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Abstract (250 words) 

Alzheimer’s disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent 

public health concern as the global population ages. In clinical practice, structural magnetic resonance 

imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, 

genome-wide association studies (GWAS) and transcriptomics – the study of gene expression – also 

play an important role in understanding AD etiology and progression. Sophisticated imaging genetics 

systems have been developed to discover genetic factors that consistently affect brain function and 

structure. However, most studies to date focused on the relationships between brain sMRI and GWAS 

or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover 

and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we 

propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify 

genetic and transcriptomic influences on brain sMRI measures. The relationships between brain 

imaging measures and gene expression are allowed to depend on a person’s genotype at the single-

nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We 

performed extensive experiments on publicly available Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-

art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors 

related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI 

approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene 

expression and help discover novel genetic targets for potential AD drug treatments.  

Keywords: Alzheimer’s Disease, Brain Imaging, GWAS, Transcriptomics, Chow Test, 

Federated Learning.  
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1 INTRODUCTION 

Alzheimer’s disease (AD) is a major public health concern, with the number of affected 

individuals expected to triple, reaching 13.8 million, by the year 2050 in the U.S. alone (Brookmeyer 

et al., 2007). Current therapeutic failures in patients with dementia due to AD may be due to 

interventions that are too late or targets that are secondary effects and less relevant to disease initiation 

and early progression (Hyman, 2011). Mounting evidence suggests that germline mutations, e.g., DNA 

single nucleotide polymorphisms (SNPs), play an important role in AD etiology and progression 

(Kunkle et al., 2019; Murrell et al., 1991). Among various genetic risk factors, Apolipoprotein E 

(APOE) has the strongest association to late-onset AD, and the e4 allele is associated with increased 

risk, whereas the e2 allele is associated with decreased risk (Bertram et al., 2007). Known genetic risk 

variants could be used to identify presymptomatic individuals at risk for AD and support diagnostic 

assessment of symptomatic subjects. By taking into account patients’ genetic risk factors, at-risk 

individuals could be more readily identified, diagnostic precision could be improved, and targetable 

disease mechanisms for new drug development may be discovered (Freudenberg-Hua et al., 2018; 

Lambert et al., 2013; Mormino et al., 2016; Singanamalli et al., 2017). By enabling each patient to 

receive earlier diagnoses, risk assessments, and optimal treatments, personalized or precision medicine 

holds promise for improving early AD intervention while also lowering costs (Vogenberg et al., 2010). 

Recent clinical trials targeting single molecular mechanisms have failed (Cummings et al., 

2014; Mehta et al., 2017). Rather, it might be necessary to tackle the problem from a holistic or 

multimodality perspective (Pimplikar, 2017; Xicota et al., 2019). Indeed, the NIH and the scientific 

community realized this problem a while ago and have already started to produce multi-omics data. 

For example, the Alzheimer’s Disease Sequencing Project (ADSP) data repository contains genomic 

level data derived from genome-wide association studies (GWAS) (Kunkle et al., 2019; Saykin et al., 

2015), whole-exome sequencing (WES) (Bis et al., 2020; Simino et al., 2017), and whole-genome 
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sequencing (WGS), and RNA level data including mRNA, miRNA, and long non-coding RNA 

profiling from either microarray or RNA-Seq (Piras et al., 2017). And transcriptome-wide association 

studies (TWASs) provides a way to use eQTLs and expression data to guide GWAS of AD (Luningham 

et al., 2020). Brain imaging has played a significant role in the study of Alzheimer’s disease (Johnson 

et al., 2012). Integrating imaging data and omics data is becoming an emerging data science field 

known as imaging genomics (Shen and Thompson, 2020). The major task of this field is to perform 

integrated analysis of imaging and omics data, often combined with other biomarkers, as well as 

clinical and environmental data. The ultimate goal is to gain new insights into the underlying 

mechanisms of human health and disease, to better inform the development of new diagnostic, 

therapeutic, and preventative approaches. 

Various imaging genetics methods have been developed to integrate imaging and genetic data. 

However, most studies have focused on imaging, imaging combined with GWAS data (Chauhan et al., 

2015; Grasby et al., 2020; Li et al., 2017), imaging with transcriptomics (Ritchie et al., 2018), or GWAS 

with transcriptomics (Albert and Kruglyak, 2015). For example, imaging genetics has been used to link 

SNPs with image features (Stein et al., 2010), and expression quantitative trait loci (eQTL) have been 

used to discover APOE-related genes (Zhang et al., 2018). However, relatively few methods (Lv et al., 

2017) have been developed to integrate GWAS/WES/WGS, imaging, and transcriptomic data to infer 

multimodal relationships. Such a multimodal approach may give us a more holistic view of the 

evidence from multiple sources to provide novel insights on the molecular mechanisms of AD 

pathogenesis and prognosis.  Besides, both gene expression and imaging features are dynamic and 

change with time and throughout the disease, whereas germline SNPs are unchanged over an 

individual’s lifetime. We need a better model for studying SNP-image-gene expression relationships 

to consider both the dynamic changes in imaging and gene expression features and understand how 

they are affected by an individual’s SNPs. Such knowledge will provide novel insights into the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.14.460367doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460367
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Federated GEIDI Model 

 
5 

relationship among image biomarkers, genotypes and gene expression, and may help to discover novel 

genetic targets for pharmaceutical interventions.  

AD is a complex multifactorial disorder that involves many biological processes. The launch 

of the Alzheimer Precision Medicine Initiative (APMI) and its associated cohort program in 2016—

facilitated by the academic core coordinating center run by the Sorbonne University Clinical Research 

Group in Alzheimer Precision Medicine—is intended to improve clinical diagnostics and drug 

development research in Alzheimer’s disease (Hampel et al., 2019). Hampel et al. (2019) indicate the 

challenges for precision medicine, including secure data access accompanied by rigorous privacy 

protection and the availability of data to qualified researchers who may use them to exercise their 

creative thinking with an a posteriori approach or to test their a priori hypotheses. Integrating data 

from multiple sites and sources is common practice to achieve larger sample sizes and to increase 

statistical power. Unprecedentedly large amounts of biomedical data now exist across hospitals and 

research institutions. However, different institutions may not be readily able to share biomedical 

research data due to patient privacy concerns, data restrictions based on patient consent or institutional 

review board (IRB) regulations, and legal complexities; this can present a major obstacle to pooling 

large scale datasets to discover and understand AD-related genetic information. To remedy this 

distributed problem, a large-scale collaborative network, ENIGMA consortium, was built (Thompson 

et al., 2020). Federated learning is an important direction of interest in multi-site neuroimaging 

research; the use of distributed computing offers an approach to learn from data spread across multiple 

sites without having to share the raw data directly or to centralize it in any one location. Even so, most 

ENIGMA and other GWAS studies currently focus on the influence of genetic variants on human brain 

structures (Chauhan et al., 2015; Hibar et al., 2015; Satizabal et al., 2019; Zhao et al., 2021) or 

functional measures (Smit et al., 2018) and relatively few have studied the relationships among image 

biomarkers, genotypes, and gene expression. In this work (Liu et al., 2017), the authors use a brain-
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wide gene expression profile available in the Allen Human Brain Atlas (AHBA) as a 2-D prior to guide 

the brain imaging genetics association analysis. Their transcriptome-guided SCCA (TG-SCCA) 

framework incorporates the gene expression information into the traditional SCCA model. 

 

Figure 1. Schematic view of our multi-omics approach. A) When patients are mixed together, 

image-expression correlation may be low. B) When a certain genotype stratifies patients, some 

subsets (AA, BB) have a high correlation. 

In this paper, we propose a novel Federated Genotype-Expression-Image Data Integration 

model (GEIDI) based on the Chow test (Chow, 1960). The intuition behind our multi-omics framework 

is illustrated in Figure 1. Some important image-expression relationships (correlations) may be diluted 

when the population is mixed together. Still, when we stratify the population based on their genotypes 

(a gene like APOE or a SNP like rs942439), we can observe strong correlations (AA and BB groups) 

across subgroups. Accordingly, as shown in Figure 2, our model is designed to detect if the 

relationships between X (imaging biomarker) and Y (gene expression) are different among the 

subgroups. The p-value of the model is then used to prioritize the trios (genotype-expression-image).  

We further design various experiments on publicly available data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI, adni.loni.usc.edu) to demonstrate that our model may detect the 
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genetic factors most related to AD better than the state-of-the-art Matrix eQTL. The overall intent of 

the work is to detect relationships that inform the design or repurposing of drugs to target these 

subgroups to achieve precision medicine. We first use a hypergeometric analysis and an AD-related 

gene list from alzgene.org to evaluate the ability of our federated GEIDI model to discover AD-related 

gene expression. To further aid in the discovery of genes that may be potential AD drug targets, we 

also use Pearson correlations analyses to demonstrate the divergence in stratified populations. 

Additionally, we design experiments to show that our model can discover more AD-related SNPs, 

based on tests with 1,217 known AD-associated SNPs and 1,217 randomly selected SNPs. Finally, we 

evaluate the stability of our model under different multi-site conditions. With the ADNI dataset, we set 

off to test our hypothesis that the proposed federated GEIDI model may be an effective federated model 

that can provide novel insights into the relationship among image biomarkers, genotypes, and gene 

expressions and the discovery of novel genes for potential AD drug targets. 

 

Figure 2. The federated GEIDI model on ADNI data. A) Stratify samples into subgroups with different genotypes of 

a gene (e.g., APOE) or at a specific SNP locus (e.g., rs942439)  B) Federated GEIDI is used to detect if the relationships 

between X (imaging biomarker) and Y (gene expression) are different among the subgroups. The p-value of federated 

GEIDI will then be used to prioritize the trios (genotype-expression-image). 
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2 DATA and METHODS 

2.1 Data preprocessing 

The data in this work are from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 

adni.loni.usc.edu) and the TADPOLE challenge (tadpole.grand-challenge.org) (Marinescu et al., 

2020). The ADNI was launched in 2003 as a public-private partnership led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other 

biological markers, and clinical and neuropsychological assessments can be combined to measure the 

progression of MCI and early AD. The genome-wide association study of ADNI is designed to provide 

researchers with the opportunity to combine genetics with imaging and clinical data to help investigate 

the mechanisms of the disease. For up-to-date information, see adni.loni.usc.edu/data-samples/data-

types/genetic-data/. From the ADNI GWAS, we analyzed data from 697 subjects, including AD 

patients, people with mild cognitive impairment (MCI), and cognitively unimpaired (CU) subjects, for 

whom the demographic information is shown in Table 1. Each sample has three types of modalities of 

data: genotypes of known AD risk genes (e.g., APOE) and SNPs from genome-wide association studies 

(GWAS), gene expression measurements (for 20,211 genes) from microarray-based transcriptomic 

profiling of samples’ blood, and imaging biomarkers from structural magnetic resonance imaging 

(sMRI) data of subjects’ brains. We use plink to perform a quality check of the genotype data. The 

SNPs in the normal group that deviate significantly from Hardy-Weinberg equilibrium are removed 

(Purcell et al., 2007). The LINNORM package (Yip et al., 2017) was adopted to perform data 

transformation on the expression data for normality and homoscedasticity. Recent evaluations (Huang 

et al., 2018; Yip et al., 2018) show that LINNORM typically performs better than current DEG analysis 

methods for both single-cell and bulk RNA-Seq, such as Seurat (Satija et al., 2015) and DESeq2 (Love 

et al., 2014). 
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Eventually, we get 2,059,586 SNPs, APOE genotype, and expression data for 20,211 genes for 

each sample. Besides, from the TADPOLE challenge, we obtained five brain imaging biomarkers for 

each subject calculated using FreeSurfer (Fischl et al., 1999) with sMRI, including the volume of the 

hippocampus and middle temporal gyrus (MidTemp). To adjust for individual differences in head size, 

the volume of each sub-cortical region is adjusted by the intracranial vault volume (ICV) of each 

subject (volume/ICV). The difference between the date for gene expression collection and MRI scan 

is less than five months. 

Table 1. Demographic information for the subjects we study from the ADNI. 

Group Sex (M/F) Age MMSE 

AD (n=96) 59/37 74.8 ± 7.5 21.8 ± 4.1 

MCI (n=366) 209/157 72.0 ± 7.5 28.0 ± 1.7 

CU (n=235) 115/120 74.4 ± 5.8 29.1 ± 1.2 

     Values are mean ± standard deviation, where applicable. 

2.2 Federated genotype-expression-image data integration framework 

Econometrician Gregory Chow first proposed the Chow test in 1960 (Chow, 1960) to determine 

whether correlation coefficients estimated in two subgroups are significantly different. In 

econometrics, it is most commonly used in time series analysis to test for the presence of a structural 

break at a period that can be assumed to be known as a priori (for instance, a significant historical 

event such as a war). For example, we can model the data as 𝑦 = 𝑤𝑋 + 𝜖. Then, the data can be broken 

into two groups according to some event and fitted to the regression model as, 𝑦1 = 𝑤1𝑥1 + 𝜖 and 

𝑦2 = 𝑤2𝑥2 + 𝜖. The null hypothesis of the Chow test asserts that 𝑤1 = 𝑤2 and the model errors 𝜖 are 

independent and identically distributed from a normal distribution with unknown variance. Let 𝑆𝐶, 𝑆1, 

and 𝑆2 be the sum of squared residuals for the three regression models respectively, 𝑁1 and 𝑁2 are the 

number of observations in each group, and 𝑘 is the number of parameters. The Chow test statistic is 
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𝐹 =
(𝑆𝐶−(𝑆1+𝑆2))/𝑘

(𝑆1+𝑆2)/(𝑁1+𝑁2−2𝑘)
, which follows the F-distribution with 𝑘  and 𝑁1 + 𝑁2 − 2𝑘  degrees of 

freedom.  

Although the Chow test is commonly used in the financial industry, it has not been used in the 

biomedical field. In this work, we first generalize the Chow test model to estimate the multi-subgroup 

condition and further introduce a federated learning technique to the model. We apply the proposed 

model to the ADNI dataset to detect the significant trios among genotype, gene expression, and 

imaging biomarkers and discover the dominant genetic and transcriptomics factors for brain structures. 

2.2.1 Standardization 

We simulate the multi-site condition by separating all the samples into 𝐼 hypothetical institutions 

(𝐼 = 5)  on Apache Spark (spark.apache.org), a state-of-the-art distributed computing platform. 

(Although the ADNI data can be centralized, such a federated analysis would allow the method to be 

scaled up to much larger datasets, including genomic data that is difficult to centralize for logistic or 

regulatory reasons). As illustrated in Figure 2, the samples in each institution can be further partitioned 

into at most three subgroups (𝑔 = 1,2,3) according to the subject’s genotype at certain SNP loci (e.g. 

GG, GA, AA) or a gene (e.g., stratified by the three APOE genotypes considered in this study). 

Accordingly, 𝑋𝑖
𝑔

 and 𝑦𝑖
𝑔

 respectively represent the image biomarkers and gene expression values in 

the 𝑔th group of the 𝑖th institution. The data from the 𝑔th group in all 𝐼 institutions will be fitted into 

a regression model in a federated strategy. 

2.2.2 Federated Chow test analysis 

Using federated linear regression, we can calculate four linear models for all the 𝐼 institutions, 

including three models for three subgroups and one for all samples in the three subgroups. 𝑤(1)̅̅ ̅̅ ̅̅ , 𝑤(2)̅̅ ̅̅ ̅̅ , 

𝑤(3)̅̅ ̅̅ ̅̅  and 𝑤(𝐶)̅̅ ̅̅ ̅̅  are their optimal coefficient vectors. The Chow test assumes that the errors ϵ  are 
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independent and identically distributed from a normal distribution by an unknown variance. The null 

hypothesis of the Chow test asserts that 𝑤(1)̅̅ ̅̅ ̅̅ , 𝑤(2)̅̅ ̅̅ ̅̅ , and 𝑤(3)̅̅ ̅̅ ̅̅  are equal. The predictive test suggested 

by Chow is then: 

𝐹 =
(𝑆(𝐶)−(𝑆(1)+𝑆(2)+𝑆(3)))/(2𝑘)

(𝑆(1)+𝑆(2)+𝑆(3))/(𝑁(1)+𝑁(2)+𝑁(3)−3𝑘)
,                                                    (1) 

where 𝑆(𝐶) is the sum of squared residuals from the combined data from the three subgroups, 𝑆(1) is 

the sum of squared residuals from the first group, and so on for 𝑆(2) and 𝑆(3). 𝑁(1), 𝑁(2), and 𝑁(3) are 

the number of samples in each subgroup, and 𝑘 is the number of parameters. Under the null hypothesis, 

the test statistic follows the F-distribution with 2𝑘 and 𝑁(1) + 𝑁(2) + 𝑁(3) − 3𝑘 degrees of freedom. 

The global center will calculate F by gathering all the least square losses and the number of subjects 

for each subgroup and combined data from each institution. For example, for the first subgroup, the 

global least-square loss is 𝑆(1) = ∑ 𝑆𝑖
(1)𝐼

𝑖=1  and the global subject number is 𝑁(1) = ∑ 𝑁𝑖
(1)𝐼

𝑖=1 . 

Eventually, the p-value will be calculated at the global coordinating center and assigned to each 

institution. 

2.2.3 Federated linear regression 

Many regression models may be selected for the Chow test model, such as linear regression 

(Barbur et al., 1994), polynomial regression (Rawlings et al., 1998), ridge regression (Hoerl and 

Kennard, 1970), and so on. In this study, we focus on studying the differences in the relationships 

between imaging biomarkers and gene expression among different groups. Complex regression 

models, like polynomial regression, may lead to over-fitting and meaningless results. Also, sparse or 

penalized regression methods, such as ridge regression, require an appropriate regularization 

parameter. Therefore, in this work, linear regression would be the most rational choice.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.14.460367doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460367
http://creativecommons.org/licenses/by-nc-nd/4.0/


   Federated GEIDI Model 

 
12 

Since the federated regression models for each subgroup are the same, we omit the group 

superscripts here. For the data in one subgroup of all the 𝐼 institutions, we can calculate the linear 

regression equation as: 𝑦 = 𝑋𝑤 + ϵ, where 𝑋 ∈ 𝑅𝑁×𝑘 represents the independent variables, 𝑦 ∈ 𝑅𝑁 is 

a vector of the observations on a dependent variable, 𝑤 ∈ 𝑅𝑘 is a coefficient vector, and ϵ ∈ 𝑅𝑁 is the 

disturbance vector. 𝑁 is the number of observations in the group, and 𝑘 is the number of parameters. 

Then, the coefficient vector 𝑤 can be estimated by minimizing the least squared function, 𝑆(𝑤) =

1

2
‖𝑋𝑤 − 𝑦‖2

2.  

To avoid centralizing the data, (𝑋𝑖, 𝑦𝑖), from each institution, we first rewrite the minimization 

problem as, min
𝑤

∑ 𝑆𝑖(𝑤; 𝑋𝑖, 𝑦𝑖)𝐼
𝑖=1 =

1

2
∑ ‖𝑋𝑖𝑤 − 𝑦𝑖‖2

2𝐼
𝑖=1 . Then, the global gradient can be calculated 

as, ∇𝑆(𝑤) = 𝑋𝑇(𝑋𝑤 − 𝑦) = ∑ 𝑋𝑖
𝑇(𝑋𝑖𝑤 − 𝑦𝑖)

𝐼
𝑖=1 = ∑ ∇𝑆𝑖(𝑤)𝐼

𝑖=1 . Therefore, instead of centralizing 

the data, the global center only needs to gather the partial gradient, ∇𝑆𝑖(𝑤), which is calculated with 

(Xi,  yi) at each local institution. After computing the global gradient, ∇𝑆(𝑤), the global center will 

send it back to 𝑖th local institution. Finally, 𝑤 will be updated at each institution by gradient descent 

with the same learning rate, 𝑤 ← 𝑤 − η∇𝑆(𝑤). The reason for not updating 𝑤 at the global center is 

to avoid possible data reconstruction. When 𝑤 is zero, the local gradient sent to the center is −𝑋𝑖
𝑇𝑦𝑖. 

Then, the global center can easily acquire 𝑋𝑖
𝑇𝑋𝑖𝑤 and 𝑋𝑖 might be reconstructed if 𝑤 is known to the 

center. Consequently, our optimization strategy is able to preserve data privacy for all institutions. The 

whole framework of our federated Genotype-Expression-Image Integration model is summarized in 

Algorithm 1. 
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Algorithm 1. Federated Genotype-Expression-Image Data Integration Model. 

Input: Data pairs of the 𝐼 institutions,  (𝑋1, 𝑦1), . . . , (𝑋𝑖 , 𝑦𝑖), . . . , (𝑋𝐼 , 𝑦𝐼) and the sample numbers of  

each group, (𝑁1
(1)

, 𝑁1
(2)

, 𝑁1
(3)

), . . . , (𝑁𝑖
(1)

, 𝑁𝑖
(2)

, 𝑁𝑖
(3)

), . . . , (𝑁𝐼
(1)

, 𝑁𝐼
(2)

, 𝑁𝐼
(3)

) 

Output: p-value of the studying Genotype-Expression-Image trio 

Initialize: 𝑤(1), 𝑤(2), 𝑤(3), 𝑤(𝐶) = 𝟎 

1: for 𝑔 = {1,2,3, 𝐶} do 

2:        while convergence and maximum number of iterations are not reached do 

3:              Get an image patch 𝒙𝒊 from 𝑿. 

4:              Each institution computes the gradient:  

𝛻𝑆𝑖
(𝑔)

(𝑤(𝑔)) = [𝑋𝑖
(𝑔)

]𝑇(𝑋𝑖
(𝑔)

𝑤(𝑔) − 𝑦𝑖
𝑔(𝑔)

). 

5:              Global center computes and sends global gradient to each institution:  

𝛻𝑆(𝑔)(𝑤(𝑔)) = ∑ 𝛻𝑆𝑖
(𝑔)

(𝑤(𝑔))
𝐼

𝑖=1
. 

6:              Each institution updates the coefficient with the global gradient: 

𝑤(𝑔) ← 𝑤(𝑔) − η𝛻𝑆(𝑔)(𝑤(𝑔)). 

7:        end while  

8:        Each institution calculates the sum of squared residual: 𝑆𝑖
(𝑔)

(𝑤(𝑔); 𝑋𝑖
(𝑔)

, 𝑦𝑖
(𝑔)

). 

9:        Global center gathers the global sum of squared residual: 𝑆(𝑔) = ∑ 𝑆𝑖
(𝑔)𝐼

𝑖=1 .  

10:      Global center gathers the global sample numbers: 𝑁(𝑔) = ∑ 𝑁𝑖
(𝑔)𝐼

𝑖=1 . 

11: end for 

12: Global center calculates F value with equation (1) and then computes and sends p-value to all 

institutions. 

2.3 Performance Evaluation Protocol 

We firstly use our model to identify AD-related gene expression. From the publicly available 

database, alzgene.org, we selected 619 known AD-related genes. When we fix the genotype and 

imaging biomarker, we can calculate a p-value for each of the 20,211 gene expressions. We rank the 

20,211 p-values and identify which of the known AD-related genes are featured in the top N gene 

expressions. In Section 3.1, the top N gene expressions are the ones with a p-value < 0.05. In Section 

3.4, N is a fixed number (100 and 200). We introduce hypergeometric analysis (Berkopec, 2007) to 

evaluate the model’s performance to detect the known AD-related genes. The probality mass function 

of hypergeometric analysis is defined as,  
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𝑝(𝑘, 𝑀, 𝑛, 𝑁) =
(

𝑛
𝑘

) (
𝑀−𝑛
𝑁−𝑘

)

(
𝑀
𝑁

)
                                                       (2) 

In our case, the number of population (𝑀) is 20,211, the sample size (𝑛) is 619 ,  the number of samples 

drawn from the population (𝑛) is the selected top N gene expressions, and the number of the observed 

successes (𝑘) is the number of overlapping genes between 619 known AD-related genes and the top N 

gene expressions. 

Secondly, with different genotypes, the pattern of hypergeometric enrichment will vary. The AD-

related genotypes should, in general, have a more significant hypergeometric enrichment. From 

alzgene.org, we also obtain 1217 known AD-related SNPs. And we randomly select 1217 SNPs from 

the ADNI database as non-AD-related SNPs. After ranking the SNPs with the p-value based on 

hypergeometric analysis, we compute the number of AD-related SNPs found in the top m SNPs as true 

positive rate (TPR) and evaluate the performance of the models with TPR.  

Finally, to prove the stability of our federated GEIDI, we compare the residuals of the federated 

linear regression model under different multi-site conditions. If the residuals are the same under 

different conditions, the F value and p-value will stay unchanged. 

3 RESULTS 

3.1 Discovering AD-related Gene Expressions 

3.1.1 APOE related Gene Expressions 

APOE genotype is a well-known genetic biomarker for predicting subjects’ risk for AD. We 

stratify 697 subjects into three subgroups based on their APOE genotype status: non-carriers (e3/e3), 

heterozygotes (e3/e4), and homozygotes (e4/e4). Federated GEIDI is then adopted to discover genes 

correlated with hippocampus volume differentially across the three subgroups. We first run federated 

GEIDI with the volume of both sides of the hippocampus and the expression measures for 20,211 
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genes. Next, 1,625 gene expression measures are selected with 𝑝 < 0.05. We evaluate the enrichment 

of these genes and the 619 AD-related genes annotated on alzgene.org and find 72 overlapping genes, 

yielding a hypergeometric enrichment 𝑝 =  0.00036.  Among the 72 overlapping genes, the top ten 

gene expressions were those measured for CAST, CST3, GSTO1, LSS, MS4A4A, NPC1, PMVK, 

PPM1H, PPP2R2B, SORCS2. Additionally, we performed the same experiments on the volume of the 

middle temporal gyrus (MidTemp); the results are shown in Table 2. 899 gene expressions are 

significant and 37 of them overlap with the 619 AD-related genes - with a hypergeometric enrichment 

𝑝 =  0.0053. The top ten gene expressions are those measured for ABCA2, COL11A1, CST3, GNA11, 

HMOX1, HSPA1B, MAOA, MS4A4A, PRKAB2, SORCS2. 

Matrix eQTL (Shabalin, 2012) is a state-of-the-art software to study the association between 

genotype and gene expression. We also leverage the linear model and ANOVA model in Matrix eQTL 

to evaluate the APOE genotype and the measured expression levels of the 20,211 genes. For the linear 

model, there are 2,657 significant gene expressions and 95 overlapping genes, leading to a 

hypergeometric enrichment 𝑝 = 1.236𝐸 − 02. For the ANOVA model, 3,234 gene expressions are 

selected, and 107 known genes are found, which leads to a p-value = 2.934𝐸 − 02. The results show 

that our federated GEIDI can detect the most gene candidates that are significantly enriched for known 

AD genes. As the volume of hippocampus has the best performance in detecting AD-related genes, we 

use it as the imaging biomarker for all the remaining experiments. 

Table 2. Hypergeometric statistics for APOE. 

Structures Selected genes Overlapping genes p-value 

Hippocampus 1,625 72 0.00036 

MidTemp 899 37 0.00528 

Linear Regression 2,657 95 0.01236 

ANOVA 3,234 107 0.02934 
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3.1.2 SNP related Gene Expressions 

In this experiment, we stratify the subjects into three subgroups based on their SNP status. We 

choose rs942439, as this SNP is reported in alzgene.org, and use the volume of both sides of 

hippocampus as the imaging biomarker because of its superior performance in the first experiment. 

Federated GEIDI is used to detect any known AD gene whose expression is differentially associated 

with hippocampus volume in the subgroups stratified by the genotype at rs942439 locus.  

As shown in Table 3, 1,587 gene expressions were significant and 58 of them are reported in 

alzgene.org, leading to a hypergeometric enrichment p = 0.021 . Of these 58 gene expression 

measures, the top ten genes are ADRB1, ALOX5, ATXN1, CBS, FGF1, FLOT1, HSPA1A, RFTN1, 

SORL1, XRCC1. 

We also performed eQTL analysis on the SNP, rs942439. For a linear regression model, 1,794 

gene expression values were selected and, of these, 64 genes are reported in alzgene.org, yielding a 

hypergeometric enrichment p = 0.024. For ANOVA model, For the linear regression model, 1,347 

gene expression values were significant and, of these, 48 genes are reported in alzgene.org; in this case, 

the hypergeometric enrichment was p = 0.024. 

Table 3. Hypergeometric statistics for rs942439. 

Structures Selected genes Overlapping genes p-value 

Hippocampus 1,587 58 0.021 

Linear Regression 1,794 64 0.024 

ANOVA 1,347 48 0.034 

In the experiment, one of the most significant gene expression measures is for XRCC1, for which the 

p-value is 4.332𝐸 − 03. XRCC1 is a gene coding for the X-ray repair cross-complementing protein; it 

was previously reported to be weakly associated with AD in a Turkish population (Doǧru-Abbasoǧlu 

et al., 2007). 
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As shown in Figure 3, we further adopt Pearson’s correlation to evaluate the relationship 

between the hippocampal volume (x-axis) (adjusted for ICV) and XRCC1 gene expression (y-axis) of 

each subgroup. Figure 3 (a) illustrates the distribution for all the samples. Figure 3 (b), (c) and (d) 

show the distribution for the samples with "GG", "GA" and  "AA" genotype, respectively. Above each 

subfigure, R and p are the Pearson correlation coefficient and p-value, and N is the number of subjects. 

Even so, there is always some missing information in the genotype data. Hence, before we run federated 

GEIDI as well as the Pearson correlation statistics, we remove the subjects without the specific 

genotype. Because of this, the total number N in Figure 3 (a) is 579 instead of 697. We find samples 

with an "AA" genotype had hippocampal volume negatively correlated with expression levels of 

XRCC1 (N=37, R=0.37, p=0.022). In contrast, the analysis in all samples (Figure 3 (a)) or subjects 

with either "GG" or "GA" genotype (Figure 3 (b), (c)) showed that the Pearson correlation coefficients 

were not significant in the overall, pooled sample. This result indicates that our method can establish 

associations among SNP, imaging, and gene expression data that include known AD risk factors. 
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Figure 3. Correlation of image biomarkers and XRCC1 gene expression in subpopulations stratified by 

the sample's genotype at rs942439. (a) all samples (b) individuals with "GG" genotype; (c) those with 

"GA" genotype (d) those with "AA" genotype. 

We further apply the above procedure to discover genes that have never been reported to be 

associated with AD. As shown in Figure 4 (d),  SEC14L2 gene expression is negatively associated 

with hippocampal volume only in the subpopulation with "AA" genotype at rs942439 locus (N=37, 

R=-0.47, p=0.003). Interestingly, the opposite correlation is found in a subpopulation with "GA" 

genotype (Figure 4 (c), N=208, R=0.15, P=0.03), and when applied to all pooled subjects, the total 

population does not show significant correlations (Figure 4 (a), N=579, R=0.07, p=0.09). The 

SEC14L2 gene encodes a protein that stimulates squalene monooxygenase, a downstream enzyme in 

the cholesterol biosynthesis pathway. This gene has never been reported to be associated with AD, but 
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high cholesterol levels have been linked to early-onset AD (Wingo et al., 2019). This result indicates 

that our method can detect strong correlations in specific subpopulations that cannot be detected in the 

whole population. We also observe conflicting directions in different subpopulations, as shown by 

"GA" and "AA" subpopulations showing opposite correlations. This also highlights the importance of 

individualized medicine in patient management, as the same drug may have opposing effects in 

different groups of samples. Thus, federated GEIDI offers a new approach to discover novel genes 

related to AD as potential drug targets. 

 

Figure 4. Correlation of image biomarkers and SEC14L2 gene expression in subpopulation stratified 

by the sample's genotype at rs942439. (a) all samples (b) those with "GG" genotype; (c) those with "GA" 

genotype; (d) those with "AA" genotype.  

3.2 Discovering AD-related SNPs 
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In the experiments of Section 3.1, we used hypergeometric statistics to evaluate the ability of our 

proposed model to discover AD-related gene expressions that are differentially associated with imaging 

measures in populations stratified by APOE haplotype. In this experiment, we also use hypergeometric 

statistics to assess the discovery rate of known AD-related genes, in the set of genes whose expression 

shows different correlations with imaging markers, in samples stratified according to different 

genotypes. Sets that are enriched in AD-related SNPs will have a more significant p-value in the 

hypergeometric test that assesses enrichment. Since the hippocampal volume measure showed superior 

performance for this task, among all the imaging biomarkers in Sec. 3.1, we adopt it as the brain 

imaging measure in this experiment. To illustrate the effectiveness of our GEIDI model, we perform 

the same experiment with the linear model in Matrix eQTL, which can evaluate the associations 

between SNPs and gene expression.  

Table 4. True Positive Rate of AD-related SNPs in the top m SNPs. 

Matrix eQTL: Linear Regression 

                  SNP (m)    

EXP (N) 
10 50 100 200 500 

100 0.50 0.58 0.54 0.54 0.53 

200 0.50 0.60 0.57 0.58 0.54 

Matrix eQTL: ANOVA 

                  SNP (m) 

EXP (N) 
10 50 100 200 500 

100 0.60 0.56 0.52 0.50 0.53 

200 0.50 0.60 0.57 0.55 0.56 

Federated GEIDI 

                 SNP (m) 

EXP (N) 10 50 100 200 500 

100 0.60 0.60 0.61 0.61 0.60 

200 0.50 0.62 0.61 0.58 0.57 

The SNPs are ranked with the p-value from hypergeometric analysis with the top  

N gene expressions as the number of samples drawn from the population. 

When we analyze each SNP with our federated GEIDI and Matrix eQTL, we will obtain a p-

value for each of the 20,211 expressed genes. Instead of selecting the significant gene expressions with 

a p-value <  0.05, we respectively rank the p-value of all the gene expressions calculated by the two 
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methods and select the top N (100 and 200) gene expressions to apply the hypergeometric analysis. 

With the p-value from this hypergeometric analysis (which assesses enrichment for known AD-

associated genes), we may rank the SNPs and obtain the most AD-related ones. Then, we try to prove 

that our GEIDI is able to detect more AD-related SNPs. From AlzGene.org, we also created a list of 

1,217 AD-related SNPs, and we randomly selected another 1,217 SNPs as the non-AD-related ones. 

After ranking the SNPs with the p-value computed by the two methods, we calculate the true positive 

rate (TPR) for the top m SNPs, which measures the percentage of AD-related SNPs in the selected top 

m SNPs. For example, the last number in Table 4 is 0.57, which means 57% of the top 500 SNPs are 

AD-related ones. As the results in Table 4, our federated GEIDI can always achieve superior 

performance than Matrix eQTL.  

In Figure 5, we visualized the p-values of these 2,434 SNPs from hypergeometric analysis in 

the Manhattan plots.. The top figure is the Manhattan plot for the result with the top 100 gene 

expressions and the bottom one is for the result of the top 200 gene expressions. The SNPs, rs4889013 

and rs11940059, are the top-ranked ones for both results. When we select 100 or 200 as the number of 

samples drawn from the population, three parameters in Equation (2) are fixed and only the number 

of observed successes, k, varies for different SNPs. Therefore, the p-value from different SNPs might 

be the same if their numbers of observed successes are the same. This explains why some SNPs locate 

at the same horizontal position. 
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Figure 5. Manhattan plots for the results of federated GEIDI. The top figure is the Manhattan plot 

for the results from hypergeometic analysis with the top 100 gene expressions as the number of samples 

drawn from the population and the bottom one is for the results with the top 200 gene expressions. The 

SNPs, rs4889013 and rs11940059, are the top-ranked ones for both results. 

3.3 Federated Learning Stability Analysis 

In this experiment, we aim to demonstrate that the performance of our federated GEIDI model is 

not greatly affected by different data distribution models across institutions. In practice, it would be 

convenient and efficient to run association tests on data that might be distributed across multiple servers, 

without having to transfer it all to a centralized location. We synthesized 1,000 samples and randomly 

assigned them to different independent hypothetical institutions, including one institution, three 

institutions, five institutions and seven institutions. We compared the residuals from each linear 
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regression model for each condition and found the residuals remained unchanged, as shown in Table 

5. The first column is the ground truth residual and the rest are the residuals for our federated linear 

model under different data distribution conditions. The residuals are the same, which means that the 

results of our Federated GEIDI will remain stable under different multi-site conditions. Therefore, 

these results demonstrate the correctness and stability of our federated GEIDI model. 

Table 5. Stability analysis of federated GEIDI across different institutional settings. 

 

Ground Truth 1-institution 3-institution 5-institution 7-institution 

Residual 3.9553 3.9553 3.9553 3.9553 3.9553 

 

4 DISCUSSION 

In this work, we propose a novel federated Genotype-Expression-Imaging Data Integration 

(GEIDI) model to identify the genetic and transcriptomic influences on brain sMRI measures. We 

performed various experiments with our model on the publicly available ADNI dataset, and we have 

two main findings. First, our federated GEIDI is an effective multimodal approach that provides novel 

insights into the relationship among image biomarkers, genotypes, and gene expression, and may be 

useful to discover novel genes as potential AD drug targets. It has better performance in detecting AD-

related gene expressions and SNPs than the linear regression model and ANOVA model in the state-

of-the-art Matrix eQTL approach. In addition, our model may not only detect known AD-associated 

genes as potential drug targets, such as XRCC1, but may also help in discovering novel genes as 

potential drug targets, such as SEC14L2. Second,  compared to Matrix eQTL, our federated GEIDI 

provides a way to investigate extremely large datasets from different institutions without violating data 

privacy. The statistical power of the model will also be increased with the larger sample size. Our work 

may lay down a solid foundation for future multi-site large-scale imaging genetics research. 

4.1 Comparison Analysis of Federated GEIDI and Matrix eQTL 
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Expression quantitative trait loci (eQTL) analysis (Nica and Dermitzakis, 2013; Rockman and 

Kruglyak, 2006) is designed to identify the significant associations between SNPs and gene expression, 

which can help understand the biochemical processes occurring in living systems, discover the genetic 

factors that influence the onset and progression of certain diseases, and determine the pathways 

affected by them. There are many eQTL analysis methods, including linear regression, ANOVA 

models, Bayesian regression (Servin and Stephens, 2007), and so on. Matrix eQTL (Shabalin, 2012) is 

the state-of-the-art software for computationally efficient eQTL analysis, and it supports additive linear 

and ANOVA models. It has been widely used in the study of human genetic traits and diseases. 

However, it has two main limitations. First, although Matrix eQTL is very computationally efficient, 

it cannot work on data that is distributed across different institutions. Nowadays, unprecedentedly large 

volumes of biomedical and genetic data have been collected by different hospitals and research 

institutions, and this aggregate of available data may significantly advance the study of factors 

influencing disease. However, data restrictions, legal complexities, and patient privacy have all been 

major obstacles for researchers to obtain or share these data. Therefore, federated machine learning 

and distributed statistical models are becoming advantageous for current research on medical data (Ng 

et al., 2021; Sheller et al., 2020). Second, the models in Matrix eQTL cannot jointly consider the 

information from images. Changes in brain structures can play a vital role in the study and diagnosis 

of Alzheimer’s disease, and many researchers have attempted to detect associations between genetic 

factors and imaging features (Dong et al., 2019; Shen et al., 2020; Shen and Thompson, 2020). 

Therefore, introducing imaging information may greatly assist the detection of genetic factors that 

influence disease as an intermediate phenotype that might reflect relevant disease processes.  

Our proposed federated Genotype-Expression-Imaging Data Integration model can effectively 

overcome these two obstacles. In the Methods section, we detailed how our model maintains each 

institutional data private. Additionally, our federated GEIDI model integrates GWAS data, gene 
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expression, and imaging data. The experimental results demonstrate that our federated GEIDI model 

has better performance in detecting AD-related genes and SNPs. In detecting AD-related gene 

expression, our model achieves the strongest hypergeometric enrichment with the volume of the 

hippocampus. In our tests detecting AD-related SNPs, our federated GEIDI model generally obtained 

a higher TPR than the linear regression model and ANOVA model. Besides, compared with existing 

methods, our proposed model offers novel insights into the relationship among image biomarkers, 

genotypes, and gene expression by considering both imaging and gene expression features – which can 

vary over time - and understanding how they are affected by an individual’s SNPs. 

4.2 Drug Target for Precision Medicine of AD 

Increasingly, a major challenge in healthcare is that many drugs are adequate for only small 

subgroups of patients (Schork, 2015). Some patients may not only suffer from adverse side effects but 

also waste money on ineffective drugs. Precision medicine has the potential to tailor therapy based on 

the best expected response and highest safety margin to ensure better patient care. By enabling each 

patient to receive earlier diagnoses, risk assessments, and optimal treatments, personalized medicine 

holds promise for improving health care while also potentially lowering costs (Vogenberg et al., 2010). 

In this work, our multi-omics approach offers potential in genome-guided drug discovery. Compared 

to state-of-the-art methods, our model performs better in detecting AD-related genes and SNPs. 

Moreover, our model cannot only detect known genes for target drugs, like XRCC1, but also can 

discover novel potential gene expressions, like SEC14L2. Meanwhile, our federated framework may 

integrate data from multiple sourses without violating the data praicay and the larger sampe size will 

help discover and understand more AD-related genetic information. Consequentially, we believe our 

federated GEIDI model will play an important role in the study of precision medicine in the future. 

4.3 Limitations and Future Work 
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Despite the promising results of our federated GEIDI model, there are three caveats. Firstly, we 

only evaluated our model on data from 697 subjects from the publicly available ADNI dataset. In the 

future, we will add other datasets to make results more robust and reliable. For example, the Arizona 

APOE cohort (AZ APOE cohort) recruited 450 actively followed participants matched by age, sex, and 

education – including homozygous APOE-e4 carriers and non-e4 carriers since 1994 (Caselli et al., 

2009). The UK Biobank project (Cox, 2018) collects both large-scale genetic-genomic and phenotypic 

data as well as health-related information from around 500,000 volunteer participants in the UK. 

Assessments include biological measures, blood- and urine-based biomarkers, body, and brain imaging 

scans, and lifestyle parameters (Bycroft et al., 2018; Elliott et al., 2018). Second, the volumes of 

specific subcortical structures may not be ideal imaging measurements for the multiple biological 

processes involved in Alzheimer's disease. Surface-based morphometry analyses have achieved 

excellent performance for early AD detection (Wang et al., 2010; Wu et al., 2018; Zhang et al., 2017). 

In recent work (Wang et al., 2021; Wu et al., 2021), the authors created tools to generate a univariate 

morphometry index (UMI) for surface morphometry features on regions of interest (ROIs) that are 

related to beta-amyloid deposition. This induced UMI may reflect intrinsic morphological changes 

induced by processes of amyloid accumulation in AD.  and have greater signal-to-noise ratio and strong 

generalizability to new subjects. If we were to use such brain pathology induced UMI measures instead 

of volumes, our federated GEIDI model may detect additional AD-related genes whose expression is 

influenced by SNPs. Finally, in ongoing work on blood-based biomarkers (Bateman et al., 2019; 

Janelidze et al., 2020), plasma levels of amyloid-beta (plasma Aβ) may provide an alternative but 

highly accurate estimate of brain amyloid positivity. In (Janelidze et al., 2020), plasma P-Tau181 

accurately discriminated AD dementia from non-AD neurodegenerative diseases with an excellent 

AUC (0.94). Similarly, such plasma measures might be used in conjunction with our federated GEIDI 

model to better understand effects of AD-related genotypes. We plan to analyze such datasets to further 

evaluate our model in the future.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.14.460367doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460367
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Federated GEIDI Model 

 
27 

5 CONCLUSION 

We propose a novel federated Genotype-Expression-Image Data Integration model. Compared 

to similar studies, this work achieves state-of-the-art performance in discovering downstream effects 

AD-related genes and SNPs. Besides, the model provides novel insights into the relationship among 

image biomarkers, genotypes, and gene expression and could discover novel drug targets for percision 

medicine.  In the future, we will further validate our model with more datasets and more advanced 

imaging biomarkers. Specifically, we will introduce blood-based biomarkers into our model when such 

data are available.  
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