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ABSTRACT 

The storage of data in DNA typically involves encoding and synthesizing data into short 

oligonucleotides, followed by reading with a sequencing instrument.  Major challenges include 

the molecular consumption of synthesized DNA, issues with basecalling errors, and limitations 

with scaling up read access operations for individual data elements.  Addressing these 

challenges, we describe a DNA storage system called MDRAM (Magnetic DNA-based Random 

Access Memory) that enables repetitive and efficient readouts of targeted files with nanopore-

based sequencing.  Through conjugation of synthesized DNA to magnetic beads, we enabled 

repeated readouts of data while preserving the original DNA analyte and maintaining data 

readout quality.  MDRAM also utilizes an efficient convolutional coding scheme that leverages 

soft information in raw nanopore sequencing signals to achieve information reading costs 

comparable to Illumina sequencing despite substantially higher error rates.  Finally, we 

demonstrate a proof-of-concept DNA-based proto-filesystem that enables an exponentially-

scalable data address space using only small numbers of targeting primers for assembly and 

readout. 

 

ONE-SENTENCE SUMMARY 

We demonstrate a novel DNA data storage system that leverages conjugation of DNA onto 

magnetic beads, new computational advances in data encoding, and exponentially scalable 

access of individual data elements. 
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INTRODUCTION 

DNA has properties that allow it to store and maintain genetic information for extended periods 

of time.  As a result, DNA provides a potential solution to the need for massive data storage.  

DNA molecules provide extremely high data density and long-term durability (1, 2).  In 

comparison to current magnetic and solid-state data storage technologies, DNA has a 

potentially higher storage density in addition to natural redundancy from molecular copying.  

Magnetic and solid-state storage technologies can be stably maintained up to decades but 

undergo progressive media degradation.  In contrast, under optimal storage conditions, the 

physical stability of DNA is on the order of thousands of years (1, 2).  There is ongoing work to 

develop DNA storage technologies with data writing into encoded oligonucleotides and reading 

through next generation sequencers (3). 

 

Data storage systems revolve around the concept of random access of data elements from a 

larger stored pool of multiple data stores or ‘files’.  New molecular technologies will be required 

for recovering stored data in synthetic DNA on an arbitrarily large scale with random access 

features.  Earlier studies used wholesale sequencing of the entire archive followed by 

bioinformatic extraction of small parts of data from the dataset (4, 5).  Recently, some groups 

have used conventional PCR to amplify the target files of interest for sequence-based reading 

(6-8).  However, this method has limitations on its scalability to the large numbers of DNA-based 

data files.  For DNA-based data, reading files typically requires PCR amplification with individual 

pairs of targeting primer oligonucleotides.  Accessing these files also leads to consumption and 

potential representative distortions of the DNA molecular information.  These issues are a direct 

result of the molecular preparation and amplification for the sequencing process.  Recent work 

has shown it is possible to re-amplify DNA oligonucleotide pools (9) but an ideal solution would 

be potentially lossless reading of a file from the source DNA. 
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Errors in DNA synthesis, artifacts in sequencing, and sequence dropouts also occur frequently.  

As a result, reading DNA data requires error correction techniques to enable reliable recovery of 

data and to optimize the coding density and sequencing coverage.  Erlich and Zielinski focused 

on Illumina sequencing with a Fountain code scheme (9, 10).  Organick et al. presented a scheme 

for both Illumina and nanopore sequencing using a variety of methods including multiple 

sequence alignment (MSA) and Reed Solomon codes (11) to handle sequence erasure and 

sequencing errors (7).  Lopez et al. improved the MSA algorithm leading to significantly fewer 

reads being required for successful decoding with nanopore sequencing (12).  Several theoretical 

studies focused on various aspects of the DNA-based storage problem such as the information-

theoretic capacity in the asymptotic setting (13), the optimality of various techniques to recover 

the order of the oligonucleotides (14), development of indel correction codes (15) and the tradeoff 

between the writing and reading cost associated with DNA storage (16).  Nanopore sequencing 

is also subject to unique error profiles consisting of substantially higher rates of indels.  Because 

of the higher error rates in nanopore sequencing, developing a robust data encoding scheme is 

a requirement when using this platform for DNA data reading. 

 

Addressing the challenges of error correction and iterative random data access, we developed a 

highly scalable random access file system called magnetic DNA-based random access memory 

(MDRAM).  This technology uses new advances in DNA encoding for maximum reading 

efficiency and repeated data readout operations.  MDRAM has several fundamental innovations 

in the field of DNA data storage (Fig. 1A).  This system involves conjugating arbitrary DNA data 

files, in the form of oligonucleotides, to solid-phase magnetic beads.  DNA data files can be 

selectively sequenced without losing the original molecular DNA media – this feature enables 

multiple repetitive read operations.  We improve DNA encoding using convolutional codes that 
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decrease the reading costs of current methods by an order of magnitude.  This feature 

leverages rapid nanopore sequencing readouts and thus enables low-cost, real-time data 

retrieval.  Using MDRAM we also demonstrate a combinatorial barcoding system for labeling 

and retrieving data packets that can scale exponentially to potentially unlimited numbers of files.  

This enables a unique DNA targeting scheme that is exponentially scalable without the burden 

of individually synthesizing individual primer pairs for enrichment.  Overall, we demonstrate 

significant improvements towards the implementation of robust encoding and scalable access of 

DNA elements. 

 

RESULTS 

Encoding DNA with convolutional codes 

In this study, we designed and optimized a schema for writing data into a DNA information 

payload with a convolutional encoding method optimized for nanopore sequencing (17).  

Designed for use with nanopore sequencing, encoded oligonucleotides contain an inner code to 

mitigate sequencing errors and a Reed Solomon (RS) outer code (11) to mitigate sequence 

dropouts (Fig. 1B).  We employed convolutional coding as the inner code.  A convolutional 

encoder encodes a stream of message bits into a sequence of encoded bits, which are 

computed as a linear combination of a past window of m input bits (17).  The rate parameter r 

refers to the coding rate, which is the ratio of input to output encoded bits.  As an example of 

how these two parameters influence DNA data encoding and decoding, let us consider an 

example where the convolutional code has the following value of m=6 and r=0.5; this produces 

2 output bits per input bit.  As m increases, the code becomes more powerful, but the decoding 

becomes slower due to an exponential increase in the number of possible decoded states.  

Moreover, each data sequence has a convolutional code and a cyclic redundancy check (CRC) 

error-detecting code (18).  Additional sequence elements incorporated in the synthesized 
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oligonucleotides also consist of adapter sequences for targeted PCR amplification, which flank 

the internal index sequence and encoded data payload (Supplementary Figure S1). 

 

To test the chemistry underlying MDRAM media, we used an oligonucleotide pool denoted as 

Pool A.  This set of contains ~12,000 unique array-synthesized oligonucleotides spanning 13 

subpools (‘files’) that can be targeted by PCR.  The sequences encoded a collection of various 

song lyrics, speeches, and the Universal Declaration of Human Rights totaling a size of 11.3 

KB. Each of the 13 subpools encoded the same compressed archive of the aforementioned 

material using an early implementation of the convolutional encoding scheme, using a variety of 

m and r parameters; Pool A’s encoding performance was described previously (17). 

 

Stable retention of DNA data elements onto magnetic beads 

Encoded DNA was functionalized by adding trans-cyclooctene (TCO) modified dUTPs with 

terminal transferase.  This enzymatic step enables the conjugation onto customized 

methyltransferase (Tz) functionalized magnetic agarose beads – the chemistry involves an 

inverse electron demand Diels-Alder cycloaddition (Fig. 1C).  Amongst all variations of click 

chemistry schemes, the kinetic rate of TCO-Tz conjugation is particularly suitable for modifying 

molecular analytes at submicromolar concentrations (19). 

 

First, we evaluated the efficiency of the conjugation chemistry with a variety of experiments.  

This step involved conjugation reactions with 70 nanograms of Pool A by adding TCO-

functionalized dUTPs via terminal transferase (20) and then mixing the product with Tz-

functionalized magnetic beads.  After the conjugation reaction, we separated and collected the 

supernatant of the original reaction.  We used fluorimetry to quantify the amount of remaining 
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DNA left in the supernatant after the conjugation reaction.  The amount of remaining DNA was 

below the limit of detection, indicating that the majority of DNA was conjugated onto the 

magnetic beads.  To verify this fluorimetry result, we performed qPCR on the supernatant of the 

conjugation reaction and the eluent from different washings of the MDRAM beads.  As a 

measure of residual DNA material left in the supernatant and washes, we quantified the Ct 

value corresponding to a single file from the oligonucleotide pool and used a serial dilution of 

the oligonucleotide pool stock as the quantitative standard.  Less than 0.01% DNA material was 

detected in the conjugation supernatant and in each wash step (Fig. 2A).  These results 

indicated a near complete, stable conjugation of the DNA material to the magnetic agarose 

beads.  This high level of efficiency is consistent with other published measurements of Tz-

TCO’s conjugation efficiency with biomolecules (19). 

 

Retrieval of data elements from MDRAM 

To demonstrate random data access capability, we performed targeted sequencing of specific 

data files from the MDRAM substrate containing Pool A.  To assess the overall performance of 

DNA amplification from MDRAM we used sequencing to determine the on-target rates of a 

single DNA data file (e.g. number 7) (Fig. 2B).  Two different bead conjugation conditions were 

tested; one involving a one hour incubation and the other for 24 hours.  We performed PCR 

reactions across two different bead conjugation conditions, sequenced the resultant amplicons 

on the Illumina platform and counted reads using the entire multi-file oligonucleotide pool as the 

alignment reference (Fig. 2B, Supplementary Table S1).  Illumina-based sequences were 

used to accurately assess the count distribution of the amplified individual oligonucleotides.  As 

a control, we compared the MDRAM read counts versus those amplified from a baseline in-

solution oligonucleotide pool from the original array synthesis.  Referred to as the non-
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conjugation control, this comparison sample involved direct sequencing from PCR amplification 

of the aqueous oligonucleotide pool.  This control did not use the MDRAM media. 

 

We aligned all sequenced reads using the designed oligonucleotide sequences as a reference.  

The proportion of on-target reads were over 95%.  We noted a similar performance between two 

different conjugation times when compared to non-conjugated controls (Fig. 2B).  This result 

confirmed that reading specific data files is done with high efficiency when the template DNA is 

conjugated to magnetic agarose beads.  We measured the count distribution of detected 

oligonucleotides against a non-conjugated control and determined the concordance with 

MDRAM-amplified product.  We observed a Pearson correlation coefficient of 0.933.  This result 

indicates that read distributions were not significantly affected when conjugated to magnetic 

agarose beads versus the in-solution oligonucleotides (Fig. 2C). 

 

Sequential random access of DNA data elements with nanopore sequencing 

MDRAM is a stable storage medium that enables sequential reading of different data files from 

the same substrate.  Using PCR amplification, we performed serial random file access 

operations for each of the 13 files of Pool A on the same MDRAM media.  For this test, we 

conjugated 70 nanograms of a DNA data oligonucleotide pool A to a new batch of magnetic 

beads.  An Oxford MinION instrument was used to sequence the amplicons.  Between each 

experiment, the beads were washed before PCR amplification for the next file was performed 

(Methods). 

 

The sequences were aligned to a reference representing the synthesized oligonucleotide 

sequences.  The on-target rate of accessing each file was over 98% for all sequential read 
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operations with each PCR primer pair exhibiting a minimum observed on-target rate of 96.8% 

(Fig. 2D, Supplementary Table S2).  We measured the off-target sequences (i.e. reads 

aligning to file 1 when targeting for file 2).  There was less than 0.1% of crossover contamination 

from the other DNA file products across all experiments.  This result indicates that MDRAM can 

be used for sequential read operations of specific data files without contaminating reads from 

other files or previous read iterations. 

 

Accurate convolutional decoding integrated into nanopore basecalling 

To improve the accuracy of reading MDRAM files with nanopore sequence, we developed a 

decoding workflow that can be integrated with open-source nanopore basecaller software 

(Methods) (17).  For this study, we used the Bonito basecaller (21), which processes nanopore 

signal data using neural networks.  In this approach, information is drawn directly from the 

nanopore raw electrical current signals rather than from basecalled reads – the latter contains 

artifactual substitutions, insertions, and deletions in the sequences, some of which arise 

because of nanopore signal fluctuations.  Convolutional decoding (22) enables serial error 

correction defined by a state transition diagram; the decoding is thus performed efficiently using 

a dynamic programming-based Viterbi algorithm. In the Bonito basecaller framework, upstream 

of the basecalls are probability scores that can be integrated with state transitions in the 

convolutional decoding framework.  The output is then a list of top candidate codewords, 

denoted as L and a default value of 8.  Additional filtering comes from the CRC technique (18) 

which provides added error detection and allows one to discard reads under circumstances 

where the convolutional code makes an error.  Full details and source code are described in 

Methods. 
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We measured the performance of our convolutional encoding and decoding scheme across 

multiple encoding parameters.  We used an oligonucleotide pool (‘Pool B’) with approximately 

15,000 non-overlapping sequences.  Pool B had an expanded number of data files compared to 

Pool A, with a 12.7 KB dataset used for each parameter setting.  Pool B focused on higher rate 

and lower memory codes to test the limits of convolutional coding, and to move towards 

practical systems with lower writing costs and computational requirements (Supplementary 

Table S3).  Also, Pool B incorporated additional encoding strategies and was synthesized using 

high-fidelity array synthesis chemistry from Agilent (23, 24).  Details of the additional files are 

listed in Methods.  Each data file, corresponding to an oligonucleotide subpool, was PCR 

amplified with primers flanking the file of interest (Supplementary Table S4) and underwent 

nanopore sequencing (Supplementary Table S2). 

 

We analyzed the decoding performance as influenced by two encoding parameters, the 

convolutional code memory (m) and rate (r) on a random subsampling of reads (N=10 trials).  

We assessed the percent of successfully decoded reads for the different values of m and r, 

meaning whether the sequenced data successfully decoded back to the file of interest 

(Supplementary Table S5).  As expected, we observed that a higher memory and lower rate 

consistently led to a greater fraction of successfully decoded reads (up to 88%) at the cost of 

more computation and higher writing cost (Supplementary Figure S4).  Interestingly, the 

results were not monotonic; there was a general trend with codes having a m=11 and with r=3/4 

associated with a lower reading cost.  The overall improvements were substantial, leading to 

more than two times higher decoding success rate in some cases (Supplementary Table S6) 

when compared to our prior results (17).  The improvement is more pronounced for higher rate 

and lower memory codes; these settings enable the use of more practical and efficient codes 

while achieving similar performance to more computationally intensive and lower density codes.  
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Across the different subpools, we also explored other optimization strategies, such as utilizing 

multiple CRC segments and finetuning the Bonito basecaller model but did not observe 

significant nor consistent improvements in decoding performance (Supplementary Figure S5, 

Supplementary Text). 

 

We measured other performance metrics that included: writing cost in terms of bases 

synthesized per information bit; reading cost measured in bases sequenced per information bit; 

and minimum required read coverage associated with each experimental parameter.  Prior 

reports of DNA data storage (7, 9) described the coding density (inverse of writing cost) and 

coverage (reading cost divided by writing cost).  We converted these metrics to the ones 

mentioned above for comparison (Methods).  Previously, we described (16) that reading cost is 

a better representation of the actual cost of sequencing compared to coverage, especially when 

comparing schemes with unequal writing cost or coding density.  We considered the well-

performing m=11 codes across all rates (r) alongside selected rates for m=6 and m=8 to simplify 

the analysis (Fig. 3A).  Consistent with the results measuring the proportion of correctly 

decoded reads, we observed significantly improved reading costs with our convolutional 

encoding/decoding scheme.  Specifically, there were 2-3x lower reading costs compared to our 

previous work with nanopore sequencing (17).  We achieved a reading cost of 3-5 bases/bit, 

compared to 22 and 34 bases/bit achieved by previously published strategies (7, 12) for 

nanopore sequencing based readout.  These results indicated a cost that was 10 times lower 

than other encoding frameworks – we attribute this to reduced reliance on consensus for error 

correction that was used by the other methods (Fig. 3A). 

 

For successful decoding in other frameworks, approximately 30-fold coverage is needed (7).  In 

contrast, our strategy required as low as 3-fold read coverage from nanopore-based sequencing 
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(Fig. 3B).  Most striking is that for writing costs of one base/bit, our nanopore-based framework 

not only improved on our previous work (16), but also is competitive with other works (7, 9) that 

developed coding methods for Illumina sequencing (Supplementary Table S8).  This 

improvement with nanopore sequencing was notable given its substantially lower basecalling 

accuracy (~5-10%) compared to Illumina sequencing (~0.1-1%).  This result also points to the 

strength of convolutional coding and the basecaller-decoder integration framework. 

 

Repeatable, parallel, and multi-file access on magnetic beads 

We leveraged our improved encoding scheme for highly efficient and parallel random access 

operations on magnetic beads.  MDRAM enables multiple parallel random read operations by 

splitting the bead media.  Afterwards, the bead substrate is washed and combined for 

subsequent data access operations.  To demonstrate MDRAM’s performance over multiple 

iterations, we conducted random access reading on specific subpools.  Here, we conjugated 

100 nanomoles of Pool B onto magnetic beads.  We split the magnetic beads into five wells and 

in each well we targeted a different file using a paired PCR primer pair specific to that data file 

(Supplementary Table S2).  After amplification, the beads were pooled back together and 

washed for a new experiment. 

 

We assessed the performance of integrating our improved convolutional coding onto MDRAM 

beads.  This part of the study involved included a non-conjugated control – the original aqueous 

oligonucleotide pool – for every targeted file of interest in every flowcell to control for run-to-run 

variation in sequencing quality.  Base quality variation was apparent among the different 

sequencing runs with the mean basecalling error rate varying from 4.5% to 7%.  However, there 
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were no significant differences in base quality between the MDRAM versus non-conjugated 

libraries when sequenced in the same flowcell (Supplementary Table S7A). 

 

We also evaluated whether there were substantial decoding impacts on the MDRAM platform.  

The outer Reed Solomon code requires a specific minimum number of unique sequences to be 

correctly decoded.  In cases with significant coverage variance or dropout of certain sequences, 

a higher number of reads is required for decoding the data.  We determined that the read 

coverage variance was higher for the MDRAM-based experiments, leading to a higher reading 

cost required compared to the aqueous oligonucleotide pool template control (Supplementary 

Table S7B, C).  However, the convolutional code parameters with more powerful error 

correction capabilities robustly controlled this effect.  The code with highest memory (m=11) and 

lowest rate (r=3/4) had only a 15% variation in reading cost across repeated data readout 

operations (Supplementary Table S7D,E).  The decoding performance across iterative read 

operations had less than 10% variation in the proportion of successfully decoded reads 

(Supplementary Table S7F).  When using MDRAM, the reading cost across iterative random 

access operations remained up to an order of magnitude lower compared to recent nanopore-

based DNA storage methods (Fig. 3C, Supplementary Table S8).  Overall, when using 

MDRAM for repeated access operations, the reading cost of our new encoding framework 

remained below 5 bases/bit in all but two data points, and below 4 bases/bit for the m=11 and 

r=3/4 encoding parameters. 

 

Exponential-scale hierarchical file access 

We developed a strategy for improved data access that is scalable to large numbers of data file 

elements with MDRAM.  Read operations that access data elements using conventional PCR 
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are severely bottlenecked by the design and synthesis of individual primer pairs to amplify and 

read a given file of interest.  In a conventional random access scheme where individual data 

elements are accessed by a PCR amplification, the number of primers scales directly with the 

number of files.  In conventional computer-based file systems, there may be millions of files that 

are all accessed individually.  In a DNA-based storage system, the conventional PCR-based 

approach for selectively amplifying specific files is restricted in its scalability.  It is nearly 

impossible to synthesize the number of PCR primers required to sequencing all the various files.  

Another challenge is that a significant number of primer pairs will have off-target amplification 

for any given file of interest. 

 

Providing a solution for this constraint, we improved the read operation process with a 

hierarchical file system for MDRAM.  We refer to this scheme as combinatorial barcode 

addresses (CBAs).  With it, an exponentially scalable set of different data elements can be 

tagged and accessed with only a small number of oligonucleotide sequences (Fig. 4A).  CBAs 

use a highly diverse combinatorial schema for sequence tagging and retrieval; it has similarities 

to semiconductor-based demultiplexer schemes that connect binary addresses to devices or 

signals.  As a proof of concept, we designed a scaffold structure consisting of six barcode 

subunits (‘bit positions’), each of which can have eight possible states as determined by the 

oligonucleotide sequence (octal, or base-8).  Random selection of one of these eight sequences 

in the six subunit positions resulted in 262,144 independent barcodes that are accessible with 

only 48 oligonucleotides (Supplementary Table S9).  Each oligonucleotide sequence consists 

of a barcode (20bp) flanked by two adapter sequences (20bp each) that are required for 

combinatorial assembly into a larger barcode structure.  For applicability to nanopore 

sequencing, we designed the barcode sequences to be uniquely identifiable using unique k-mer 

sequences (Methods). 
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CBAs enable scalable random access of individual data elements.  Random access is 

performed using a series of amplification steps with a small number of different primers.  This 

sequential process enables traversal through the file hierarchical tree and reading specific DNA 

elements of interest (Supplementary Figure S6).  Initially, the DNA template consists of a pool 

of CBA-data element structures.  To access an arbitrary data element, six sequential 

amplification reactions targeting each barcode subunit are performed, where the product of one 

reaction is diluted then used as the template for the next.  Each amplification reaction traverses 

one subunit level of the CBA structure.  The product from one amplification reaction is purified, 

diluted, and used as template for the next reaction.  After six targeting reactions, the final 

amplicon belonging to the CBA-data element payload of interest is read through sequencing.  

For example, a primer corresponding to a barcode on subunit 1 was used in an amplification 

reaction.  This amplifies sequences containing that barcode at subunit 1, resulting in enrichment 

of the nested elements in the hierarchical tree.  The amplification product was purified and used 

for the template for the second amplification reaction with another primer corresponding to 

subunit 2, and so forth.  Eventually, amplification for a sequence at barcode subunit 6 results in 

the data element of interest.  All primers are listed in Supplementary Table S9. 

 

To implement and validate CBA chemistry, we tagged individual oligonucleotides belonging to 

File 5 from Pool B with random CBAs.  We amplified File 5 from Pool B and used the amplified 

DNA for random assignment of CBA addresses across the represented amplicons.  We 

performed a one-step Gibson Assembly (25) reaction between amplicons of File 5 and a pool of 

all CBA scaffolding oligonucleotides (Supplementary Table S9) to generate a pool of CBAs, 

composed of randomly tagged oligonucleotides (Methods).  The CBA structure and the data 

elements are joined together by a linker sequence (Fig. 4A, Supplementary Table S9).  After 
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the Gibson Assembly reaction, the products were amplified, cloned into topoisomerase-I 

activated vectors and transformed into E. coli to control for the overall library diversity. 

 

To determine how individual oligonucleotides were associated with a given CBA, we nanopore 

sequenced the PCR products inserted into the vector.  Lawns of bacterial colonies were pooled, 

amplified by PCR, and sequenced to determine the oligonucleotide data payload for each CBA.  

To perform address decoding, we used a k-mer matching algorithm that searches for unique 

sequencing that belong to each possible barcode at each subunit position.  For each read and 

subunit position, we measured the number of matching k-mers (k=9) to every possible designed 

barcode sequence.  Overall, we observed that ~30-40% of sequences in each subunit had a 

perfect match to the designed barcode sequence (Fig. 4B).  As each barcode sequence 

consists of k-mers that are uniquely distinguishable from one another, sequences that had a 

less than perfect match can still be resolved.  Overall, the entire CBA was successfully decoded 

for ~70% of sequenced reads containing a CBA tag (Fig. 4C) which translates to an 

unrecoverable failure rate of approximately 6% at each barcode subunit, assuming that the 

errors between barcode subunits are independent. 

 

Having determined the CBA distribution, we incorporated the CBA-File 5 constructs in the 

MDRAM format.  Access of individual data elements was then performed on MDRAM by 

targeting for a specific sequence on each sequential barcode subunit (Fig. 4A).  The first 

amplification reaction was performed using primers corresponding to the common flanking 

sequences (Supplementary Table S4 and Supplementary Table S9), after which subsequent 

CBA traversal reactions were performed in aqueous solution (Supplementary Figure S6). 

From our prior sequencing analysis of the original CBA pool, we counted 92,388 unique CBAs 

that are randomly linked to oligonucleotides from File 5 in Pool B.  This number was determined 
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using an inclusion criteria where k-mer scores for all other candidate barcodes for a given 

subunit must be zero.  Using these CBA identities, we traversed the hierarchical tree with 

recombinase-based isothermal amplification (26) (Methods).  The targeting process involved 

six sequential amplification reactions – each amplification step uses a separate primer 

corresponding to the barcode sequence 5-11-23-29-39-48 and the reverse primer for File 5 

(Supplementary Table S9).  After completion of these serial amplification steps, we sequenced 

the resulting amplicon.  There were 17,600-fold more reads corresponding to the targeted 

oligonucleotide of interest compared the median coverage across all other File 5 

oligonucleotides (Fig. 4D) and an approximately 10,900-fold enrichment versus the null 

unenriched distribution (Fig. 4D, inset).  Through this efficient and accurate targeting process, 

our results show a promising proof-of-concept for exponentially scalable random access of data 

elements on the MDRAM platform. 

 

DISCUSSION 

In this work we developed MDRAM which is an end-to-end framework for storage of DNA data 

elements.  This DNA data storage method features high-fidelity and repeated access of 

synthesized oligonucleotides, as well as efficient decoding of sequence features using a 

convolutional encoding/decoding scheme.  This DNA data technology utilizes an efficient click 

chemistry scheme to attach synthesized DNA onto functionalized magnetic agarose beads.  We 

demonstrated MDRAM’s capacity for conjugation of data-encoded oligonucleotides.  

Importantly, the chemistry itself is widely applicable for conjugation of other types of DNA onto 

the magnetic substrate – for example, we anticipate that longer strands of information-encoded 

DNA (6) or those from enzymatic synthesis (27, 28) would also be compatible with conjugation.  

Therefore, MDRAM is amenable for any type of biomolecule storage platform that is compatible 

with TCO-Tz labeling schemes. 
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We demonstrated that pools of data encoded oligonucleotides and their associated files can be 

selectively amplified from MDRAM over may iterations with little carryover contamination.  

Sequential read operations consisting of targeted PCR amplification of different DNA data files 

are performed on the same batch of magnetic beads with negligible amounts of sample loss.  

Aqueous solutions of DNA data files are consumed during any data readout operation and must 

be eventually exhausted or re-amplified.  In contrast, MDRAM would potentially enable facile 

long-term repeated accessibility of data elements. 

 

We demonstrated the data readout capability of MDRAM using an improved convolutional 

encoding/decoding workflow.  When compared to other established methods, we found an 

overall reading cost improvement of approximately an order of magnitude.  However, we note 

that a direct head-to-head comparison across methodologies is difficult due to various 

confounding factors, ranging from the use of different oligonucleotide synthesis providers, 

different amounts of data encoded, different oligonucleotide lengths synthesized and the 

ongoing improvements in nanopore sequencing technology.  Some works utilized the now-

discontinued 1D2 nanopore sequencing method to mitigate sequencing errors by reading the 

opposing strand (7, 12) but resulted in lower throughput compared to this work.  Smaller file 

sizes were used in our study to focus on exploring multiple coding parameters and their impact 

on the overall reading cost.  Smaller file sizes also effectively reduced the amount of indexing 

space within the synthesized oligonucleotides as compared to larger files.  That being said, we 

anticipate has only a small effect on the overall reading and writing cost as the index size scales 

logarithmically with file size.  Finally, we note that nanopore basecalling performance has 

improved dramatically, with current error rates of 4-5% compared to 10% as recently as 2019 

(29), when other nanopore-based works were published (7, 12). 
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Our novel decoding workflow offers unique advantages over consensus-based schemes.  By 

utilizing the rich soft information in the raw nanopore signal instead of working with basecalled 

reads, we sidestepped explicitly handling indel errors through consensus or an edit-distance 

code.  The convolutional code is capable of correctly decoding a large fraction of reads without 

clustering or consensus, leading to an order-of-magnitude reduction in required coverage.  Our 

resulting nanopore-based reading cost demonstrate a high level performance that matches 

coding schemes based on high-accuracy Illumina sequencing platforms (16).  This equivalent 

performance is striking given that there is an order of magnitude difference in error rates 

between nanopore and Illumina sequencing.  The framework has flexibility, seeing that it can be 

integrated into other neural network architectures as nanopore basecalling improves over time.  

Overall, the replication experiments utilizing MDRAM clearly demonstrate the robustness of the 

framework in effectively handling experimental variation due to coverage variance, dropouts, 

and the base quality of the sequencing run.  Data could be encoded using a user’s choice of 

parameters optimizing on either decoding speed, writing cost, or robustness to errors. 

 

Modern data storage systems utilize filesystems for random access of individual data elements 

amongst millions of files if not more.  Individual primer synthesis and data access with 

conventional PCR does not scale to these numbers.  In this work, we also demonstrated in 

MDRAM a proof-of-concept of an exponentially scalable data addressing technology called 

CBAs.  By virtue of exponential scaling of combinatorial oligonucleotide assembly, we 

demonstrated individual readout of data elements with combinations of targeting 

oligonucleotides that can fit onto less than one 96-well plate.  CBAs can also be incorporated 

onto data payloads with pre-determined barcode identities as opposed to being randomly 

assembled in our study; this would obviate the requirement for bulk sequencing to generate the 
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CBA lookup table but may necessitate the use of robotic liquid handling to operate at scale.  

This work demonstrates that it is possible to mimic a basic feature of conventional filesystems – 

scalable random read access – on a DNA-based platform.  In fact, in combination with our 

reduced reliance on sequence consensus, MDRAM could potentially enable real-time decoding 

with nanopore sequencing.  With careful choice of convolutional coding parameters (m=6, r=3/4 

and L=1), we achieved decoding times of 0.25 seconds per read while still achieving a reading 

cost of ~4.5 bases/bit for a writing cost of ~1 bases/bit – which is a 5x lower reading cost than 

another reported consensus-based approach (18).  We also include the decoding speed for 

other parameters in Supplementary Table S10.  We note that the outer Reed Solomon code 

operates in blocks and hence the block size should be kept small enough to reduce decoding 

latency but large enough to achieve reasonable erasure (sequence dropout) protection.  

Through a large-scale robotic MDRAM-to-sequencer integration and optimization of 

bioinformatic pipelines, we believe that the appropriate set of coding parameters can be used 

along with real-time basecalling to enable close to real-time repeated access and decoding of 

data as would be idealized in DNA-based data storage systems. 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 19 

REFERENCES 

1. J. P. L. Cox, Long-term data storage in DNA. Trends in Biotechnology 19, 247-250 

(2001). 

2. G. M. Church, Y. Gao, S. Kosuri, Next-Generation Digital Information Storage in DNA. 

Science 337, 1628 (2012). 

3. L. Ceze, J. Nivala, K. Strauss, Molecular digital data storage using DNA. Nat Rev Genet 

20, 456-466 (2019). 

4. J. Bornholt et al., paper presented at the Proceedings of the Twenty-First International 

Conference on Architectural Support for Programming Languages and Operating 

Systems, Atlanta, Georgia, USA,  2016. 

5. N. Goldman et al., Towards practical, high-capacity, low-maintenance information 

storage in synthesized DNA. Nature 494, 77-80 (2013). 

6. S. M. H. Tabatabaei Yazdi, Y. Yuan, J. Ma, H. Zhao, O. Milenkovic, A Rewritable, 

Random-Access DNA-Based Storage System. Scientific Reports 5, 14138 (2015). 

7. L. Organick et al., Random access in large-scale DNA data storage. Nat Biotechnol 36, 

242-248 (2018). 

8. S. Yazdi, R. Gabrys, O. Milenkovic, Portable and Error-Free DNA-Based Data Storage. 

Sci Rep 7, 5011 (2017). 

9. Y. Erlich, D. Zielinski, DNA Fountain enables a robust and efficient storage architecture. 

Science 355, 950-954 (2017). 

10. D. J. C. MacKay, Fountain codes. IEE Proceedings - Communications. 2005. 

11. I. Reed, G. Solomon, Polynomial Codes Over Certain Finite Fields. Journal of The 

Society for Industrial and Applied Mathematics 8, 300-304 (1960). 

12. R. Lopez et al., DNA assembly for nanopore data storage readout. Nat Commun 10, 

2933 (2019). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 20 

13. R. Heckel, G. Mikutis, R. N. Grass, A Characterization of the DNA Data Storage 

Channel. Scientific reports 9, 9663-9663 (2019). 

14. A. Lenz, P. H. Siegel, A. Wachter-Zeh, E. Yaakobi, Coding Over Sets for DNA Storage. 

IEEE Transactions on Information Theory 66, 2331-2351 (2020). 

15. K. Cai, X. He, H. M. Kiah, T. T. Nguyen, in ICASSP 2020 - 2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). (2020), pp. 8827-

8830. 

16. S. Chandak et al., in 2019 57th Annual Allerton Conference on Communication, Control, 

and Computing (Allerton). (2019), pp. 147-156. 

17. S. Chandak et al., in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). (2020), pp. 8822-8826. 

18. W. W. Peterson, D. T. Brown, Cyclic Codes for Error Detection. Proceedings of the IRE 

49, 228-235 (1961). 

19. M. R. Karver, R. Weissleder, S. A. Hilderbrand, Synthesis and evaluation of a series of 

1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug Chem 22, 2263-2270 (2011). 

20. B. T. Lau, H. P. Ji, Covalent "Click Chemistry"-Based Attachment of DNA onto Solid 

Phase Enables Iterative Molecular Analysis. Anal Chem 91, 1706-1710 (2019). 

21. Oxford Nanopore Technologies. Bonito. https://github.com/nanoporetech/bonito (2021). 

22. A. Viterbi, Convolutional Codes and Their Performance in Communication Systems. 

IEEE Transactions on Communication Technology 19, 751-772 (1971). 

23. E. M. LeProust et al., Synthesis of high-quality libraries of long (150mer) 

oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38, 

2522-2540 (2010). 

24. S. Kosuri et al., Scalable gene synthesis by selective amplification of DNA pools from 

high-fidelity microchips. Nature biotechnology 28, 1295-1299 (2010). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 21 

25. D. G. Gibson et al., Enzymatic assembly of DNA molecules up to several hundred 

kilobases. Nat Methods 6, 343-345 (2009). 

26. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using 

recombination proteins. PLoS Biol 4, e204 (2006). 

27. H. Lee et al., Photon-directed multiplexed enzymatic DNA synthesis for molecular digital 

data storage. Nat Commun 11, 5246 (2020). 

28. H. H. Lee, R. Kalhor, N. Goela, J. Bolot, G. M. Church, Terminator-free template-

independent enzymatic DNA synthesis for digital information storage. Nature 

Communications 10, 2383 (2019). 

29. R. R. Wick, L. M. Judd, K. E. Holt, Performance of neural network basecalling tools for 

Oxford Nanopore sequencing. Genome Biol 20, 129 (2019). 

30. H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

arXiv: Genomics,  (2013). 

31. H. Li et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078-2079 (2009). 

32. H. Li, Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094-

3100 (2018). 

33. A. Graves, S. Fernández, F. Gomez, J. Schmidhuber, paper presented at the 

Proceedings of the 23rd international conference on Machine learning, Pittsburgh, 

Pennsylvania, USA,  2006. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 22 

ACKNOWLEDGMENTS 

Funding. This research was supported by the National Science Foundation and the 

Semiconductor Research Council (award number 1807371) under the SemiSynBio program. 

This work was also supported by a Beckman Technology Development Seed Grant. 

 

Author Contributions. B.T.L. and S.C. equally contributed to this work. B.T.L, S.C., T.W., and 

H.P.J. conceived and designed the study. B.T.L. and S.R. performed the experiments. S.C. and 

K.T. implemented the information encoding and decoding pipeline. B.T.L. and S.C. analyzed the 

data.  M.W. provided feedback on the study design.  T.W., and H.P.J. supervised the project.  

All authors contributed to the manuscript writing.  We also thank Peter Griffin at the Stanford 

Genome Technology Center for helpful comments on the manuscript.  

 

Competing Interests. Authors declare that they have no competing interests. 

 

Data Availability. Source code for generating oligonucleotide sequences and analyzing 

sequencing reads derived from our convolutional coding scheme can be found here: 

https://github.com/shubhamchandak94/nanopore_dna_storage/tree/bonito.  Sequence reads 

are deposited to NCBI’s Sequence Read Archive at PRJNA758230. 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 23 

LIST OF SUPPLEMENTARY MATERIALS 

Materials and Methods 

Supplementary Text. Additional convolutional code optimization strategies. 

Supplementary Figure S1. Convolutional inner code encoding. 

Supplementary Figure S2. Convolutional inner code decoding. 

Supplementary Figure S3. Outer coding strategy. 

Supplementary Figure S4. Writing vs. reading cost across values of convolutional code memory 

(m) and rate (r). 

Supplementary Figure S5. Writing vs. reading cost across values of convolutional code memory 

(m) and rate (r), for the one-CRC and two-CRC strategies. 

Supplementary Figure S6. CBA traversal with sequential amplification reactions 

Supplementary Table S1. Sequencing Metrics (Illumina) 

Supplementary Table S2: Sequencing Metrics (Nanopore) 

Supplementary Table S3: Encoding parameters for each synthetic DNA subpool in Pool B 

Supplementary Table S4. Primer sequences for targeting Pool B 

Supplementary Table S5. Percent of reads decoded correctly (list size 8 for decoding) across 

values of convolutional code memory (m) and rate (r). 

Supplementary Table S6. Impact of improved basecalling pipeline and improved barcode 

removal on the percent of reads decoded correctly. 

Supplementary Table S7. Nanopore decoding results. 

Supplementary Table S8: Comparison to other platforms 

Supplementary Table S9. CBA sequences 

Supplementary Table S10. Decoding speed. 

Supplementary Data S1. List of oligonucleotides for Pool A. 

Supplementary Data S2. List of oligonucleotides for Pool B.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460571
http://creativecommons.org/licenses/by-nc/4.0/


 24 

FIGURES AND FIGURE CAPTIONS 

 

Figure 1. MDRAM Overview. (A) Raw data is encoded into nucleotide bases using a 
convolutional encoding workflow, and are synthesized as an oligonucleotide pool. These 
fragments are then conjugated onto functionalized magnetic agarose beads, after which specific 
data elements can be repeatedly targeted by PCR. These fragments can be sequenced on the 
Oxford Nanopore system, after which they are decoded using an integrated workflow that does 
not rely on individual basecalled nucleotides. (B) Data encoding. Information is encoded with 
both an outer and inner code. The outer code (Reed-Solomon) accounts for oligonucleotide 
dropouts that may occur during synthesis. The inner code accounts for errors that may occur 
during the synthesis and sequencing processes. (C) Array-synthesized oligonucleotides are 
functionalized with trans-cyclooctene dUTP with terminal transferase, and then conjugated to 
methyltetrazine-functionalized magnetic agarose beads. Each oligonucleotide contains adapter 
sequences (red and green) such that subpools of oligonucleotides can be enriched by PCR. 
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Figure 2. Random access of data elements with MDRAM. (A) Assessment of conjugation 
efficiency. qPCR was performed on the supernatant, which measures the amount of DNA not 
conjugated to the magnetic beads and after wash steps. Left: Standard curve of DNA ranging 
several orders of magnitude. Right: quantitation of residual DNA from the conjugation reaction 
and through wash steps. Each dot represents a qPCR replicate. (B) Random access of a data 
element. A single DNA data file was amplified from MDRAM with different conjugation times (1 
hour and 24 hours), and its on-target alignment rate was compared to an unconjugated control 
experiment with an aqueous DNA template. (C) Assessment of oligonucleotide abundances. 
The distribution of individual oligonucleotides from a targeted file was measured against the 
unconjugated control. The Pearson correlation coefficient was 0.933. (D) Iterative and 
sequential random access of data elements. Individual data files were sequentially retrieved 
from MDRAM. In between each experiment, the beads were washed, after which another file 
was targeted.  The on-target alignment rate is shown for each random access experiment on 
the same bead batch.  
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Figure 3. Efficient encoding of information in DNA with convolutional codes. (A) 
Convolutional code performance. The reading and writing cost of the convolutional code was 
measured for a variety of parameters and compared to other works. (B) Approximate required 
sequencing coverage. The amount of sequencing reads in order to successfully decode a file is 
shown as a function of the coding density (bits/base) and compared to other works. (C) 
Application of convolutional codes to parallel file access in MDRAM. Multiple files were 
accessed by MDRAM in parallel by splitting beads and performing PCR. Beads were then 
pooled together, washed, and split again for another experiment. The reading cost is plotted as 
a function of experiment number. 
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Figure 4. Massively parallel file barcoding with MDRAM. (A) Structure of combinatorial 
barcode addresses (CBA) for tagging data elements. A combinatorial barcode subunit and 
scaffold structure creates unique indexes for retrieving data elements. This creates a prototype 
hierarchical filesystem structure whereby individual data elements can be accessed by using 
primers sequentially targeting individual subunit locations. Bottom: a mock system relating CBA 
random access to filesystem tree traversal. (B) CBA sequence determination with nanopore 
sequencing. A k-mer matching scheme was used to determine the CBA sequence without 
alignment. The number of matching k-mers to the best match is shown for each subunit 
location. (C) The number of CBA sequences with perfect matches (no errors) is shown. (D) 
Targeting of a specific CBA to enrich for an oligonucleotide of interest. The median-normalized 
read count is plotted for each oligonucleotide for File 5 in Pool B. The arrow indicates the 
oligonucleotide of interest. Inset: The null distribution from an unenriched (non-targeted) pool of 
CBAs for File 5. 
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