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ABSTRACT 17 
Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides 18 
for malaria vector control, threatens the continued efficacy of vector control tools. 19 
Target-site resistance is an important genetic resistance mechanism caused by mutations 20 
in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. 21 
Understanding the geographic distribution of target-site resistance, and temporal trends 22 
across different vector species, can inform strategic deployment of vector control tools. 23 
Here we develop a Bayesian statistical spatiotemporal model to interpret species-24 
specific trends in the frequency of the most common resistance mutations, Vgsc-995S 25 
and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, 26 
and An. arabiensis. For nine selected countries, we develop annual predictive maps 27 
which reveal geographically-structured patterns of spread of each mutation at regional 28 
and continental scales. The results show associations, as well as stark differences, in 29 
spread dynamics of the two mutations across the three vector species. The coverage of 30 
ITNs was an influential predictor of Vgsc allele frequencies in our models. Our mapped 31 
Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the 32 
pyrethroid deltamethrin in An. gambiae complex populations, highlighting the 33 
importance of molecular surveillance of resistance mechanisms.  34 
 35 
INTRODUCTION 36 
A major challenge in malaria control involves managing the threat that insecticide 37 
resistance in mosquitoes poses to the efficacy of vector control technologies. 38 
Insecticide-based vector control techniques, including indoor residual spraying (IRS) 39 
and insecticide-treated bednets (ITNs), are pivotal to malaria prevention, with ITNs in 40 
particular being responsible for a large portion of the reductions in malaria cases 41 
achieved over the period 2000-2015 (Bhatt et al. 2015a). ITNs rely on pyrethroid 42 
insecticides, which are used in the treatment of all ITNs pre-approved by the WHO and 43 
in many indoor residual sprays still used today (Tangena et al. 2019; World Health 44 
Organization 2020; Moyes et al. 2021). Pyrethroid resistance in malaria vectors has 45 
spread extensively throughout Sub-Saharan Africa (Hancock et al. 2020), and in 2017 46 
the mosquito sample mortality following exposure to a pyrethroid as measured by a 47 
WHO standard susceptibility test had dropped to less than 50% in at least 34 malaria 48 
endemic countries.  49 
 50 
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The prevalence of insecticide resistance phenotypes in African malaria vector species 51 
is highly heterogeneous across geographic space (Hancock et al. 2020), and 52 
underpinned by variation in genetic resistance mechanisms (Miles et al. 2017b), which 53 
have the potential for rapid long range spread (Clarkson et al. 2021).  Geographically 54 
comprehensive insecticide resistance monitoring and surveillance is therefore essential 55 
to track changes in resistance, interpret trends and anticipate upcoming threats. 56 
Unfortunately, despite the recommendations of the WHO Global Plan for Insecticide 57 
Resistance Management (GPRIM) (World Health Organization 2012) for the 58 
instigation of comprehensive and routine insecticide resistance monitoring, the 59 
available surveillance data is sparse throughout Sub-Saharan Africa, with 89% of 60 
administrative districts having no recorded measurements in the period 2015-2017 61 
(Moyes et al. 2020). Standard susceptibility bioassays to measure phenotypic resistance 62 
are labour intensive and difficult to scale up. Moreover, where morphologically-cryptic 63 
vectors are present, susceptibility bioassays are rarely used to measure resistance at the 64 
level of individual species, and do not provide information about mechanisms of 65 
resistance. Results can also be sensitive to environmental testing conditions, which are 66 
often difficult to standardise in the field (Ismail et al. 2018; Weetman et al. 2018). 67 
Genetic, and in due course genomic, surveillance to track the frequency of variants that 68 
are associated with phenotypic resistance is more scalable, insensitive to collection and 69 
environmental conditions, and can distinguish between different resistance mechanisms 70 
across different vector species. 71 
 72 
A major challenge for genetic surveillance lies in identifying variants, or genomic 73 
regions, that are important determinants of different types of phenotypic resistance 74 
(Donnelly et al. 2016). Target-site resistance is an important pyrethroid resistance 75 
mechanism in Anopheles gambiae complex mosquitoes (Miles et al. 2017b; Clarkson 76 
et al. 2021), and is the most widely monitored genetic mechanism in field malaria 77 
vector populations. It is caused by mutations within the Vgsc gene that encodes the 78 
voltage-gated sodium channel, which is the physiological target of pyrethroid 79 
insecticides. Three single point mutations (SNPs) within the Vgsc gene are known to 80 
confer pyrethroid resistance; these include two substitutions on the 995 codon, L995F 81 
(originally named L1014F;Martinez-Torres et al. 1998) and L995S (originally named 82 
L1014S; Ranson et al. 2000), and a third substitution N1570Y (originally named 83 
N1575Y; Jones et al. 2012). The L995F and L995S mutations occur in the same codon 84 
and they cannot co-occur on a single chromosome, while the N1570Y mutation occurs 85 
in a different codon and has been found to increase resistance in association with L995F 86 
(Jones et al. 2012). Genome sequencing has recently identified numerous other non-87 
synonymous SNPs within the Vgsc gene, some apparently subject to recent positive 88 
selection, indicating that target-site resistance has a complex molecular basis, likely 89 
increasingly so over time (Clarkson et al. 2021).  90 
 91 
The extent to which phenotypic resistance in field malaria vector populations depends 92 
on these multifaceted genetic mechanisms remains uncertain (Donnelly et al. 2016). 93 
Genotype-phenotype association studies are complicated by the polygenic nature of 94 
insecticide resistance and the complex population structure of African Anopheles 95 
gambiae mosquitoes (Clarkson et al. 2014; Miles et al. 2017a). The Anopheles gambiae 96 
complex is made up of at least eight individual vector species, five of which are major 97 
malaria vectors: An. gambiae, An. coluzzii, An. arabiensis, An. melus, and An. merus 98 
(Wiebe et al. 2017; Barron et al. 2019; Charlwood 2019). The distribution of the 99 
different vector species is geographically heterogeneous, with gradients in species 100 
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composition occurring across regional and continental scales (Sinka et al. 2016). 101 
Mechanisms of insecticide resistance differ across these three species (Ranson et al. 102 
2011). The evolutionary trajectories of resistance depend on the specific ecology of 103 
individual species, the selection pressures present in the environment, and patterns of 104 
dispersal, migration and introgression across different populations (Simard et al. 2009; 105 
Clarkson et al. 2014; Fontaine et al. 2015; Pombi et al. 2017).  106 
 107 
Spatial modelling analysis is required to interpret spatial and temporal trends in 108 
insecticide resistance surveillance data that monitor the prevalence of different types of 109 
resistance in vector species (Hancock et al. 2020). This is because sampling locations 110 
are heterogeneously distributed across Africa, and variable across sampling times and 111 
across the different types of resistance phenotypes and/or genetic mechanisms that were 112 
tested in the sample. Geospatial models can quantify geographically explicit temporal 113 
trends in resistance (Hancock et al. 2020). The ability of geospatial models to 114 
extrapolate predictions across unsampled locations can help compensate for sparsity in 115 
surveillance data, and allow anticipation of contemporary resistance levels before new 116 
surveillance results become available (Moyes et al. 2020). Further, geospatial models 117 
offer a flexible framework for combining different datasets that describe separate but 118 
related aspects of resistance. They can incorporate measures of resistance across 119 
different vector species, as well as genetic and phenotypic measures of resistance, 120 
within the same modelling framework (Hancock et al. 2018). The ability of spatial 121 
models to predict resistance can benefit greatly from incorporating information about 122 
environmental characteristics such as climate, vegetation and land use; importantly, 123 
variables describing the distribution of insecticide-based vector control interventions 124 
across the landscape can be included as potential predictors (Hancock et al. 2020).  125 
 126 
Here we develop a Bayesian statistical spatiotemporal model ensemble to interpret 127 
species-specific trends in the frequency of two target-site resistance mutations in the 128 
Vgsc gene, 995S and 995F, in three vector species An. gambiae, An. coluzzii, and An. 129 
arabiensis over the period 2005-2017, which encompasses the period of major scaling 130 
up of ITN distributions. The models are informed by 2418 observations of the 131 
frequency of each mutation in field sampled mosquitoes collected from 27 countries 132 
spanning western and eastern regions of Africa. For nine focal countries, we develop a 133 
series of fine resolution annual predictive maps. These models reveal the 134 
geographically structured patterns of spread of each mutation at both regional and 135 
continental scales. We use our geospatial predictions of Vgsc allele frequencies to 136 
address two questions of importance to malaria vector control. Firstly, we analyse 137 
associations between the Vgsc allele frequencies and phenotypic resistance to 138 
pyrethroids seen in field vector populations. Secondly, we explore the sensitivity of the 139 
predicted Vgsc allele frequencies to differences in the coverage of ITNs. 140 
 141 
RESULTS 142 
 143 
Predictive accuracy of the spatiotemporal model ensemble 144 
Our spatiotemporal model ensemble, based on field-sampled Vgsc resistance allele 145 
frequencies in mosquito species from the African An. gambiae complex, confirmed our 146 
ability to interpolate allele frequencies. Predictive accuracy was assessed by testing the 147 
ability of the model ensemble to predict withheld data (using 10-fold out-of-sample 148 
cross-validation; see Methods), which showed a mean absolute prediction error (MAE; 149 
the average absolute difference between model predictions and observations) of less 150 
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than 10% (MAE=0.083) across all observed Vgsc allele frequencies (with a root mean 151 
square error (RMSE) of 0.137; Supplementary Table S1).  152 
 153 
Spatiotemporal trends in the frequency of target-site resistance mutations 154 
The nine mapped countries were chosen based on their number and spatial coverage of 155 
sampled Vgsc allele frequencies (see Methods and Supplementary Figures S1-S4). In 156 
western Africa, we developed maps of the predicted frequency of the Vgsc-995F 157 
mutation for Burkina Faso, Benin, Cameroon and Equatorial Guinea. In 2005, the 158 
earliest year in the data set, our maps show substantial geographic variation in the Vgsc-159 
995F frequency, within each country and between countries. The marker frequency also 160 
varied markedly across the three vector species (Figure 1). In all four countries the 161 
marker frequency in 2005 was highest in An. gambiae and lowest in An. arabiensis, 162 
with frequencies in An. coluzzii also being low in large parts of each country. In Burkina 163 
Faso, Benin and Cameroon the marker frequency in 2005 is higher in southern 164 
compared to northern areas. We note that in these three countries the relative abundance 165 
of An. arabiensis declines southwards with decreasing latitude, with An. gambiae and 166 
An. coluzzii becoming more dominant (see Supplementary Figure S5). It is possible that 167 
there is a greater selection pressure for the development of insecticide resistance acting 168 
on An. gambiae and An. coluzzii populations, because these two species have a stronger 169 
tendency towards indoor human biting than An. arabiensis and are therefore more likely 170 
to encounter insecticide-treated surfaces (see the Discussion).  171 
 172 
In all three vector species and all four countries, Vgsc-995F increased markedly 173 
between 2005-2017, with frequencies in An. gambiae and An. coluzzii in 2017 174 
exceeding 0.5 in over 80% of the spatial area of each country (Figure 1). A lesser 175 
increase occurred in An. arabiensis, with the strongest rise occurring in southern 176 
Cameroon. We did not map the Vgsc-995S frequency for the countries in western 177 
Africa, owing to its general scarcity (full reasons for exclusion of countries from each 178 
part of the modelling analyses are provided in Table S2 in the Supplementary Material). 179 
 180 
In eastern Africa, we developed maps of the predicted frequencies of Vgsc-995S and 181 
Vgsc-995F for four countries: Sudan, Ethiopia, Kenya and Uganda (Table S2). For 182 
Sudan, we mapped only a region in the west of the country (see Methods). The 183 
frequency of the Vgsc-995S allele in the four eastern African countries shows a 184 
dichotomous pattern across species, with much higher frequencies in An. gambiae than 185 
in An. arabiensis (Figure 2). In 2005, the frequency was low in An. arabiensis and very 186 
heterogeneous in An. gambiae. The frequency increased markedly in An. gambiae over 187 
2005-2017, reaching very high levels in the north-west part of our mapped region in 188 
Sudan, south-east Ethiopia, west Kenya and most of Uganda. The Vgsc-995S frequency 189 
also increased in An. arabiensis, but to a much lesser extent, with the highest 190 
frequencies occurring in southern Uganda in the final year of the modelled time period. 191 
 192 
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 193 
Figure 1. Predicted frequencies of the Vgsc-995F allele in malaria vector species for 194 
four countries in west Africa: Burkina Faso (top row), Benin (second row), Cameroon 195 
(third row), Equatorial Guinea (bottom row). Allele frequency maps for the first and 196 
final year are shown: the year 2005 is shown on the left (columns 1, 2 and 3) and the 197 
year 2017 is shown on the right (columns 4, 5 and 6).  Columns 1 and 4 show maps for 198 
An. gambiae, columns 2 and 5 show maps for An. coluzzii and columns 3 and 6 show 199 
maps for An. arabiensis. 200 
 201 
It is important to note that, in these four eastern African countries, the abundance of 202 
An. arabiensis relative to that of An. gambiae is typically much higher than in western 203 
Africa (Supplementary Figure S5), and An. coluzzii is very rarely reported. In Ethiopia 204 
and Sudan the species composition is almost entirely dominated by An. arabiensis. In 205 
general, the temporal dynamics of Vgsc-995F in An. arabiensis in these four countries 206 
followed a similar pattern to those in western Africa, with the frequency in 2005 being 207 
lower than that in An. gambiae, and then increasing in some areas to reach moderate to 208 
high frequencies in 2017 (Figure 3).  209 
 210 
In Ethiopia, Kenya and Uganda, the frequency of Vgsc-995F in An. gambiae was 211 
typically lower in 2005 compared to the western countries, and there was a lesser 212 
increase in the frequency over 2005-2017 (Figure 3). In 2017 there was still substantial 213 
spatial heterogeneity in the Vgsc-995F frequency, with regions of high frequency in 214 
northwest Ethiopia, northwest Kenya and northern Uganda, and low frequencies 215 
elsewhere. In An. gambiae, the historical presence of Vgsc-995S at moderate to high 216 
frequencies (Figure 2) is likely to slow the spread of Vgsc-995F in this species (see the 217 
Discussion). In the south and west of our mapped region in Sudan, however, the Vgsc-218 
995F frequency in An. gambiae was already high in 2005. Frequencies increased from 219 
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2005-2017, particularly in the north-western part of the region. For all four countries, 220 
there is a high degree of spatial overlap in the areas of relatively high Vgsc-995F 221 
frequency between An. gambiae and An. arabiensis (Figure 3). 222 
 223 

 224 
Figure 2. Predicted frequencies of the Vgsc-995S allele in malaria vector species for 225 
four countries in east Africa: Sudan (top row; the mapped area is confined to a region 226 
in the west (see Methods)), Ethiopia (second row), Kenya (third row), Uganda (bottom 227 
row). Allele frequency maps for the first and final year are shown: the year 2005 is 228 
shown on the left (columns 1 and 2) and the year 2017 is shown on the right (columns 229 
3 and 4).  Columns 1 and 3 show maps for An. gambiae, columns 2 and 4 show maps 230 
for An. arabiensis. 231 
 232 
For the DRC, we developed maps of the frequency of Vgsc-995F in An. gambiae only 233 
(Table S2). In the DRC, the spatiotemporal trends in Vgsc-995F in An. gambiae are 234 
more similar to the western countries, with a moderate to a high initial frequency in 235 
2005, followed by a widespread increase to high frequencies in 2017 (Figure 4).  236 
 237 
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 238 
 239 
Figure 3. Predicted frequencies of the Vgsc-995F allele in malaria vector species for 240 
four countries in east Africa: Sudan (top row; the mapped area is confined to a region 241 
in the west (see Methods)), Ethiopia (second row), Kenya (third row), Uganda (bottom 242 
row). Allele frequency maps for the first and final year are shown: the year 2005 is 243 
shown on the left (columns 1 and 2) and the year 2017 is shown on the right (columns 244 
3 and 4).  Columns 1 and 3 show maps for An. gambiae, columns 2 and 4 show maps 245 
for An. arabiensis. 246 
 247 
 248 

 249 
Figure 4. Predicted frequencies of the Vgsc-995F allele in An. gambiae in the 250 
Democratic Republic of the Congo (DRC). Allele frequency maps for the first and 251 
final year are shown: 2005 (left) and 2017 (right).  252 
 253 
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 254 
Associations among the allele frequencies in the three vector species 255 
The spatial patterns in the increases in Vgsc-995F frequencies in An. gambiae and An. 256 
coluzzii in the western countries over 2005-2017 were closely associated with each 257 
other, with the increase in An. coluzzii lagging behind that in An. gambiae (Figure 5). 258 
This is consistent with the results of genomic studies that show introgression of target-259 
site resistance from An. gambiae to An. coluzzii (Clarkson et al. 2014).  We found 260 
significant but less strong associations between the spatial patterns in Vgsc-995F 261 
frequency in An. arabiensis and both An. gambiae and An. coluzzii in the western 262 
countries over the years 2005-2017 (Supplementary Figure S6). Moreover, in the 263 
eastern countries (Ethiopia, Kenya, Uganda and Sudan) spatial increases in both the 264 
Vgsc-995F and Vgsc-995S frequencies were significantly associated across An. 265 
gambiae and An. arabiensis (Supplementary Figures S7 & S8). 266 
 267 

 268 
Figure 5. Associations between the predicted frequency of the Vgsc-995F allele in 269 
An. gambiae and An. coluzzii. Bagplots show the distribution across all mapped pixels 270 
within four countries in west Africa: Burkina Faso, Benin, Cameroon and Equatorial 271 
Guinea. The red asterisk shows the median, the dark blue shaded area contains 50% 272 
of all data points and the light blue shaded area contains all data points. Plots for four 273 
years are shown (from left to right): 2006, 2010, 2014 and 2017. 274 
 275 
Associations between resistance allele frequencies and the prevalence of resistance 276 
phenotypes 277 
We investigated whether the variation in our mapped Vgsc mutation frequencies could 278 
explain variation in phenotypic resistance to pyrethroids in field malaria vector 279 
populations. Specifically, we analysed associations between predicted frequencies of 280 
the Vsgc-995F mutation in the mosquito samples and phenotypic resistance to 281 
deltamethrin, the most commonly used insecticide in malaria vector control during the 282 
period studied. Measures of mosquito mortality following exposure to deltamethrin 283 
were derived from standardised insecticide susceptibility tests (see Methods). We 284 
excluded Equatorial Guinea, Uganda, Kenya and the DRC from this analysis (Table 285 
S2). We do not consider associations between Vsgc-995S frequencies and the 286 
prevalence of deltamethrin resistance because Vsgc-995S frequencies are low in the 287 
majority of our selected countries and strongly segregated across the An. gambiae 288 
complex species (Figure 2 and see the Discussion).  289 
 290 
For three countries in western Africa (Burkina Faso, Benin and Cameroon) and two 291 
countries in eastern Africa (Ethiopia and Sudan) the mortality to deltamethrin is 292 
consistently high when the Vgsc-995F frequency is close to zero, and there is a trend of 293 
decreasing mean mortality to deltamethrin with increasing Vgsc-995F frequency 294 
(Figures 6A & B). For each country, we fitted ordinary least-squares (OLS) linear 295 
regression models to the mean mortality values using the predicted Vgsc-995F 296 
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frequency as a covariate (see Methods). The relationship with the Vgsc-995F covariate 297 
was significant for all countries except Sudan, in which case the 95% credible interval 298 
(CI) had a borderline overlap with zero (Table 1).  299 
 300 
Despite the uncertainty associated with estimating frequencies of both phenotypic 301 
resistance and Vgsc alleles across multiple mosquito species in field populations, the 302 
interpolated Vgsc-995F allele frequency is able to partially explain the variation in 303 
mortality to deltamethrin.  The level of explained variation varies across countries; 304 
adjusted R2 values were close to 0.3 for Burkina Faso, Cameroon and Ethiopia, but less 305 
than 0.1 for Benin and Sudan (Table 1). Moreover, the form of the relationship varies 306 
across countries. In Benin many mortality values remain high across increasing Vgsc-307 
995F frequencies (Figure 6), consistent with the poor explanatory value of the model, 308 
despite a significant negative slope (Table 1). 309 
 310 

 311 
Figure 6. The mean mortality to deltamethrin and the frequency of the Vgsc-995F 312 
allele in Gambiae Complex mosquitoes at sampled locations in countries in west 313 
Africa (A) and east Africa (B). In the west (A), results for three countries are shown: 314 
Burkina Faso (green dots; n=159), Benin (purple triangles; n=297) and Cameroon 315 
(brown diamonds; n=184). In the east (B), results for two countries are shown: 316 
Ethiopia (blue squares; n=134) and Sudan (dark red diamonds; n=256). 317 
 318 
Table 1. OLS regression model results for each country. The model is fitted to mean 319 
mortality to deltamethrin across sets of bioassay sampling locations using the 320 
frequency of the Vgsc-995F allele in the Gambiae Complex as a covariate. The 321 
asterisk denotes statistical significance assessed by the 95% credible interval (CI). 322 

Data set Intercept (95% 
CI) 

Vgsc-995F 
(95% CI) 

Adjusted R2 Degrees of 
freedom (df) 

Burkina Faso 1.37* 
(1.06, 1.67) 

-0.65* 
(-0.8, -0.51) 

0.34 157 

Benin 2.1* 
(1.1, 3.1) 

-0.6 * 
(-0.1, -0.23) 

0.07 294 

Cameroon 1.5* 
(1.33, 1.66) 

-0.54* 
(-0.70, -0.38) 

0.33 182 

Ethiopia -0.27 -0.8* 0.28 132 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
or

ta
lit

y 
to

 D
el

ta
m

et
hr

in

Burkina Faso
Benin
Cameroon

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vgsc-995F frequency

M
or

ta
lit

y 
to

 D
el

ta
m

et
hr

in Ethiopia
Sudan

A B

Vgsc-995F frequency

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460499
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

(-0.59, 0.05) (-1.0, -0.55) 
Sudan 1.1* 

(0.85, 1.4) 
-0.3 

(-0.65, 0.04) 
0.03 254 

 323 
 324 
Relationships with predictor variables 325 
Our model ensemble included 99 predictor variables describing environmental and 326 
biological processes that could potentially drive selection for insecticide resistance (see 327 
Methods). We analysed which of these variables were the most influential predictors of 328 
Vgsc allele frequencies using variable importance measures, which describe the 329 
influence of each variable in terms of its impact on model predictions, relative to all 330 
other predictor variables (see Methods). Our model ensemble included three constituent 331 
models: an extreme gradient boosting model (XGB), a random forest model (RF) and 332 
a neural network model (NN). For each model we obtained a ranking of the most 333 
influential variables using a variable importance measure that was chosen based on the 334 
type of model (see Methods). 335 
 336 
For all three models, the highest-ranked predictor variable was related to climate, with 337 
solar radiation ranking highest for the XGB and RF models and relative humidity 338 
ranking highest for the NN model (Table 2). These two variables may be influential 339 
because they segregate dry arid areas and wetter tropical regions (see the Discussion). 340 
The coverage of Insecticide Treated Bednets (ITNs) was strongly influential in the 341 
XGB and RF models, with variables describing ITN coverage at different time lags 342 
ranking second, fifth and ninth in both models (Table 2). In the NN model, the coverage 343 
of evergreen broadleaf forest was highly influential, with different time lags of this 344 
variable ranking second, fourth and eighth. In general, with the exception of ITN 345 
coverage, the highest-ranked variables for the XGB and RF models are related to 346 
climate and elevation, and the highest ranked variables for the NN model include 347 
variables relating to land cover, climate and elevation. 348 
 349 
Table 2. The top ten highest ranked variables, as determined by variable importance 350 
measures, for the three machine learning models included in the model ensemble. 351 
Variable name suffixes (-1), (-2), and (-3) denote time lags of 1, 2, and 3 years, 352 
respectively. One, two, and three asterisks denote the first, second, and third principal 353 
component, respectively, for variables available on a monthly time step (see 354 
Methods). 355 
Rank XGB RF NN 

1 Solar radiation*** Solar radiation*** Relative humidity* 

2 ITN coverage (-1) ITN coverage (-1) Evergreen broadleaf 
forest (-3) 

3 Elevation Elevation Wind speed* 

4 Daytime 
temperature**(-2) 

Tassel cap brightness**(-
2) 

Evergreen broadleaf 
forest (-1) 

5 ITN coverage (-2) ITN coverage (-2) Elevation 
6 Night time 

temperature* (-2) 
Wind speed* Cropping factor 

7 Enhanced vegetation 
index**(-1) 

Tassel cap brightness**(-
3) 

Cation exchange 
capacity 
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8 Rainfall*(-3) Temperature diurnal 
difference*(-2) 

Evergreen broadleaf 
forest (-2) 

9 ITN coverage ITN coverage Tropical fruit 
10 Night time 

temperature** (-2) 
Tassel cap brightness** Daytime temperature*(-

1) 
 356 
 357 
Impacts of increasing ITN coverage on predicted Vgsc mutation frequencies 358 
Relationships between ITN coverage and the development of insecticide resistance 359 
have significant implications for malaria vector control (see the Discussion). We further 360 
examined the relationship between ITN coverage and the interpolated frequencies of 361 
the Vgsc-995F allele by calculating the independent conditional expectation (ICE) of 362 
the predicted frequency under changing ITN coverage (Goldstein et al. 2015; Lucas 363 
2020). The ICE can be calculated for any of the locations (pixels) of our predictive 364 
maps, and we selected a single location in each country to evaluate the ICE (see 365 
Methods). We chose to analyse these relationships for the year 2005, because up until 366 
this time the resistance allele frequencies were unlikely to be affected by widespread 367 
ITN usage (the reported ITN coverage in this year and the three years prior is very close 368 
to zero). We varied the ITN coverage in the years 2002-2005 from zero to 0.9, or 0-369 
90% of people slept under an ITN the preceding night, in increments of 0.1 (because 370 
the predictor variables include three annual time lags; see Methods). It is important to 371 
note that this variation in ITN coverage that we simulate was never actually observed 372 
in the period 2002-2005. We did not analyse relationships between ITN coverage and 373 
the Vgsc-995S allele frequency because Vgsc-995S shows low frequencies for all years 374 
in most of the countries included in our model. 375 
 376 
For the four countries in western Africa, increasing the ITN coverage causes the model 377 
to predict increasing Vgsc-995F frequencies in 2005 in all three mosquito species 378 
(Figure 7A). The impact of increasing ITN coverage varies geographically across 379 
countries, and also between mosquito species. In An. gambiae, the Vgsc-995F 380 
frequency at the selected location was already high (>0.4) in 2005 for all countries 381 
except Benin. Increasing the ITN coverage from zero to 0.9 resulted in further increases 382 
in frequencies to very high values, with the largest increases occurring when the 383 
frequency at zero ITN coverage was lower (Figure 7A). In An. coluzzii, Vgsc-995F 384 
frequencies in 2005 were relatively low at zero ITN coverage, and predicted 385 
frequencies increased strongly as ITN coverage increased to high values. An. arabiensis 386 
showed the lowest Vgsc-995F frequencies in 2005 under zero ITN coverage, and the 387 
impact of increasing ITN coverage on predicted frequencies was much less than in An. 388 
gambiae and An. coluzzii. This behaviour is consistent with the trends in Vgsc-995F in 389 
An. arabiensis over the years 2005-2017 (Figure 1), with frequencies remaining 390 
relatively low while the coverage of ITNs increased from 2005 onwards in all four 391 
countries to reach moderate to high values (Supplementary Figures S9-S11). 392 
 393 
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 394 
Figure 7. The variation in the model-predicted Vgsc-995F frequency in malaria vector 395 
species for the year 2005 as the coverage of insecticide treated bednets (ITNs) is 396 
increased. Within each country, the predicted frequency for a single point location is 397 
shown (see text). Solid circles represent the predicted frequency corresponding to an 398 
ITN coverage of zero over the years 2002-2005, which is close to the recorded ITN 399 
coverage over this period. Solid lines show the range of variation in the predicted 400 
frequency at these locations for the year 2005 as the ITN coverage is increased from 0-401 
0.9. Results for four countries in west Africa (A) and five countries in central and east 402 
Africa (B) are shown. Black, blue and green lines and circles represent predicted 403 
frequencies in An. gambiae, An. coluzzii, and An. arabiensis, respectively. 404 
 405 
For the four countries in eastern Africa, the impact of increasing ITN coverage on the 406 
model predictions of Vgsc-995F frequencies is relatively small (Figure 7B), reflecting 407 
the differences in malaria vector species composition, and the different types of 408 
insecticide resistance mechanisms present, between the eastern and western regions of 409 
Africa (see the Discussion). In Ethiopia and Sudan, the species composition consists 410 
mostly of An. arabiensis (see Supplementary Figure S5); the Vgsc-995F frequencies in 411 
An. arabiensis were low in 2005 and increasing ITN coverage resulted in only a small 412 
increase in frequencies. In Kenya and Uganda, the predicted Vgsc-995F frequencies 413 
were almost unchanged by increasing ITN coverage. This is consistent with the trends 414 
in Vgsc-995F frequencies in both An. arabiensis and An. gambiae in eastern Africa 415 
from 2005-2017 (Figure 3), with Vgsc-995F frequencies increasing by a small amount 416 
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in some areas and not increasing at all in other areas, although ITN coverage did 417 
increase in these countries over the period (Supplementary Figures S9-S11). In An. 418 
gambiae, the earlier increases in the frequencies of Vgsc-995S may have reduced the 419 
selection pressures driving the spread of the Vgsc-995F allele (see the Discussion). In 420 
the DRC, the variation in predicted Vgsc-995F frequencies with increasing ITN 421 
coverage shows a similar pattern to the western countries, with predicted frequencies 422 
in An. gambiae in 2005 increasing from an intermediate value at zero ITN coverage to 423 
a very high value with increasing ITN coverage (Figure 7B). 424 
 425 
DISCUSSION 426 
Our annual maps of the frequencies of target-site insecticide resistance mutations in the 427 
three dominant malaria vector species of the African An. gambiae complex have 428 
characterised the species-specific spread dynamics of target-site resistance, showing 429 
how these dynamics have varied geographically, across national and continental scales. 430 
Our geospatial machine learning model ensemble brings together data sets describing 431 
multiple, multifaceted processes affecting insecticide resistance in field vector 432 
populations. Relationships between mutation frequencies and the prevalence of 433 
resistance phenotypes can be explored, as well as relationships with the coverage of 434 
vector control interventions such as ITNs. In this study, we have used these models to 435 
investigate questions of importance to malaria vector control. 436 
 437 
Firstly, we found significant relationships between frequencies of the target-site 438 
resistance mutation Vgsc-995F and phenotypic resistance to the pyrethroid deltamethrin 439 
in field samples. This demonstrates explanatory power of target-site resistance for 440 
phenotypic variation in field An. gambiae complex populations, supporting the 441 
relationships between target-site and phenotypic resistance shown by functional 442 
(Ranson et al. 2000; Grigoraki et al. 2021) and genomic (Miles et al. 2017b; Clarkson 443 
et al.) studies. Our maps show substantial spatial heterogeneity in Vgsc allele 444 
frequencies in recent years, with frequencies in 2017 varying both across vector species 445 
and geographic regions. Continued surveillance of these target-site markers is therefore 446 
important to track current and future regional temporal trends in resistance. 447 
 448 
A substantial amount of phenotypic variation was unexplained by the Vgsc-995F 449 
frequencies, however, which is in part due to the fact that the sample mortality is often 450 
not disaggregated by the individual species within the An. gambiae complex. Our maps 451 
show how target-site resistance frequencies differ across these species depending on 452 
geographic region, with dichotomous differences in some regions. This highlights that 453 
species-specific trends in phenotypic resistance cannot be fully understood using 454 
susceptibility test mortality values at the An. gambiae complex level. According to our 455 
Vgsc allele frequency maps, in Kenya and Uganda there is a close coupling between 456 
vector species and which type of target-site resistance mechanism is more prevalent 457 
(995F or 995S), therefore errors due to aggregating across species will be particularly 458 
high in these countries. For this reason, we were unable to assess associations between 459 
phenotypic pyrethroid resistance and frequencies of the Vgsc-995S mutation, which has 460 
a high frequency in these two countries and relatively low frequencies in our other focal 461 
countries. 462 
 463 
In addition to target-site resistance, geospatial analysis of the distribution of metabolic 464 
resistance mechanisms could greatly improve our ability to understand spatiotemporal 465 
trends in resistance. Metabolic resistance, the insect’s increased ability to metabolise 466 
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insecticide, is another important mechanism that can generate high levels of pyrethroid 467 
resistance in An. gambiae (Edi et al. 2014; Mitchell et al. 2014), and especially 468 
Anopheles funestus, which lacks resistance-associated Vgsc mutations (Riveron et al. 469 
2019). Metabolic resistance occurs through the upregulation of metabolic genes that 470 
encode detoxification enzymes. Many metabolic genes have shown associations with 471 
pyrethroid resistance, with genomic studies of the An. gambiae complex finding strong 472 
signals of positive selection around gene clusters implicated in insecticide metabolism 473 
(Miles et al. 2017b; Njoroge et al. 2021). Amplicon sequencing panels, which screen a 474 
panel of markers of interest across many loci (Lucas et al. 2019; Makunin et al. 2021), 475 
can incorporate target-site as well as metabolic resistance markers, including known 476 
mutations in the Gtse2 and Cyp6p gene clusters (Miles et al. 2017b). The anticipated 477 
increased use of amplicon sequencing panels in genetic surveillance of vector 478 
populations in the coming years will lead to exciting opportunities to better quantify 479 
the polygenic nature of resistance. 480 
 481 
Secondly, our models indicate that the coverage of ITNs is influential in predicting 482 
Vgsc allele frequencies, but that the strength of this influence varies both geographically 483 
and across vector species. These relationships between ITN coverage and Vgsc allele 484 
frequencies produced by our models need to be interpreted with caution, because the 485 
machine learning approaches that we have applied do not allow causal inferences to be 486 
made, and correlations amongst predictor variables can make relationships with any 487 
given variable difficult to identify. Nonetheless, our results are consistent with evidence 488 
from field studies showing changes in Vgsc allele frequencies following the 489 
implementation of ITN interventions. Our results showed that ITN coverage had the 490 
greatest influence on Vgsc-995F frequencies in the western African countries in An. 491 
gambiae and An. coluzzii. Field studies have also shown increases in Vgsc-995F 492 
frequencies in these two species following the scale-up of ITNs in Cameroon (Mandeng 493 
et al. 2019), Ghana (Lynd et al. 2010) and Mali (Norris et al. 2015). In Kenya and 494 
Uganda, we found no influence of ITN coverage on predicted Vgsc-995F frequencies 495 
in An. gambiae, which reflects the more limited spread of the 995F mutation in eastern 496 
An. gambiae populations. It is possible that the spread of Vgsc-995F in An. gambiae in 497 
eastern Africa was inhibited by the presence of the Vgsc-995S mutation, which is 498 
known to have been present in Kenyan An. gambiae populations since 1986 (Ranson et 499 
al. 2000). Resistance conferred by Vgsc-995S could lead to reduced selection for Vgsc-500 
995F, and it is also possible that the strength of selection could have been reduced if 501 
other mechanisms, such as metabolic resistance, were already present.  502 
 503 
The influence of ITN coverage on predicted allele frequencies is consistently lower in 504 
An. arabiensis across all nine countries compared to the other two species, which 505 
reflects the more limited spread of both Vgsc alleles in An. arabiensis across the western 506 
and eastern countries. An. arabiensis have a greater tendency towards biting outdoors 507 
than An. gambiae and An. coluzzii, and their peak biting times occur earlier in the 508 
evening while the other two species bite most commonly in the middle of the night 509 
(Fornadel et al. 2010; Sinka et al. 2010; Russell et al. 2011). An. arabiensis also has a 510 
lower human blood index than An. gambiae and An. coluzzii, indicating a relatively 511 
high proportion of bites taken on animals rather than humans (Mayagaya et al. 2015). 512 
It is therefore plausible that An. arabiensis has lower exposure to ITNs, and thus ITN 513 
coverage has a lesser impact on selection for resistance in this species. Observed shifts 514 
in vector species composition towards higher proportions of An. arabiensis following 515 
the scaling up of ITN interventions supports this hypothesis (Russell et al. 2011; Sinka 516 
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et al. 2016). The evolutionary pathway of resistance differs across the three vector 517 
species, however, and we expect greater divergence in the case of An. arabiensis which 518 
has lower rates of hybridisation with the other two species (Weetman et al. 2012), with 519 
higher rates of hybridisation occurring between An. gambiae and An. coluzzii (Vicente 520 
et al. 2017). For example, hybridisation led to the introgression of target-site resistance 521 
from An. gambiae to An. coluzzii (Clarkson et al. 2014; Norris et al. 2015), accelerating 522 
the development and spread of target-site resistance in An. coluzzii.   523 
 524 
Variables describing solar radiation and humidity were the highest ranking in terms of 525 
their impact on predicted allele frequencies. While we cannot identify a mechanistic 526 
explanation for this result, we note that these climate variables provide a broadscale 527 
spatial separation of areas that are arid from those that are wet and tropical. They may, 528 
therefore, represent unmeasured differences in mosquito population structure and 529 
genetics that give rise to regional differences in resistance patterns. We also found, 530 
however, that the most influential variables were different across the different machine 531 
learning models, with the neural network model showing less commonality with the 532 
two regression tree-based models (extreme gradient boosting and random forest). Lucas 533 
et al. (2020) found that variable importance measures for neural network models are 534 
not replicable, with different variable importance rankings being produced each time 535 
the model is fitted to the same data set. This emphasises that models fitted by machine 536 
learning algorithms do not represent a single unique optimal solution, and there may be 537 
many different ways that a machine learning model can combine the predictor variables 538 
to produce similarly accurate results, as measured by out-of-sample testing (Hastie et 539 
al. 2009). 540 
 541 
In conclusion, our geospatial analyses illustrate how insecticide target-site resistance 542 
dynamics in African malaria vectors vary across species and geographic regions, 543 
emphasising that resistance management strategies need to be based on local 544 
information about resistance genetics and vector species composition, as well as 545 
phenotype surveillance. Our results demonstrate that genetic surveillance of resistance 546 
can help to predict resistance phenotypes in field vector populations and understand 547 
their mechanistic drivers. This capacity would be improved by surveillance of 548 
resistance phenotypes at the level of individual vector species. In addition to target-site 549 
resistance, surveillance of other genetic resistance mechanisms, such as metabolic 550 
resistance, is needed to understand, predict and manage the spread of resistance. 551 
 552 
MATERIAL AND METHODS 553 
 554 
Summary  555 
We analysed trends in the frequencies of target-site insecticide resistance mutations 556 
across space and time in three African malaria vector species: An. gambiae, An. coluzzii 557 
and An. arabiensis.  We use spatiotemporal modelling approaches that apply both 558 
Bayesian statistics and machine learning methods in order to predict mutation 559 
frequencies jointly across the three species over a spatial grid of approximately 5 km 560 
resolution. Our model predictions are based on surveillance data that records observed 561 
frequencies in mosquitoes sampled widely throughout west and northeast Africa. The 562 
machine learning methods predict the proportions of each allele in each mosquito 563 
sample, and they are informed by 99 potential predictor variables that represent 564 
environmental and biological processes which may influence selection for resistance. 565 
A Bayesian multinomial metamodel then combines predictions across the multiple 566 
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machine learning models in order to make more accurate and robust predictions (a 567 
methodology known as stacked generalisation (Wolpert 1992)). Using the metamodel 568 
we predict the frequencies of each mutation in all grid cells within our nine selected 569 
countries for all years in the period 2005-2017.  570 
 571 
Vgsc allele frequency data 572 
Our models are informed by a database containing frequencies of Vgsc mutations in 573 
mosquito samples belonging to the Anopheles gambiae species complex collected from 574 
within western and eastern Africa over the period 2005–2017. This database is an 575 
updated version of a publicly available data set containing Vgsc allele frequencies 576 
(Moyes et al. 2019b) and collates data sets from multiple contributors, including 577 
published and unpublished sources. The database records the number of mosquitoes 578 
tested in each sample, together with the frequencies of the Vgsc-995L, Vgsc-995F and 579 
Vgsc-995S alleles in the sample. Some, but not all, data sets in the database record the 580 
Vgsc genotype of the sampled mosquitoes. The database also records information about 581 
the mosquito species tested, the molecular screening methods used for species 582 
identification and Vgsc allele identification, and the geographic coordinates of the 583 
sample collection location.  We only included samples that are representative of the An. 584 
gambiae population sampled at each place and time (i.e. randomly sampled from the 585 
population). We also only included samples that contained five or more mosquitoes. 586 
The final data set included 2418 samples distributed across 27 countries. 587 
 588 
We developed predictive maps of Vgsc allele frequencies for a focal selection of 589 
countries which had the highest number of samples, excluding those countries for 590 
which  the spatial distribution of samples was strongly clustered (Figures S1 and S2).  591 
In selecting countries for inclusion in our mapping analysis, we subdivided the African 592 
continent into western and eastern regions, with Cameroon and countries further west 593 
of Cameroon falling within our western region and countries that lie east of the Central 594 
African Republic falling within our eastern region. Within the western region, we 595 
selected the five countries with the greatest number of samples (Supplementary Figure 596 
S3), excluding Senegal because of a tight clustering of sampling locations around the 597 
border with The Gambia (Figure S1). In the eastern region, we selected all countries 598 
that had samples that were included in our modelling analysis (Figure S4), excluding 599 
Tanzania due to a strong spatial clustering of the sampling observations (Figure S2). 600 
Sudan is the most data-rich country included in our study (Figures S3 and S4) but it 601 
covers a large spatial area and the sampling locations are all located in a region in the 602 
eastern part (Figure S2). Therefore, we developed predictive maps only for a region in 603 
the east of Sudan that does not extend further west than a longitude of 29.5°E or further 604 
north of 17°N. In the case of Ethiopia, we excluded the region east of a longitude of 605 
44°E because we have no samples located in this region. 606 
 607 
We included one central African country, the Democratic Republic of Congo (DRC), 608 
in our mapping analysis. Although the Vgsc allele frequency data is sparse throughout 609 
the country (Figures S1, S2 and S4), we included the DRC because it covers a region 610 
that is rarely studied. In the case of the DRC, our modelling analysis is restricted to 611 
predicting the frequency of the Vsgc-995F mutation only, and we do not predict Vsgc-612 
995S frequencies (see below). We excluded the data on Vsgc-995S frequencies from 613 
the DRC analysis because most studies from the DRC only perform an assay capable 614 
of detecting L995F, which can lead to erroneous genotypes when both resistant alleles 615 
are present, which appears typical in DRC (Loonen 2020, Lynd et al. 2018). 616 
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 617 
Potential predictor variables 618 
Our set of predictors is similar to that described in Hancock et al. (Hancock et al. 2020; 619 
Moyes et al. 2020), and includes 99 variables describing environmental characteristics 620 
that could potentially be related to the development and spread of insecticide resistance 621 
in populations of Anopheles gambiae complex mosquito species. These variables 622 
describe the coverage of insecticide-based vector control interventions, agricultural 623 
land use (You et al. ; Friedl & Sulla-Menashe 2015), and the environmental fate of 624 
agricultural insecticides (Hendriks et al. 2019), other types of land use (Friedl & Sulla-625 
Menashe 2015; Esch et al. 2017; Tatem 2017; Sulla-Menashe et al. 2019), climate 626 
(Trabucco & Zomer 2009; Friedl & Sulla-Menashe 2015; Funk et al. 2015), and relative 627 
species abundance. A detailed description of this set of predictor variables is provided 628 
in Table S3 of the Supplementary Material. Our vector control intervention data 629 
includes a variable estimating ITN coverage in terms of the proportion of people who 630 
slept under a net the preceding night, at each ~5 km pixel location for each year (Bhatt 631 
et al. 2015b; Weiss et al. 2019). Relative species abundance is represented by a variable 632 
estimating the abundance of An. arabiensis relative to the abundance 633 
of An. gambiae and An. coluzzii (Sinka et al. 2016). For all variables, we obtained 634 
spatially explicit data on a grid with a 2.5 arc-minute resolution (which is approximately 635 
5 km at the equator) covering sub-Saharan Africa. For variables for which temporal 636 
data were available at an annual resolution, we included time-lagged representations 637 
with lags of 0, 1, 2, and 3 years. 638 
 639 
Stacked generalization ensemble modelling approach 640 
We used stacked generalization to develop a model ensemble that combines the 641 
predictions generated by multiple machine learning models (Wolpert 1992; Ting & 642 
Witten 1997). Stacked generalization uses a meta-model, or “generalizer”, that learns a 643 
weighted combination of the predictions across each model in the ensemble, where the 644 
predictions of each model are the out-of-sample predictions derived from K-fold cross 645 
validation. The predictions produced by the generalizer correct for the biases of each 646 
model, and are expected to have improved prediction accuracy relative to any of the 647 
individual models included in the ensemble (Wolpert 1992; Ting & Witten 1997; Bhatt 648 
et al. 2017). 649 
 650 
Machine learning models 651 
Our model ensemble included three different machine learning models that predicted 652 
the frequencies of the Vgsc-995L, Vgsc-995F and Vgsc-995S at each pixel within our 653 
mapped countries for each year within the period 2005-2017. The three machine 654 
learning models were an extreme gradient boosting (XGB) model, a random forest (RF) 655 
model and a neural network (NN) model. These models were chosen due to their 656 
demonstrated high predictive performance (Crisci et al. 2012; Bhatt et al. 2017), which 657 
derives from their ability to represent non-linear relationships and high-level 658 
interactions across the model features (Bhatt et al. 2017; Hancock et al. 2020). The 659 
XGB model was implemented using the R package xgboost (Chen & Guestrin 2016) 660 
and the RF and NN models were implemented using the sklearn (Pedregosa et al. 2011) 661 
and keras packages (Chollet & others 2015) in Python. The label for these models was 662 
a categorical variable corresponding to whether the Vgsc-995L, Vgsc-995F or Vsgc-663 
995S mutation was detected across all the alleles screened in each sample. All Vgsc 664 
allele frequency observations from the 27 countries in our data set were used to inform 665 
the model (see above). The models predict the expected frequencies of each allele at 666 
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each mapped pixel. The features used in the models included the 99 environmental 667 
predictor variables together with the 1-, 2-, and 3-year lags for those variables that vary 668 
on a yearly time step. A factor variable representing the mosquito species (An. gambiae, 669 
An. coluzzii, An. arabiensis, or An. gambiae s.l) was also included as a feature, where 670 
the An. gambiae s.l. category describes individuals within samples for which species 671 
within the Anopheles gambiae complex were not identified. Finally, the year in which 672 
the bioassay and allele frequency samples were collected was also included as a feature. 673 
For each machine learning model, parameter tuning was performed using out-of-sample 674 
validation by subdividing the data into training, validation and test subsets (see the 675 
Supplementary Material). 676 
 677 
We developed an additional model ensemble that predicted only the frequency of Vsgc-678 
995F, which we used to develop predictive maps of the Vsgc-995F frequency for the 679 
DRC. This model ensemble included the three machine learning models as described 680 
above, and the label was a categorical variable corresponding to whether the Vsgc-995F 681 
mutation was detected across all the alleles screened in the sample. The label included 682 
the full data set containing the Vsgc-995F frequencies in the 2418 samples. The features 683 
used were the same as those used in the above models, and parameter tuning was 684 
performed as described above. 685 
 686 
Model stacking and multinomial logistic regression 687 
We use a Bayesian multinomial logit regression model as our meta-model to combine 688 
the out-of-sample predictions obtained from performing K-fold cross-validation on 689 
each of the three machine learning models in the model ensemble (Baker 1994; Rue et 690 
al. 2009; Croissant 2010) (see www.r-inla.org). The multinomial logit model represents 691 
observations where the sampling unit corresponds to one of a set of mutually exclusive 692 
alternatives ; in our case J=3, with the alternatives being the Vgsc-995L, 693 
Vgsc-995F or Vgsc-995S marker (we do not account for diploid genotypes in our 694 
model). Our observations are the numbers of Vgsc-995L alleles (j=1), Vsgc-995F 695 
alleles (j=2) and Vsgc-995S alleles (j=3) in sample i, with i=1,….,N samples in total. 696 
Our model has three covariates which are the out-of-sample predictions of the 697 
frequencies of each allele in each sample given by the three machine learning models, 698 
transformed using the empirical logit transform to avoid discontinuities at 0 and 1.  We 699 
store these covariates in the matrices X1, X2, and X3, which have dimension N×J, with 700 
each matrix containing the predictions of frequencies of the three alleles for one of the 701 
three machine learning models. Our multinomial logit model uses the following linear 702 
predictor: 703 

 704 

where there are three sets of three coefficients ,  and  (j=1,2,3); we combine 705 
these into the vector . For each observation i the expected probabilities of each 706 
alternative are: 707 

 708 

j ∈{1,...,J}

yij

Vij = β j
1Xij

1 +β j
2Xij

2 +β j
3Xij

3

β j
1 β j

2 β j
3

Β

pij =
gij (Β)
Gi (Β)
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where and (see Croissant (2010) and www.r-inla.org). 709 

We use the multinomial-Poisson transformation (Baker 1994), which gives the 710 
following expression for the Poisson likelihood (Baker 1994): 711 

  712 

where are N additional parameters that need to be estimated in order to use the 713 
multinomial-Poisson transformation. Posterior distributions of the parameters  and  714 
are obtained by fitting the model using the R-INLA package (Rue et al. 2009) (see 715 
www.r-inla.org), with the coefficients  as fixed effects and the intercepts  as an 716 
independent (iid) random effect. Our implementation constrains each of the nine 717 
coefficients to be positive ( ) (Bhatt et al. 2017). Once the 718 
parameter estimation has been performed, the final set of predictions given by the 719 
model ensemble are obtained by replacing the elements of X1, X2, and X3 with the in-720 
sample predictions of the machine learning models obtained by fitting each of these 721 
models to all the data (all the labels and the corresponding sets of features). For our 722 
second model ensemble for predicting only Vsgc-995F frequencies, the formulation of 723 
the meta-model is the same as described above, with J=2. 724 
 725 
Posterior validation 726 
To assess the ability of our model to accurately represent the data, we performed 727 
posterior validation of our model ensemble using 10-fold out-of-sample cross-728 
validation.	Specifically,	the	data	were	divided	into	10	subsets	(or	“test”	sets,	using	729 
random	 sampling	 without	 replacement),	 and	 10	 successive	 model	 fits	 were	730 
performed,	each	withholding	a	different	test	set. The test sets were withheld from 731 
each of the three machine learning models included in the ensemble, as well as from 732 
the multinomial logit metamodel. The root mean squared error (RMSE) across all 733 
(withheld) Vgsc allele frequency observations confirmed that the model ensemble 734 
delivered higher prediction accuracy than each of the three machine learning model 735 
constituents (Supplementary Table S1). 736 
 737 
Insecticide resistance bioassay data 738 
To analyse relationships between our predicted resistance allele frequencies and 739 
resistance phenotypes observed in field vector populations, we utilised a database of 740 
insecticide resistance bioassay data (Hancock et al. 2020) including samples tested over 741 
the period 2005-2017. All species included in the samples are from the Anopheles 742 
gambiae complex and the composition of sibling species is unknown for the majority 743 
of samples. The data record the number of mosquitoes in the sample and the 744 
proportional sample mortality resulting from the bioassay, as well as variables 745 
describing the mosquitoes tested, the sample collection site, and the bioassay conditions 746 
and protocol. We selected the bioassay results for standard diagnostic dose WHO 747 
susceptibility tests performed using deltamethrin for all samples collected within the 748 
five countries included in our analysis (see Results), resulting in 159 results for Burkina 749 
Faso, 297 results for Benin, 184 results for Cameroon, 134 results for Ethiopia and 256 750 
results for Sudan. The bioassay data set included only two bioassay results for 751 
Equatorial Guinea and 22 bioassay results for Uganda, so we excluded these countries 752 

gij (Β) = exp(Vij ) Gij = gij (Β)
j=1

J

∑

L(yij |Β,φ) = (gij (Β
j=1

J

∏ )exp(φi ))
yij exp(−gij (Β)exp(φi )

i
∏ )

φi
Β φi

Β φi

β j
q ≥ 0,∀j,q, q =1,2,3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460499
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 20	

from our analysis of associations between our mapped Vgsc allele frequencies and the 753 
prevalence of insecticide resistance phenotypes. Susceptibility tests have a high 754 
measurement error; Hancock et al. (2020) estimated that the measurement error 755 
associated with the sample proportional mortality had a standard deviation (sd)=0.25 756 
for bioassays performed using deltamethrin. Therefore, we used the predicted mean 757 
mortality to deltamethrin for Anopheles gambiae complex mosquitoes obtained from a 758 
series of annual predictive maps (Hancock et al. 2020), using the predicted value for 759 
each sample collection location and year in our analysis.	760 
 761 
Regression models of associations between resistance allele frequencies and 762 
mortality following exposure to deltamethrin 763 
We assessed associations between the predicted mean mortality following exposure to 764 
deltamethrin and the predicted frequency of the Vsgc-995F allele. Mean mortality 765 
measurements represent the entire Anopheles gambiae complex, so we combined our 766 
species-specific predictions of Vsgc-995F frequencies across An. gambiae, An. coluzzii, 767 
and An. arabiensis to estimate the Vsgc-995F frequency in the An. gambiae complex 768 
for each sample collection location and year, 𝑓",$: 769 
𝑓",$ = 𝑅',$𝑓',$ + )1 − 𝑅',$,)𝑓-,$ + 𝑓.,$,/2     (1) 770 
where Ra,i is the abundance of An. arabiensis at location i relative to the combined 771 
abundance of An. gambiae and An. coluzzii, and 𝑓',$ , 𝑓-,$   and 𝑓.,$  are the predicted 772 
frequencies of the Vsgc-995F allele in An. arabiensis, An. gambiae, and An. coluzzii at 773 
location i, respectively. Values of the relative abundance of An. arabiensis at each 774 
geographic location were obtained from the maps developed by (Sinka et al. 2016). We 775 
do not have spatially explicit estimates of the relative abundances of An. gambiae and 776 
An. coluzzii so we used the mean frequency across these two species in our calculation. 777 
We excluded Kenya from our regression analysis because frequencies of Vsgc-995F 778 
are low at our sampled locations (observed Vsgc-995F frequencies are less than 0.07 779 
across 90% of samples). We tested the accuracy of our estimated Vgsc-995F 780 
frequencies for the An. gambiae complex (eq 1) against 797 of the observed Vgsc-995F 781 
sample frequencies in our data set that were representative of the An. gambiae complex 782 
(Moyes et al. 2019a) and found a good level of accuracy (Figure S12). 783 
 784 
We fitted OLS linear regression models to predict mean mortality to deltamethrin using 785 
𝑓",$ as a covariate. Before model fitting, we applied the empirical logit transformation 786 
to both the independent variable and the covariate.  To allow for spatial autocorrelation 787 
in the data we performed inference on the regression coefficients using cluster-robust 788 
standard errors (Conley 1999; Cameron & Miller 2015), setting the cluster radius to 789 
100 km (Hancock et al. 2018).  790 
 791 
Importance of potential explanatory variables 792 
In order to identify which of our potential predictor variables were having the most 793 
impact on our modelled Vgsc allele frequencies, we calculated measures of the 794 
importance of each predictor variable for each of the machine-learning models used in 795 
our model ensemble. It is important to note that variable importance measures cannot 796 
be used to infer causality, and they can be difficult to interpret when predictor variables 797 
are correlated. For XGB, we used the gain measure calculated for each variable using 798 
the xgboost package (Chen & Guestrin 2016), which is the fractional total reduction in 799 
the training error gained across all of that variable’s splits. For RF, we use the Gini 800 
importance, which is calculated using the sklearn package (Pedregosa et al. 2011). The 801 
Gini importance measures the influence of a variable in discriminating between classes 802 
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in a classification algorithm (Breiman 2001). For NN, we use the permutation 803 
importance, again calculated using the sklearn package. The permutation importance 804 
of a variable is obtained by randomly shuffling the values of the variable across all 805 
observations and recalculating the model score, which in our case is the prediction error 806 
across all data points.  807 
 808 
Independent conditional expectation (ICE) analysis across varying ITN coverage 809 
We studied how variation in ITN coverage impacted our model-predicted resistance 810 
allele frequencies using ICE analysis.  For a single chosen location in each country, we 811 
calculated the ICE (Goldstein et al. 2015) of the model predicted Vsgc-995F frequency 812 
with varying ITN coverage for the year 2005. The ICE simply calculates the predicted 813 
response value from the model across a range of a focal predictor variable, keeping all 814 
other predictor variables fixed at their original values. This can be used to explore how 815 
the focal covariate influences the model predictions, by examining the shape and 816 
magnitude of the relationship. It is important to be aware, however, that the variation 817 
in the focal covariate is artificial and does not represent the actual variation in that 818 
particular covariate over space or time. Our ICE calculations represent variation in the 819 
model predictions for a single location and year only. The selected location within each 820 
country was chosen at random from the Vgsc allele frequency sampling locations for 821 
that country (the coordinates of each location are shown in Table S4). We used our 822 
model ensemble to calculated predicted Vsgc-995F frequencies across values of the 823 
ITN coverage in the year 2005 from zero to one in intervals of 0.1.  824 
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