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Abstract

Short-read variant calling for bacterial genomics is a mature field, and there are many widely-
used software tools. Different underlying approaches (eg pileup, local or global assembly, paired-
read use, haplotype use) lend each tool different strengths, especially when considering non-SNP
(single nucleotide polymorphism) variation or potentially distant reference genomes. It would
therefore be valuable to be able to integrate the results from multiple variant callers, using a
robust statistical approach to “adjudicate” at loci where there is disagreement between callers.
To this end, we present a tool, Minos, for variant adjudication by mapping reads to a genome
graph of variant calls. Minos allows users to combine output from multiple variant callers
without loss of precision. Minos also addresses a second problem of joint genotyping SNPs and
indels in bacterial cohorts, which can also be framed as an adjudication problem.

We benchmark on 62 samples from 3 species (Mycobacterium tuberculosis, Staphylococcus
aureus, Klebsiella pneumoniae) and an outbreak of 385 M. tuberculosis samples. Finally, we joint
genotype a large M. tuberculosis cohort (N≈15k) for which the rifampicin phenotype is known.
We build a map of non-synonymous variants in the RRDR (rifampicin resistance determining
region) of the rpoB gene and extend current knowledge relating RRDR SNPs to heterogeneity
in rifampicin resistance levels. We replicate this finding in a second M. tuberculosis cohort
(N≈13k).

Minos is released under the MIT license, available at https://github.com/iqbal-lab-org/
minos.

Introduction

The use of whole genome short-read sequence data to study cohorts of bacterial genomes from a
single species is now standard practise (eg [1, 2]). There are a multitude of variant callers, which
analyse reads from a sample and make statements about where it differs from a fixed reference
genome. However there is no one best variant caller, or even approach - all have strengths and
weaknesses. The single-sample-inference problem is well studied and understood – mapping to a
reference works well where the sample and reference are reasonably close, and primarily for SNPs
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(SAMtools[3], snippy https://github.com/tseemann/snippy), but fares progressively worse
as the reference and sample diverge[4]. On the other hand, methods based on local assembly
(GATK[5], Octopus[6]) are better able to detect small indels, and those based on global assembly
(Cortex[7], McCortex[8]) are exceptionally specific, robust to reference-choice, and better at
accessing clustered SNPs or indels up to a few kb in size, but at a cost in sensitivity. Ideally,
it would be valuable to be able to combine the output of two different methods (“callsets”) in
some rigorous manner, resulting in a product better than either. Simply using the union of
callsets gives no control over false discovery rate, and the intersection is too conservative, losing
the benefit of callers with different strengths. This “variant adjudication” problem of rigorously
combining callsets, where discordances between input variants are resolved and then variant
sites are genotyped, is the first challenge we address in this study.

Moving beyond single samples, there are many use-cases where one needs to jointly analyse
a cohort, producing a matrix of variants versus samples and making binary or probabilistic
statements (genotype calls) at all positions that are segregating in the cohort. This is more
tricky, primarily because the density of variation increases with cohort size, and inevitably there
are situations where SNPs and indels overlap. This is typically described as joint genotyping[5],
and itself is a form of adjudication problem – once we have the full list of segregating sites and
alleles, we can revisit all samples and adjudicate each one. This is the second main problem we
address in this study.

Finally, underlying both, there is an important technical challenge: how to combine Variant
Call Format (VCF)[9] files, either for the same sample from different variant callers, or from
multiple samples in a cohort when collecting a list of segregating sites. In both cases, we want
a clean VCF file with a set of non-overlapping records, each representing a segregating site
with alternate alleles, which can be independently genotyped (see Figure 1). This likely entails
combining independent overlapping variants from the input VCF files into some consistent multi-
allelic record. This particular problem is technically awkward, and can in theory get arbitrarily
ugly - in the pathological worst case there could be overlapping records that gradually tile across
the whole genome.

Our motivation was the desire to study tens of thousands of Mycobacterium tuberculosis
genomes for the CRyPTIC project[10]. This project sequenced and phenotyped over 15,000
isolates for resistance to 13 different drugs using a 96-well microtitre plate[11], and then applied
methods such as Genome-Wide Association Studies (GWAS) to analyse the genetic basis for
drug resistance. M. tuberculosis has relatively low levels of diversity by bacterial standards,
with no recombination, relatively few mobile genetic elements, and a small pan-genome[12].
However, despite this, almost 17% of the 4.4Mb genome was variable within the cohort, and in
some regions almost every single base harboured a multiallelic SNP or indel. Typical approaches
tuned for high precision callsets would refuse to make calls in such dense regions, but for our
purposes we needed to be able to both represent and correctly genotype these regions.

There has been prior work on these problems, with recent tools focussed on human data.
Joint genotyping is available in GATK, however it relies on machine-learning-based filtering
(VQSR) generated from human-specific truth-data. Applying GATK to non-human species
required considerable efforts to train a black box VQSR for each new species (eg see [13] for
Plasmodium). At the time of writing, GATK explicitly does not support bacterial data, although
a new version for this is in development. There are also graph-based genotypers for structural
variants that operate on similar principles to ours, although with different graph structures and
genotyping models, such as Paragraph[14] and vg[15].

Two other graph-mapping based tools are available: BayesTyper[16] maps reads to a directed
acyclic graph of informative kmers, and GraphTyper[17] maps to local graphs of SNPs and indels
from pre-mapped reads. Although it is possible to use these tools as an adjudicator, consuming
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more than one VCF file and outputting a single VCF file, they were developed for human data
and do not scale to our use case of tens of thousands of bacterial samples. In particular, neither
tool properly combines conflicting and/or overlapping variants from the input callers, so that the
user is faced with contradictory output. This is a non-trivial development problem, as described
above. Thus, although they use graphs and mapping, neither tool directly seeks to solve our
problem.

Our approach was to build a pure adjudicator, able to run a single command that can take
multiple VCF files, handle all overlapping variants, and output a single accurate callset with no
inconsistencies. Intuitively, read pileup can be used to test goodness-of-fit. Reads should map
perfectly to a reference containing the correct allele, so comparing pileups on alternate alleles
can resolve disagreements between callsets. Of course, it would be prohibitively expensive to
remap all reads to every input allele independently and then compare the pileup on each allele.
Instead, we build a genome graph of the combined alleles from all callers and map once to that,
using gramtools[18]. Reads naturally align to the correct allele, and we can genotype using the
resulting coverage and ambiguity information (described below). We implemented this, plus a
workflow for joint genotyping cohorts, in our new tool, Minos.

We first use 62 high quality polished long-read assemblies from three bacterial species and
benchmark Minos against BayesTyper and GraphTyper. We then apply all three tools to an M.
tuberculosis outbreak (N = 385) in the UK in 2013, evaluating precision for both reference and
non-reference calls.

Finally, we apply our method to our motivating problem – studying antimicrobial resistance
in large cohorts of M. tuberculosis. We first joint-genotype the CRyPTIC global cohort of M.
tuberculosis genomes (N = 15, 215) which contains around 700,000 variants (roughly one SNP
every 5bp). We focus on the 81bp rifampicin-resistance determining region (RRDR) in the rpoB
gene, which bears an enormous level of variation. The WHO-endorsed Xpert® MTB/RIF assay
assumes any non-synonymous SNP in this region causes resistance to rifampicin[19], although as
we discuss below, the story is a little more complex. We restrict to non-synonymous SNPs and
indels, and give an unprecedented map of dense variation in the RRDR and how strongly each
variant correlates with resistance. We find the five known “borderline” mutations[20] but also
show that there are more. We then joint-genotype a second, independent, cohort of 13,411 M.
tuberculosis genomes which have also been phenotyped for rifampicin, and replicate the finding.
We consider the significance of these findings in the Discussion.

Results

We developed a new tool called Minos, which takes putative variant calls as input, adjudicates
between all of the calls, and reports a final accurate callset. It uses the standard Variant Call
Format (VCF) for its input and output. Additionally, Minos includes a Nextflow[21] pipeline to
joint genotype large numbers (tens of thousands) of samples, producing a set of calls at the same
variant sites across all samples. See Figure 1 for an overview of the pipeline, and the Methods
section for a complete description.

To evaluate the performance of Minos compared to other tools, we also developed a new tool
called Varifier, which calculates the precision and recall of a variant callset in a novel way that
accounts for insertions and deletions in addition to SNPs. As described in full in the Methods
section, it compares each allele against a “truth” genome, assumed to contain no errors, to
determine if each genotype call is a true or false positive. For each sample, we used a truth
genome assmbled from long reads (PacBio or Oxford Nanopore), and polished using the same
Illumina reads that were used for variant calling. We used Varifier and these truth genomes to
benchmark Minos against GraphTyper and BayesTyper with simulated and real data.
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Figure 1: Variant adjudication pipeline implemented by Minos. Input variants in one or more
VCF file(s) are merged to make a deduplicated set of variants. When running on a single sample,
the input VCF files could be from different tools. When joint genotyping across samples, there
is one VCF file originating from each sample. Next, overlapping variants are clustered together
– for example the variants at positions 7 and 8 – allowing the construction of a non-nested
variation graph. Genotype calls are made using read mapping to the graph.

Single-sample benchmarking

We performed an initial sanity check that BayesTyper, GraphTyper, and Minos all work as
expected, using simulated reads made with ART[22] and simulated variants in the M. tuberculosis
H37Rv reference genome[23]. All tools performed near perfectly on this simple data set, affirming
that they make no major errors (Supplementary Figure 1, Supplementary Tables 1,2). The
default Minos filters dropped the recall of SNPs and short indels slightly (Supplementary Figure
1), due to unrealistically low variation in read depth in the simulations, which caused the
“MIN GCP” filter (see Methods) to fail true positive calls. However, as shown later, this is not
an issue in real sequencing read data. Having confirmed all tools passed a basic test, we move
on from the simulations to empirical data.

Next, the tools were compared using real data from M. tuberculosis, Staphylococcus aureus,
and Klebsiella pneumoniae, using samples which each had a high quality polished long read
assembly to act as truth, and matched Illumina data (see Methods). We selected reference
genomes for each species (1 for M. tuberculosis, 2 for S. aureus and 5 for K. pneumoniae) to
reflect the diversity of the species.

For each Illumina data set, reads were trimmed using Trimmomatic[24], mapped to the ref-
erence genome with BWA MEM[25], and PCR duplicate reads were removed with SAMtools.
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Variants were called independently using two variant callers with orthogonal strengths: SAM-
tools/BCFtools is pileup-based, with high sensitivity for SNPs and low precision for indels;
Cortex is assembly-based, with high precision for SNPs and indels, but lower recall. The SAM-
tools/BCFtools and Cortex callsets were input to BayesTyper, GraphTyper and Minos, resulting
in a single set of calls from each tool (BayesTyper and GraphTyper required additional process-
ing of the SAMtools/Cortex VCF files, described in the supplementary Methods). In order to
maximise recall, and because the adjudication tools should remove false-positive variants, the
unfiltered callsets from SAMtools and Cortex were used. All results shown are using the default
variant call filters for each tool, except where noted, and with unreliable regions of the genomes
masked.

Note that GraphTyper can be run in two genotyping modes: default and “sv” (described
in [26]). The “sv” mode resulted in significantly worse results in many cases (Supplementary
Table 3), therefore it is not discussed further in this manuscript. All GraphTyper results in this
manuscript refer to running in default mode.

The results are summarised in Table 1 (also Supplementary Figures 2, 3). Minos achieved
the best F-score and recall across seven of the eight data sets. The biggest variation between
tools was seen in the recall. Although GraphTyper had the highest precision, Minos was equally
precise in three of the data sets, and the biggest difference in mean precision between Minos and
GraphTyper was 0.05%.

Performance

On the real bacterial data, all tools had a relatively fast run time and low RAM usage (Sup-
plementary Table 4, Supplementary Figure 4). On each data set, GraphTyper had the shortest
run time and smallest RAM usage, followed by Minos and then BayesTyper. The median wall
clock time for Minos across the data sets ranged from approximately 2.5 minutes per sample
(M. tuberculosis) to 6 minutes (K. pneumoniae). K. pneumoniae required the highest RAM,
where the median peak usage across all runs for Minos was 2.5GB.

Joint genotyping of cohorts

We wrote a Nextflow pipeline, included in the Minos code repository, to easily joint genotype
large numbers of samples. It outputs a single VCF file containing all samples genotyped at
the same sites, and the same information in per-sample VCF files. We tested this pipeline,
together with BayesTyper and GraphTyper, to re-analyse 385 M. tuberculosis[27] samples from
an outbreak in the UK, which we call the “Walker 2013” data set. Note that BayesTyper and
GraphTyper are not set up for this use case, and therefore processing the data was required to
attempt to use these tools in this manner, as described in the Methods section.

Our final analysis was to joint genotype two large M. tuberculosis cohorts of more than ten
thousand samples each, using the results to analyse the phenotypes and corresponding genotypes
in the 81bp rifampicin resistance determining region (RRDR) of the rpoB gene. The first
large data set (“CRyPTIC”) consisted of 15,215 samples released by the CRyPTIC project[10],
phenotyped using a microtitre plate assay[28, 11], and the second (“Mykrobe”) data set consisted
of 13,411 samples previously published[29] and phenotyped using traditional culture-based DST
(drug susceptibility testing).

Variants were called on each sample independently with the same methods as above using
Cortex and SAMtools, and then calls adjudicated with Minos. Each of these per-sample Minos
VCF files was used as input to each of the three tools. The result was a callset for each tool,
at the same variant sites for all samples for that tool (variant sites were not the same between
tools). Minos is the only tool of the three that is set up to consistently merge all input VCF
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Species
Number of Reference

Tool
Mean Mean Mean

samples genome precision recall F-score

M. tuberculosis 17 H37Rv
BayesTyper 0.9995 0.9217 0.9579
GraphTyper 0.9997 0.8938 0.9422

Minos 0.9997 0.9181 0.9559

S. aureus 28

TW20
BayesTyper 0.9984 0.8669 0.9279
GraphTyper 0.9990 0.7530 0.8545

Minos 0.9988 0.8786 0.9347

USA300
BayesTyper 0.9993 0.8671 0.9283
GraphTyper 0.9995 0.7506 0.8534

Minos 0.9994 0.8792 0.9353

K. pneumoniae 17

GCF 000784945.1
BayesTyper 0.9990 0.9052 0.9495
GraphTyper 0.9999 0.9063 0.9505

Minos 0.9999 0.9143 0.9550

GCF 001952915.1
BayesTyper 0.9995 0.8800 0.9346
GraphTyper 0.9999 0.8788 0.9340

Minos 0.9994 0.8922 0.9417

GCF 003073315.1
BayesTyper 0.9996 0.9267 0.9617
GraphTyper 0.9999 0.9297 0.9634

Minos 0.9998 0.9367 0.9672

GCF 003076555.1
BayesTyper 0.9994 0.9397 0.9686
GraphTyper 0.9999 0.9387 0.9683

Minos 0.9999 0.9438 0.9710

GCF 011006575.1
BayesTyper 0.9995 0.9078 0.9511
GraphTyper 0.9999 0.9075 0.9513

Minos 0.9998 0.9238 0.9602

Table 1: Mean precision, recall and F-score on each empirical data set with each reference
genome. Numbers in bold show the best precision, recall and F-score for each species and
reference genome.

records, so that no two sites in the output contain reference positions in common. Furthermore,
this means Minos does not, unlike BayesTyper and GraphTyper, output two separate VCF
records with incompatible genotype calls. This is discussed in more detail in the Supplementary
Material.

A summary of the data sets and variants output by Minos is given in Table 2. A typical
M. tuberculosis genome might be around 1000 to 2000 SNPs distant from the H37Rv reference
genome. Since these are spread across a 4.4Mb genome, excessive density of variants is not a
problem for the single-sample adjudication problem. However when joint genotyping the larger
cohorts, we are adjudicating all segregating variation, covering 17-18% of the genome, including
some regions of hundreds of base-pairs where almost every single base is a multiallelic SNP or
indel. These dense regions present a scaling challenge to graph genome algorithms, depending
on implementation and indexing strategy.
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Data Set
Number of Unique Excluded Sites after Genome inside Total SNP

samples variants variants clustering sites (bp(%)) alleles sites

Walker 2013 385 31,548 231 30,621 41,437 (1%) 62,690 27,639
Mykrobe 13,411 699,484 6,259 593,584 756,003 (17%) 1,414,723 552,543
CRyPTIC 15,215 718,863 6,576 611,269 778,949 (18%) 1,469,100 568,224

Table 2: Summary of M. tuberculosis data sets used for joint genotyping. “Genome inside
sites” is the total length of all reference alleles across all sites after clustering. It is reported
as the total number of base pairs, and in parentheses as a percentage of the 4.4Mbp H37Rv
reference genome. SNP sites is the number of sites where all alleles have length 1.

Outbreak analysis

We evaluated performance of Minos and alternate tools on genomes in the Walker 2013 data
set, from an outbreak of M. tuberculosis. To measure the precision and recall of the three tools
before and after joint genotyping, the 17 M. tuberculosis samples used earlier were added into
the outbreak data set. Joint genotyping the samples generally had a negligible effect on precision
and recall (Supplementary Table 5). BayesTyper recall increased by 0.07%, whereas the recall
of GraphTyper and Minos dropped by 4.2% and 0.6% respectively. BayesTyper precision fell by
0.13%, and both GraphTyper and Minos increased by 0.01%.

Up to this point in the manuscript, precision has always been calculated by considering only
non-reference allele calls, focussing on the differences between a given sample and the reference
genome. However, joint genotyping involves genotyping every sample at every variant site. As
a result, the majority of calls have the reference genotype, and correctly genotyping these cases
is critical for applications such as building a phylogenetic tree, computing a genetic distance
matrix or for GWAS. The difference between excluding or including reference calls for each tool
is shown in Figure 2 and Supplementary Table 5. After joint genotyping, and including reference
genotype calls in the calculation, Minos achieved a precision of 99.95%, compared with 92.87%
and 88.85% for BayesTyper and GraphTyper respectively.

Association of rifampicin resistance with the RRDR region of rpoB

Returning to the motivating problem for which Minos was developed, we applied Minos to
two large M. tuberculosis cohorts (“CRyPTIC” and “Mykrobe” data sets) for which we have
associated resistance phenotype data for the first-line drug rifampicin. We sought first to confirm
that Minos would indeed function at this scale, and then to build a detailed map of variation in
the RRDR (rifampicin resistance determining region) of the rpoB gene. Minos output genotype
calls at 593,584 and 611,269 variant sites for the Mykrobe and CRyPTIC data sets respectively
(Table 2). These sites cover approximately 17-18% of the 4.4Mb H37Rv reference genome.

The total turnaround time of the pipeline, which was limited to a maximum of 2000 concur-
rent tasks, was approximately 23 hours for the Mykrobe data set and 26 hours for CRyPTIC.
These represent real-world times, since the compute cluster we used was shared with numerous
other users. A breakdown of the run times and maximum RAM usage is provided in Supple-
mentary Table 6. The pipeline is optimised to minimise memory, with the peak memory used
when merging and clustering variants at less than 8GB. The majority of the run time comprises
running Minos on each sample, which required less than 2GB of RAM per sample.

We then used the joint genotyping output to analyse the genotype-phenotype relationship
within the RRDR of the rpoB gene, by restricting to the 13,259 samples of the Mykrobe data set,
and the 8,955 samples of the CRyPTIC data set with a high quality rifampicin phenotype[10]
(from 12,099 CRyPTIC samples with any quality rifampicin phenotype). Figure 3 shows all
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Figure 2: Precision and recall when joint genotyping M. tuberculosis outbreak data. The
left plot considers non-reference allele calls only, ie the variant sites that are genotyped to be
different from the reference genome. The right plot shows the results when all allele calls are
included. Individual samples are marked as dots, and the mean precision and recall for each
tool is shown as a cross. The convex hull of the data points for each caller is shaded with an
associated colour.

the identified amino acid variants – substitutions, insertions and deletions – plotted along the
RRDR, with their prevalence and proportion of resistant samples for the CRyPTIC data. The
same plots for the Mykrobe data and all CRyPTIC data are given in Supplementary Figure 5,
and the raw data are in Supplementary Table 7.

As expected the variant S450L, found in 1,919 of the samples, dominates. The next most
common variant D435V appears in 345 samples. Several rare indels were identified, most of
which appear to cause rifampicin resistance. In the CRyPTIC samples, two insertions were
identified (R inserted at 431-432 and F at 433-434), and all nine samples with either of these are
rifampicin resistant. Six of the eight deletions arise only in resistant samples. In the Mykrobe
data there were seven deletions and three insertions, all of which were only found in resistant
samples.

We find a total of 72 distinct amino acid mutations and indels within the 81bp RRDR in
the CRyPTIC samples with high quality phenotypes, including the 5 mutations classified as
“borderline resistant” by the WHO[20] (H445L, H445N, D435Y, L452P, L430P). There are 13
variants in the CRyPTIC samples where the number of susceptible samples is greater than the
number of resistant samples. The most common are amongst the borderlines listed above –
L430P, where 45/67 samples are susceptible (and 9/19 susceptible in the Mykrobe data), and
H445N, where 16/22 samples are susceptible (2/6 in Mykrobe samples). The remaining such
variants are rare, each seen in up to five samples. Full counts can be seen in Supplementary
Figure 5. Even if the known borderline mutations are excluded, Figure 3 (right panel) shows a
large number of moderate to low frequency variants with a range of correlations with resistance.
We discuss these results further below.
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Figure 3: All amino acid variants identified in the RRDR of the rpoB gene by joint genotyping
8,955 samples from the CRyPTIC M. tuberculosis data set. Each plot shows the RRDR region
from left to right. Single amino acid variants are shown in the upper grid, with the y axis
corresponding to the variant amino acid. The lower area shows deletions and insertions, with
the inserted sequence given in the coloured boxes. For example, the leftmost deletion of amino
acids TS at position 427-428 is found in one sample, which is resistant. The leftmost insertion
adds R after the S at position 431 (found in one resistant sample). The plots show the same
variants, but with different colour schemes. In a) each variant is coloured by the number of
samples possessing that variant. Plot b) colours the variants by the percent of samples with
that variant that are rifampicin resistant.

Discussion

Variant analysis from short read sequence data is by now a mature field, and there are many
tens of different tools for detecting SNPs and short indels[30]. Setting aside performance issues
and focussing entirely on completeness and correctness of the inferred SNPs and indels, it is
clear that there is no single best tool. The relative weight given to mapping, assembly, paired-
end information and species-specific optimisation (eg via machine learning) result in different
strengths and weaknesses. This leads to two rational choices: first, to benchmark for your
chosen application and choose the best tool, and second to find a way to combine the strengths
of different callers. When setting up the CRyPTIC project, we observed that there was no
off-the-shelf solution to this problem, and set out to produce an easy-to-use tool that would do
this in a rigorous manner. Minos was the result, which we incorporated into a workflow for
analysis of M. tuberculosis genomes called Clockwork. We found that in terms of single genome
analysis, performance was relatively similar to other benchmarked tools – Minos generally had
the best recall, and GraphTyper had marginally the best precision. However only Minos would
out of the box ingest two (or more) VCF files and output results; the other tools forced users
to write code to prepare input data and glue together their processing stages. Combining VCF
files with SNPs and indels is particularly challenging for cohorts, where a large proportion of the
genome can be variable (17% in our CRyPTIC cohort for example). When analysing the Walker
2013 M. tuberculosis outbreak and including reference/wild-type calls, Minos had much higher
precision (7-10% higher) than the other tools, and on scaling up, only Minos could process the
12k and 13k CRyPTIC and Mykrobe cohorts.

Rifampicin is a bactericidal drug which is a critical component of the antitubercular arse-
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nal, resistance to which is typically used as an epidemiological proxy for multi-drug resistance
(defined as having resistance to both rifampicin and isoniazid), particularly in PCR based rapid
diagnostics such as the Xpert® assay. The latest WHO technical report [20] showed that there
were 6 known borderline mutations in rpoB (of which 5 were in the RRDR)[20, 31, 32, 33], and
carefully reported the MIC (minimal inhibitory concentration) distributions for isolates with
these mutations. In essence, the distribution of MICs (“the level of resistance”) overlapped with
the distribution for wild-type (susceptible) M. tuberculosis, which leads to poor reproducibility
of binary classification when the threshold between resistant and susceptible (ECOFF) lies in
that overlap. Nevertheless, in the light of various reports of worse patient outcome associated
with some of these mutations[34, 35, 36, 37, 38, 39], the WHO expert group decided that all
non-synonymous mutations, even previously unseen ones, should be treated as causing resis-
tance for the purposes of diagnostics and therapy. Our analysis of this, the largest consistently
phenotyped cohort to date[10], reveals that the level of resistance caused by mutations in the
RRDR is indeed heterogeneous, and reveals further candidate borderline mutations and indels,
including a cascade of overlapping rare indels at position 431. This general picture is repli-
cated in the second cohort (Mykrobe data set). For a more nuanced analysis, it is necessary
to look at the MIC distribution associated with specific mutations (rather than using a binary
resistant/susceptible classification), which has been done in [40].

The main limitation to this study is that for joint genotyping we set a deletion length limit of
50bp. This reflects an underlying design decision: Minos is a tool for combining VCF files from
different callers or samples, adjudicating, and outputting an improved VCF file. However VCF
is really not an appropriate file format for handling many overlapping small variants and large
indels – for example a 5kb deletion covering 20 SNPs. We address this question of how best
to genotype and encode multiscale variation (such as SNPs on top of long alternate haplotypes
or SNPs under deletions) in a separate study[18]. Nevertheless, we have shown Minos enables
users to combine results from their preferred variant callers, integrating their strengths, to reach
closer to the underlying truth. It also provides a method for joint genotyping SNPs and indels
in bacterial genomes. As genomic analysis is now ubiquitous in bacteriology, we believe Minos
will be of wide utility.

Methods

Minos pipeline

First we describe the methods used by Minos, which is implemented in Python and available
under the MIT license at https://github.com/iqbal-lab-org/minos. The pipeline is outlined
in Figure 1. The first two stages process the input variant calls, which must be in one or more
VCF files, to produce a single set of calls that can be used to generate a reference graph for
read mapping. Initially, calls are normalized and deduplicated to make a single “merged” set of
calls. These calls are then “clustered” into variant sites that define the variant graph used for
read mapping. The merging and clustering are described below.

VCF merging. Each VCF file is processed individually as follows. Variant alleles to be
retained for further processing are extracted, where for each record if the genotype (GT) field
is present then only called the alleles are kept, otherwise all alleles are used. The remaining
records and their alleles are written to a new VCF file. Variants are decomposed into unique
SNPs and indels using the commands vcfbreakmulti and vcfallelicprimitives -l 10000

from vcflib (https://github.com/vcflib/vcflib), followed by the normalize function from
vt[41], and finally the vcfuniq command from vcflib. These VCF files are loaded into a single
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data structure containing all the unique variants, plus the origin (ie which VCF file) of each
variant.

Variant clustering. The merged variants are used to produce a single VCF file of “clustered”
variants that is compatible with gramtools, which in turn is used to generate a variant graph
and map reads to that graph. Although gramtools supports more complex situations (SNPs on
alternate haplotypes separate from the reference genome, SNPs underneath long deletions)[18],
we restrict to “non-nested” variation to maintain compatibility with VCF. Therefore overlapping
variants must be converted into a single variant site (ie line in a VCF file) containing multiple
alleles (an example is given in Supplementary Figure 6). This is straightforward when processing
a single sample with a few input VCF files, such as the SAMtools and Cortex VCF files used in
this study when benchmarking Minos against other tools. Where possible, all combinations of
alleles are generated and included in the graph. However, this is not always feasible when geno-
typing a large number of samples (hundreds or thousands) because the number of theoretically
possible alleles at one site could be very large.

To process a large number of samples, heuristics are used to simplify the variant graph. First,
the number of alleles is limited by only allowing deletions of length (by default) ≤50bp. This
prevents a combinatorial explosion where SNPs underneath the deletion can cause impractically
large numbers of alleles: n biallelic SNPs generates 2n alleles. Second, the number of alleles in a
variant site is limited to (by default) 5000. If generating all allele combinations at a site results in
too many alleles, then only combinations of alleles actually seen in each sample are used. Third,
it is possible for the graph to contain the same sequence more than once across multiple variant
sites, by choosing different paths through the graph (an example is given in Supplementary
Figure 7 - roughly this can happen in low complexity sequence where two alternate deletions of
some repetitive sequence can lead to the same final sequence). As each new variant site is added,
the previous seven sites are checked and any sites generating duplicate sequences are merged
into a single deduplicated site. Removing these duplications is necessary to prevent downstream
read mapping issues caused by ambiguous mapping to different paths in the graph that are really
the same sequence. Finally, to reduce RAM usage and run time, there is an option to split the
graph into chunks, with read mapping run separately on each of these chunks. Using this option
requires the reads to be in a sorted indexed BAM file, so that the reads for each chunk can be
efficiently extracted for mapping.

Graph mapping and genotyping. The clustered VCF file made in the previous stage is
input to the build command of gramtools[18] to make a variant graph for read mapping. Reads
are mapped to the graph using the gramtools command quasimap. Each variant site is genotyped
using the output from gramtools, which reports the number of reads mapped to each allele, and
the read depth across each position of each allele. Minos supports haploid genotyping calling
only, using the model described below. Minos and gramtools use similar models – the gramtools
model was based on that of Minos, but was modified to handle nested genotyping.

At each variant site, the aim is to choose the correct, ie most likely, allele from a set of alleles
A. We have the following information from gramtools:

1. A function γ : P (A) → N (where P (A) is the power set of A), defined by γ(X) = the
number of reads that map to all alleles in X (and map to no other alleles). Since gramtools
only reports the combinations of alleles that it sees, we define γ by assuming that all
elements of P (A) not reported by gramtools have zero reads. Note also that gramtools
does exact matching only - mismatches between the read and graph are not allowed;

2. For each allele a belonging to A, the read depth at each position in a, where reads are
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allowed to be multiply mapped. This means that for each allele gramtools matches a read
to, a per-base coverage counter of each allele’s matching bases is incremented. Thus if a
read maps to the middle 100bp of two long alternative alleles, then a counter is incremented
at each position of those 100bp in each allele.

Let c be the total coverage at a site, given by

c =
∑

X∈P (A)

γ(X).

Let a be an allele belonging to A. Define the coverage ca of a to be

ca =
∑

X∈P (A):a∈X

γ(X).

Let ε be the error rate in the reads, for which a default value of 0.002 is used and can be
changed by the user. Let d be the expected read depth and σ2 the read depth variance, which
are estimated using the read depth reported by gramtools at each variant site. We assume that
the read depth follows a negative binomial distribution NB(n, r), where the parameters n and r
are given by

n =
d2

σ2 − d
and r =

σ2 − d
σ2

.

This requires σ2 > d. If this is not the case then we set σ2 to be double the read depth d. This
is only expected to happen in rare circumstances and was only seen in the simulated data sets
where the read depth was very even, unlike real data. The genotyping model used by Minos
comprises the three terms:

1. “correct” coverage: NB(n, r, ca);

2. coverage due to read errors: εc−ca ;

3. a gap (ie zero coverage) penalty: p
b
` (1− p)

`−b
` , where p = 1−NB(n, r, 0) is the probability

that a given position has zero depth, ` is the length of allele a, and b is the number of
positions in a with non zero coverage.

The log likelihood is then calculated by summing the natural logarithm of these three terms.
The allele with the greatest log likelihood is chosen, with genotype confidence of the difference
in log likelihoods of that allele and the second greatest log likelihood. The genotype confidence
is reported in the Minos output VCF file using the tag GT CONF.

Variant call filtering. The FILTER column of the VCF file made by Minos is implemented
using four filters. The first requires a read depth of at least two, called MIN DP in the output VCF
file. The second is a read depth no more than the mean depth plus three standard deviations,
called MAX DP. The third filter identifies apparent heterozygous calls (for example, caused by
contamination), requiring by default at least 90% of the reads to support the called allele. It is
called MIN FRS (“minimum fraction of read support”, can be set by the user). The final filter
removes low confidence genotype calls. Since the genotyping model is dependent on read depth,
the confidence score is not directly comparable between different sets of reads. This is accounted
for by normalising the confidence score as follows. 10,000 SNPs are simulated by sampling read
depths from a negative binomial distribution, defined by the observed mean depth and variance
- this is the same distribution as used in the genotyping model. Incorrect read depth is sampled
from a binomial distribution with n = observed read depth, and p = read error rate. These

12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.15.460475doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460475
http://creativecommons.org/licenses/by/4.0/


simulated SNPs are genotyped using the same method as used when variant calling, generating
an expected distribution of genotyping confidence scores specific to this run. When genotyping
the real variant sites, any call with a confidence score in the first 0.5% of the simulated genotype
score distribution fails the filter (the threshold can be set by the user). This filter is called
MIN GCP (minimum genotype confidence percentile) in the output VCF file.

Joint variant calling. The Minos Nextflow pipeline for joint genotyping large sets of samples
is conceptually very similar to running on a per-sample basis, and proceeds as follows. The
starting point is a VCF file of variant calls for each sample. These VCF files are clustered and
merged, as described above, to produce a single gramtools graph for variant calling all samples.
This graph should encapsulate all variants found across all of the input VCF files (except for
deletions longer than 50bp). Each sample is genotyped using its reads mapped to the gramtools
graph, resulting in a VCF file for each sample, where the variant sites are identical across all
samples. The pipeline also produces a single multi-sample VCF file, combining the files using
ivcfmerge (https://github.com/iqbal-lab-org/ivcfmerge). Finally, a distance matrix is
calculated by defining the distance between any two samples to be the number of variant sites
where those samples have different genotype calls.

Variant call evaluation

The variant call evaluation with Varifier was implemented in Python and is available under the
MIT license at https://github.com/iqbal-lab-org/varifier. The required input is: 1) a
VCF file of variant calls to be evaluated; 2) a “mapping genome” FASTA file, which is the
reference sequence corresponding to the VCF file; 3) a “truth genome”, which is the sequence
assumed to be correct. The basic idea is to assign a score from zero (meaning false-positive)
to one (true-positive) to each variant call, where fractional scores indicate partially correct
calls. The score is determined by mapping probe sequences generated from the reference and
alternative alleles to the truth genome.

Precision

Each variant is processed using the following method. First, variants with no genotype call (GT
field) or a heterozygous genotype are ignored. This method is designed for haploid organisms
only since it essentially looks for perfect allele matches to the truth genome, which does not
work for heterozygous genotype calls. A probe sequence is generated comprising the called
allele, plus the (by default) 100 flanking nucleotides from the mapping reference before and
after the allele - we call this the “alt probe”. Similarly, a “ref probe” is generated that uses the
reference allele instead of the called allele. The alt probe is mapped to the truth genome using
minimap2[42], and mappings that do not include the allele in the alignment or have mapping
quality equal to zero are ignored. If there are no remaining mappings then the variant is classified
as a false positive and assigned a score of zero. Otherwise, the minimap2 mapping that has the
greatest number of allele positions matching the mapping genome is chosen as the “best” match.
Similarly, the ref probe is mapped to the mapping genome and the best mapping is chosen, but
with the additional requirement that the alignment start position in the mapping genome must
be equal to that of the best alt probe mapping. If this results in no ref probe mapping, but with
the alt probe mapped, then the variant is classified as a true positive and assigned a score of 1.

If both probe sequences have a best match identified, then edit distances between sequences
are used to define a score for the variant call. For motivation, consider the following relatively
simple example allele sequences:
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Reference: TAGAC

Alt allele: TTGAA

Truth: TTGAG

Although the called allele is incorrect because it missed the C to G SNP, it does include the
other A to T SNP and is 80% correct (4/5 of the sequence matches the truth). However, the
called allele only contains half of the correct variation between the reference and the truth (1/2
SNPs are called), and we would like to account for this. Let d(t, r) be the edit distance between
the truth and reference alleles, and d(t, a) the edit distance between the truth and alternative
alleles. We define the score as:

(d(t, r)− d(t, a))/d(t, r).

In the example above, the score is (2− 1)/2 = 0.5. Note that in the simple case of a single SNP,
a false positive scores zero and a true positive scores one. This edit distance-based measure is
designed to handle indels and other complex variants. Although the score is usually between
zero and one inclusive, in rare cases where the called allele is very distant from the truth, it is
possible to have a negative score. The overall precision is calculated by dividing the total of the
numerators by the total of the denominators, summed over all variants under consideration.

Recall

Recall is determined using the following method (a flow chart is provided in Supplementary Fig-
ure 8). First, a VCF file of all expected calls must either be supplied by the user, or alternatively
is made by comparing the mapping genome to the truth genome. Two separate expected callsets
are made: one using MUMmer[43] and the other using minimap2 and PAFtools. MUMmer is
used by running the commands from its dnadiff pipeline. minimap2 is run with the options -c
--cs, and the output is piped into unix sort -k6,6 -k8,8n, and then into the call command
of PAFtools with the options -l50 -L50. Taking the union gives a set of variant calls between
the mapping and truth genomes, which we expect to contain false positives that need to be re-
moved. The final truth variant callset is made using the same probe mapping method described
in the above precision section, to remove false positive calls. Each variant call from MUMmer
and minimap2 is kept if probe mapping to the truth genome results in a true positive call where
the called allele matches perfectly (in other words, the variant has a score of one). In the rare
case where both tools call at the same position but with conflicting calls, the calls are not used.

To recap, at this point in the recall pipeline we have a set of variants to be evaluated, a set
of truth variant calls, and the mapping and truth genomes. The truth calls are in a VCF file
with respect to the mapping genome. Next, all variants in the VCF file of calls to evaluate are
applied to the mapping genome, to produce a new “mutated” genome. Determining recall is
now the same as answering: how many truth variants are found in the mutated genome? This
is answered using probe mapping using the same method as for precision. The VCF file of truth
calls is evaluated, where the mutated reference takes the place of the “truth” genome.

Benchmarking

Truth genomes

The S. aureus truth genomes were generated from PacBio and Illumina reads as follows. The
PacBio raw reads were assembled using canu v1.6[44] to produce the draft assembly. The contigs
from the draft assembly were aligned to the respective reference genomes using the nucmer

utility from the MUMmer3[45] package. The contigs were oriented to match the reference and
trimmed based on the nucmer alignments and circularized using minimus2[46]. The assemblies
were polished using the Illumina reads by iteratively running Pilon v1.23[47] until no more
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corections were made, up to a maximum of 10 runs. Reads were mapped using BWA MEM
version 0.7.17 to make input for each Pilon iteration.

The 17 M. tuberculosis truth genomes were from [18], which already had the same Pilon
polishing process applied to them as used on the S. aureus genomes. We used K. pneumoniae
assemblies from [48] for the truth genomes, which we note already had Pilon run on them as
part of their assembly process.

Genome masks

A genome mask was available for M. tuberculosis H37Rv, which is used routinely by Public
Health England. The plasmids were masked from the K. pneumoniae and S. aureus mapping
genomes. A mask was generated for each truth genome by excluding positions where there
was not a majority agreement between Illumina mapped Illumina reads and that genome, as
described in the Supplementary Material. These masks were used by Varifier, which ignores all
variants intersecting any masked region of the the truth or mapping genomes.

K. pneumoniae reference genomes

The five K. pneumoniae genomes used as references for variant calling were chosen as follows.
The average nucleotide identity (ANI) was calculated between each truth genome and all K.
pneumoniae genomes in RefSeq using FastANI[49]. RefSeq[50] genomes with a minimum ANI
less than 97.5% or a maximum ANI of 100% were excluded. The remaining genomes were listed
in order of the minimum ANI, and 5 the genomes were chosen evenly spaced from this list, to
obtain a range of ANI between the truth and mapping genomes.

Joint genotyping

The nextflow pipeline included in the Minos github repository was used to run joint genotyping
on all three data sets. A nextflow configuration file is included that contains preset profiles to
set sensible default parameters for “medium” and “large” size data sets. The “medium” profile
was used for the Walker 2013 data set, and “large” was used for the CRyPTIC and Mykrobe
data. The pipeline needs an input TSV file, listing sample names and paths to VCF and reads
files, plus the reference genome in FASTA format, and optionally a reference genome mask in
BED format. The single command line used to run the complete pipeline is provided in the
Supplementary Material. The pipeline is set up to handle large cohorts by saving RAM where
possible. It splits the genome into slices, each containing approximately the same number of
alleles, and processes each slice in series. Each slice overlaps by a read length to remove end
effects from mapping. The Walker 2013 set was split into 100 slices, and the two large sets
into 300 slices. The slicing option requires that the input reads for each sample are in a sorted,
indexed BAM file, so that the reads for each slice can be efficiently extracted. Such BAM files
are typically generated during most variant calling pipelines, and so this requirement is unlikely
to create further work.

Joint genotyping with BayesTyper and GraphTyper both required a single sorted VCF file
from concatenating (taking account of VCF headers) all input VCF files. This file was sorted,
compressed with bgzip, and indexed with tabix for GraphTyper. For BayesTyper, bcftools norm
was run on the VCF file. Then the same commands used for running on individual samples
were used, as described in the Supplementary Material. These were successful on all samples
in the Walker 2013 data set. On the Mykrobe data set both tools failed on the first sample,
ERR025833. For BayesTyper, the combine function ran successfully, but the cluster command
failed. GraphTyper failed when running the genotype function, after processing approximately
10% of the genome, with a peak RAM usage of 76GB.
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After joint genotyping the CRyPTIC and Mykrobe data sets, the RRDR region was analysed
as follows. To avoid ambiguity, we note that the RRDR region is the 27 amino acid sequence at
426-452 in the rpoB gene in the H37Rv genome (it is often alternatively described with E. coli
numbering as 507-533). In H37Rv genome coordinates this is 759807-763325.

To analyse the RRDR region, only samples that had a high quality rifampicin phenotype of
resistant or susceptible were used. This information is provided in the supplementary tables of
[29] for the Mykrobe data. For the CRyPTIC data, we used the samples from [10]. Each of these
samples was processed as follows. Its variants contained in the whole rpoB gene were extracted
and applied to the genome sequence and translated, making a mutated amino acid sequence. The
amino acid variants of the sample were deduced from aligning the mutated amino acid sequence
to the reference amino acid sequence. Then the variants in the RRDR were extracted for each
sample. In this way, combinations of nucleotide variants were accounted for (for example, two
consecutive SNPs could cause a single amino acid change).

Data Availability

The reference genomes used for variant calling were as follows.

� M. tuberculosis: H37Rv version 3 reference genome NC 000962.3[23].

� S. aureus: USA300 genome GCA 000013465.1[51] and the TW20 genome
GCA 000027045.1[52].

� K. pneumoniae: GCF 000784945[53], GCF 001952915[54], GCF 003073315,
GCF 003076555[55], and GCF 011006575[56].

A data download is available at https://doi.org/10.6084/m9.figshare.16613398 that
contains FASTA files of all truth genomes and BED files of all genome masks. Accessions
for reads and assemblies are provided in Supplementary Tables 8–10, and are also included
in the data download in tab-delimited format. The Mykrobe data set accessions are in the
Supplementary file from [29], available at https://doi.org/10.6084/m9.figshare.7556789.
Details of the CRyPTIC data can be found in [10].

The pipeline to call variants, run BayesTyper, GraphTyper, and Minos, and run Vari-
fier was written in Python and is available under the MIT license at https://github.com/

iqbal-lab-org/minos-paper-benchmarking. A copy of the Singularity[57] container used for
this study is available at https://doi.org/10.6084/m9.figshare.16613383. All software ver-
sions and command lines used are in the Supplementary Material.
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