Most cancers (for example, ESCA and OV) where the models achieved a median test R2 of below
0.5 had a sample size of below 200 suggests that this issue might be at least partially due to the
low sample size. We saw overall high test R2 values for cancers such as bladder or breast, both of
which contained over 300 patients (Figure S4). Interestingly, low test R2 of the surrogates did not
necessarily correspond to lower performance relative to the full multi-omics SHAE (residual) models
(Figure S5).

Despite their competitive performance, our surrogate models were highly sparse, with a median of 35
and 37 variables selected across all cancers for the SHAE surrogate and the SHAE residual surrogate,
respectively (Figure 3B). The sparsity structure of the surrogate models by cancer and splits revealed
that the models were relatively stable in the number of features selected across splits (Figure 4 and
Figure S6). In addition, the surrogate models were able not to use any gene expression features when
it presumably could have hurt performance (e.g., on ESCA; Figure 4). The Lasso model trained
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Figure 3: Performance of the Lasso surrogate models for multi-omics SHAE (residual). A: Test
concordance of all models trained on clinical and gene expression only. Cox PH trained on clinical
only, surrogate models trained on the predictions of full multi-omics SHAE (residual). B: Number of
non-zero coefficients of the surrogate models and Lasso.

on clinical and gene expression data tended to have major differences in the number of non-zero
coefficients across splits (Figure S7).

When leveraging surrogate models purely for feature selection, survival models trained on the same
feature set as one of the surrogate models achieved improved performance relative to fitting them on
all clinical and gene expression features (Figure S8). However, the models refit with the feature set
recovered by the SHAE residual surrogate could not achieve the same performance as the surrogates
(Figure S9).

4 Discussion

First and foremost, we showed that SHAE could be leveraged to achieve competitive performance on
the TCGA dataset as measured by the concordance index. Our benchmark is especially interesting
since there has not been a conclusive comparison of neural models for multi-omics integration to
state-of-the-art statistical methods such as BF. Most other work either focused on statistical methods
only [Herrmann et al., 2021] or used simple statistical methods such as the Lasso [Huang et al., 2019].

While our work was not a neutral benchmark study and thus likely contains some bias, we believe
it validates SHAE as a solid alternative to BF and its variants. There were certain cancers such as
Esophageal carcinoma (ESCA) where SHAE outperformed RBF while on other cancers (e.g., Brain
Lower Grade Glioma (LGG)), RBF dominated SHAE (Figure S10). Ensemble methods or a mixture
of experts approach could leverage this diversity of performance across cancers to produce even
better results. Neural networks such as SHAE were also shown to provide additional benefits relative
to RBF, such as faster computation times (Figure S2). In addition, SHAE performed approximately
as well as RBF overall, even without having to be told that clinical information was important. This
suggests that SHAE might be a good alternative, especially when researchers are unsure whether
clinical data contains considerable prognostic information.

More broadly, our results were consistent with those of Herrmann et al. [2021]. We saw BF outperform
Clin. Cox PH by a small margin. At the same time, both RSF and Lasso failed to beat the clinical-only
model. One difference in our work is that we only kept clinical variables if no more than five patients
were missing them. Since our objective was to compare SHAE to other multi-omics methods such
as BF, this limitation seemed acceptable since all multi-omics models should be affected roughly
uniformly by having access to fewer clinical variables.

We found that the difference in performance between SHAE and SHAE residual was much smaller
than that between BF and RBF. Across all cancers, the two SHAE models had practically the same
performance in terms of mean and median concordance (Figure 2A). Future work is thus needed to
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Figure 4: Sparsity structure of the Lasso surrogate model for multi-omics SHAE residual trained only
on clinical and gene expression data.

establish the effect of and ideal way (if any) of forcing autoencoders to include a particular variable
group, potentially yielding a similar performance boost to that seen in BF based models.

We also showed that Lasso surrogate models for SHAE (residual) could maintain good surrogate
performance (in terms of train R2) even when trained on only a subset of available modalities
(specifically clinical and gene expression) (Figure S3). Although the test R2 was more nuanced
and very cancer-specific (Figure S4), we nevertheless validated that training surrogate models of
full multi-omics models can outperform most multi-omics models trained from scratch on the same
subset of input groups (Figure 3A). We found that survival models trained on the same feature set
as the surrogates could not entirely match their performance (Figure S9). This might imply that
the surrogates benefitted from some of the multi-omics information present in the SHAE (residual)
predictions.

The only model that our best surrogate model could not outperform was BF. BF performed better
when trained on clinical and gene expression only as opposed to all multi-omics data (for clinical
and gene expression only, BF had 0.014 higher mean and median concordance), which matches
the study of Hornung and Wright [2019]. Possible reasons for this include high redundancy of
information in additional added blocks beyond clinical and gene expression [Hornung and Wright,
2019]. Nevertheless, all other multi-omics models (RBF, SHAE and SHAE residual) performed better
with multi-omics data.

The surrogate models produced highly sparse models overall (Figure 3B). Especially considering
clinical variables were left unpenalized (and thus always selected), the surrogate models did not
use many additional variables relative to Clin. Cox PH, yet were able to outperform it consistently
(Figure 3A and Figure S9).

Furthermore, since all that needs to be communicated for the application of regression models such
as our surrogates are the coefficients and intercept (if any), they are much more robust and easier to
deploy relative to complicated black-box models [Klau et al., 2018, Boulesteix et al., 2017]. Of course,
sufficient care must be taken when deploying surrogate models in clinics, both due to mismatches in
sequencing protocol (although this is the case for all methods) and potential difficulties in analyzing
surrogate coefficients. Alternatively, clinicians or researchers can refit regularized Cox PH models at
the same sparsity level using the feature set recovered by the surrogates. Although this does not quite
recover the same performance, it nevertheless outperformed Clin. Cox PH at high sparsity levels
(Figure S9).

There are many promising avenues of future work connected with our approach in this study which
we did not pursue further. First and foremost, it would have been interesting to disentangle better the
effects of SGL, the supervised autoencoder, and the hierarchical autoencoder architecture on model
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performance. This may yield additional insights as to which architectures should be preferentially
explored in future work. Another avenue concerns the favoring of the clinical variables: We examined
the residual approach, in which we both fed clinical data into our autoencoder and skipped it to the end,
where it was fed directly into the linear layer connected to the final prediction. One straightforward
extension would explore differentially regularizing the latent space from the autoencoder and the
skipped clinical data, e.g., using different penalty factors, similar to ipfLasso [Boulesteix et al., 2017].

Lastly, our work has some limitations. First and foremost, we chose a fixed initial learning rate and
number of epochs for our models that may have caused overfitting, even though we did not choose
these hyper-parameters based on test performance. Therefore, more experiments should be conducted
to validate the robustness of SHAE to its different hyper-parameters as well as modern techniques for
learning rate scheduling such as cosine annealing [Loshchilov and Hutter, 2016]. Another limitation
is that we only benchmarked on TCGA; even though this is a common strategy among researchers,
future work should run a comparable benchmark, including statistical methods and neural networks
on another large-scale multi-omics survival dataset. In addition, our exploration of surrogate models
should be taken with a grain of salt. Despite their good performance, our approach does not have any
statistical guarantees that we are aware of.

5 Conclusion

Our work demonstrated that supervised hierarchical autoencoders with sparse-group Lasso regular-
ization are effective for multi-omics integration in cancer survival models. They performed on-par
with the best statistical method in a recent large-scale benchmarking study [Herrmann et al., 2021],
BlockForest, and one of its variants, RandomBlock favoring. We benchmarked all methods on 17
datasets of TCGA, following the dataset selection strategy of Herrmann et al. [2021].

The main contribution of our work was the architecture of our model, which to our knowledge, was
the first to apply supervised hierarchical autoencoders to multi-omics integration in cancer survival.
We further showed that by training global surrogate models using only clinical and gene expression,
we could outperform all models except BF trained on clinical and gene expression only by transferring
some of the multi-omics information learned by SHAE. Since our surrogate models also proved to
be very sparse, they can enable high performance in clinical settings while only using few variables
from one additional modality (namely gene expression).
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Banerjee, Yunhai Luo, Dave Rogers, Angela N Brooks, et al. Visualizing and interpreting cancer
genomics data via the xena platform. Nature biotechnology, 38(6):675–678, 2020.

K Chang, CJ Creighton, C Davis, L Donehower, et al. The cancer genome atlas pan-cancer analysis
project. Nat Genet, 45(10):1113–1120, 2013.

Anand Mayakonda, De-Chen Lin, Yassen Assenov, Christoph Plass, and H Phillip Koeffler. Maftools:
efficient and comprehensive analysis of somatic variants in cancer. Genome research, 28(11):
1747–1756, 2018.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics, pages 65–70, 1979.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460589doi: bioRxiv preprint 

https://skorch.readthedocs.io/en/stable/
https://skorch.readthedocs.io/en/stable/
https://www.jstatsoft.org/v33/i01/
https://doi.org/10.1101/2021.09.16.460589
http://creativecommons.org/licenses/by/4.0/


Lili Zhao and Dai Feng. Deep neural networks for survival analysis using pseudo values. IEEE
journal of biomedical and health informatics, 24(11):3308–3314, 2020.

John P Klein and Per Kragh Andersen. Regression modeling of competing risks data based on
pseudovalues of the cumulative incidence function. Biometrics, 61(1):223–229, 2005.

Sergei Izrailev. tictoc: Functions for Timing R Scripts, as Well as Implementations of Stack and List
Structures, 2021. URL https://CRAN.R-project.org/package=tictoc. R package version
1.0.1.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.16.460589doi: bioRxiv preprint 

https://CRAN.R-project.org/package=tictoc
https://doi.org/10.1101/2021.09.16.460589
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Multi-omics survival models
	Sparse group Lasso regularized models
	Autoencoders

	Methods
	Architecture
	Reference models
	Datasets
	Performance metric
	Validation
	Surrogate models

	Results
	Performance on TCGA
	Surrogate model performance

	Discussion
	Conclusion
	Acknowledgements

