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Abstract12

Determining the extent of genetic variation that reflects local adaptation in crop wild relatives is of interest13

to discovering useful genetic diversity for plant breeding. We investigated the association of genomic vari-14

ation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum)15

populations of the Southern Levant using genotyping-by-sequencing (GBS) of 244 accessions of the Bar-16

ley1K+ collection. Inference of population structure resulted in four genetic clusters that corresponded to17

eco-geographical habitats and a significant association of lower gene flow rates with geographical barriers,18

e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial auto-19

correlation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5%20

of genomic variation was exclusively attributed to environmental variation if the component confounded with21

spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation,22

and accumulated precipitation explained the highest proportion of genomic variation (3.9%). After correct-23

ing for population structure, soil water capacity was the most important environmental variable explaining24

1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association25

studies were conducted to identify signatures of adaptation. RDA and outlier methods jointly detected26

selection signatures in the pericentromeric regions of chromosome 3H, 4H, and 5H, but they mostly disap-27

peared after correction for population structure. In conclusion, adaptation to the highly diverse environments28

of the Southern Levant over short geographical ranges has a small effect on the genomic diversity of wild29

barley highlighting the importance of non-selective forces in genetic differentiation.30

Keywords: Genotyping-by-sequencing (GBS), barley, isolation by distance, local adaptation, genetic31

variation32

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460445
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction33

Local adaptation is an essential strategy for plants to survive in stressful environments because they are34

sessile. Natural selection in heterogeneous environments leads to higher fitness of local genotypes, but35

gene flow can offset genetic differentiation resulting from local adaptation and reduce fitness (Kawecki and36

Ebert 2004). In addition, genetic drift and demographic history contribute to genetic differentiation and con-37

found adaptive variation with neutral variation (Günther and Coop 2013; Kawecki and Ebert 2004; López-38

Goldar and Agrawal 2021). Therefore, the combination of selective and nonselective forces simultaneously39

shapes genetic variation and leads to geographic patterns of population divergence and allele frequency40

distribution. Determining how different population genetic processes affect the geographic distribution of41

genetic variation is a key component in the study of plant adaptation. Investigating the role of adaptive and42

non-adaptive processes on genomic variation is of particular interest for wild relatives of crop plants, as this43

may allow the discovery of useful genetic variation for plant breeding (Turner-Hissong et al. 2020).44

Wild barley (Hordeum vulgare L. ssp. spontaneum) is a very suitable model species to study local45

adaptation of crop wild relatives, as it occurs over a wide geographical range in the Fertile Crescent (Harlan46

and Zohary 1966) and Eastern and Central Asia (Dai et al. 2012). Within this range, wild barley in the47

Levant occupies very heterogeneous environments within a short geographical distance (Hübner et al.48

2009; Nevo et al. 1979; Volis et al. 2001), and its genetic diversity is much higher than in other areas of49

the Fertile Crescent (Jakob et al. 2014; Pankin et al. 2018; Russell et al. 2016). Wild barley populations50

from the southern Levant show a strong correlation of genetic and environmental distances (Hübner et al.51

2009). Population structure reflects eco-geographic habitats (Hübner et al. 2012, 2009) and distinguishes52

between northern and southern genetic clusters correlated with latitude and precipitation gradients (Jakob53

et al. 2014; Russell et al. 2016). With common garden experiments, previous studies revealed that eco-54

geography is correlated to morphological traits (Hübner et al. 2013), phenotypic plasticity (Galkin et al.55

2018), and rhizosphere microbiota (Terrazas et al. 2020).Moreover, transplantation experiments showed56

a correlation between the geographic origin of wild barley ecotypes and fitness in different environments,57

suggesting local adaptation (Volis 2011; Volis et al. 2002a,b). In addition to a broad geographic scale,58

environmental differences at a fine geographic scale also contribute to genetic diversification in wild barley59

(Bedada et al. 2014; Nevo et al. 2005; Wang et al. 2018). Overall, these results suggest a strong relationship60

between environmental differences, genetic divergence and phenotypic diversity of wild barley populations,61

supporting the hypothesis of local adaptation of wild barley in the southern Levant. However, the relative62

contributions of environmental and non-selective forces to genetic variation and the genetic architecture63
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of adaptive traits remain mostly unclear due to the lack of appropriate statistical approaches, fine-scale64

environmental data and sufficient genome-wide markers.65

Wild barley serves as a valuable genetic resource for barley breeding because domestication and mod-66

ern breeding have greatly reduced the genetic diversity of cultivated barley (Hordeum vulgare L. ssp. vul-67

gare; Caldwell et al. 2006; Kilian et al. 2006). Since wild barley shows no reproductive barrier with cultivated68

barley (Nevo et al. 1979), the genetic diversity of cultivated barley can be expanded by introducing alleles69

from wild populations (Dawson et al. 2015). Numerous studies have shown evidence of local adaptation70

of wild barley to different environments (Bedada et al. 2014; Galkin et al. 2018; Hübner et al. 2013; Nevo71

et al. 1979; Volis 2011; Volis et al. 2002a,b, 2004; Wang et al. 2018), therefore wild barley is expected to72

have considerable genetic variation that contributes to adaptation to various abiotic stresses (Dawson et al.73

2015). Wild barley has been repeatedly used as a source of novel alleles to improve stress tolerance in74

barley breeding (Baum et al. 2003; Pham et al. 2019), but widespread use of wild barley has been limited75

due to its large genome size and undesirable traits (Schmid et al. 2018).76

Genotyping-by-sequencing (GBS; Elshire et al. 2011; Poland et al. 2012) and high-quality barley genome77

assembly (Jayakodi et al. 2020; Mascher et al. 2017), enable the exploration of genomic variation under en-78

vironmental selection and the search for useful genetic variation in wild barley. In this study, we aimed to79

(1) describe the population structure of wild barley from the southern Levant and place it in the context of a80

worldwide sample (Milner et al. 2019), (2) examine geographic patterns of gene flow in the southern Lev-81

ant, (3) characterize the relative contributions of environmental gradients and space to genomic variation82

and population structure, and (4) identify putative adaptive loci. Overall, our results indicate the greater83

importance of geography and spatial autocorrelation than selection for local adaptation in shaping genomic84

variation in wild barley in the southern Levant, although diverse environments, particularly water availability,85

show significant associations with genetic differentiation.86

Materials and Methods87

Plant material and genotyping by sequencing We genotyped 244 wild barley accessions collected88

in the southern Levant region. These accessions, hereafter named as B1K+ accessions, include 191 ac-89

cessions from Barley 1K (B1K) collection (Hübner et al. 2009) and 53 accessions from an unpublished90

collection named as HOH, collected in 2005, 2009, and 2011 by K.S. (Figure S1; File S1). The GBS li-91

brary was constructed using genomic DNA digested with the restriction enzyme PstI and MspI and the92

processes as described by Milner et al. (2019). In addition, published GBS data of 1,121 wild barley acces-93
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sions from IPK seed bank (Milner et al. 2019) was included as a part of our work. Because IPK genebank94

includes accessions from Israel, we specify the source of accessions by mentioning accessions from Israel95

that belong to IPK in the article to avoid confusion. Identification of single-nucleotide polymorphism (SNP)96

was performed as Milner et al. (2019). The detailed workflow of genotypic data filtration is described in97

Supplementary Information and summarized by Figure S2.98

Environmental data To investigate the relationship between genetic variation and environmental gra-99

dients, we used environmental data including (1) climate data from the WorldClim2 database (Fick and100

Hijmans 2017) with a resolution of 30 arcseconds [∼1 km], (2) soil data from the SoilGrids database (Hengl101

et al. 2017) with a resolution of 250m, (3) topographic variables based on elevation data from the SRTM102

database (https://srtm.csi.cgiar.org/) with a resolution of 90m, and (4) geographic coordinates of collection103

points (Supplementary Information; File S1). To mitigate the problem of collinearity for redundancy analysis104

(RDA; Legendre and Legendre 2012), highly correlated environmental variables were grouped by hierar-105

chical clustering with a customized clustering index (Supplementary Information; Figure S3), and the first106

principal components of the grouped variables were used as synthetic variables. Next, all environmental107

variables, including the synthetic variables, were selected based on variance inflation factors (VIFs) until all108

VIFs were less than 5. The details of this process are described in the Supplementary Information. Finally,109

12 environmental variables, including 7 synthetic variables and 5 nonsynthetic variables (Table S1 and S2),110

were selected for environmental association analyses.111

Analysis of population structure The number of ancestors and ancestry coefficients were estimated112

using the model-based method ALStructure. (Cabreros and Storey 2019). ALStructure uses a likelihood-113

free algorithm to derive estimates through minimal model assumptions and is generally superior to existing114

likelihood-based methods in terms of accuracy and computational speed (Cabreros and Storey 2019). The115

method does not assume Hardy-Weinberg equilibrium within populations, but defines the number of ances-116

tral populations (K ) as the rank of a matrix consisting of individual-specific allele frequencies (Leek 2011).117

Optimal K was calculated using the estimate_d function of the R package alstructure (Cabreros and Storey118

2019), and ancestry coefficients were estimated using the alstructure function. A range of K values, from119

2 to 8, was also used to examine stratification of population structure. In addition to ALStructure, princi-120

pal component analysis (PCA) and neighbor-joining (NJ) were also performed. Missing genotypic values121

(∼3% of the dataset) were replaced by the average number of alternative alleles at each SNP locus before122

performing PCA.123
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To analyze genetic differentiation, we calculated FST and Nei genetic distance between genetic clusters124

defined by ALStructure. Accessions were assigned to genetic clusters according to the highest ancestry125

coefficient calculated by ALStructure with the optimal value of K. The FST values were calculated as the126

ratio of the average values according to Bhatia et al. (2013) and the genetic distances of Nei were calculated127

using the function stamppNeisD of the R package StAMPP (Pembleton et al. 2013).128

Investigation of gene flow pattern To discover gene flow barriers that may explain observed popu-129

lation structure, analysis of estimated effective migration surfaces (EEMS; Petkova et al. 2016) was con-130

ducted. To perform EEMS, B1K+ accessions were clustered into 58 demes corresponding to the locations131

of collection sites. EEMS was conducted in three independent runs of Markov chain Monte Carlo (MCMC),132

and the results of three runs were averaged. Each MCMC chain included 10 million burn-in iterations and133

10 million post-burn-in iterations thinned by an interval of 5000 iterations. Outputs of EEMS were processed134

with the R package rEEMSplots. To examine whether geographical barriers contribute to genetic isolation,135

we classified map pixels into barriers and non-barrier pixels according to geographical elevation (details136

in Supplementary Information; Figure S4) and conducted a Wilcoxon test to inspect the hypothesis that137

geographical barriers are significantly associated with lower gene flow rates.138

As a complementary method of EEMS, unbundled principal components (unPC; House and Hahn 2018)139

was employed to reveal potential long-distance migration. unPC scores, a ratio of PCA-based genetic140

distance on population-level to geographical distance between demes, were computed with the R package141

unPC. Original unPC scores were transformed by Box-Cox transformation to an approximate Gaussian142

distribution, and a Student’s t-test with two-tailed significance level of 0.05 was performed to identify extreme143

comparisons.144

To infer asymmetric gene flows, we implemented a coalescent-based inference (CBI) method described145

by Lundgren and Ralph (2019). We manually grouped accessions into ten geographical regions (Figure146

S5) such that each region covered roughly equal geographical areas as suggested by Lundgren and Ralph147

(2019) and also considered the gene flow pattern inferred by EEMS. Sample sizes in each region ranged148

from 10 to 41 with an average of 24.4. Next, we created an adjacency matrix to allow gene flow between ad-149

jacent regions (Figure S5). As the input for CBI, pairwise genetic distances were computed as the average150

number of different alleles across SNPs. CBI was conducted by using the R package gene.flow.inference151

(Lundgren and Ralph 2019) with 2 million pre-burn-in iterations, 60 million burn-in iterations, and 100 million152

post-burn-in iterations followed by a thinning process for every 5,000 iterations to rule out serial correla-153

tions. Medians of gene flow rates and coalescence rates were computed from posterior distributions and154
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95% credible intervals were calculated with the highest density interval method by using the R package155

bayestestR (Makowski et al. 2019).156

Partitioning genomic variation To partition genomic variation into components explained by different157

factors, we conducted redundancy analysis (RDA), a multivariate method for studying a linear relationship158

of two or several matrices (Legendre and Legendre 2012). Specifically, we used simple RDA and RDA159

conditioned on covariates, i.e., partial RDA, to estimate the proportion of SNP variation explained by envi-160

ronmental variables, spatial autocorrelation, and population structure. RDA was performed with the function161

rda of the R package vegan (Oksanen et al. 2019). For all RDA models in this study, we performed 5,000162

permutations to test the significance of explanatory variables with the R function anova.cca.163

To model the effect of spatial autocorrelation on SNP variation, distance-based Moran’s eigenvector164

maps (dbMEMs) were used in RDA (Dray et al. 2006; Legendre and Legendre 2012). First, a network of165

58 collection sites was built with the Gabriel graph, and a spatial weighting matrix of inverse geographical166

distances (km−1) was constructed accordingly by following the method of Forester et al. (2018). Next, the167

spatial weighting matrix was decomposed to generate dbMEMs. Subsequently, forward selection was per-168

formed to identify dbMEMs that significantly associate with spatial genetic structure by using forward.sel169

function (Dray et al. 2019). The selected dbMEMs with positive and negative eigenvalues, corresponding170

to broad-scale and fine-scale spatial structures, were both used in RDA to capture comprehensive spatial171

autocorrelation. To represent population structure in RDA, ancestry coefficients estimated by ALStructure172

with the optimal K values were used. We fitted RDA models by replacing SNP data with ancestry coeffi-173

cients as response variables to quantify relative contributions of environments and spatial autocorrelation174

to population structure.175

To evaluate the effects of individual environmental variables on SNP variation, we sequentially fitted176

one environmental variable as an explanatory variable at a time and treated ancestry coefficients as co-177

variates in RDA models. Considering the correlation between environmental variables (Figure S3 C), we178

conducted additional permutation tests for marginal effects of environmental variables in a model including179

all the environmental variables by setting the parameter by = ’margin’ for anova.cca. This method tests180

the significance of each environmental variable while excluding the effect that confounds with the other181

environmental variables.182

Linkage disequilibrium Linkage disequilibrium (LD) was evaluated as pairwise r2 of SNPs by using183

snpgdsLDMat of the R package SNPRelate (Zheng et al. 2012) with a window size of 250 markers. To184
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evaluate genome coverage of markers, genome-wide LD decline against physical distance was fitted by185

using local polynomial regression and the formula of Hill and Weir (1988). Local polynomial regression was186

carried out by using the R function loess with a smoothing parameter of 0.005.187

Identification of selection signatures As a genome-environment association (GEA) method, RDA188

has high detection power and a low false-positive rate in identifying adaptation signatures (Capblancq et al.189

2018; Forester et al. 2016, 2018). Thus, we scanned SNPs by performing simple RDA and partial RDA.190

Simple RDA was done by treating 27,147 SNPs as response variables and twelve environmental variables191

as explanatory variables. To control false positives due to population structure, partial RDA was performed192

by using ancestry coefficients estimated with the optimal K as covariates. A statistical framework proposed193

by Capblancq et al. (2018) was used for statistical tests and controlling false discovery rates (FDR). Briefly,194

loadings of SNPs in the first four RDA axes, selected according to the proportion of explained variation195

(Figure S6), were converted into Mahalanobis distances that approximated to a chi-squared distribution196

with four degrees of freedom. Next, p-values and q-values were computed accordingly, and SNPs with FDR197

< 0.05 were considered as candidate adaptive SNPs. The statistical test was conducted with the R function198

rdadapt (Capblancq et al. 2018).199

Besides RDA, the latent factor mixed model (LFMM; Caye et al. 2019), which an univariate GEA method,200

was performed by using the R package lfmm (Caye et al. 2019) with the parameter K = 4 to correct pop-201

ulation structure, and q-values were subsequently computed. SNPs with FDR < 0.05 were considered as202

candidate adaptive SNPs.203

As a complement to GEA methods, outlier SNPs with an extreme divergence between genetic clusters204

were detected by XTX statistics (Günther and Coop 2013). We assigned accessions to genetic clusters205

according to the highest ancestry coefficient estimated by ALStructure with the optimal K and calculated206

XTX by using BAYPASS ver2.1 (Gautier 2015). BAYPASS was run by setting 25 short pilot runs, 100,000207

burn-in iterations and 100,000 post-burn-in iterations with a thinning interval of 40 iterations. A significance208

threshold of XTX was determined by the 99.5% quantile of pseudo-observed XTX (Gautier 2015) calcu-209

lated from neutral markers simulated by simulate.baypass (Gautier 2015).210

Gene ontology enrichment To investigate biological functions related to putatively adaptive loci, we211

conducted gene ontology (GO) enrichment analysis with gene annotations of the barley ’Morex v2’ genome212

(Mascher 2019). Over-representation of GO terms for genes within 500 bp adjacent intervals of candidate213

SNPs was tested by Fisher’s exact test with 10,000 runs by using SNP2GO (Szkiba et al. 2014), and214
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GO terms with FDR < 0.05 were regarded as significantly enriched. Annotations of genes within 500 bp215

upstream and downstream of the candidate SNPs were also reported.216

Results217

Summary of genotypic data SNP calling and preliminary filtration resulted in 101,711 SNPs for 1,365218

accessions, including 1,121 IPK accessions and 244 B1K+ accessions (Supplementary Information; Fig-219

ure S2). Depending on the requirements of analyses, we selected different subsets from 101,711 SNPs220

as follows. For the joint population structure analysis of IPK and B1K+ accessions, we selected 4,793221

geographically diverse SNPs that are polymorphic (minor allele frequency; MAF ≥ 0.05) among 72 IPK222

accessions originating in 13 countries (Russell et al. 2016). This joint dataset is LD-pruned and has a223

missing proportion of 0.043 (Supplementary Information; Figure S2). For analyses of B1K+ accessions, we224

selected 58,616 SNPs with an overall missing proportion of 0.029 and maximal individual missing propor-225

tion of 0.059, and further filtration resulted in 19,601 SNPs (LD-pruned; MAF ≥ 0.01) and 27,147 SNPs226

(unpruned; MAF ≥ 0.05; Details in Supplementary Information; Figure S2)227

Population structure and spatial genetic pattern Inference of population structure among B1K+228

accessions with ALStructure (Cabreros and Storey 2019) identified four clusters (Figure 1 A and B), cor-229

responding to the Mediterranean northern region, semi-arid coastal region, Judaean Desert, and Negev230

Desert (Figure 1C). Hereafter, we named the four B1K+ clusters as North, Coast, Eastern Desert, and231

Southern Desert. With K = 4, 174 of 244 (71.3 %) accessions have a highest ancestry coefficient less232

than 0.9. The first three principal components (PCs) represented the clusters corresponding to the AL-233

Structure results (Figure 1 A and B). On the first PC axis, the northern cluster separated from two desert234

clusters, and on the second PC axis, the coastal cluster separated from the others. On the third PC axis,235

the southern desert cluster separated from the eastern desert cluster. The three PC axes explained 4.73%,236

3%, and 2.83% of the variation, respectively. A hierarchical population structure was evident in the NJ tree237

(Figure 2A) and in the ALStructure analysis with K = 2-8 (Figure 2B). To evaluate the importance of marker238

density and additional samples to population structure analysis, in addition to original dataset, we performed239

PCA and ALStructure by either including or removing the HOH accessions with random selection of 100240

and 5,000 SNPs. The dataset with 100 SNPs did not allow to identify genetic clusters while datasets with241

5,000 SNPs separated into four genetic clusters by using the first four PCs even with the sample of original242

B1K accessions without the HOH accessions. However, ALStructure could only identify three ancestral243

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460445
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 FST and Nei’s genetic distances between four genetic clusters.

FST

North Coast Eastern Desert Southern Desert

North - 0.1124 0.1149 0.2593
Nei’s

Distance
Coast 0.0209 - 0.1321 0.2533

Eastern Desert 0.0216 0.0248 - 0.2125
Southern Desert 0.0508 0.0482 0.0389 -

populations (K = 3) if the HOH accessions were excluded (File S2).244

To evaluate genetic differentiation between four clusters, we computed pairwise FST and Nei’s genetic245

distances. The Southern Desert cluster is most strongly isolated from the other three clusters (Table 1).246

With respect to the genomic pattern of differentiation, FST values were highest in the pericentromeric re-247

gions of chromosome 2H, 3H, 4H, 5H, and 6H. The Southern Desert cluster differentiated from the other248

three clusters in the most of genome except the pericentromeric regions of chromosome 3H and 4H (Figure249

S7).250

A joint PCA of B1K+ and IPK accessions was consistent with major clusters identified in B1K+ and251

showed that B1K+ accessions overlapped with a large proportion of the IPK collection (Figure 3A). To252

visualize the genetic relationship between B1K+ accessions and IPK accessions with different origins, we253

selected 72 geographically distinct accessions used in a previous study (Russell et al. 2016). On the first PC254

axis, most of the 72 geographically diverse accessions collected from western and central Asian countries255

separated from B1K+ accessions but clustered more closely to the two desert clusters than to the northern256

and coastal clusters (Figure 3A). Because an unbalanced sample size of accessions from Israel (616 of257

1,365 accessions) may bias the PC axes, we performed another joint PCA by projecting 1,293 accessions258

onto PC spaces of 72 geographically distinct accessions. This approach can avoid the misinterpretation259

of sample origin and migration based on PC (McVean 2009). The PC projection showed that accessions260

typically clustered by geographic origin, as reported in previous studies (Milner et al. 2019; Russell et al.261

2016), and B1K+ accessions were concentrated in a small area of PC space (Figure 3B).262

Geographical pattern of gene flow To identify barriers limiting gene flow within the Levant region,263

we performed an analysis using EEMS (Petkova et al. 2016) that revealed uneven gene flow across the264

landscape. The area of low gene flow rates corresponds closely to geographic barriers, including the265

Sea of Galilee, the Jordan Valley, and the Judea and Samaria mountain ridges (Figure 1C). A Wilcoxon266
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Figure 1 Spatial genetic structure of 244 B1K+ accessions and results of gene flow analysis. (A) PCA plot
of the first and second PC axes. (B) PCA plot of the first and third PC axes. Pie charts in PCA plots
represent ancestry coefficients of individuals estimated by ALStructure with K = 4. (C) Distribution of
genetic clusters and effective migration surface. Average ancestry coefficients of individuals in collection
sites are shown by pie charts. Color gradient represents gene flow rates estimated by EEMS. (D)
Comparisons with unPC scores higher than the top 2.5% threshold that indicates a significantly low
genetic similarity over a short geographical distance. (E) Comparisons with unPC scores lower than the
bottom 2.5% threshold that indicates a significantly high genetic similarity over a long geographical
distance. (F) Gene flow rates inferred by the coalescent-based inference method, representing the
probabilities per unit of time that individuals in a region i are descended from a region j (Lundgren and
Ralph 2019). The thickness of arrows and the depth of red color is proportional to gene flow rates. The
complete result is shown in Table S3.
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Figure 2 (A) Unrooted neighbor-joining (NJ) tree and (B) ancestry coefficients of 244 B1K+ accessions
estimated by using ALStructure with K = 2-8. Accessions are sorted according to the NJ tree. With K = 4,
red, blue, green, and yellow bars correspond to the Northern, Coastal, Eastern Desert and Southern
Desert genetic clusters, respectively, as in Figure 1.

test supported the association between geographic barriers and lower gene flow rates (p < 2.2 × 10−22;267

Figure S8 A). In addition, EEMS analysis showed that genetic dissimilarity between demes does not have268

a simple linear relationship with geographic distances (Figure S8 B), indicating that isolation by distance269

is not sufficient to explain genetic differentiation. The EEMS analysis also showed that effective genetic270

diversity, which is the expected genetic dissimilarity of two individuals sampled from a site (Petkova et al.271

2016), decreases from north to south (Figure S8 C), suggesting higher genetic diversity in the north than272

the south. Furthermore, we performed unPC (House and Hahn 2018) based on the ratio of PC-based273

genetic distances to geographic distances, which is more sensitive to long-distance migration than EEMS.274

The high unPC score comparisons supported regions of low gene flow identified by EEMS, particularly the275

majority of significant unPC comparisons located in the region around the Sea of Galilee in northern Israel276

(Figure 1D). In addition, the comparisons with low unPC scores suggest potentially long-distance migration277

events in the north-south direction (Figure 1E).278
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Figure 3 PCA plots of 244 B1K+ accessions and 1,121 accessions from IPK genebank. (A) PCA
performed with all of the available accessions. (B) PCA performed with 72 geographically diverse
accessions and projecting the remaining accessions to PC spaces. Pie charts represent ancestry
coefficients of 244 B1K+ accessions estimated by using ALStructure with K = 4. Gray open dots represent
IPK accessions.

To evaluate asymmetric gene flows, we used CBI (Lundgren and Ralph 2019), which suggested unequal279

gene flows in a North-South direction (Figure 1F; Table S3). There is a trend for gene flow from South280

(region H) to North (region B) in the western region (region H → E → B; Figure 1F) and an opposite281

trend from North (region A) to South (region I) in the eastern region (region A → D → F → I; Figure282

1F). The strongest gene flow (3.24 with the 95% credible interval of 0.51-6.32; Table S3) is observed from283

populations close to Jerusalem (region H) to the surrounding areas of Mount Carmel (region E), but the284

gene flow in the opposite direction (region E → H) is much weaker (0.77 with the 95% credible interval285

of 0-2.32; Table S3). Low gene flow rates of connections across geographical barriers, such as C 
 D286

and H 
 I, agreed with the results of EEMS (Figure 1C) and unPC (Figure 1 D and E). Also, low gene287

flow rates between the Negev desert (region J) and its adjacent regions indicated the isolation of Southern288

Desert accessions, consistent with high genetic differentiation suggested by the FST values (Table 1).289

Genetic variation explained by environment and space To quantify relative contributions of envi-290

ronment and space to genomic variation, simple RDA and partial RDA were performed. RDA showed that291

environmental variables explained 15.12% (R2
adj = 0.107; p = 0.0002) of SNP variation while spatial auto-292

correlation captured by dbMEMs, which are eigenfunctions of a spatial network (Dray et al. 2006; Legendre293
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and Legendre 2012), explained 44.95% (R2
adj = 0.285; p = 0.0002; Figure 4A). By using partial RDA, we294

found 10.63% of SNP variation is jointly explained by environmental variables and spatial autocorrelation,295

and 4.49% (R2
adj = 0.013; p = 0.0002) was exclusively explained by environmental variables (Figure 4A).296

Considering the confounding effect between environment and population structure, we treated ancestry co-297

efficients (K = 4) as covariates when inspecting the effect of environmental variables on SNP variation. RDA298

indicated that population structure explained 15.43% (R2
adj = 0.148; p = 0.0002) of SNP variation and af-299

ter controlling for population structure, environmental variables exclusively explained 8.71% (R2
adj = 0.048;300

p = 0.0002) of SNP variation (Figure 4A).301
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Figure 4 Results of variation partitioning and RDA biplots. (A) Variation partitioning of SNP variation and
population structure. Left and middle columns: explained SNP variation estimated by RDA models using
population structure and spatial autocorrelation as covariates, respectively. Right column: SNP variation
explained by population structure. Environment, space and population structure are represented by twelve
environmental variables, dbMEMs and ancestry coefficients (K = 4) in RDA models. (B) Percentage of
SNP variation explained by environmental variables. The simple_single and partial_single show individual
effects estimated based on RDA models fitting one environmental variable at a time. The simple_margin
and partial_margin show marginal effects estimated based on RDA models fitting all environmental
variables. The partial_single and partial_margin are estimated based on partial RDA conditioned on
population structure. (C) Biplot of simple RDA. (D) Biplot of partial RDA conditioned on population
structure. The arrows represent correlations of the environmental variables with RDA axes that are shown
in Table S9 with details.
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After confirming an association between genomic variation and the environment, we further investigated302

the effects of individual environmental variables. In simple RDA models separately fitting each environmen-303

tal variable, permutation tests showed all of 12 environmental variables are significantly associated with304

SNP variation (p < 0.005; Table S5.1). Without constraining on population structure, the synthetic variable305

’Latitude+Rain+Solar_rad ’ (Table S1 and S2) explained the highest proportion of SNP variation (3.89%; Fig-306

ure 4 B; Table S5.1). In contrast, in RDA models controlling for population structure, ’Soil_water_capacity ’307

explained the highest proportion of SNP variation (1.18%; Figure 4 B; Table S5.2) whereas the proportion of308

SNP variation explained by ’Latitude+Rain+Solar_rad ’ reduced to 0.86%. The variable ’Aspect ’ showed the309

lowest but significant association with SNP variation in both simple and partial RDA (Table S5.1 and S5.2).310

Variables ’Soil_water_capacity ’, ’CoefVar_Rain’, which refers to coefficients of variation of precipitation of311

the growing season, and ’Aspect ’ reduced explained variation less than other environmental variables af-312

ter controlling the population structure. This indicates that they are less correlated with the population313

structure. We also investigated marginal effects in models that incorporated all environmental variables by314

considering correlations between environmental variables. The variables ’Latitude+Rain+Solar_rad ’ and315

’Soil_water_capacity ’ showed again the highest marginal effect in the simple RDA and partial RDA condi-316

tioned on population structure, respectively (Figure 4 B; Table S5.3 and S5.4).317

RDA biplots provide further information on the relative importance of environmental gradients. The biplot318

of the simple RDA (Figure 4C) showed a population structure consistent with the four genetic clusters319

identified by ALStructure. The first and second RDA axes corresponded to genetic differentiation in the320

north-south and west-east directions, respectively (Figure 4C), and the first RDA axis is strongly (r =321

0.911; Table S5) correlated with the variable ’Latitude+Solar_rad ’ (Figure 4C). After conditioning on spatial322

autocorrelation, the effects of all environmental variables decreased significantly (Figure S9 and Table S5),323

indicating a strong correlation of environmental gradients with spatial autocorrelation. When conditioning on324

population structure rather than spatial autocorrelation, two water-related variables, "Soil_water_capacity"325

(r = 0.697) and "CoefVar_Rain" (r = -0.662), were the most influential predictors on the first RDA axis (Figure326

4D and Table S5).327

With reference to our hypothesis that the diverse environments in the southern Levant are an important328

factor shaping populations, we quantified the relative contributions of environment and space to population329

structure (K = 4) using RDA. As expected, a high proportion of population structure explained by envi-330

ronmental variables (42.91 of 46.59% Figure 4A) cannot be separated from the component explained by331

spatial autocorrelation. Only 3.68% (R2
adj = 0.0358; p = 0.0002) of population structure can be exclusively332

explained by environments whereas spatial autocorrelation exclusively accounted for 39.87% (R2
adj = 0.374;333
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p = 0.0002) of population structure (Figure 4A). This result suggests that spatial autocorrelation has a larger334

effect on population differentiation of wild barley in the Southern Levant than environmental diversity.335

Adaptive candidates and GO enrichment The association between genomic variation and environ-336

ment motivated us to perform genome scans to identify putative adaptive loci. We first estimated LD decay337

to assess whether the marker density of the reduced sequenced library was sufficient to accurately identify338

adaptive genes in such scans. Fitting the loess model and Hill-Weir formula, we observed a rapid decay339

of LD because r2 values dropped to half of the highest values of 0.377 and 0.454 after pairwise SNP dis-340

tances of 213 bp and 125 bp, respectively (Figure S10). This result indicates a possible difficulty in detecting341

precise locations of adaptive loci except for closely linked loci with the current marker density.342

Three GEA methods, simple RDA, partial RDA, and LFMM, identified 352, 364, and 307 candidate343

SNPs (FDR < 0.05), respectively, and the outlier method, BAYPASS, identified 279 candidate SNPs (XTX344

> 11.05). However, candidate SNPs detected by the four methods hardly overlapped, except simple RDA345

and BAYPASS with 125 common SNPs, of which 91 are located in the pericentromeric regions of the chro-346

mosome 3H, 4H, and 5H (Figure 5; File S3). By searching 500 bp adjacent intervals of candidate SNPs, the347

four methods jointly identified two genes on chromosome 4H. The first gene HORVU.MOREX.r2.4HG0308420348

is close to SNPs associated with the variable ’Latitude+Rain+Solar_rad ’ in the LFMM analysis (File S4) and349

encodes an ATP-dependent RNA helicase. The second gene HORVU.MOREX.r2.4HG0314300 is linked to350

SNPs associated with ’Elevation+Temperature’ and which encodes a nucleolar GTP-binding protein (Figure351

S11; Table S6; File S4). GO term enrichment analysis identified 2 and 10 enriched GO terms based on352

candidate SNPs detected by simple RDA and BAYPASS, respectively (Table S7). No GO term was enriched353

based on the results of partial RDA and LFMM.354

Discussion355

Our study indicated that geography and spatial autocorrelation are more predictive factors of genomic vari-356

ation than environmental gradients even though the diverse environments of the Southern Levant are ex-357

pected to impose strong natural selection (Hübner et al. 2009; Nevo et al. 1979). These findings imply that358

genomic variation of wild barley in the Southern Levant is mainly driven by neutral processes consistent359

with a neutralist perspective (e.g., Volis et al. 2003, 2005, 2001). However, environmental variables are still360

associated with a relatively small but considerable proportion of genomic variation (15.12%; Figure 4A),361

suggesting that natural selection and hitch-hiking may have a detectable effect on the structure of genetic362
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diversity.363

Population structure of B1K+ and IPK genebank collection Three clusters corresponding to364

eco-geographic habitats were previously characterized based on SSR markers and a SNP array developed365

for cultivated barley (Hübner et al. 2012) and morphological traits (Hübner et al. 2013). Our results are366

consistent with previous findings, except that the previously reported desert cluster (Hübner et al. 2012)367

split into two clusters (Figure 1 A-C), evident in the ALStructure analysis with K = 3 and K = 4 (Figure 2),368

due to not only the increased marker number but also the inclusion of additional accessions collected in the369

Negev Desert in 2011 (File S2). Although genetic clusters are consistent with eco-geographic habitats, the370

results of model-based methods should be interpreted cautiously. First, the number of ancestral populations371

may be overestimated due to isolation by distance (Bradburd et al. 2018). Second, the high proportion of372

admixed accessions (174 of 244 B1K+ accessions; 71.3%) may not result from admixture. Both spatial373

autocorrelation (Bradburd et al. 2018) and demographic history (Lawson et al. 2018) such as bottlenecks374

that likely occur in self-pollinating species (Hartfield et al. 2017), may lead to high admixture proportions in375

model-based methods.376

The joint PCA incorporating the IPK wild barley collection indicated a strong effect of an unbalanced377

sample size of accessions from Israel (616 of 1,365 accessions) on a PCA (Figure 3 A and B). This378

comparison highlights the importance of balanced sampling in analyzing the population structure, because379

unequal sample sizes among groups can lead to distortion of PCs (McVean 2009). The PCA based on all380
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accessions compressed the accessions with a broad geographical origin throughout the whole distribution381

range of wild barley to a cluster (Figure 3A) that did not appropriately reflect their wide geographic origin.382

In contrast, a PCA with a more balanced sample of accessions from the whole species range revealed that383

the wild barley from the Southern Levant regions comprises only a small proportion of the total diversity of384

wild barley (Figure 3B). However, the PCA of the complete sample revealed that accessions from Greece385

and Cyprus clustered with accessions from the Southern Levant (Figure 3 A and S12 A) suggesting they386

originated from the Southern Levant or adjacent areas without a sufficiently long history of differentiation387

from the ancestral populations. Likewise, 579 IPK accessions with unknown origins may be closely related388

to the Levant region as they strongly overlapped with our B1K+ population (Figure S12).389

Geographical pattern of gene flow Gene flow of wild barley is expected to be limited with a low390

rate of outcrossing (<2%; Abdel-Ghani et al. 2004), and seed dispersal occurs mainly within 1.2 m (Volis391

et al. 2010). However, self-fertilizing plants can establish a population with a single seed after long-distance392

dispersal (Baker 1967), and the long spiky awns attached to seeds of wild barley can facilitate dispersal393

by zoochory. With a sufficiently long period, gene flow across landscapes may accumulate via occasional394

dispersal and outcrossing. EEMS (Petkova et al. 2016) was previously used to identify gene flow barriers in395

plant populations across large geographical ranges, e.g., rice (Gutaker et al. 2020) and spruce (Tsuda et al.396

2016). In our data, EEMS revealed fine-scale patterns of gene flow attributable to geography, particularly by397

the Sea of Galilee and the Jordan Valley, which were not previously identified by inferring gene flow between398

genetic clusters (Hübner et al. 2012). These geographic separations could promote genetic differentiation399

within a short geographic distance that interferes with isolation-by-distance patterns (Figure S8 B).400

Coalescent-based inference (CBI; Lundgren and Ralph 2019) detected trends of gene flow with oppo-401

site directions in eastern and western regions (Figure 1F), contradicting the net gene flow from north to402

south identified by Hübner et al. (2012). The different conclusions regarding gene flow directions in western403

Israel are likely due to the mappings. While Hübner et al. (2012) assigned accessions according to genetic404

clustering, our assignment emphasized the geographic origin. CBI gene flow rates express the probabil-405

ity that a population descended from another population per unit time (Lundgren and Ralph 2019), and406

therefore a history of recent colonization may explain gene flow trends in our data. Incorporating historical407

genome recombination to infer gene flow at different time periods may provide a clearer picture (Al-Asadi408

et al. 2019). Errors in gene flow inference can result from sampling biases, missing and erroneous geno-409

typic values caused by low sequencing depth, and also from uneven distributions of markers due to the410

nature of GBS (Elshire et al. 2011; Poland et al. 2012). However, imbalanced sampling should not bias our411
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results because EEMS and CBI are insensitive to unequal sample numbers (Lundgren and Ralph 2019;412

Petkova et al. 2016).413

Effects of environment and geographical distance on SNP variation RDA analysis indicated414

that environmental gradients explained a substantial portion of SNP variation and population structure (Fig-415

ure 4A). This analysis does not include all possible environmental effects because comprehensive environ-416

mental data were not available. For example, the adaptive trait drought stress recovery is associated with417

the parameter rainfall predictability in wild barley (Galkin et al. 2018), but such data are only available for418

some collection sites. In addition, the control for collinearity and nonlinear environmental effects that RDA419

does not account for may lead to unexplained genetic variation in our analysis.420

Phenotypic studies suggested the importance of rainfall in the evolution of wild barley in the southern421

Levant (Galkin et al. 2018; Hübner et al. 2013; Volis 2011; Volis et al. 2002a,b). Our RDA analysis indi-422

cated variables related to water availability (’Latitude+Rain+Solar_rad ’ and ’Soil_water_capacity ’) as most423

important drivers of genomic variation (Figure 4 B-D; Table S5). It is not possible to specify the effects of424

individual environmental gradients because they are highly correlated. For example, we cannot separate425

the effect of precipitation from latitude, which is highly relevant to the flowering timing of barley (Russell426

et al. 2016). Unlike other environmental variables, ’Aspect ’ had few confounding effects with other gradi-427

ents and population structure (Figure 4B). ’Aspect ’ was the strongest predictor when conditioned on spatial428

autocorrelation (Figure S9; Table S5). In the southern Levant, south-facing slopes might be more exposed429

to drought and heat than north-facing slopes due to higher solar radiation, resulting in significantly stronger430

selection within only a few hundred meters, referred to as the Evolution Canyon model (Bedada et al. 2014;431

Nevo et al. 2005). Our results suggest that ’Aspect ’ may reflect a minor but pervasive effect of microclimate432

in the southern Levant that cannot be represented by climate data at the current resolution. In Mimulus433

guttatus, an important locus of microgeographic adaptation was successfully identified by integrating quan-434

titative trait loci mapping and population genomic analyses (Hendrick et al. 2016). A similar approach may435

be used to investigate the genetic architecture of adaptation to microclimatic conditions in wild barley.436

By using dbMEMs, which model the effects of spatial autocorrelation on SNP variation, our RDA re-437

vealed that high proportions of SNP variation (45%) and population structure (83%) are explained by spa-438

tial autocorrelation (Figure 4A). The lower proportion of SNP variation explained by environments (Figure439

4A) indicates that environmental selection may be an influential but not dominant driver of genetic differ-440

entiation. In contrast with our findings, environment had a significantly stronger effect than geographical441

distance on diversity in Boechera stricta (Lee and Mitchell-Olds 2011). However, in Arabidopsis thaliana442
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(Lasky et al. 2012), sorghum (Lasky et al. 2015), rice (Gutaker et al. 2020) and wild tomato (Gibson and443

Moyle 2020), the contribution of environment was comparable and highly overlapping with geographical444

distance. This suggests that the isolation-by-distance is a robust and widespread pattern in a small ge-445

ographic range like in our case and over large geographic scale (Gibson and Moyle 2020; Gutaker et al.446

2020; Lasky et al. 2012, 2015). Complex spatial structure confounding with environmental gradients are a447

pervasive challenge in the study of local adaptation (de Villemereuil et al. 2014; Excoffier et al. 2009). In448

particular, population genetic analyses tend to be biased by spatial structure (Battey et al. 2020). For this449

reason, phenotypic studies using crosses between accessions and common garden experiments are also450

required to distinguish between genetic variation attributed to local adaptation and spatial autocorrelation.451

Additionally, we noted that a high percentage of SNP variation (51%; Figure 4A) remained unexplained452

even after incorporating dbMEMs. This could attribute to either unknown evolutionary forces independent453

of spatial autocorrelation or the limitation of our current dataset and methodologies.454

Lack of strong evidence to pinpoint adaptive loci The rapid decay of LD within a few hundred455

base pairs (Figure S10) is consistent with similar studies of wild barley populations from the Middle East456

and Central Asia (Morrell et al. 2005). Reduced-representation sequencing approaches tend to have lim-457

ited power in identifying adaptive loci, especially for genomes with high levels of recombination (Tiffin and458

Ross-Ibarra 2014). A rapid LD decay and a large genome size of ∼5.3 Gb indicate that the marker density459

of this study may not allow precise genome scans. To account for this caveat and to control for false-positive460

rates, we combined the results from multiple methods of genome scans (Forester et al. 2018; Rellstab et al.461

2015). Significant polymorphisms hardly overlapped between methods (Figure 5B). This observation may462

be explained by a (1) lack of adaptive loci with large effects, (2) strong confounding effect of population463

structure, and (3) limitations of the dataset. Although without strong evidence to identify adaptation genes,464

the genome scans based on XTX and simple RDA identified significant correlations with environmental465

variables and strong genetic differentiation at the pericentromeric regions of chromosome 3H, 4H, and 5H466

(Figure 5A). However, these associations were not observed in the partial RDA and LFMM analyses. Al-467

though the XTX statistics accounts for covariance of allele frequencies (i.e., population structure) among468

populations (Günther and Coop 2013), spurious signals of selection may arise if self-fertilization inflates469

false-positive values via strong genetic drift (Hodgins and Yeaman 2019). For this reason and because of470

a strong association of population structure with environments (Figure 4A), false positives are expected for471

the outlier and GEA methods even with a correction for population structure. The high degree of putative472

selection-driven differentiation is remarkable. Similar patterns of genetic differentiation in pericentromeric473

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.15.460445doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.15.460445
http://creativecommons.org/licenses/by-nc-nd/4.0/


regions were reported in previous studies of barley (Contreras-Moreira et al. 2019; Fang et al. 2014; Wang474

et al. 2018), teosinte (Pyhäjärvi et al. 2013) and maize (Navarro et al. 2017). Theoretical studies suggested475

that adaptation with gene flow could result in divergent linkage groups of locally beneficial alleles in low re-476

combination regions (Akerman and Bürger 2014; Bürger and Akerman 2011; Yeaman and Whitlock 2011).477

These conclusions were supported by simulation and empirical studies, e.g., in stickleback, sunflower, and478

Arabidopsis lyrata (Berner and Roesti 2017; Hämälä and Savolainen 2019; Renaut et al. 2013; Samuk et al.479

2017). Low-recombination pericentromeric regions of wild barley were reported to have significantly higher480

ratios of non-synonymous to synonymous substitution (πa/πs) than other genomic regions (Baker et al.481

2014), suggesting the tendency of accumulating genetic load in pericentromeric regions. Moreover, consid-482

ering the conditional neutrality, accumulation of conditionally deleterious mutations in habitats where they483

are neutral can lead to genotype-environment interactions of fitness if migration is weak relative to genetic484

drift (Mee and Yeaman 2019). Taken together, given a weak gene flow, high rates of self-fertilization and485

variable recombination rates over the genome, a long-term accumulation of conditionally deleterious muta-486

tions may result in locally neutral linkage of alleles in low-recombination genomic regions creating a pattern487

of polymorphism that may resemble local adaptation and explain our observations in the pericentromeric488

regions.489

Conclusion and outlook We observed a stronger effect of non-selective factors like geography and490

isolation-by-distance on total genetic diversity in the wild barley populations of the diverse and stressful en-491

vironments of the Southern Levant. Nevertheless, natural selection has a small but significant influence on492

genomic variation, which is potentially valuable for barley breeding because water availability, i.e., precipita-493

tion and soil water capacity, was the most strongly correlated environmental variable. Outlier test and simple494

RDA identified genomic regions that may contribute to local adaptation, but these regions were not robustly495

identified by the different tests applied. One limitation of our study is therefore that only a small proportion496

of the wild barley genome was sequenced by the GBS approach, which is suitable for analyzing genome-497

wide patterns of variation and mapping of causal genes (Milner et al. 2019), but not powerful enough for498

pinpointing genomic targets of local adaptation. In the near future, whole genome sequencing of wild barley499

accessions (Sato et al. 2021) and the development of a barley pangenome (Jayakodi et al. 2020) will greatly500

increase the power of population genomic approaches to understand wild barley adaptation and facilitate501

the mining of useful alleles for plant breeding. Such approaches can be combined with common garden and502

transplantation experiments of wild barley genotypes to measure fitness effects in different environments503

(Hübner et al. 2013; Volis 2011), gene expression studies of differentially adapted genotypes (Hübner et al.504
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2015) and mapping populations. Given the strong influence of isolation-by-distance on genomic varia-505

tion, adaptive genetic variation is likely confounded with population structure. Mapping populations with506

sufficient genome recombination evaluated in different environments allow for disentangling adaptive and507

neutral variation, as shown in such populations developed from wild and cultivated barley (Herzig et al.508

2018; Wiegmann et al. 2019). Whole genome resequencing followed by computational analysis can be509

rationalized to analyze a large number of genotypes such as the complete B1K population. Therefore, we510

believe that population genomic analysis of differentially adapted crop-wild relatives will complement other511

approaches to understanding plant adaptation and enable use of this information for breeding.512
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