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Abstract

We present a new theoretical framework for large-scale mRNA translation using a
network of models called the ribosome flow model with Langmuir kinetics (RFMLK),
interconnected via a pool of free ribosomes. The input to each RFMLK depends on
the pool density, and it affects the initiation rate and the internal ribosome entry
rates at each site along each RFMLK. Ribosomes that detach from an RFMLK due
to termination or premature drop-off are fed back into the pool. We prove that the
network always converges to a steady-state, and study its sensitivity to variations
in the parameters. For example, we show that if the drop-off rate at some site in
some RFMLK is increased then the pool density increases and consequently the
steady-state production rate in all the other RFMLKs increases. Surprisingly, we
also show that modifying a parameter of a certain RFMLK can lead to arbitrary
effects on the densities along the modified RFMLK, depending on the parameters in
the entire network. We conclude that the competition for shared resources generates
an indirect and intricate web of mutual effects between the mRNA molecules, that
must be accounted for in any analysis of translation.

Keywords—Mathematical modeling of competition for shared resources, ribosome drop-off,
internal ribosome entry sites, cooperative dynamical systems, entrainment, context-dependence
in mRNA translation.
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1 Introduction

Gene expression is a crucial cellular process that produces desired proteins by decoding the
genetic code in the DNA [1]. In Eukaryotes, gene expression includes several processes. Dur-
ing transcription, the protein-coding information encoded in a DNA is copied into an mRNA
molecule. During translation, the information inscribed in the mRNA is translated to chains of
amino acids destined to become proteins [2,3]. The information encoded in the DNA and mRNA
is decoded by complex molecular machines called RNA polymerases and ribosomes, respectively.
The dynamical flow of these machines along the DNA or mRNA “tracks” plays an important role
in gene expression and, in particular, in regulating protein production.

Translation is a fundamental process that takes place in all living cells, from bacteria to
humans. Many mRNA molecules are translated in parallel with many ribosomes decoding every
mRNA molecule [4, 5]. This implies that the mRNA molecules effectively “compete” for the
finite resources in the cell, like tRNA molecules and free ribosomes [6, 7]. The competition
for ribosomes may explain important dynamical properties of translation, that are difficult to
understand when considering the translation of a single, isolated mRNA molecule. For example,
it is known that stalling ribosomes may detach from the mRNA before completing the translation
process [8, 9]. This is somewhat surprising, as a ribosome that drops-off from the mRNA before
reaching the stop codon fails to complete the synthesis of a full-length protein, and releases a
truncated protein, whose accumulation could be detrimental to the cell [10]. However, in the
context of competition for free ribosomes, premature drop-off may have a positive effect: it allows
stalled ribosomes to join the pool of free ribosomes that can initiate translation in other mRNA
molecules. Thus, modeling translation as a network of interconnected processes and taking into
account competition for shared resources is important for gaining a deeper understanding of
fundamental principles in cellular biophysics.

Typically, translation is initiated by ribosome scanning from the 5′ end of the capped mRNA.
However, some mRNAs include internal ribosome entry sites (IRESs), that allow for translation
initiation in a cap-independent manner. IRESs, first discovered in poliovirus, are common in
RNA viruses and allow viral translation even when host translation is inhibited for some rea-
son [11, 14]. Cellular growth regulatory genes, and genes transcribed in response to stress also
contain IRES elements [12]. Also, synthetic biologists often insert IRES sequences into their
vectors to allow expressing two or more genes from a single vector [15]. We believe that the
effect of IRESs on translation should also take into account the competition for shared resources,
like ribosomes. For example, a recent study [13] shows that the non-structural protein 1 (Nsp1),
produced by the SARS-CoV-2 virus, binds to the human 40S subunit in ribosomal complexes,
and thus interferes with mRNA binding. Since translation of the viral mRNA is more efficient
than that of cellular mRNAs with 5′ UTRs, the net effect is hijacking the cellular translation
machinery by the virus.

Many mathematical and computational models for translation on a single mRNA molecule
have been developed [16]. One such model is the Asymmetric Simple Exclusion Process (ASEP),
and its variants motivated by biological findings [17–23]. This model includes a 1D chain of
sites, and particles that hop according to a stochastic mechanism from a site to a neighboring
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site, provided the latter site is empty. Thus, every site is either free or includes a single particle.
This simple exclusion principle represents the constraint that two particles cannot be in the same
place at the same time. If motion is unidirectional, then ASEP is called the totally asymmetric
exclusion process (TASEP). In the context of translation, the lattice represents the mRNA
molecule and the hopping particles are the ribosomes. ASEP has been used extensively to
model gene translation, and various other multi-agent systems with local interactions including
intracellular transport, pedestrian dynamics, and more [24,25].

Despite its simple description, analysis of ASEP is non-trivial because the simple exclusion
principle generates an intricate coupling between the hopping particles. In particular, analysis
results for TASEP are asymptotic, i.e. they hold when the number of sites converges to infinity,
and closed-form results exist only under the restrictive assumption that all the internal hopping
rates are equal [26].

A deterministic mathematical model called the Ribosome Flow Model (RFM), which can be
derived as a dynamical mean-field approximation of TASEP, was suggested in [27]. This model
is highly amenable to analysis using tools from systems and control theory. The RFM, and its
various generalizations, have been used to model and analyze sophisticated features of translation,
for example, ribosome flow along a circular mRNA [29], the effect of ribosome recycling [30], a
ribosome flow model with different site sizes [32], ribosome flow incorporating bidirectional flow
and the phenomena of attachment and drop-off [35], entrainment of the protein production rate
to periodic elongation rates [36], and regulating the average protein synthesis in the cell under
stochastic variability in the ribosome elongation rates [37]. Networks of interconnected RFMs
have also been studied [38].

Raveh et al. [33] analyzed a model called the RFM network with a pool (RFMNP), which
includes a network of RFMs, interconnected via a pool of free ribosomes. For a recent application
of this model to ribosome traffic engineering, see [34]. However, the RFMNP cannot model the
important features of premature drop-off and IRESs. As we will see below, adding these features
to the model generates new, important and perhaps surprising results.

In this paper, we consider a network of RFMs with an additional Langmuir kinetics called
RFMLKs. This allows modeling drop-off and attachment of ribosomes at any site along the
mRNA due to premature drop-off or IRESs, respectively. The RFMLKs are interconnected via
a pool of free ribosomes yielding a new model referred to as the RFM with Langmuir kinetics
network (RFMLKN). This allows modeling simultaneous translation of an arbitrary number of
mRNA molecules, with ribosome drop-off from any site along the mRNA molecule to the pool of
free ribosomes, and attachment at an IRES at any site along the mRNA. In particular, we use
this model to rigorously analyze the effect of ribosome drop-off and/or IRES in one mRNA on
the production rate of all the other mRNA molecules.

We use the powerful theory of strictly cooperative dynamical systems with a first integral [39]
to prove that the RFMLKN admits a continuum of linearly ordered equilibrium points. Every
solution of the system converges to an equilibrium that depends on the network parameters
and the total number of ribosomes in the network. This represents a dynamical steady-state
where the ribosome flow into and out of every site along any mRNA molecule is equal, and the
flows into and out of the pool are also equal. Thus, any two solutions starting from two initial
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conditions corresponding to an equal total number of ribosomes in the network converge to the
same equilibrium point. In other words, the network “forgets” the exact initial condition, except
for the total initial density of ribosomes. This qualitative behaviour holds for any feasible set of
parameters covering many possible biophysical conditions.

We also show that if all the transition rates vary in a periodic manner, with a common
period T , then every solution of the RFMLKN converges to a periodic solution with period T .
This implies in particular that the protein production rate entrains to periodic excitations in the
translational machinery.

We use the RFMLKN to analyze quantitatively and qualitatively important questions such
as the effect of ribosome drop-off/attachment from/to a site in one mRNA on the steady-state
production rate of all the other mRNAs in the network. The analysis highlights how the compe-
tition for shared resources generates an indirect and intricate web of mutual effects between the
mRNA molecules in the cell. These effects cannot be analyzed using models of translation on a
single, isolated mRNA molecule.

The remainder of this paper is organized as follows. The next section summarizes the main
analysis results and their biological implications. Section 3 presents the new mathematical model
and demonstrates using several examples how it can be used to study large-scale translation in
the cell. Section 4 states our main theoretical results. For the sake of readability, all the proofs
are placed in the Appendix. The final section concludes and suggests possible directions for
further research.

2 Summary of Main Results and their Biological Im-

plications

The RFMLKN encapsulates many fundamental aspects of gene translation. During mRNA
translation, ribosomes attach at the 5′ end of the mRNA and scan it in a sequential manner.
At each elongation step, every sequence of three consecutive nucleotides in the mRNA, called
a codon, is decoded into an amino-acid, and this process continues until the ribosome reaches
the 3′ end of the mRNA [2]. The codon decoding rates may vary among different mRNAs and
depend on many transcript features [40]. Several ribosomes may scan the same mRNA molecule
in parallel, but a ribosome cannot overtake another ribosome in front of it, thus obeying the
simple exclusion principle. Ribosomes may detach from the mRNA molecule before reaching
the stop codon due to several reasons like ribosome “traffic jams”, the presence of a premature
stop codon, ribosome-ribosome interactions due to depletion of aminoacyl tRNA or amino-acid
misincorporation, etc. [41]. The limited availability of free ribosomes induces indirect coupling
due to competition between mRNA molecules.

We prove that for a given set of elongation, drop-off and attachment rates, and a total number
of ribosomes in the network, the RFMLKN admits a unique steady-state i.e. the ribosomal
density profiles on all the mRNAs and in the pool converge to a fixed value, as time goes to
infinity. This raises the important question of how does the steady-state changes if we modify
any parameter in the model, e.g. the rate of ribosome drop-off in one site of a specific mRNA.
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Our analysis shows that following an increase (decrease) in a drop-off rate in any mRNA
molecule, the steady-state ribosome density profile in all the other mRNA molecules increases
(decreases). The intuitive explanation for this is as follows: increasing the drop-off rate leads
to releasing more ribosomes to the pool of free ribosomes and this increases the initiation rate
as well as the attachment rate in all the other mRNA molecules leading to an increase in their
ribosome density profile. We also prove the “dual” result, namely, that increasing (decreasing)
an attachment rate in a specific mRNA decreases (increases) the steady-state ribosome densities
in all the other mRNA molecules. However, and perhaps surprisingly, we show that it is very
difficult to predict the effect of a variation in one of the rates on the mRNA that is modified, as
the effect will depend on the entire network. For example, increasing the attachment rate in one
site of a specific mRNA may deplete the pool and thus decrease the effective attachment rates
in other sites along the modified mRNA, leading to an unexpected decrease in the density along
this mRNA.

These results highlight the indirect effects of competition for resources, and also the impor-
tance of taking competition into account when “tinkering” with the bio-physical features of a
single mRNA molecule e.g. by replacing codons by synonymous codons.

Our simulations suggest another interesting implication of ribosome drop-off and/or ribosome
attachment (e.g. in IRESs). It seems that these phenomena increase the amount of indirect
“communication” between the mRNA molecules, through the pool, and thus lead to a higher level
of synchronization between the production rates in the mRNAs. This suggests another possible
advantage of ribosome drop-off and attachment as tools for regulating the protein production
from different copies of the same mRNA.

3 Mathematical Model

Our model is a network of interconnected ribosome flow models with Langmuir kinetics (RFMLK).
We begin by reviewing the RFMLK and then describe the network of interconnected RFMLKs.

3.1 Ribosome Flow Model with Langmuir Kinetics (RFMLK)

The RFMLK is a deterministic, non-linear, continuous-time compartmental model for modeling
ribosome flow along a single mRNA molecule and is a coarse-grained mean field approximation
of TASEP with Langmuir kinetics and open boundary conditions [28,35].

The RFMLK describes the flow along n consecutive sites. In the context of translation,
each site corresponds to a codon or a group of codons along the mRNA molecule. The flow
from site i to site i + 1 is determined by a positive parameter λi, with units 1/time. The flow
from site i to the environment [from the environment to site i] is determined by a non-negative
parameter αi [βi], with units 1/time. The state variable xi(t) : R+ −→ [0, 1], i = 1, 2, . . . n,
describes the normalized density of ribosomes at site i at time t. This may also be interpreted as
the probability that site i is occupied at time t. The dynamical equations describing the RFMLK
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Figure 1: The RFMLK models unidirectional flow along a chain of n sites. The density
at site i at time t is represented by xi(t). The parameter λi > 0 controls the transition
rate from site i to site i + 1, with λ0 and λn controlling the initiation and termination
rates, respectively. The parameter αi ≥ 0 [βi ≥ 0] controls the drop-off [attachment] rate
from [to] site i.

are:

ẋ1 = λ0(1− x1)− λ1x1(1− x2) + β1(1− x1)− α1x1,

ẋ2 = λ1x1(1− x2)− λ2x2(1− x3) + β2(1− x2)− α2x2,

...

ẋn = λn−1xn−1(1− xn)− λnxn + βn(1− xn)− αnxn. (1)

Defining x0(t) ≡ 1 and xn+1(t) ≡ 0 allows to write these equations in the more succinct form:

ẋi = λi−1xi−1(1− xi)− λixi(1− xi+1) + βi(1− xi)− αixi, i ∈ {1, . . . , n}. (2)

The term λi−1xi−1(1 − xi) represents the flow of the particles from site i − 1 to site i. This
increases with the density at site i− 1 and decreases as site i becomes fuller. This corresponds
to a “soft” version of the simple exclusion principle in ASEP. Similarly, the term λixi(1− xi+1)

represents the flow from site i to i+1. The term βi(1−xi) represents the attachment of particles
from the environment to site i, whereas αixi represents the drop-off of particles from site i to
the environment. By setting some of the αis and βis to positive values and the others to zero,
it is possible to model drop-off and attachment at specific sites. If αi = βi = 0 for all i then the
model reduces to the RFM. The topology of the RFMLK is depicted in Figure 1.

To build a network, we use an RFMLK with an input and output given by

ẋ1 = λ0(1− x1)u− λ1x1(1− x2) + β1(1− x1)u− α1x1,

ẋ2 = λ1x1(1− x2)− λ2x2(1− x3) + β2(1− x2)u− α2x2,

...

ẋn = λn−1xn−1(1− xn)− λnxn + βn(1− xn)u− αnxn,

y = λnxn +
n∑
i=1

αixi. (3)
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The time-varying control u(t) multiplies the term representing the entry rate into site 1, and
also the attachment rates in all the sites. We assume that u(t) ≥ 0 for any time t. A larger
value of u(t) corresponds for example to a larger density of free ribosomes in the vicinity of
the mRNA at time t, and consequently it increases the effective initiation rate in the first site
and the attachment rates in all the sites. The output y(t) is the total exit rate of ribosomes from
the RFMLK to the environment at time t.

Note that (3) is a nonlinear model, as it includes both products of state-variables and products
of state-variables and the control input.

Example 1 Consider the case n = 1. In this special case, (3) becomes the linear system

ẋ1 = −(λ0u+ λ1 + α1 + β1u)x1 + (λ0 + β1)u.

Fix x(0) ∈ [0, 1]. Consider a constant control u(t) ≡ v, with v > 0, then it is clear that x(t) ∈
(0, 1) for all t > 0, and that the limit e1 := limt→∞ x1(t) exists, and satisfies

e1 =
1

1 + α1+λ1
(β1+λ0)v

.

In particular, if v = 0 then e1 = 0, and if v →∞ then e1 → 1. The first case corresponds to no
ribosomes in the vicinity of the mRNA, so the single site empties. The second case corresponds to
an infinite density of ribosomes, so the site fills up completely. Note also that e1 is an increasing
function of λ0, β1, v, and a decreasing function of λ1, α1.

The next subsection introduces the RFMLKN.

3.2 A network of Ribosome Flow Models with Langmuir Kinetics

and a pool

To model competition for the finite pool of ribosomes in the cell, we consider a set of m RFMLKs
with input and output, representing m different mRNA molecules in the cell, connected via a
pool of free ribosomes.

The ith RFMLK has length ni, input function ui, output yi, and rates λi0, λi1, . . . , λini
, βi1,

βi2, . . . , βini
and αi1, αi2, . . . , αini

. The dynamics of the m RFMLKs is written as

ẋ1 = f(x1, u1), y1 = g(x1),

...

ẋm = f(xm, um), ym = g(xm).

(4)

These RFMLKs are interconnected through a pool of free ribosomes, i.e. ribosomes that are not
attached to any mRNA. We use the scalar function z(t) ≥ 0 to denote the density of ribosomes in
the pool at time t. The pool feeds the initiation locations as well as the sites in the mRNAs where
attachment takes place. Mathematically, this implies that ui(t) = Gi(z(t)), i = 1, 2, . . . ,m. We
assume that every function Gi(·) : R+ → R+ satisfies the following properties:
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Figure 2: Large-scale translation of mRNA molecules in the cell. Several ribosomes may
decode the same mRNA. Ribosomes that detach from an mRNA enter the pool of free
ribosomes.

1. Gi(0) = 0;

2. Gi(·) is continuously differentiable with G′i(z) > 0 for all z ≥ 0; and

3. There exists c > 0 such that Gi(z) ≤ cz for all z > 0 sufficiently small.

The first property implies that if the pool is empty then no ribosomes can exit the pool; the
second implies that as the number of ribosomes in the pool increases, more ribosomes exit
the pool; and the third is a technical condition that is needed for the proof given later on
of persistence in the RFMLKN. Functions that satisfy these properties include, for example,
the linear function G(z) = az, with a > 0, and the bounded function G(z) = a tanh(bz),
with a, b > 0 [20, 42].

The dynamics of the ith RFMLK in the network is thus given by:

ẋi1 = λi0Gi(z)(1− xi1)− λi1xi1(1− xi2) + βi1Gi(z)(1− xi1)− αi1xi1,

ẋi2 = λi1x
i
1(1− xi2)− λi2xi2(1− xi3) + βi2Gi(z)(1− xi2)− αi2xi2,

...

ẋini
= λini−1x

i
ni−1(1− x

i
ni

)− λini
xini

+ βini
Gi(z)(1− xini

)− αini
xini

,

yi = λini
xini

+

ni∑
`=1

αi`x
i
`.

(5)
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Figure 3: Each mRNA is described by an RFMLK with input and output. The output of
each RFMLK is fed into the pool, and the pool feeds the initiation and attachment rates
in all the RFMLKs.

The output of each RFMLK is fed into the pool. Hence, the pool dynamics is given by:

ż =

m∑
i=1

λini
xini

+
m∑
i=1

ni∑
j=1

αijx
i
j −

m∑
i=1

λi0Gi(z)(1− xi1)−
m∑
i=1

ni∑
j=1

βijGi(z)(1− xij). (6)

In other words, all the ribosomes that exit or drop-off the mRNAs feed the pool, and the pool
feeds the initiation and attachment sites in all the mRNAs.

Summarizing, the RFMLKN is a dynamical system with d := 1+
∑m

i=1 ni state variables, and
dynamics described by equations (4), (5) and (6) (see Figure 3). Eq. (6) and our assumptions
on the functions Gi imply that if z(0) ≥ 0 then z(t) ≥ 0 for all t ≥ 0, i.e. the pool density is
always non-negative.

Let

H(t) := z(t) +
m∑
i=1

ni∑
j=1

xij(t).

This is the total number of ribosomes in the system at time t. An important property of
the RFMLKN is that it is a closed system, so H(t) is conserved, i.e. H(t) ≡ H(0) for all t ≥ 0.
Thus, H is a first integral of the dynamics.

The RFMLKN models the indirect coupling between the mRNA molecules induced by com-
petition for the finite number of ribosomes in the system. For example, if there is a “traffic
jam” of ribosomes on one of the mRNAs then the pool is depleted and thus the initiation and
attachment rates to all the mRNAs decrease.

We prove in Section 4 that all the state variables in the RFMLKN converge to a steady-state.
The steady-state values depend on the parameter values in all the RFMLKs and the total number
of ribosomes in the network. Let eij ∈ [0, 1] denote the steady-state density at the jth site in the
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Figure 4: a) Steady-state values in the RFMLKN in Example 2 as a function of the total
number of ribosomes c. (a) when G(z) = tanh(z); (b) when G(z) = z.

ith RFMLK, and let ez ∈ [0,∞) denote the steady-state pool density.
The RFMLKN provides a versatile and powerful framework for simulating and analyzing the

effect of various biological phenomena on steady-state translation in the cell under competition
for free ribosomes. In the examples below, we demonstrate how various changes in the network
affect the RFMLKN steady-state. We also explain the biological implications of the simulation
results.

Our first example demonstrates how the total number of ribosomes in the system affects the
ribosomal densities in the mRNAs.

Example 2 Consider an RFMLKN that includes a single RFMLK with dimension n1 = 3, rates
λ10 = 1, λ1j = 1, β1j = 1, α1

j = 1, for j = 1, 2, 3, and a pool with an output function G(z) =

tanh(z). We simulated this system with the initial condition x1j = 0 for all j, and z(0) = c, so
that the total number of ribosomes in the system is c, for various values of c. When c = 0 there
are no ribosomes in the network and the steady-state values are all zero. As c increases, the
number of ribosomes along the RFMLK increases. Since tanh(z) → 1 as z → ∞, the initiation
and attachment rates converge to 1. Thus, ribosomal densities in RFMLK saturate to the values
corresponding to initiation rate λ10 = 1, and attachment rates β1i = 1. The remaining ribosomes
accumulate in the pool (see Figure 4a). Using a different output function, namely, G(z) = z, we
see in Figure 4b that as c increases, all ribosomal densities tend to the maximal possible value 1,
that is, the RFMLK completely fills up and the remaining ribosomes accumulate in the pool.

The next example describes the effect of the drop-off rate of ribosomes along a coding region
in one of the mRNA molecules on the steady-state profiles of all the mRNAs in the network. Let

ai := (1/ni)

ni∑
j=1

eij

denote the average steady-state density (ASSD) in the ith RFMLK.
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Figure 5: Average steady-state density in the RFMLKN in Example 3 as a function of
the drop-off rate α in the first RFMLK.

Example 3 Consider an RFMLKN with m = 3 RFMLKs with dimensions ni = 3, i = 1, 2, 3,
and parameters λ10 = 0.8, λ20 = 1, λ30 = 1.5, λ1j = 1, λ2j = 6.4, λ3j = 10, α1

j = α, α2
j = 0.1,

α3
j = 0.1, β1j = 0.1, β2j = 0.1, β3j = 0.1, for all j, and Gi(z) = z, i = 1, 2, 3. The initial condition

is xij = 0, for all i, j, and z(0) = 2. We vary the parameter α, i.e. the ribosome drop-off rate from
all the sites in the first RFMLK, in the range [0.1, 3]. Figure 5 depicts the ASSD in each RFMLK
as a function of α. It can be seen that as α increases, the ASSD in the first RFMLK decreases,
whereas the ASSD in all the other RFMLKs increases. Indeed, as the drop-off rate from the first
RFMLK increases, the density in the pool increases, and more ribosomes become available for
translating the other mRNA molecules, thus increasing the ASSD in the other RFMLKs.

From a biological perspective, this example corresponds to a situation when due to genetic
errors or insufficient availability of charged tRNAs or frameshifting [43], ribosomes start detaching
before reaching the stop codon in an mRNA, resulting in truncated protein products. Our
results explain why this may still be beneficial to the cell. The ribosome drop-off from one
mRNA molecule increases the number of free ribosomes that are now available to translate other
mRNAs which in turn increases the corresponding protein production rates.

The next example considers the “dual” case of increasing the attachment rate in one of the
mRNA molecules in the network.

Example 4 Consider an RFMLKN with m = 2 RFMLKs with dimensions ni = 10, i = 1, 2.
The parameter values are λ10 = 0.8, λ20 = 0.8, λ1j = 5, λ2j = 10, α1

j = 0.1, α2
j = 0.1, β1j = β,

β2j = 0.1, for all j, and Gi(z) = tanh(z), i = 1, 2. The initial condition is xij = 0, for all i, j,
and z(0) = 3.5. Figure 6 depicts the ASSD in each RFMLK as a function of β ranging from
0.1 to 3. It can be seen that as β increases, the ASSD in the first RFMLK increases and
the ASSD in the other RFMLK decreases. This is due to the attachment of ribosomes at the
first RFMLK leading to a depletion of ribosomes in the pool, and thus to a decrease in the ASSD
in the second RFMLK. Note the relatively sharp decrease in the steady-state pool density as β
increases. This is due to the fact that the number of sites is ni = 10, so a “traffic jam” in
an RFMLK involves many stalled ribosomes along the RFMLK.
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Figure 6: Average steady-state density in the RFMLKN in Example 4 as a function of
the attachment rate β in the first RFMLK.

From a biological point of view, the attachment rate models internal ribosome entry sites
(IRESs) that are common for example in viral mRNA. The RFMLKN may thus be used to shed
more light on how the viral mRNA “overtakes” the pool of free ribosomes and thus: (1) accelerates
the translation of viral mRNA, and (2) concomitantly slows down the cellular innate immune
response [47]. IRESs have also been used as a biotechnological tool allowing the synthesis of
several proteins of interest from one multicistronic mRNA [44–46]. In this context, the example
above shows that the design of such tools should also take into consideration their effect on the
pool of free ribosomes.

The next example demonstrates the effect of modifying the length of one mRNA molecule in
the network.

Example 5 Consider an RFMLKN with m = 2 RFMLKs with dimensions n1 = 5, and n2,
respectively. The parameter values are λi0 = 1, λij = 1, αij = 0.1, βij = 0.01, for all i, j,
and Gi(z) = tanh(z), i = 1, 2. The initial condition is xij = 0, for all i, j, and z(0) = 5.
We simulated this network for various values of n2. As n2 increases, there is a decrease in
the ASSD in both RFMLKs and in the pool density (see Figure 7). Indeed, increasing n2

implies that ribosomes that bind to the second RFMLK remain on it for a longer period of time.
This decreases the steady-state pool density and, consequently, the steady-state densities in all
the RFMLKs.

The next example again studies the effect of increasing n2 and also compares the RFMLKN
and the RFMNP.

Example 6 Consider an RFMLKN with m = 2 RFMLKs with dimensions n1 = 5, and n2,
respectively. The parameters are λij = αij = βij = 1 for all i, j, and the initial condition
is xij(0) = 0 for all i, j and z(0) = 25. Recall that e1n1

[e2n2
] denotes the steady-state density in

the last site of the first [second] RFMLK. Let ρ1n1
[ρ2n2

] denote the steady-state density in the last
site of the first [second] RFMLK, when λij = 1, αij = βij = 0 for all i, j, so the RFMLKs reduce
to RFMs. Figure 8 shows that as n2 increases, the steady-state densities e1n1

and e2n2
tend to
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Figure 7: ASSD and ez in Example 5 as a function of the length n2 of the second RFMLK.
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Figure 8: Steady-state densities in Example 6 as a function of the length n2 of the
second RFMLK.

equal values. However, ρ1n1
and ρ2n2

are different. The reason for this may be that the non-zero
attachment and detachment rates increase the indirect communication between the RFMLKs
(through the pool) leading to better “synchronization”.

The next section rigorously analyzes the RFMLK and the RFMLKN using tools from systems
and control theory and in particular the theory of cooperative dynamical systems [48].

4 Main Results

We begin by analyzing the properties of the RFMLK with input and output described in (3), as
these are the basic ingredients of the RFMLKN. Recall that xi(t) ∈ [0, 1] for all t, so the state-
space of the RFMLK is Cn := [0, 1]n. Let int(Cn) and ∂Cn denote the interior and boundary
of Cn respectively. Let x(t, a) denote the solution of equation (3) at time t ≥ 0 for the initial
condition a ∈ Cn. For the sake of readability, all the proofs are placed in the Appendix.
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4.1 Persistence

If u(t) ≡ 0 then no ribosomes enter the RFMLK and then it is clear that x(t) will converge to
zero, that is, the density of ribosomes at each site will go to zero. The next result shows that for
any input that is bounded below by a positive number all the state-variables remain bounded
away from zero and also bounded away from one.

Proposition 4.1 Consider the RFMLK with a control u such that u(t) ≥ s > 0 for all t ≥ 0.
For any τ > 0 there exists ε = ε(τ) > 0, with ε(τ) → 0 as τ → 0, such that for any initial
condition a ∈ Cn the solution of (3) satisfies

ε ≤ xi(t, a) ≤ 1− ε, for all i ∈ {1, . . . , n} and all t ≥ τ.

In other words, for any control u(t) that is strictly positive for all t ≥ 0 we have that after
any time τ > 0 all the normalized densities are strictly separated away from zero and from one.
In particular, if the densities converge to a steady-state e then ei ∈ (0, 1) for all i.

4.2 Contraction

Contraction theory is a powerful tool for analyzing nonlinear dynamical systems [57, 58], and
has found applications in bio-molecular systems, control theory, synchronization of coupled non-
linear systems [59], reaction-diffusion differential equations [60], and more.

For x ∈ Rn, let |x|1 := |x1| + · · · + |xn| denote the L1 norm of x. For a non-singular
matrix P ∈ Rn×n, let |x|P,1 := |Px|1, i.e. the scaled L1 norm of x.

Proposition 4.2 Consider the RFMLK with a control u such that u(t) ≥ s > 0 for all t ≥ 0,
and fix τ > 0. There exist a non-singular matrix P = P (τ) and η = η(τ) > 0 such that for
any a, b ∈ Cn, we have

|x(t+ τ, a)− x(t+ τ, b)|P,1 ≤ exp(−ηt)|a− b|P,1 for all t ≥ 0.

In other words, the RFMLK is contracting with respect to the scaled norm | · |P,1 after (the
arbitrarily small) time delay τ . Proposition 4.2 implies several useful asymptotic properties of
the RFMLK. These are described in the following subsections.

4.3 Global asymptotic stability

Proposition 4.3 The RFMLK with a constant control u(t) ≡ s > 0 admits a unique steady-
state es ∈ int(Cn) that is globally asymptotically stable, i.e.,

lim
t→∞

x(t, a) = es for any a ∈ Cn.

In other words, the solution converges to es for any initial condition, so the inital condition
is “forgotten”. The equilibrium es represents a dynamic steady-state where the input and output
flows from each site in the RFMLK are equal, and thus the densities in each site are constant.
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4.4 Monotone control system

Angeli and Sontag [31] extended the notion of a monotone system to control systems. The next
result shows that the RFMLK is a monotone control system. For two vectors v, w ∈ Rn, we
write v ≤ w if vi ≤ wi for all i = 1, . . . , n, and v � w if vi < wi for all i = 1, . . . , n.

Proposition 4.4 Fix two initial conditions a, b ∈ Cn, with a ≤ b, and two controls u, v : R+ →
R+, with u(t) ≤ v(t) for all t ≥ 0. Then the corresponding solutions of the RFMLK satisfy

x(t, a, u) ≤ x(t, b, v), for all t ≥ 0, (7)

and
y(t, a, u) ≤ y(t, b, v), for all t ≥ 0, (8)

In other words, if we consider two identical RFMLKs–the first with initial densities ai and
the second with initial densities bi, with ai ≤ bi for all i, and apply a control u in the first
and v in the second, with u(t) ≤ v(t) for all t ≥ 0–then at each time t ≥ 0 each density in the
first RFMLK will be smaller or equal to the corresponding density in the second RFMLK.

The next proposition analyzes the relation between the steady-state densities corresponding
to constant control values.

Proposition 4.5 Consider the RFMLK with constant controls u(t) ≡ s1 and v(t) ≡ s2 with 0 <

s1 < s2. Fix a, b ∈ Cn, and let

es
1

:= lim
t→∞

x(t, a, u),

es
2

:= lim
t→∞

x(t, b, v).

Then
es

1 ≤ es2 .

We now turn to analyze the RFMLKN. For a matrix P ∈ R`1×`2 , let P ′ ∈ R`2×`1 denote the
transpose of P . Recall that every xij ∈ [0, 1], and that the pool density satisfies z ∈ [0,∞), so
the state-space of the RFMLKN is

Ω := [0, 1]n1 × · · · × [0, 1]nm × [0,∞). (9)

For a ∈ Ω, let

[
x(t, a)

z(t, a)

]
denote the solution of the RFMLKN at time t with the initial condition a.

Let d := n1 + · · · + nm + 1, and let 1d denote a column vector of d ones. For s ≥ 0, let
Ls := {a ∈ Ω : 1′da = s}, i.e. the s level set of the first integral H. In other words, Ls is the set
of all states in Ω with a total density of ribosomes equal to s.

4.5 Invariance and persistence

The next result follows immediately from the equations of the RFMLKN.
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Proposition 4.6 The state space Ω in (9) is an invariant set for the dynamics of the RFMLKN

that is, if a ∈ Ω then

[
x(t, a)

z(t, a)

]
∈ Ω for all t ≥ 0.

In other words, every trajectory emanating from an initial condition in the state space remains
in it for all t ≥ 0.

The next result shows that trajectories that begin from an initial condition in Ω become
uniformly separated from the boundary of Ω.

Proposition 4.7 Consider the RFMLKN. For any τ > 0 there exists ε = ε(τ) > 0, with ε(τ)→
0 as τ → 0, such that for any a ∈ Ω \ {0} we have

ε ≤ xij(t, a) ≤ 1− ε

and
ε ≤ z(t, a)

for all t ≥ τ , i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2 . . . , ni}.

In other words, after an arbitrarily short time every density in every RFMLK is in the
range [ε, 1 − ε], and the pool density is in [ε,∞). To explain why this result is useful, note
that the Jacobian J of the vector field of the RFMLK with input and output satisfies J(x, u) =

M(x)−D(x, u), where D(x, u) is a diagonal matrix with entries

λ0u+ λ1(1− x2) + α1 + β1u, λ1x1 + λ2(1− x3) + α2 + β2u, . . . , λn + λn−1xn−1 + αn + βnu,

and

M(x) :=



0 λ1x1 0 0 . . . 0 0 0

λ1(1− x2) 0 λ2x2 0 . . . 0 0 0
...

0 0 0 0 . . . λn−2(1− xn−1) 0 λn−1xn−1

0 0 0 0 . . . 0 λn−1(1− xn) 0


.

For any x ∈ [0, 1]n all the entries of M(x) are nonnegative, so (5) is a cooperative dynamical
system [54]. The matrix M(x) may become reducible for values x on the boundary of [0, 1]n.
However, M(x) is irreducible for all x ∈ (0, 1)n. Thus, Proposition 4.7 guarantees that after an
arbitrarily short time the matrixM(x(t)) and, thus J(x(t), u(t)), becomes an irreducible matrix.
This will be used in analyzing the asymptotic properties of the RFMLKN described below.

4.6 Stability

The next result shows that every level set contains a unique steady-state ribosome distribution
in each mRNA and in the pool. The proof is based on the theory of monotone dynamical systems
that admit a first integral, see [55,56].
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Theorem 4.1 Every level set Ls contains a unique equilibrium point eLs of the RFMLKN and
for any initial condition a ∈ Ls, the solution of the RFMLKN converges to eLs. Furthermore,
for any 0 ≤ s < p,

eLs � eLp (10)

In other words, the RFMLKN admits a continuum of equilibrium points and any two solu-
tions starting from initial conditions in the same level set of the system converge to the same
equilibrium point. Thus, the rates λij , β

i
j , α

i
j and the total number of ribosomes s in the network

determine a unique steady-state density profile in the RFMLKs and the pool. Equation (10)
implies that for two initial conditions, the first one with a smaller total number of ribosomes
than the second one, the corresponding equilibrium points e1 and e2 will be completely ordered:
every steady-state density in e1 will be strictly smaller than the corresponding density in e2.

Example 7 To model a gene that is highly expressed with respect to other genes, consider
an RFMLKN with a single RFMLK and a pool. Assume that the output function of the pool
is G1(z) = z, and that the dimension of the RFMLK is n1 = 2. The equations of the RFMLKN
are then

ẋ11 = λ10z(1− x11)− λ11x11(1− x12) + β11z(1− x11)− α1
1x

1
1,

ẋ12 = λ11x
1
1(1− x12)− λ12x12 + β12z(1− x12)− α1

2x
1
2, (11)

ż = λ12x
1
2 − λ10z(1− x11) +

2∑
j=1

α1
jx

1
j −

2∑
j=1

β1j z(1− x1j ).

Any equilibrium point e =
[
e11 e12 ez

]′
∈ Ls satisfies

λ10ez(1− e11) = λ11e
1
1(1− e12)− β11ez(1− e11) + α1

1e
1
1

= λ12e
1
2 −

2∑
j=1

β1j ez(1− e1j ) +
2∑
j=1

α1
je

1
j ,

(12)

and
e11 + e12 + ez = s.

Figure 9 depicts trajectories of (11) with parameters λ10 = 1, λ11 = 1, λ12 = 1, α1
1 = 0.1, α1

2 = 0.1,
β11 = 0.2, β12 = 0.2, and three different initial conditions in the level set L1:

[
0.5 0.5 0

]′
,[

0.5 0 0.5
]′
, and

[
0 0.5 0.5

]′
. It may be seen that the three solutions converge to the same

equilibrium point.

Various intracellular mechanisms may affect the parameters of the translation machinery. For
example, the elongation rates depend on the interaction between the nascent peptide and the
exit tunnel of the system [49]. Stress conditions increase ribosome abortion and drop-off. Due to
competition for the finite pool of ribosomes, any change in the translation speed along a specific
mRNA molecule will also indirectly affect the translation of other mRNAs in the network. The
variability in the factors that affect translation in the cell requires models that can be used to
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Figure 9: Trajectories of the RFMLKN in Example 7 for three initial conditions in L1.
The unique equilibrium in L1 is marked by a circle.

analyze the sensitivity to parameter values. Another motivation for studying these issues comes
from synthetic biology, for example, the recent interest in co-expression of multiple genes at a
given, desired ratio [50, 51].

4.7 Effect of parameters

Our first result in this subsection analyzes the affect of a modification in the drop-off rate at one
site of an mRNA molecule on the entire RFMLKN. We assume, without loss of generality, that
the modification is in one of the rates in the first RFMLK.

Theorem 4.2 Consider an RFMLKN with m RFMLKs with dimensions ni, i = 1, . . . ,m, and
parameters λi0, λ

i
j, α

i
j, and βij, i = 1, . . . ,m and j = 1, 2, . . . , ni. Fix s > 0, and let eij ∈

(0, 1), and ez ∈ (0,∞) denote the unique steady-state density in the level set Ls of H. Fix k ∈
{1, . . . , n1}, and suppose that we modify the RFMLKN by changing α1

k to ᾱ1
k, with ᾱ

1
k > α1

k. Let
ēij ∈ (0, 1), ēz > 0, denote the steady-state density in the modified RFMLKN. Then

ēz > ez and ēij > eij for all i ∈ {2, . . . ,m} and all j ∈ {1, . . . , ni}. (13)

In other words, an increase in the drop-off rate in one of the RFMLKs yields an increase in
the steady-state pool density and consequently an increase in the density in each site in all the
other RFMLKs.

The effect of increasing α1
k on the steady-state in the first RFMLK is non-trivial. It is natural

to expect a decrease in the density in each site of the first RFMLK. But, as more ribosomes
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Figure 10: Behaviour of the RFMLKN in Example 8 as a function of α1
3 when β1

4 = 0:
a) Steady-state values in RFMLK #1. b) Steady-state values in RFMLK #2 and the pool.

accumulate in the pool the effective attachment rates in sites along the first RFMLK may also
increase, leading to an increase in the density in certain sites. In general, the total effect on the
first RFMLK will depend on all the parameters in the RFMLKN, and is thus difficult to predict.
The next two examples demonstrate this.

Example 8 Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 6 and n2 = 3,
parameters λi0 = 1, λij = 1, for all i, j, α1

j = 0.01, for j = 1, 2, 4, 5, α1
6 = 0, α2

j = 0.01, for
j = 1, 2, α2

3 = 0, β1j = 0, for all j, β21 = 0, β2j = 0.01, for j = 2, 3, and Gi(z) = z, i = 1, 2. The
initial condition is xij = 0, for all i, j, and z(0) = 5. We simulated this RFMLKN for several
values of the drop-off rate α1

3 from the third site in RFMLK #1. Figures 10a and 10b show
that increasing α1

3 increases e11, and decreases e1i for all i > 1. As predicted in Thm. 4.2, it also
increases ez, so more ribosomes accumulate in the pool leading to an increase in e2j for all j.

Example 9 Consider the RFMLKN in Example 8, but now with β14 = 2. Figure 11 shows that
in this case an increase in the drop-off rate α1

3 yields an increase in the steady-state values in the
sites of RFMLK #1 located after the third site. This is because of an increase in the density of
free ribosomes in the pool leading to more ribosomes attaching to the first RFMLK.

The next result analyzes the “dual” case i.e. the affect of modifying one of the attachment
rates in an RFMLK in the network.

Theorem 4.3 Consider an RFMLKN with m RFMLKs of dimensions ni, i = 1, . . . ,m, and
parameters λi0, λ

i
j, α

i
j, and βij, i = 1, . . . ,m and j = 1, 2, . . . , ni. Fix s > 0, and let eij ∈

(0, 1), and ez ∈ (0,∞) denote the unique steady-state density in the level set Ls of H. Fix k ∈
{1, . . . , n1}, and suppose that we modify the RFMLKN by changing β1k to β̄1k, with β̄1k > β1k.
Let ēij ∈ (0, 1), ēz > 0, denote the steady-state density in the modified RFMLKN. Then

ēz < ez and ēij < eij for all i ∈ {2, . . . ,m} and all j ∈ {1, . . . , ni}. (14)
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Figure 11: Steady-state values in RFMLK #1 in the RFMLKN in Example 9 as a function
of the drop-off rate α1

3.

In other words, an increase in the attachment rate in one of the RFMLKs decreases the steady-
state pool density and consequently decreases the density in each site in all the other RFMLKs.

Example 10 Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 9 and n2 = 3,
and parameters λij = 1, for all i, j, α1

j = 0.01, for all j except for α1
9 = 0, α2

j = 0.01, for j = 1, 2,
α2
3 = 0, β1j = 0 for all j except for β13 , β21 = 0, β2j = 0.01 for j = 2, 3, and with Gi(z) = z, i = 1, 2.

The initial condition is xij = 0, for all i, j, and z(0) = 5. We simulated this RFMLKN for several
values of the attachment rate β13 . Figure 12b shows that as β13 increases there is a decrease
in the steady-state pool density (as more ribosomes bind to the third site of RFMLK #1) and
consequently a decrease in the steady-state values in all the sites in RFMLK #2. As shown in
Figure 12a, the effect of increasing β13 on RFMLK #1 is non-trivial. The decrease in the pool
density, decreases e11. However, the increase in the attachment rate in the third site leads to
more ribosomes attaching to this site and consequently a higher density in sites 3, . . . , 9. Also,
this creates a “traffic jam” along these sites and thus increases the density in site 2 as well.

Our last result in this subsection analyzes the effect of modifying a hopping rate in one of
the RFMLKs in the network.

Theorem 4.4 Consider an RFMLKN with m RFMLKs of dimensions ni, i = 1, . . . ,m, and pa-
rameters λi0, λ

i
j, α

i
j and β

i
j, i = 1, . . . ,m, j = 1, 2, . . . , ni. Fix s > 0, and let eij ∈ (0, 1), and ez ∈

(0,∞) denote the unique steady-state density in the level set Ls of H. Fix k ∈ {0, . . . , n1}. Sup-
pose that we modify the RFMLKN by changing λ1k to λ̄1k, with λ̄

1
k > λ1k. Let ēij ∈ (0, 1), ēz > 0

denote the steady-state density in the modified RFMLKN. Then one of the following three cases
holds. Either

ēz > ez and ēij > eij for all i ∈ {2 . . . ,m} and all j ∈ {1, . . . , ni},

or
ēz = ez and ēij = eij for all i ∈ {2 . . . ,m} and all j ∈ {1, . . . , ni}, (15)
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Figure 12: Behaviour of the RFMLKN in Example 10 as a function of the attachment
rate β1

3 : a) Steady-state densities RFMLK #1. b) Steady-state densities in RFMLK #2
and the pool.

or
ēz < ez and ēij < eij for all i ∈ {2 . . . ,m} and all j ∈ {1, . . . , ni}.

Clearly, this covers all the possible cases for the change in the pool density, and each case
shows that the qualitative behaviour of all the other RFMLKs is the same.

Theorem 4.4 does not provide any information on the modified densities in the sites along
RFMLK #1, as any of these densities may increase or decrease depending upon the parameters
in the entire network. The next examples demonstrate this

Example 11 Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 9 and n2 = 3,
parameters λi0 = 2, λij = 2, for all i, j except for λ15, α1

j = 0.1, for j ∈ {1, 2, . . . , 8}, α1
9 = 0,

α2
j = 0.1, for j = 1, 2, α2

3 = 0, β1j = 0.1 for all j except for β11 = 0, β21 = 0, β2j = 0.1 for j = 2, 3

and Gi(z) = z, i = 1, 2. The initial condition is xij = 0, for all i, j, and z(0) = 3. We simulated
this RFMLKN for various values of the elongation rate λ15. Note that when λ15 � 2 it is a
bottleneck rate in RFMLK #1. Figure 13b shows that increasing λ15 increases the pool density
and thus the densities in all the sites along RFMLK #2. Figure 13a shows that increasing λ15
yields a decrease in sites 3, 4, 5 in RFMLK #1, but an increase in all the other sites.

Example 12 Consider again the RFMLKN in Example 11, but now the initial condition is xij =

0, for all i, j, and z(0) = 10. In this case, Figure 14b shows that increasing the elongation rate λ15
leads to a decrease in the steady-state pool density resulting in decreased steady-state densities in
RFMLK #2. Figure 14a shows that in this case the effect of increasing λ15 on RFMLK #1 is more
intuitive: it decreases the densities in sites 1, . . . , 5 and increases the densities in sites 6, . . . , 9.

We now analyze several additional mathematical properties of the RFMLKN.
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Figure 13: Behaviour of the RFMLKN in Example 11 as a function of the elongation
rate λ15: a) Steady-state densities in RFMLK #1. b) Steady-state densities in RFMLK #2
and the pool.

4.8 Strong monotonicity

Recall that the dynamical system ẋ = f(x) is called cooperative if for any two initial condi-
tions a, b with a ≤ b we have x(t, a) ≤ x(t, b) for all t ≥ 0 [54]. In other words, the flow preserves
the (partial) ordering between the initial conditions. The next result shows that the RFMLKN
is cooperative.

Proposition 4.8 Consider the RFMLKN. Fix two initial conditions a, b ∈ Ω with a ≤ b. Then

x(t, a) ≤ x(t, b) and z(t, a) ≤ z(t, b), for all t ≥ 0.

If, furthermore, a 6= b then

x(t, a)� x(t, b) and z(t, a) < z(t, b), for all t ≥ 0.

In other words, if we consider two initial conditions where the first corresponds to a smaller
density in each site in each RFMLK and in the pool, then the corresponding solutions will satisfy
the same relation at any time t ≥ 0.

The next subsection shows that the flow of the RFMLKN is a non-expansive mapping. For
a vector v ∈ Rn, let |v|1 =

∑n
i=1 |vi| denote the L1 norm of v.

4.9 Non-expansion

In a contractive system, all solutions converge exponentially to one another. Since the RFMLKN
admits more than one equilibrium, it is not a contractive system with respect to any norm. How-
ever, the next result shows that the L1 distance between any two trajectories is non-expansive,
i.e. it is bounded by the distance L1 between the initial conditions.
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Figure 14: Behaviour of the RFMLKN in Example 12 as a function of the elongation
rate λ15: a) Steady-state densities in RFMLK #1. b) Steady-state densities in RFMLK #2
and the pool.

Proposition 4.9 Consider the RFMLKN. Fix a, b ∈ Ω. Then∣∣∣∣∣
[
x(t, a)

z(t, a)

]
−

[
x(t, b)

z(t, b)

]∣∣∣∣∣
1

≤ |a− b|1, for all t ≥ 0. (16)

In particular, the difference between two “close” ribosomal density profiles will remain close
for all t ≥ 0.

Fix a ∈ Ω and let s =: 1′da. Setting b = eLs in (16) yields∣∣∣∣∣
[
x(t, a)

z(t, a)

]
− eLs

∣∣∣∣∣
1

≤ |a− eLs |1, for all t ≥ 0.

In other words, the convergence to the equilibrium eLs is monotone in the sense that the L1

distance can only decrease with time.

4.10 Entrainment

Many biological processes are excited by a periodic input. Proper functioning often requires
entraining to the excitation, that is, converging to a periodic pattern with the same period as
the excitation. A typical example is the ability of cells to coordinate their growth with the
periodic cell-cycle division process. Translation seems to play an important role in this process.
It is known for example that expression of the human translation initiation factor eIF3f peaks
twice in the cell cycle: in the S and the M phases [64].

Entrainment is also important in the context of synthetic biology, for example, in design-
ing a biological network that is coordinated by a single oscillator producing a common “clock
signal” [68].

To study entrainment in the RFMLKN, assume that the parameters λij , α
i
j , β

i
j in all the RFM-
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Figure 15: Trajectories of PRFMLKN in Example 13 as a function of time.

LKs are not constant, but are time-varying functions, that are all jointly periodic with a pe-
riod T > 0. More precisely, we assume that

• There exists a (minimal) T > 0 such that all the non-negative time-varying rate functions
λij(t), α

i
j(t) and βij(t) are T-periodic.

• There exists 0 < δ1 ≤ δ2 such that λij(t) ∈ [δ1, δ2], for all i, j and all t ∈ [0, T ).

We then refer to the network as the periodic RFM with Langmuir kinetics network (PRFMLKN).
Note that a constant function is T -periodic for any T , so for example if one parameter in the
network is T -periodic and all the others are constant then our assumptions hold.

The next result shows that the PRFMLKN entrains.

Theorem 4.5 Consider the PRFMLKN. Fix s ≥ 0. There exists a unique function φs : R+ →

int(Ω), that is T -periodic, and for any initial condition a =

[
x(0)

z(0)

]
∈ Ls, the solution

[
x(t, a)

z(t, a)

]
of the PRFMLKN converges to φs as t→∞.

In other words, if the rates are T -periodic then all the densities in the mRNAs and the pool
converge to a periodic pattern with period T , and thus so will the protein production rate in
every mRNA. In particular, if a single parameter in one of the RFMLKs is T -periodic and all
the other parameters are constant then the network entrains. Roughly speaking, this can be
explained as follows. The T -periodic parameter will generate T -periodic variations in the pool
density and this will generate T -periodic patterns in all the mRNA densities, as the pool feeds
all the mRNAs. Again, this demonstrates the intricate coupling generated by the competition
for shared resources.
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Example 13 Consider a network with m = 2 RFMLKs, of dimensions n1 = 2 and n2 = 3,
and with Gi(z) = tanh(z), i = 1, 2. All the rates in the network are equal to one, except
for λ22(t) = 5+4 sin(2πt). Thus all the rates in the network are periodic with a common minimal
period T = 1. The initial condition is z(0) = xij(0) = 1/4 for all i, j. Figure 15 depicts the
state-variables and the pool density as a function of t. Note that all the densities converge
to a periodic pattern with period one. Note also that since the total number of ribosomes in
conserved, maximal peaks in the density along the RFMLKs corresponds to minimal peaks in
the pool density, and vice-versa.

5 Discussion

We derived and analyzed a novel and general network model of ribosome flow during large-
scale translation in the cell. This model encapsulates important cellular properties like ribosome
drop-off, ribosome attachment at IRESs, and competition for a finite pool of free ribosomes. We
analyzed the model using tools from systems and control theory, including contraction theory,
and the theory of cooperative dynamical systems.

The new model is an irreducible cooperative dynamical system admitting a first integral (the
total density of ribosomes in the network). This implies that the system admits a continuum of
linearly ordered equilibrium points, and that every trajectory converges to an equilibrium point.
The system is also on the “verge of contraction” with respect to the L1 norm. In addition, we
proved that if one or more of the rates in the network are time-varying periodic functions with a
common period T , then the densities along all the mRNAs and in the pool converge to a periodic
solution with period T , i.e. the system entrains to a periodic excitation.

An important question is the sensitivity of the network steady-state to variations in the
mRNA parameters and the density of free ribosomes. We thoroughly analyzed this problem, and
showed that a modification of a bio-physical property in a specific mRNA has two implications.
First, via competition it affects translation in all the other mRNAs in an intuitive manner: if
the pool steady-state density increases [decreases] then the density in all other sites in all other
mRNAs increases [decreases]. Second, and perhaps surprisingly, it is almost impossible to predict
what will be the effect on the densities and protein production rate in the mRNA that is modified,
as this depends in a non-trivial way on the interactions between all the mRNAs and the pool.
For example, an increase in the drop-off rate in a specific site in an mRNA may increase the
pool density, thus increasing the attachment rates along this mRNA and leading to an increase
in the density in some sites along this mRNA.

These results highlight that analyzing the effect of any bio-physical property on transla-
tion in the cell must take into account the intricate effects of competition, especially when the
competition for shared resources plays a major role, e.g. under stress conditions.

We believe that the new model presented here provides a powerful framework for analyzing
and re-engineering the translation process. One possible avenue for further research is in devel-
oping a quantitative and qualitative understanding of how viral mRNAs hijack the translation
machinery and, in particular, whether the indirect effects of competition are enough to hamper
the host’s immune response.
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6 Appendix: Proofs

6.1 Proofs of results for the RFMLK

We begin by writing the RFMLK with input and output in the form:

ẋ1 = f0(x1, u)− f1(x1, x2)− g1(x1, u),

ẋ2 = f1(x1, x2)− f2(x2, x3)− g2(x2, u),

... (17)

ẋn = fn−1(xn−1, xn)− fn(xn)− gn(xn, u),

y = h(x),

where u : R+ → R+ is a scalar input function that takes non-negative values for any time t ≥ 0,
y : R+ → R+ is a scalar non-negative output function, and

f0(x1, u) := λ0(1− x1)u,

fi(xi, xi+1) := λixi(1− xi+1), i = 1, . . . , n− 1,

fn(xn) := λnxn, (18)

gi(xi) := αixi − βi(1− xi)u,

h(x) := λnxn +

n∑
i=1

αixi.

The parameters satisfy λi > 0, αi ≥ 0, and βi ≥ 0 for all i. Recall that every xi takes values in
the interval [0, 1], so the state-space of the RFMLK is Cn := [0, 1]n.

6.1.1 Proof of Prop. 4.1

Fix δ > 0. We will show that for any sufficiently small 4 > 0 there exists K = K(δ,4) > 0 such
that for every k ∈ {1, . . . , n} and every t ≥ 0 the condition

xk ≤ 4 and xi ≥ δ for all i ∈ {1, . . . , k − 1}

implies that
ẋk ≥ K. (19)

For k = 1 the condition is simply x1 ≤ 4, and then

ẋ1 = f0(x1, u)− f1(x1, x2)− g1(x1, u)

= (λ0 + β1)(1− x1)u− (λ1(1− x2) + α1)x1

≥ λ0(1−4)s− (λ1 + α1)4

=: K1.
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Note that K1 ≥ λ0s/2 > 0 for any 4 > 0 sufficiently small. For k ∈ {2, . . . , n− 1} we have

ẋk = fk−1(xk−1, xk)− fk(xk, xk+1)− gk(xk, u)

= (λk−1xk−1 + βku)(1− xk)− (λk(1− xk+1) + αk)xk

≥ λk−1δ(1−4)− (λk + αk)4

=: Kk.

Note that Kk ≥ λk−1δ/2 > 0 for any 4 > 0 sufficiently small. For k = n we have

ẋn = fn−1(xn−1, xn)− fn(xn)− gn(xn, u)

= (λn−1xn−1 + βnu)(1− xn)− (λn + αn)xn

≥ λn−1δ(1−4)− (λn + αn)4

=: Kn.

Note that Kn ≥ λn−1δ/2 > 0 for any 4 > 0 sufficiently small.
We conclude that (19) holds for K := min{K1, . . . ,Kn} ≥ min{λ0, . . . , λn}min{s, δ}/2 > 0.

By [36, Lemma 1], this implies that for any τ > 0 there exists ε1 = ε1(τ) > 0, with ε1(τ) → 0

as τ → 0, such that for any a ∈ Cn the solution of (17) satisfies

xi(t, a) ≥ ε1, for all i ∈ {1, . . . , n} and all t ≥ τ. (20)

Let zi := 1− xn+1−i, i = 1, . . . , n. Then (17) gives

ż1 = −fn−1(1− z2, 1− z1) + fn(1− z1) + gn(1− z1, u),

ż2 = −fn−2(1− z3, 1− z2) + fn−1(1− z2, 1− z1) + gn−1(1− z2, u),

... (21)

żn = −f0(1− zn, u) + f1(1− zn, 1− zn−1) + g1(1− zn, u).

It is not difficult to verify that this system also satisfies condition (19), so by [36, Lemma 1], for
any τ > 0 there exists ε2 = ε2(τ) > 0, with ε2(τ) → 0 as τ → 0, such that for any a ∈ Cn the
solution of (21) satisfies

zi(t, a) ≥ ε2, for all i ∈ {1, . . . , n} and all t ≥ τ

Combining this with (20) completes the proof of Prop. 4.1.

6.1.2 Proof of Prop. 4.2

Let f denote the vector field in (17), and let J := ∂
∂xf denote its Jacobian. Then

J = J1 − diag(α1 + β1u, , . . . , αn + βnu), (22)
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where

J1 :=


−λ0u−λ1(1−x2) λ1x1 0 ... 0

λ1(1−x2) λ1x1−λ2(1−x3) λ2x2 ... 0
0 λ2(1−x3) λ2x2−λ3(1−x4) ... 0

...
0 0 ... λn−1(1−xn) −λn−1xn−1−λn

 .
Note that J1 is the Jacobian of an RFM with a time-varying initiation rate λ0u(t) ≥ λ0s, and
that αi + βiu(t) ≥ 0 for all t. Note also that for any x ∈ int(Cn), all the entries in the super-
and sub-diagonal of J1 are positive, so in particular J1 (and thus J) is irreducible.

Fix a, b ∈ Cn and τ > 0. By Proposition 4.1, there exists ε = ε(τ) > 0, such that

ε ≤ xi(t, a), xi(t, b) ≤ 1− ε, for all i ∈ {1, . . . , n} and all t ≥ τ.

Now arguing as in the proof of [36, Theorem 4] completes the proof of Prop. 4.2.

6.1.3 Proof of Prop. 4.3

The RFMLK with a constant input u(t) ≡ s > 0 is a time-invariant system that maps the convex
and compact state-space [0, 1]n to itself. Hence, it admits an equilibrium es. Prop. 4.1 implies
that es ∈ (0, 1)n. Prop. 4.2 implies that any solution converges to es, and this completes the
proof of Prop. 4.3.

6.1.4 Proof of Prop. 4.4

It follows from (22) that J is a Metzler matrix, i.e. every off-diagonal entry of J is non-negative.
Also,

K :=
∂

∂u
f

= diag(
∂

∂u
f0 −

∂

∂u
g1,−

∂

∂u
g2, . . . ,−

∂

∂u
gn)

= diag(λ0(1− x1) + β1(1− x1), β2(1− x2, ), . . . , βn(1− xn)),

so every entry of K is non-negative. The results in [31] imply that the RFMLK is a monotone
control system, so (7) holds. Now the definition of the output y implies (8), and this completes
the proof of Prop. 4.4.

6.1.5 Proof of Prop. 4.5

We already know that the limits es1 , es2 , and e := limt→∞ x(t, a, v) exist. By monotonicity,
x(t, a, u) ≤ x(t, a, v), for all t ≥ 0, and taking the limit as t→∞ gives es1 ≤ e. Since the system
is contractive, e = es

2 , and this completes the proof of Prop. 4.5.

6.2 Proofs of results for the RFMLKN

For the sake of simplicity and to avoid cumbersome notation, we provide proofs of the theoretical
results when m = 2, i.e. a network with two RFMLKs connected via a pool of free ribosomes
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(the proofs when m > 2 are very similar). We write the first RFMLK as

ṗ1 = λ0(1− p1)u1 − λ1p1(1− p2)− α1p1 + β1(1− p1)u1,

ṗ2 = λ1p1(1− p2)− λ2p2(1− p3)− α2p2 + β2(1− p2)u1,
... (23)

ṗn = λn−1pn−1(1− pn)− λnpn − αnpn + βn(1− pn)u1,

y1 = λnpn +
n∑
i=1

αipi,

and the second as

q̇1 = η0(1− q1)u2 − η1q1(1− q2)− γ1q1 + δ1(1− q1)u2,

q̇2 = η1q1(1− q2)− η2q2(1− q3)− γ2q2 + δ2(1− q2)u2,
... (24)

q̇` = η`−1q`−1(1− q`)− η`q` − γ`q` + δ`(1− q`)u2,

y2 = η`q` +
∑̀
i=1

γiqi.

The inputs to the RFMLKs are functions of the pool density

u1 = G1(z), u2 = G2(z), (25)

and the pool dynamics is

ż = y1 +y2−λ0(1−p1)G1(z)−η0(1− q1)G2(z)−
n∑
i=1

βi(1−pi)G1(z)−
∑̀
i=1

δi(1− qi)G2(z). (26)

The state-space of this network is

Ω := [0, 1]n × [0, 1]` × R+.

Note that
∑n

i=1 ṗi +
∑`

i=1 q̇i + ż = 0, so

H(p, q, z) :=
n∑
i=1

pi +
∑̀
i=1

qi + z (27)

is a first integral of the dynamics, that is, H(p(t), q(t), z(t)) ≡ H(p(0), q(0), z(0)). In other
words, the total density of ribosomes in the network is conserved. For any s ≥ 0, we define the s
level set of the first integral H by

Ls := {a ∈ Ω :
n+`+1∑
i=1

ai = s}.
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Thus, Ls includes all the states in Ω with total density of ribosomes equal to s. Note that
for s = 0, L0 = {0} and the dynamics emanating from zero remains in zero for all time t ≥ 0.
therefore, we will always consider Ls with s > 0.

6.2.1 Proof of Prop. 4.7

We now restate and prove the persistence result in Prop. 4.7 for the case m = 2.

Proposition 6.1 Consider the RFMLKN with m = 2. Fix s > 0. Then for any τ > 0 there
exists ε(τ) > 0, with ε(τ)→ 0 as τ → 0, such that for any initial condition in Ls and any t ≥ τ
the solution of the RFMLKN satisfies

ε ≤ pi(t) ≤ 1− ε, for all i ∈ {1, . . . , n},

ε ≤ qj(t) ≤ 1− ε, for all j ∈ {1, . . . , `},

0 < z(t).

Proof: It is useful to denote p0 := z, pn+1 = 0, and p−1 := pn. Using the fact that y2 ≥ 0

yields

ṗ0 ≥ λnpn +
n∑
i=1

αipi − λ0(1− p1)G1(p0)− η0(1− q1)G2(p0)

−
n∑
i=1

βi(1− pi)G1(p0)−
∑̀
i=1

δi(1− qi)G2(p0).

We now show that the system with state-variables p0, . . . , pn satisfies the cyclic boundary-
repelling (CBR) condition in [33, Lemma 1], that is, for any δ > 0 and any sufficiently small 4 >

0, there exists K = K(δ,4) > 0 such that for each k = 0, . . . , n and each t ≥ 0 the condition

pk(t) ≤ 4 and pk−1(t) ≥ δ

implies that
ẋk ≥ K.

Indeed, for k = 0 we have

ṗ0 ≥ λnpn − λ0(1− p1)G1(p0)− η0(1− q1)G2(p0)−
n∑
i=1

βi(1− pi)G1(p0)−
∑̀
i=1

δi(1− qi)G2(p0)

≥ λnδ − λ0(1− p1)G1(4)− η0(1− q1)G2(4)−
n∑
i=1

βi(1− pi)G1(4)−
∑̀
i=1

δi(1− qi)G2(4),

and since Gi(0) = 0 and Gi is continuous, ṗ0 ≥ λnδ/2 for all 4 > 0 sufficiently small.
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For k ∈ {1, . . . , n} we have

ṗk = λk−1pk−1(1− pk)− λkpk(1− pk+1)− αkpk + βk(1− pk)G1(p0)

≥ λkδ(1−4)− λk4(1− pk+1)− αk4,

so ṗk ≥ λkδ/2 for all 4 > 0 sufficiently small.
It is also straightforward to verify that if pk(t) > 0 for some k ∈ {0, . . . , n} and t > 0

then pk(r) > 0 for all r ≥ t. It now follows from [33, Lemma 1] that for any τ > 0 there ex-

ists ε(τ) > 0, with ε(τ)→ 0 as τ → 0, such that for any initial condition
[
p0(0) . . . pn(0)

]T
6=

0 and any t ≥ τ the solution of the RFMLKN satisfies

ε ≤ pi(t), for all i ∈ {0, . . . , n}.

Using a similar argument for the q system proves that for any t ≥ τ ,

ε ≤ qi(t), for all i ∈ {1, . . . , `}.

Finally, arguing as in the proof of Prop. 4.1 completes the proof of Prop. 6.1. �

Our next goal is to prove the sensitivity results for the RFMLKN. It is useful to first write
equations describing the steady-state of the RFMLK for a constant input u(t) ≡ v, with v > 0.
By (3),

f0(e1, v) = f1(e1, e2) + g1(e1, v),

fj−1(ej−1, ej) = fj(ej , ej+1) + gj(ej , v), j = 2, . . . , n− 1,

fn−1(en−1, en) = fn(en) + gn(en, v). (28)

This yields

fn(en) + gn(en, v) = f0(e1, v)−
n−1∑
k=1

gk(ek, v)

= fj(ej , ej+1)−
n−1∑
k=j+1

gk(ek, v), j = 1, . . . , n− 1. (29)

Substituting the expressions for the fis and gis yields the following result.

Proposition 6.2 Consider the steady-state of the RFMLK with u(t) ≡ v, where v > 0. Then
for any k = 1, . . . , n− 1, we have

ek = wk(ek+1, . . . , en, v)

:=
λnen +

∑n
j=k+1 αjej −

∑n
j=k+1 βjv(1− ej)

λk(1− ek+1)
, (30)
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and

v = w(e1, . . . , en)

:=
λnen +

∑n
j=1 αjej

λ0(1− e1) +
∑n

j=1 βj(1− ej)
. (31)

Note that the function wk is increasing in ek+1, . . . , en (and strictly increasing in ek+1, en),
and is decreasing in v. Also, the function w is increasing in e1, . . . , en (and strictly increasing
in e1, en).

6.2.2 Proof of Theorem 4.1

It is clear that for s = 0, L0 = {e0}, with e0 = 0, and all trajectories converge to e0. Fix s > 0.
The Jacobian of the RFMLKN with m = 2 is

J =

Jpp 0 v

0 Jqq w

cT dT r

 , (32)

where Jpp is the Jacobian of an RFMLK with state-variables p1, . . . , pn, rates λi, αi, βi and
input u = G1(z) (see (22)), Jqq is the Jacobian of an RFMLK with state-variables q1, . . . , q`,
rates ηi, γi, δi and input u = G2(z) (see (22)),

v :=
[
λ0(1− p1)G′1(z) + β1(1− p1)G′1(z) β2(1− p2)G′1(z) . . . βn(1− pn)G′1(z)

]T
,

w :=
[
η0(1− q1)G′2(z) + δ1(1− q1)G′2(z) δ2(1− q2)G′2(z) . . . δ`(1− q`)G′2(z)

]T
,

c :=
[
λ0G1(z) + α1 + β1G1(z) α2 + β2G1(z) . . . αn−1 + βn−1G1(z) λn + αn + βnG1(z)

]T
,

d :=
[
η0G2(z) + γ1 + δ1G2(z) γ2 + δ2G2(z) . . . γ`−1 + δ`−1G2(z) η` + γ` + δ`G2(z)

]T
,

and

r := −λ0(1− p1)G′1(z)− η0(1− q1)G′2(z)−
n∑
i=1

βi(1− pi)G′1(z)−
∑̀
i=1

δi(1− qi)G′2(z).

These equations imply that for any
[
p q z

]T
∈ Ω the Jacobian matrix J is Metzler, so the

RFMLKN is a cooperative dynamical system. Furthermore, for any
[
p q z

]T
∈ int(Ω) all the

entries on the super- and sub-diagonals of Jpp, Jqq are positive, and so are the first entry in v, w,

and the first and last entry in c, d. This implies that for any
[
p q z

]T
∈ int(Ω) the matrix J

is irreducible. Combining this with Prop. 6.1 and the results in [56] on strongly cooperative
dynamical systems with a first integral completes the proof of Theorem 4.1.
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6.2.3 Proof of Theorem 4.2

We again prove for the special case m = 2, i.e. a network with two RFMLKs and a pool. Let e1i ,
i ∈ {1, . . . , n}, denote the steady-state in the first RFMLK, and e2j , j ∈ {1, . . . , `}, denote the
steady-state in the second RFMLK.

Since the initial condition remains the same, we have:

n∑
i=1

e1i +
∑̀
j=1

e2j + ez =
n∑
i=1

ē1i +
∑̀
j=1

ē2j + ēz. (33)

We prove that ez < ēz by contradiction. We consider two cases: ez = ēz; and ez > ēz, and show
that each of these cases yields a contradiction.

Case 1. Assume that ez = ēz. In this case, there is no change in the input and parameter
values in the second RFMLK, so e2j = ē2j for all j = 1, . . . , `. Consider the first RFMLK.
Since the steady-state input to this RFMLK remains the same, Prop. 7 in Ref. [35], that states
that increasing any of the detachment rates (without changing any other parameter) in the
RFMLK decreases all the steady-state densities, implies that ē1j < e1j for all j. However, this
contradicts (33).

Case 2. Assume that
ez > ēz. (34)

In other words, after increasing α1
k to ᾱ1

k, the steady-state input to each RFMLK is decreased.
Then ē2j < e2j for all j = 1, . . . , `. Combining this with (33) implies that e1j < ē1j for at least one
index j. Let s ∈ {1, . . . , n} be the maximal index such that

e1s < ē1s. (35)

Applying (30) inductively implies that e1j < ē1j for any j ∈ {s, s− 1, . . . , 1} (note that it follows
from (30) that increasing α1

k can only further increase the corresponding steady-state value ē1k).
Suppose that

s < n. (36)

Then

e1j < ē1j , j = 1, . . . , s, (37)

e1j ≥ ē1j , j = s+ 1, . . . , n.

By (30),
e1s = N/D, ē1s = N̄/D̄, (38)
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where

N := λ1ne
1
n +

n∑
j=s+1

α1
je

1
j −

n∑
j=s+1

β1jG1(ez)(1− e1j ),

D := λ1s(1− e1s+1),

N̄ := λ1nē
1
n +

n∑
j=s+1

α̃1
j ē

1
j −

n∑
j=s+1

β1jG1(ēz)(1− ē1j ),

D̄ := λ1s(1− ē1s+1),

where α̃1
k := ᾱ1

k, and α̃
1
i := α1

i , for all i 6= k. Note that (37) implies that

N

D
<
N̄

D̄
. (39)

By the first equation in (29),

G1(ez) =
λ1ne

1
n +

∑n
j=1 α

1
je

1
j −

∑n
j=1 β

1
jG1(ez)(1− e1j )

λ10(1− e11)

=
N +

∑s
j=1 α

1
je

1
j −

∑s
j=1 β

1
jG1(ez)(1− e1j )

λ10(1− e11)
,

and thus

G1(ēz) =
N̄ +

∑s
j=1 α̃

1
j ē

1
j −

∑s
j=1 β

1
jG1(ēz)(1− ē1j )

λ10(1− ē11)
.

Combining this with (34) and (37) implies that if N̄ ≥ N then G1(ēz) ≥ G1(ez), but this
contradicts (34), so we conclude that N̄ < N . Now (39) implies that D̄ < D, i.e. ē1s+1 >

e1s+1. However, this contradicts (37), so we conclude that (36) cannot hold, that is, s = n.
Applying (30) inductively implies that

e1j < ē1j , j ∈ {n, n− 1, . . . , 1}. (40)

Eq. (31) gives

G1(ez) =
λ1ne

1
n +

∑n
j=1 α

1
je

1
j

λ10(1− e11) +
∑n

j=1 β
1
j (1− e1j )

,

G1(ēz) =
λ1nē

1
n +

∑n
j=1 α̃

1
j ē

1
j

λ10(1− ē11) +
∑n

j=1 β
1
j (1− ē1j )

,

so G1(ez) < G1(ēz). This contradicts (34), and we conclude that Case 2 is impossible. This
completes the proof of Theorem 4.2.

6.2.4 Proof of Theorem 4.3

The proof is similar to the proof of Theorem 4.2 above and is thus omitted.
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6.2.5 Proof of Theorem 4.4

Clearly, we have three possible cases: ēz = ez, or ēz > ez, or ēz < ez. In the first case, the input
to each RFMLK satisfies Gi(ēz) = Gi(ez). Since the parameters in all the RFMLKs, except for
RFMLK #1, are unchanged, we conclude that (15) holds. The analysis in the second and third
cases is similar. This completes the proof of Theorem 4.4.

6.2.6 Proof of Prop. 4.8

It was shown in the proof of Theorem 4.1 that the RFMLKN is a strongly cooperative dynamical
system and the results in Prop. 4.8 follow immediately.

6.2.7 Proof of Prop. 4.9

Recall that the Jacobian J of the RFMLKN (with m = 2) is given in (32). This matrix is
Metzler, and a calculation shows that the sum of every column of J is zero. Hence, the L1

matrix measure of J is zero, and this implies (16).

6.2.8 Proof of Theorem 4.5

Write the PRFMLKN as ẋ = f(t, x). Then f(t, z) = f(t+T, z) for all t ≥ 0 and z ∈ Ω, and H(x)

is a first integral of the dynamics. Now Theorem 4.5 now follows from the results in [55]. The
fact that φs ∈ int(Ω) follows from the persistence result in Prop. 4.7.
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