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ABSTRACT 

Cells utilize protein-protein interaction (PPI) networks to receive, transduce, and respond to 

stimuli. Interaction network rewiring drives devastating diseases like cancers, making PPIs 

attractive targets for pharmacological intervention. Kinases are druggable nodes in PPI 

networks but high-throughput proteomics approaches to quantify disease-associated kinome 

PPI rewiring are lacking. We introduce kinobead competition and correlation analysis (Ki-CCA), 

a chemoproteomics approach to simultaneously map hundreds of endogenous kinase PPIs. We 

identified 2,305 PPIs of 300 kinases across 18 diverse cancer lines, quantifying the high 

plasticity of interaction networks between cancer types, signaling, and phenotypic states; this 

database of dynamic kinome PPIs provides deep insights into cancer cell signaling. We 

discovered an AAK1 complex promoting epithelial-mesenchymal transition and drug resistance, 

and depleting its components sensitized cells to targeted therapy. Ki-CCA enables rapid and 

highly multiplexed mapping of kinome PPIs in native cell and tissue lysates, without epitope 

tagged baits, protein labeling, or antibodies.  
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INTRODUCTION 

Human diseases, including inflammatory and neurological disorders, infections, and 

cancers, dynamically alter cellular protein-protein interaction (PPI) networks in their natural 

progression as well as in response to therapeutic intervention 1-4. To understand disease 

mechanisms and to prioritize proteins for drug target discovery, it is therefore crucial to map PPI 

networks in a context-dependent manner. Protein kinases and phosphatases regulate cellular 

PPI networks through protein phosphorylation and de-phosphorylation, assembling and 

disassembling receptors, adapters, effectors, and their substrates into signaling complexes and 

molecular machines 5. Unsurprisingly, kinases are frequently dysregulated in human disease. 

Furthermore, kinases are highly druggable with synthetic ATP analogues, and are one of the 

most important classes of drug targets 6,7. Consequently, proteomics approaches that broadly 

map altered kinase PPI networks in specific disease contexts hold great promise to identify 

novel therapeutic targets 8.  

Mass spectrometry (MS)-based interactomics approaches such as affinity purification-

MS (AP-MS) and proximity labeling-MS strategies like BioID are powerful methods for large-

scale mapping of PPI networks 9. Globally identifying PPIs in a single model cell line model 

using such approaches, however, requires the generation hundreds to thousands of stable cell 

lines that express epitope-tagged bait proteins, and a two- to three-fold larger number of affinity 

pulldowns and LC-MS experiments 10,11. For instance, Huttlin et al. mapped the cellular 

interactomes of two cell lines, HEK293T and HCT116, performing 15,650 affinity pulldowns that 

were analyzed in 31,300 LC-MS runs. This study yielded a comprehensive interactomics 

database of 170,280 interactions between 14,550 proteins, revealing that PPI network 

composition is highly context dependent. This study also showcases the limitations AP-MS, i.e., 

that comparing PPI network dynamics across disease models, cell signaling, and phenotypic 

states is low-throughput and extremely labor intensive. Furthermore, expressing exogenous 

epitope-tagged baits or BioID fusion proteins can alter the native interactome of proteins, 

potentially obscuring the biological function of endogenous proteins. The application of genetic 

fusions in clonal cell lines further complicates the comparison of assembled protein complexes 

across multiple cell states and conditions. Novel approaches such as size exclusion 

chromatography (SEC) coupled to a LC-MS readout tremendously increased interactomics 

throughput 12-14. Yet, SEC-MS has a lower dynamic range compared to AP-based methods, 

disfavoring the identification of low-abundance PPIs such as interactions between certain 

kinases and their signaling effectors. 
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To allow sensitive, rapid, and multiplexed PPI mapping of the kinome without the need 

for exogenous genetic tagging, bait expression, or antibodies, we introduce kinobead 

competition and correlation analysis (Ki-CCA). Kinobeads, also known as multiplexed inhibitor 

beads (MIBs) 15,16, enrich most expressed kinases along with thousands of interacting, non-

kinase, proteins for sensitive identification and quantification by LC-MS 17-19. To allow high 

confidence, multiplexed identification of kinobead-bound kinase complexes, our 

chemoproteomics approach combines competition of kinases and their interaction partners 

using a set of 21 of broadly selective kinase inhibitor (KI) probes, LC-MS analysis, and Pearson 

correlation of MS intensity values to identify patterns of competed kinases complexes.  

We used our Ki-CCA to globally profile kinase PPI networks in 18 diverse cancer cell 

lines and HeLa cells in different signaling states (21 conditions total) by performing 792 label-

free kinobead/LC-MS soluble competition experiments. We found that our Ki-CCA identified and 

quantified 2,305 PPIs between 300 kinases and 1,436 proteins across 21 cell lines and cell 

states, with the number of interactions per kinase ranging between 1 and 103. Our kinome 

interactomics dataset presents an invaluable resource that gives deep insights into how cancer 

types, time-resolved signaling, and phenotypic states shape kinase interaction networks. For 

instance, analyzing an AXL RNAi knockdown model of cancer cell epithelial-mesenchymal 

transition (EMT), we discovered that cancer cell phenotypic plasticity is associated with a 

kinome-wide rewiring of kinase PPIs. Among EMT-associated PPIs we identified an adapter-

associated kinase 1 (AAK1) complex that is highly abundant in drug resistant and 

mesenchymal-like hepatocellular carcinoma (HCC) cells compared to drug-sensitive epithelial-

like HCC cells. RNAi knockdown of AAK1 complex components greatly affected EMT marker 

expression and sensitized cells to targeted therapy, demonstrating that Ki-CCA can identify 

kinases and kinase-interacting proteins that may serve as potential cancer drug targets.  

RESULTS 

Highly multiplexed profiling of native kinase interaction networks 

To develop an approach that unbiasedly identifies and quantifies native kinase 

complexes present in cells and tissues, we exploited the kinobeads’ ability to enrich most 

expressed kinases and many of their interactors. We have previously shown that specific 

kinobead-bound kinase complexes can be identified by soluble competition with selective KIs 

(Figure 1A) 19,20. To simultaneously identify the hundreds of kinobead-bound kinase complexes, 

we envisioned an approach where a limited number broad-selectivity KIs with orthogonal kinase 
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binding affinities, hereafter referred to as kinase interactome probes (KIPs), would compete for 

binding of most kinases and their interactors to the kinobeads, producing distinct enrichment 

profiles for each kinase’s interactome. Performing multiple competition experiments each using 

a different KIP and correlating MS intensity values of all competed kinases with all competed 

non-kinase proteins should then identify specific kinase-interactor pairs with high positive r-

values (kinobead competition and correlation analysis, CCA, Figure 1B).  

To find an optimal set of KIPs for our Ki-CCA, we mined kinobead profiling data of 

kinase-targeted drugs 16. We extracted the kinase MS intensity ratios from KI competed and 

DMSO control samples at the highest tested KI concentration (30 µM) and collated the data into 

a single matrix containing the ratios for 241 kinases competed with 220 KIs (Table S1). We then 

applied pairwise Pearson correlation of MS intensity ratios for all KIs and applied unsupervised 

hierarchical clustering to the resulting matrix of r-values, thereby identifying 12 clusters of KIs 

with similar binding profiles across the human kinome (Figure 2A and Table S1). To obtain a set 

of KIPs with complementary kinome binding affinities, we chose one to five KIs from clusters 1-

5, 8-10, and 12 that contained the most broadly selective inhibitors (Figure 2A and Table S1). 

To validate that our set of 21 KIPs competes most kinases quantified by kinobead/LC-MS 19,21, 

we profiled their kinome selectivity using label-free quantification (LFQ) at a single high 

concentration in unstimulated HeLa cell lysate (10-50 µM, see ‘Materials and Methods’). This 

analysis quantified 224 kinases and showed that 199 of them (90%) were efficiently competed 

by at least one of our KIPs (log2 LFQ-MS Intensity ratio >0.75, two sample t-test p < 0.1, n = 2, 

Figure S1A and Table S2). We found that most kinases bind to 5-13 KIPs and that our probe 

panel uniformly competes kinases from all sub-families of the kinome, indicating that our probes 

are well suited to unbiasedly compete most kinobead-bound kinase complexes for identification 

by Ki-CCA (Figure S1A). Kinobead/LC-MS profiling of our 21 KIPs also revealed that highly 

homologous kinases, for instance AMPK1 and 2 (PRKAA1 and 2), or MST1 and 2 (STK3 and 

4), show very similar binding profiles to our probes. Consequently, our Ki-CCA may not be able 

to distinguish the interactomes of such kinases. To overcome this problem, we combined 

kinases with similar KIP binding profiles (Pearson’s r ≥ 0.9) into 294 kinase groups that consist 

of one to four members, e.g., the four members of the FGFR family of receptor tyrosine kinases 

(RTKs) form the FGFR1-4 group (Table S2, and ‘Materials and Methods’). Accordingly, our Ki-

CCA reports interactions between kinase groups and non-kinase proteins.   
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Ki-CCA identifies known as well as previously unreported kinase PPIs 

To validate our Ki-CCA approach, we first tested if we could accurately identify known 

kinase PPIs. We and others have previously shown that kinobeads enrich multiple well-

characterized, stable kinase complexes such as cyclin-dependent kinases (CDKs) associated 

with their cognate cyclins and other cell cycle proteins, and glycogen synthase kinase 3 (GSK3A 

and B) associated with AXIN1 16,17,19,22,23. Expecting that Ki-CCA identifies such stable kinase 

PPIs, we subjected unstimulated HeLa cells to our workflow (Figure 1B and S1B). In addition to 

199 competed kinases, we identified 573 competed non-kinase proteins that likely interact with 

these kinases. We correlated the MS intensity values of all competed kinases and non-kinase 

proteins, grouped kinases with similar KIP profiles (r > 0.9), and called the kinase group 

showing the highest r-value for each non-kinase protein its most likely interactor. Matching the 

resulting list of PPIs with the BioGRID protein interaction database (v.4.4.200, July 25 2021, 

primary and secondary kinase interactions)24, the BioPlex 3.0 dataset 11, and the kinome-centric 

AP-MS dataset from Buljan et al. 10, showed that 144 of 573 predicted interactions were 

previously known (Table S3). Among known PPIs we found, e.g., a CDK1 network comprising 

its regulatory subunits CKS1B and CKS2, and the cyclins A1, B1, B2 and E1. We also identified 

the CDK activating complex (CAK, CDK7-MNAT1-CCNH) and its interactions with components 

of the general transcription and DNA repair factor IIH (TFIIH) core complex (ERCC3 and 5, 

GTF2H1 and 4). Additionally, we identified PPIs between the NF-kB effector kinase TBK1, the 

signaling adapters TBKBP1, TANK, and AZI2 and the E3 ligaseTRAF2, as well as known 

interactions of 34 other kinase groups (Figure 2B and Table S3). These results confirm that Ki-

CCA accurately and broadly identifies kinase PPIs.   

Analyzing the distribution of Pearson’s r values for known interactions confirmed that Ki-

CCA identifies PPIs with high positive values (median r of 0.83), and we observed a 3.5-fold 

increase in true positive identifications at r > 0.6 compared to the ~10% baseline FDR (Figure 

2C). Applying a two-sample Kolmogorov-Smirnov (KS) test to our dataset, comparing the r-

value distributions of known and unreported PPIs, we found that at r-values ≥ 0.66 we 

preferentially sample true-positive PPIs (Figure 2D). Consequently, we defined a Ki-CCA r-value 

of ≥ 0.6 to identify high confidence kinase PPIs. Strikingly, applying this selection rule to our 

HeLa cell dataset, we identified high confidence interactions between 60 proteins and 21 kinase 

groups that have not been previously reported (Table S3). Among them we find, for e.g., 

interactions of CDK12 and CK2 (CSNK2A1-3) with the E3 ligases Arcadia (RNF111) and 

ARKadia-like protein 1 (ARKL1), respectively, linking these kinases to the ubiquitin-proteasome  
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Figure 1. Overview of our kinobead competition and correlation analysis (Ki-CCA), a 

chemoproteomics approach for multiplexed, kinome-wide PPI profiling. A) Kinobead/LC-

MS with kinase inhibitor (KI) soluble competition identifies bead-bound kinase complexes. B) 

Workflow of our Ki-CCA analysis using 21 kinase interactome probes (KIPs) that broadly 

compete kinobead-bound kinase complexes. 

 

pathway. Collectively, our results demonstrate that Ki-CCA quantifies known kinase PPIs and 

identifies previously unreported interactions. 

Ki-CCA quantifies kinase PPI changes in response to acute signaling cues 

Encouraged by our results, we investigated if Ki-CCA can quantify dynamic changes in 

kinase PPIs caused by activation of a specific signaling event, for e.g., growth hormone-

mediated receptor activation. We stimulated HeLa cells with 50 ng/mL EGF for 15 min and 

subjected cell lysates to our Ki-CCA. We quantified 194 competed kinases and 540 competing 

non-kinase proteins, including 152 non-kinases that showed high confidence interactions with 

44 kinase groups (r ≥ 0.6). Comparing protein MS intensity changes between unstimulated and 

EGF-stimulated HeLa cells revealed 277 non-kinase proteins with significantly altered 

abundance (two-sample t-test, p < 0.1, n = 2). These proteins may be part of kinase complexes 

whose composition is sensitive to EGF stimulation, and indeed, our Ki-CCA showed that 29 of 

these proteins interacted with 23 kinase groups (r ≥ 0.6).  Among these PPIs we identified 

interactions between the activated EGFR and the signaling adapters GRB2 and SHC1, as well 

as the E3 ubiquitin ligases CBL, CBLB, and the tyrosine phosphatase UBASH3B (Figure 2E, 

Table S3). Furthermore, we identified multiple PPIs involving known downstream effectors of 

EGFR signaling, including members of the mitogen-activated protein kinase (MAPK) cascade 

such as MAP3K2/3 and KSR1, and the cell cycle kinases CDK9 and 12 (Figure 2F). These 

results suggests that Ki-CCA can map acute changes in kinase PPI networks, but the overall 

number of EGF-sensitive PPIs as well as their log2 MS intensity ratios appeared low given that 

EGFR signaling strongly affects at least 120 other kinases associated with numerous cellular 

pathways 19,25. Hypothesizing that Ki-CCA, like other AP-MS-based methods, disfavors the 

identification of transient and weak protein interactions, we repeated our analysis in EGF-

stimulated and unstimulated HeLa cell lysates, this time applying formaldehyde-mediated 

protein crosslinking to stabilize kinase signaling complexes (see ‘Materials and Methods’). 

Indeed, Ki-CCA with protein crosslinking identified EGF-sensitive PPIs for 10 additional kinase 

groups, including interactions between the EGFR, the GTP-activating proteins SOS1 and VAV3, 
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and the phosphatidylinositol 3-kinase regulatory subunit PIK3R2, as well as PPIs of known EGF 

signaling effectors such as the ribosomal S6 kinases RPS6KA1, 3 and B1, the cAMP-dependent 

protein kinase PKA, and the canonical WNT-pathway regulator GSK3B (Figure 2E, 2F and 

Table S3). We also found that crosslinking increased the number of identified EGF-sensitive 

PPIs per kinase by two-fold, i.e., an average of 3 compared to 1.5 interactors, and that the 

average absolute log2 ratios of interactors between stimulated and unstimulated cells increased 

from 1.4 to 2.0 (Table S3).  Collectively, this shows that protein crosslinking stabilizes signaling 

complexes and that Ki-CCA with protein crosslinking can be a powerful approach for profiling 

dynamic changes of kinase PPIs in response to acute signaling cues. 

Ki-CCA Profiling of Diverse Cancer Cell Lines Reveals Kinase PPI Network Plasticity 

Next, we investigated if our Ki-CCA can be used to identify kinase PPI networks that 

underlie the progression of different cancers. We analyzed 18 diverse cell lines representing 

distinct types of cancers, including carcinomas (10 HCC lines), adenocarcinoma (HeLa), 

blastomas, i.e., two neuroblastoma lines (SK-N-SH and SH-SY5Y) and one glioblastoma line 

(A172), myeloid malignancies such as CML (K562), MCL (JeKo1), and T-cell leukemia (Jurkat), 

and one osteosarcoma line (U2-OS, Table S2 and S3). Notably, many of these lines exist in 

distinct phenotypic states, for instance, at least three lines show mRNA expression signatures 

that are characteristic for epithelial-like cells, and seven lines show mesenchymal-like 

characteristics. This gives us the opportunity to study how cellular plasticity programs shape 

kinase PPI networks (Figure S1C, Table S2). Collectively, Ki-CCA profiling of these lines 

quantified 382 kinases (73% of the kinome) of which 357 were competed using our 21 KIPs. 

Concurrently, we quantified 6660 non-kinase proteins of which 4136 were competed. Our Ki-

CCA correlation analysis predicted 10,791 PPIs between these proteins and 294 kinase groups, 

1783 of these interactions having previously been reported in the BioGRID and BioPlex 3.0 

databases 11,24, and a kinome-centric interactomics study by Buljan et al. 10. Analyzing the r-

value distribution of known PPIs confirmed our observation in HeLa cells, i.e., that a ~2-fold leap 

in true positive PPI identifications occurs at r-values ≥ 0.6 (Figure S3). This analysis also 

revealed a marked increase in true positive identifications at r-values of 0.5 to 0.6, leading us to 

define Ki-CCA-predicted PPIs in this r-value window as intermediate confidence interactions. 

Subjecting Ki-CCA interactions from the 18 cell lines to two-sample KS-tests showed that most 

true-positive PPIs were identified at a median r-value of ≥0.597, validating that a r ≥ 0.6 cut off 

reliably identified kinase PPIs. Applying these selection rules, we mapped 1054 high confidence 

1051 intermediate confidence kinase PPIs (Table S3). Considering high and intermediate  
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Figure 2. Selecting a panel of kinase interactome probes (KIPs) for Ki-CCA and proof-of-

concept in HeLa cell lysate. A) Identifying broadly selective KIs with orthogonal kinome affinity 

to serve as kinase interactome probes (KIPs). B) Ki-CCA identified well characterized, stable 

kinase PPIs with high positive Pearson’s r-values. C) Percentage of Ki-CCA-predicted PPIs 

previously reported in the BioGRID and BioPlex 3.0 interaction databases, and the kinome 

interactomics study by Buljan et al. as a function of Pearson’s r-values (0.1-unit brackets). D) 

Example ROC plot of the two-sample KS-test for the unstimulated HeLa cell model (see also 

Figure S2). E) Ki-CCA quantifies changes in kinase PPI abundance in response to acute growth 

hormone treatment (HeLa cells + 15 min 50 ng/mL EGF). Shown is a ten-member activated 

EGFR complex. F) Significant kinome-wide changes in PPI abundance following acute EGF 

treatment in HeLa cells resolved by kinase. The kinase PPI with the highest absolute log2 MS 

intensity ratio was used for plotting (two sample t-test p < 0.1, n = 2 per condition).  

 

confidence interactions, each kinase group interacted on average with nine proteins, with 

numbers ranging from one interactor, e.g., for the nick-related protein kinase NRK, to up to 103 

for casein kinase 2 (CK2 or CSNK2A1, 2, and 3, Table S3). This indicates that certain kinases 

preferentially form large, stable PPI networks that can be quantified with Ki-CCA. 

Strikingly, we found that 691 of high confidence kinase PPIs (60%) have not been 

reported in our reference datasets, demonstrating that Ki-CCA is a powerful approach for 

discovering novel kinase interactions (Table S3). Furthermore, when we analyzed the 

recurrence of interactions across the 18-cell line panel, we found that 686 of high confidence 

PPIs (61%) were identified in only one cell line. This suggests that the composition of kinase 

complexes is highly context dependent, and that our Ki-CCA dataset can illuminate the 

pathobiology of individual cancer cell lines and other models that reflect the heterogeneity of 

cancer types and patients’ tumors. Indeed, analyzing high and intermediate confidence 

interactions that occur only in one type of cancer line, we identified PPI networks of kinases that 

are well-known to drive cancer progression or control important physiological functions. For 

instance, in the Philadelphia Chromosome positive (Ph+) CML line K562, Ki-CCA identified a 11-

member PPI network centered on the BCR-ABL1 fusion protein, that included, e.g., the 

mitogenic signaling adapters SHC1, GRB2, the E3 ligase CBL, as well as the previously 

unreported interactor SCAI that regulates transcription and suppresses tumor cell migration 

(Figure 3A) 26. BCR-ABL1 is preferentially localized to the cytoplasm, suggesting that the fusion 

protein can sequester SCAI to block its tumor suppressor function in the nucleus 27. In EGFR-
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mutant A172 glioblastoma cells, Ki-CCA identified an activated six-member EGFR network 

composed the known interactors GRB2, SHC1, ERRFI1, and the sphingolipid transporter 

spinster 1 homolog (SPNS1), validating that the EGFR drives A172 cell proliferation and 

identifying a previously unreported EGFR interactor (Figure 3A). In the widely used Jurkat T-cell 

model, Ki-CCA identified several complexes of non-receptor tyrosine kinases that control T-cell 

receptor signaling and T-cell development. For example, we quantified a six-member network of 

LCK containing the known interactors MHC class II coreceptor CD4, the Src-family kinase (SFK) 

activating protein UNC119 as well as a previously unreported interaction with the myristoyl-

binding protein and cargo adapter UNC119B. This suggests that UNC119B is an additional 

factor besides UNC119 directing LCK to the immune synapse 28. We also identified a seven-

member CSK network that, besides its known interactor PAG1, also contained the putative Myc 

transcriptional activator PURA 29, the nuclear receptor corepressor 2 (NCOR2) that can control 

hematopoietic stem cell pools 30, and the E3 ubiquitin ligases UBASH3A and B. This gives novel 

insights into how CSK may regulate T-cell receptor recycling and T-cell development (Figure 

3A) 31. Concurrently, we found that in non-hematopoietic cells CSK preferentially interacts with 

paxillin (PXN) and tensin 1 and 3 (TNS1 and 3), highlighting its function in focal adhesion 

signaling (Table S3). Together, our results demonstrate that Ki-CCA reliably quantifies kinase 

PPI networks that drive cancer progression, and important physiological processes, and 

identifies unreported PPIs that broaden our knowledge of these kinases. 

Ki-CCA identifies “dark” kinase PPIs, shedding light on unknown biological functions 

Despite their importance in physiology and disease, approximately 1/3 of all protein 

kinases are considered “dark” because their biological functions are virtually unknown 32. This is 

in part due to a lack of immunoprecipitation-grade antibodies that could be used to map dark 

kinase interaction networks. To learn if our Ki-CCA identified PPIs of dark kinases that may 

reveal their biological function, we aligned our PPI dataset with the list of kinases designated as 

‘understudied’ by the NIH Illuminating the Druggable Genome (IDG) initiative (Table S3) 33. This 

revealed that our interaction database contains 536 high and intermediate confidence 

interactions between 43 dark kinase groups and 392 non-kinase proteins, covering 32% of the 

understudied kinome (Figure 3B). On average we find 12 interactors for each dark kinase group, 

and like their well-studied counterparts certain kinases form very large stable interaction 

networks, e.g., the CDK11A/B group (51 PPIs), followed by the CDK12, CDK13, STK3 and 4, 

and MARK1-3 group (25 to 30 PPIs) (Figure 3C). Remarkably, we identified a 24-membered 

CDK10 network, of which only two members, its cognate cyclin CCNQ (FAM58A) and the 
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tetratricopeptide repeat protein 14 (TTC14), were previously reported, indicating that Ki-CCA 

greatly expands the knowledge of CDK10’s biological function (Figure 3D). The STAR 

syndrome-deficient kinase CDK10 34 can act as a tumor suppressor or promote tumor 

progression depending on the type of cancer 35. We found that CDK10 interacted with the 

retinoblastoma-like proteins 1 and 2 (RBL1/2), two key regulators of cell cycle entry and 

apoptosis, as well as the transcription factors Dp-1 and Dp-2 (TFDP1 and 2) that control the 

expression of cell cycle genes and suppress differentiation 36. Furthermore, CDK10 interacted 

with the DNA replication inhibitor geminin (GMNN) and CDK5 and ABL1 enzyme substrate 1 

and 2 (CABLES1 and 2) that promote CDK2 inactivation and p53-mediated apoptosis, 

collectively suggesting that CDK10 balances negative regulation of cell cycle progression with 

apoptotic stimuli. This is supported by our finding that CDK10 and CCNQ were preferentially 

expressed in slow-cycling mesenchymal-like HCC cells, possibly protecting these cells from 

replication stress observed in fast-cycling epithelial-like HCC cells 22,37. Together, these results 

demonstrate that our Ki-CCA PPI dataset can be used to illuminate dark kinases. 

Ki-CCA data enables mining of kinobead/LC-MS profiling data, identifying kinase PPI 

networks enriched in tumor tissues 

Kinase interactome data of human tumor specimens could serve an invaluable resource 

to identify dysregulated signaling pathways and drug targets. Unfortunately, such data are 

difficult to obtain because it is challenging to express bait proteins for AP-MS in harvested 

tissues. Furthermore, IP-grade antibodies are unavailable for many kinases, limiting the 

feasibility of unbiased kinome-wide interactomics studies. Previously, we analyzed patient-

derived HCC tissue samples using kinobead/LC-MS to identify kinases that are enriched in 

tumors, quantifying hundreds of kinases, and thousands of non-kinase proteins 22. We 

hypothesized that our Ki-CCA data of 18 diverse cancer cell lines can be used as a reference 

database to assign these proteins to specific kinase interaction networks. Consequently, we 

compared non-kinase proteins quantified in four paired HCC and normal adjacent liver 

specimens with our Ki-CCA dataset and identified 482 high confidence PPIs between 132 

kinase groups and 244 non-kinase proteins present in the four HCC patient’s tissue samples 

(Table S3) 22. Quantifying the abundance differences of these kinase-interacting proteins 

between tumors and paired NAL showed that on average 183 kinase group-protein interactions 

were significantly altered (t-test with Benjamini-Hochberg (BH) FDR < 0.05, n = 5 or 6, Figure 

4A, S4A and Table S3). Particularly, tumor 4 was highly enriched in PPIs of cell cycle kinases 

that are often aberrantly  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.14.460283doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460283
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 

Figure 3. Ki-CCA identifies kinase PPI networks that control cancer progression and T-

cell function, including dark kinase interactions. A) Example Ki-CCA-predicted kinase 

complexes that control important cellular phenotypes in specific cancer types. D) Dark kinases 

for which Ki-CCA identified PPIs overlayed with the human kinome dendrogram. E) Number of 
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interactions for each of the dark kinase groups for which PPIs were identified. F) Ki-CCA PPI 

network for the dark kinase CDK10. 

 

activated in cancers, for instance, CDK1, 2 and 7, and AURKB (Figure 4A and Table S3), 

indicating aggressive tumor growth. Particularly, tumor 4 was highly enriched in PPIs of cell 

cycle kinases that are often aberrantly activated in cancers, for instance, CDK1, 2 and 7, and 

AURKB (Figure 4A and Table S3), indicating aggressive tumor growth. Furthermore, PPI 

networks of kinases that control cell survival pathways (TBK1 and NUAK1), migration (DDR1 

and 2, TNK2) and the Hippo pathway (STK3/4) were enriched in tumor 4, reflecting the high 

therapy resistance and invasiveness of HCCs. In contrast, the T-cell-specific LCK-CD4 

interaction was enriched in normal adjacent liver tissue of case 4, suggesting poor immune cell 

infiltration of this tumor. The largest interaction network identified across the four patients’ 

tissues counted 41 members and was centered on CK2 (Figure 4B and Table S3). This CK2 

network was highly enriched in components of the eukaryotic initiation factor 3 (eIF3) complex, 

the nucleosome remodeling deacetylase (NuRD) complex, and the polycomb-group (PcG) 

complex, as well as other components that control chromatin remodeling (DEK), the cell cycle, 

and proliferation (ERH, HDGFRP2). Notably, we found that CK2 does not change in abundance 

between tumors and NAL tissues but preferentially engages multiple eIF3 complex components 

and the NuRD complex component RBBP4 in three of four patient’s tumors (Figure 4C), 

suggesting that CK2 regulates both translation and chromatin remodeling in tumor tissues to 

promote aberrant growth. Based on these data, we propose that the clinical-grade CK2 inhibitor 

silmitasertib (CX-4945), either alone or in combination with other drugs, may be a useful new 

therapy in HCC 38. Collectively, our analysis of human tissue samples demonstrates that our Ki-

CCA dataset acts as a powerful resource to identify kinase signaling complexes in existing 

kinobead profiling data.  

AXL-dependent epithelial-mesenchymal transition globally rewires kinase PPI networks 

Cancer cell EMT critically contributes to metastasis and therapy resistance in HCC and 

other types of cancers 39,40. We previously showed that the receptor tyrosine kinase AXL 

globally rewires kinome expression and phosphorylation to promote HCC cell EMT 22. Our 

kinobead/LC-MS studies also showed that AXL RNAi knockdown causes significant abundance 

changes in 887 non-kinase proteins, many of them known kinase interactors. We hypothesized 

that these proteins are part of kinase complexes that contribute to EMT and may therefore 

present attractive novel drug targets. To identify the kinase interactors of these EMT-associated  
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Figure 4. Using Ki-CCA data as a reference to identify kinase PPI networks in 

kinobead/LC-MS tissue profiling data. A) Overlay of the human kinome dendrogram with 

kinases whose interaction network composition significantly differed between human HCC 

tissue and normal adjacent liver (t-test BH-FDR <0.05). The kinase PPI with the highest 

absolute fold-change was used for plotting 22. B) Comparing our Ki-CCA database with 

kinobead/LC-MS profiling data identified a 41-member CK2 interaction network in human HCC 

tissue samples. C) Abundance differences of CK2 PPI network components between HCC 

patient’s tumor tissue and normal adjacent liver. 

 

proteins, we applied Ki-CCA to our FOCUS cell AXL RNAi model and FOCUS WT cells (Table 

S3). Our analysis revealed 106 high confidence and 38 intermediate confidence PPIs between 
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61 kinase groups and 123 non-kinase proteins whose abundance was sensitive to AXL 

knockdown (Figure 5A and S4B).Among them, we identified several PPIs that act on well-known 

EMT signaling pathways, such as GSK3B-AXIN1 that promotes β-catenin degradation and WNT 

signaling (2.3-fold increase), TBK1-TBKBP1 that activates NF-kB (3.4-fold decrease), and 

STK3/4-SAV1 that decreases Hippo/YAP-TAZ activity (3.5-fold decrease)41. This suggests that 

AXL signaling promotes WNT and NF-kB signaling and counteracts Hippo/YAP-TAZ activity. 

Strikingly, 21 kinase PPI networks with previously unreported roles in EMT were highly enriched 

in mesenchymal FOCUS WT cells. For instance, an interaction of CSK and the SH2-domain 

containing protein tensin-3 (TNS3, 7.5-fold decreased) indicated that CSK is tethered to focal 

adhesion complexes specifically in mesenchymal cells. We found that HCK, another SFK, 

interacted with galectin-1 (LGALS1) that induces T-cell apoptosis and activates HRAS, 

exclusively in mesenchymal-like cells, suggesting that this kinase may play a role in immune 

evasion and mesenchymal-like cancer cell proliferation. Components of a 27-membered CK2 

network were enriched either in epithelial-like cells or in mesenchymal-like cells, among the 

latter the tumor suppressor and arginine N-methyl transferase effector EPB41L3 42 (Figure S4B 

and Tables S3), establishing a connection between CK2, protein N-methylation, and EMT. 

Notably, several components of an eleven-member network of the AAK1/BMP2K kinase group 

was highly enriched in mesenchymal cells, including the small GTPase effectors RALBP1, 

REPS1, and REPS2, that showed 2.4-, 17-, and 9.2-fold decreased abundance following AXL 

knockdown (Figure 5B). This suggests a prominent role of this AAK1/BMP2K network in HCC 

cell EMT. AAK1/BMPK components are also significantly enriched in ten mesenchymal-like 

HCC cell lines compared to seven epithelial-like lines and overexpressed in two of four HCC 

patient’s tumors that we previously profiled using kinobead/LC-MS (Figure 5C and 5D) 22. 

Collectively, our results demonstrate that Ki-CCA identifies and quantifies known as well as 

previously unreported kinase PPI networks that may be important for cancer cell phenotypic 

plasticity and therapy resistance. Our results also indicate that an AAK1/BMP2K PPI network of 

unknown biological function may contribute to HCC cell EMT in vitro and cancer progression in 

vivo. 

An AAK1-RALBP1-REPS1/2 complex promotes HCC cell EMT and therapy resistance 

Having linked an AAK1/BMP2K interaction network to cancer cell EMT, we wished to 

study its potential as a drug target to overcome metastasis and therapy resistance. AAK1 plays 

key roles in clathrin-mediated endocytosis 43, whereas the function of BMP2K is less well 

understood.  
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Figure 5. Ki-CCA profiling of AXL-dependent kinase PPI network rewiring identifies an 

AAK1/BMP2K network associated with EMT and tumor progression. A) Kinome 

dendrogram overlayed with FOCUS cell kinases whose PPIs significantly change in response to 

AXL RNAi knockdown (BH-FDR < 0.05, n = 5). The PPI with the highest fold-change was used 

for potting. B) Ki-CCA interaction network of high confidence interactors (r > 0.6) for the 

AAK1/BMP2K kinase group identified across the 18-cell line panel. C) Abundance differences of 

AAK1/BMP2K network components between FOCUS WT/AXL RNAi cells, and mesenchymal-

like and epithelial-like cells of a 17 HCC line panel (kinobead/LC-MS data). * t-test significant, 

BH-FDR < 0.05. D) Abundance differences of AAK1/BMP2K complex components between 

human HCC tumor tissue and normal adjacent liver (kinobead/LC-MS data). * t-test significant, 

BH-FDR < 0.05. 
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More recent studies have shown that AAK1 is also involved in canonical Notch and Wnt/Fzd 

signaling that can contribute to cancer cell EMT 44,45. RALBP1 functions in Ral-mediated 

receptor endocytosis, serving as a GTPase activating protein (GAP) for CDC42/Rac 46,47. 

RALBP1 is also known to act as a drug efflux pump 48. Similar to RALBP1, REPS2 regulates 

growth hormone receptor endocytosis downstream of Ral 49, as well as cell migration and NF-κB 

pathway activation 50,51. In contrast, specific biological functions for REPS1 are not known. First, 

to clarify if either AAK1 or BMP2K is the central kinase of the network, we performed a 

kinobead/LC-MS soluble competition experiment in FOCUS cell lysate using 1 µM of the 

selective AAK1 inhibitor LP-935509 (Figure 6A and Table S4) 52. Our results show that 

RALBP1, REPS1 and 2, as well as four members of the adapter protein (AP) complex were 

competed at ratios similar to AAK1 (~10-100-fold), whereas BMP2K was competed less than 4-

fold, suggesting that the complex is centered on AAK1. To validate this finding, we performed 

Co-IP/MS experiments using antibodies targeting AAK1, RALBP1 and REPS1, and a GFP 

antibody as the control in FOCUS cell lysate (Figure 6B). These experiments showed that 

AAK1, RALBP1, and REPS1/2 co-precipitate with all three antibodies, validating that the 

network is centered on AAK1, and demonstrating that these proteins are part of the same AAK1 

complex. Next, we disrupted the function of all four AAK1 complex components in four different 

mesenchymal-like and drug resistant HCC lines using shRNA-mediated gene knockdown 

(‘Materials and Methods’). Testing knockdown efficiency by qPCR, western blotting, and 

kinobead/LC-MS profiling showed that we achieved near-complete knockdown of RALBP1 and 

REPS1 and 2 (Figure S5A, B, and C). In contrast, AAK1 decreased in expression 2-4-fold, 

which is consistent with its critical function in endocytosis, an essential cellular process that 

likely prohibits complete removal of AAK1. Western blot analysis of five different EMT markers, 

i.e., AXL, CD44, CDH1 (E-cadherin), ZEB1, and SNAI1 (Snail), showed that at least two out of 

four RNAi lines experience drastic changes in EMT marker expression (Figure 6C and S6). 

Particularly, AAK1 complex RNAi in SNU387 cells nearly abolished AXL, CD44, and ZEB1 

expression, and RNAi in FOCUS cells, especially REPS1 and 2 RNAi, greatly reduced CD44 

and ZEB1 expression, and increased CDH1 expression. This suggests that AAK1 complex 

RNAi caused wide-spread EMT reversal in SNU387 and FOCUS cells.  

To identify the mechanism of AAK1 complex RNAi-mediated EMT reversal, we mined 

our kinobead/LC-MS profiling data of RNAi lines for evidence of EMT pathway alterations 

(Figure 6D and Table S4). This revealed that AAK1 complex RNAi drastically decreases the 

expression of NF-kB effector kinases (IKBKG, MAP3K3, and CHUK) and numerous receptor 

tyrosine and serine/threonine kinases, including AXL, MET, EGFR, and TGFBR1 and 2 in out of  
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Figure 6. An AAK1-RALBP1-REPS1/2 complex promotes HCC cell EMT and therapy 

resistance. A) Kinobead/LC-MS soluble competition experiment using 1 µM of the selective 

AAK1 inhibitor LB-935509. Members of the AAK1/BMP2K PPI network are highlighted. B) Co-

IP-MS experiments in FOCUS cells using antibodies targeting AAK1, RALBP1, and REPS1 

validate the AAK1 complex’ identity. C) Western blot analysis of EMT markers in SNU387 and 

FOCUS RNAi lines. For analysis of the SKHep1 and SNU761 lines see Figure S6. D) 

Kinobead/LC-MS profiling data of AAK1 complex RNAi lines showing that NF-kB and EMT 

kinases consistently decrease in expression in three out of four cell line models. E) Drug screen 

results demonstrating that AAK1 complex RNAi lines are up to 18-fold more sensitive to the 

CHEK1 and 2 inhibitors AZD-7762 and CHIR-124. F) Kinobead/LC-MS profiling from SKHep1 

and SNU387 lines showing that AAK1 complex RNAi activates cell cycle-related kinases. 

 

four RNAi lines. This suggests that the AAK1 complex stabilizes membrane expression or 

recycling of receptor kinases that promote EMT pathway activation. Additionally, we find that 

many EMT-associated cytosolic and nuclear kinases decrease in expression in response to 

AAK1 complex RNAi, further supporting that knockdown causes EMT reversal (Figure 6D). 

Next, to learn if RNAi sensitizes cells to drug treatment, we conducted a screen for cell 

viability with ten kinase-targeted drugs and doxorubicin, comparing responses of scramble 

shRNA lines with AAK1 complex RNAi lines (Figure 6E and TableS4). Remarkably, this drug 

screen showed that RNAi lines, particularly SNU387 and SKHep1, are up to 18-fold more 

sensitive to treatment with inhibitors targeting the DNA damage checkpoint kinases CHEK1 and 

2 (AZD7762 and CHIR-124). To rationalize the increased efficacy of DNA damage response 

(DDR) kinase inhibitors, we analyzed kinome proteomics features that were upregulated in 

response to AAK1 complex RNAi in the cell lines with the greatest chemo-sensitization, i.e., 

SKHep1 and SNU387. We observed that these lines showed increased abundance of cell cycle-

related kinases and their activated signaling complexes, notably, AURKA in complex with the 

activating scaffold CEP192, CDK1 complexes containing the cyclins CCNA2, E1, and B1, and 

the regulatory subunit CKS2, CDK6 and 7, PLK4, and CHEK1 (Figure 6F). These results 

indicate that RNAi lines, particularly AAK1 and REPS1 knockdown lines, contain more cycling 

cells that activate DDR signaling to enhance cell survival, and therefore are more sensitive to 

CHEK1/2 inhibition. 53. In contrast, SNU761 and FOCUS RNAi cells that show less chemo-

sensitization also do not upregulate cell cycle-related kinases (Table S4). Furthermore, the 

SNU387 and SKHep1 REPS1 RNAi lines that show the greatest chemo sensitization exhibit the 
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least alterations in EMT marker and kinase expression (Figure 6C and E, Table S4). These 

results demonstrate that knocking down components of the AAK1-RALBP1-REPS1/2 complex 

can cause downregulation of receptor and non-receptor kinases that promote EMT, thereby 

inducing EMT reversal. Concurrently, AAK1 and REPS1 knockdown can cause re-activation of 

the cell cycle and chemo sensitization, seemingly independent of EMT state. Collectively, our 

findings establish the AAK1 complex as promising drug target candidate to overcome cancer 

metastasis and therapy resistance.   

DISCUSSION 

We introduced Ki-CCA, a chemoproteomics approach for highly multiplexed interactome 

mapping of the kinome. Ki-CCA allows the high-throughput profiling of various cell states and 

model systems using native cell and tissue lysates, entirely avoiding the use antibodies and the 

need to express genetically tagged bait proteins. We demonstrated that our Ki-CCA broadly 

quantifies kinase interactome changes in response to genetic manipulation of oncogenes, 

establishing Ki-CCA as a powerful approach for cancer research. Furthermore, we showed that 

Ki-CCA combined with protein crosslinking captures the rapid rearrangement of transient and 

low-affinity signaling complexes caused by acute stimuli, showcasing our approach’s utility for 

cell signaling research. Importantly, we demonstrated that our kinase PPI database can be used 

to identify kinase signaling complexes in kinobead/LC-MS kinobead profiling data derived from 

human tumor tissue samples, yielding novel insight into kinase PPI networks alterations in 

patient’s tumors and a roadmap to obtaining similar kinobead-based PPI networks in various 

disease models for clinical proteomics. 

We demonstrated that Ki-CCA can help illuminate mechanisms of cancer therapy 

resistance and that it enables cancer drug target discovery. Our AAK1 complex example 

showcases that Ki-CCA can identify non-kinase target candidates such as REPS1 whose RNAi 

is better tolerated than AAK1 RNAi, strongly sensitizing mesenchymal-like cancer cells to 

targeted therapy. Therefore, inhibiting the AAK1-REPS1 interaction may be a promising strategy 

to minimize drug cytotoxicity and maximize cancer therapy responses. Ki-CCA combined with 

kinome profiling of RNAi lines showed that AAK1 and REPS1 knockdown reactivated the cell 

cycle. This reactivation was sufficient to sensitize HCC cell CHEK1/2 inhibitors, and that this 

effect was independent from changes in the cellular EMT state. Collectively, this indicates that 

the AAK1-REPS1 complex acts as a tumor suppressor, and that inhibition of tumor suppressors 

can be sufficient to sensitize mesenchymal-like cells to drugs 54. Consequently, complete 
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reprogramming of mesenchymal-like cells to an epithelial-like state may not be required to 

achieve therapeutic benefit.   

Finally, the limitations of our approach are the same as for any other AP-MS-based 

method, for instance, difficulties identifying weak and transient PPIs, and the lack of sub-cellular 

spatial resolution 9. Here, we already demonstrated that Ki-CCA with protein crosslinking can 

increase the coverage of weak and transient PPIs. Furthermore, we speculate that subcellular 

fractionation, e.g., into cytosolic, membrane, and nuclear fractions, for Ki-CCA could further 

resolve the localization of kinase signaling complexes and reduce sample complexity to 

increase the number of identifiable signaling and transcription factor complexes. Finally, the 

throughput of Ki-CCA can be further improved in future iterations of the approach by using 

smaller sets of KIPs and isobaric TMT labeling for analysis of entire interactomes in single LC-

MS runs.    

In summary, we presented a new approach for studying kinase interactome dynamics in 

virtually any model system. We collated our kinase interactome data into a database that is 

accessible through an interactive Shiny web application (https://quantbiology.org/kiCCA), 

serving as an important resource for cancer and cell signaling researchers.  
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Supplementary Figures 

 

Figure S1. A) Kinases significantly competed in our kinobead/LC-MS soluble competition assay 

using our 21 KIP panel (HeLa lysate; log2 MS intensity ratio >0.75 and t-test p-value <0.1, n = 

2). B) Detailed, step-by-step description of our Ki-CCA workflow to identify kinase PPIs. C) 

Clustering of 15 diverse cancer cell lines by EMT marker mRNA expression (n = 52). Shown are 

the 12 most characteristic markers for the epithelial and mesenchymal phenotype. 
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Figure S2. KS statistics for Ki-CCA profiling results of our 18 cell line models. 
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Figure S3. Percentage of Ki-CCA predicted PPIs previously reported in the BioGRID, 

BioPlex 3.0, and Buljan et al., 2020 interaction database as a function of Pearson’s r-

values (0.1-unit brackets). 
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Figure S4. Kinase Interactome dynamics in human HCC patients’ tissues and a FOCUS 

AXL RNAi model of EMT. A) Overlay of the human kinome dendrogram with kinases whose 

complex composition significantly differs between human HCC tissue and normal adjacent liver 

(t-test BH-FDR <0.05). The kinase PPI with the highest absolute fold-change was used for 

plotting. B) Kinome dendrogram overlayed with FOCUS cell kinases whose PPIs significantly 

change in response to AXL RNAi knockdown (BH-FDR < 0.05, n = 5). The PPI with the highest 

log2 MS Intensity ratio was used for plotting. Only intermediate-confidence PPIs are shown (Ki-

CCA r-value between 0.5 and 0.6). 
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Figure S5. Validating AAK1 complex RNAi knockdown in FOCUS, SKHep1, SNU761, and 

SNU387. A) qPCR analysis of AAK1 complex RNAi lines, validating successful knockdown. B) 

Kinobead/LC-MS analysis of AAK1 complex RNAi lines, validating successful knockdown. C) 

Immunoblot analysis of AAK1 complex RNAi lines, validating successful knockdown. REPS2 

blots not shown because the antibody used is likely not specific. 
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Figure S6. Immunoblot analysis of EMT marker expression in AAK1 complex RNAi cell 

lines. 
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MATERIALS AND METHODS 

Cell lines and tissue culture conditions 

C3A, SNU398, Hep3B2.1-7, U2-OS, SK-N-SH, SH-SY5Y, JeKo-1, HeLa, Jurkat, A-172, K562, 

and SNU449 cell lines were purchased from the American Type Culture Collection (ATCC). 

SNU761 and SNU886 were purchased from the Korean Cell Line Bank (KCLB). JHH6 and HuH-

7 cells were purchased form the JRCB Cell Bank. FOCUS WT cells were obtained from the 

Laboratory of J. Wands, Brown University 55. FOCUS AXL RNAi cells were obtained from Dr. 

Taranjit Gujral of the Fred Hutchinson Cancer Research Institute, Seattle. All cells were grown 

at 37°C under 5% CO2, 95% ambient atmosphere. Fifteen cryo-frozen cell stocks were 

generated from the original vial from the cell bank (Passage 3). Experiments were performed 

with cells at <10 passages from the original vial. All cell media used were supplemented with 

100x penicillin-streptomycin-glutamine (Thermo Fisher Scientific, Waltham, MA). FOCUS and 

HuH-7 cells were grown in Dulbecco’s minimum essential medium (DMEM) supplemented with 

10% FBS (VWR Life Science, Seradigm). C3A, SNU398, Hep3B2.1-7, U2-OS, SK-N-SH, SH-

SY5Y, JeKo-1, HeLa, Jurkat, A-172, K562, and SNU449 lines were grown in the ATCC-

recommended medium. JHH6 cells were grown in William’s E medium, and SNU761 and 

SNU886 lines in RPMI 1640 medium all supplemented with 10% FBS. Cells were harvested 

when reaching 90% of confluency or a density of 1x106 cells/ml.  

RNAi knockdown experiments  

Three shRNA sequences each targeting AAK1, RALBP1, REPS1, and REPS2 were obtained 

from The RNAi Consortium (TRC) of the Broad Institute web portal 

(https://www.broadinstitute.org/rnai-consortium/rnai-consortium-shrna-library, ID Numbers: 

TRCN0000001943, TRCN0000199939, TRCN0000082348, TRCN0000053363, 

TRCN0000423162, TRCN0000436095, TRCN0000423057, TRCN0000428939, 

TRCN0000056210, TRCN0000305689, TRCN0000047918, TRCN0000047920) and cloned into 

the lentiviral pLKO.1 vector (Addgene, Watertown, MA) as previously described  56. Lentiviral 

particles were produced from individual pLKO.1 vectors, the pMD2.G plasmid (envelop), and the 

pCMVR8.74 plasmid (packaging) according to the manufacturer’s instructions (Addgene). Virus 

particle-containing cell culture supernatants were sterile filtered over 0.22 µM PES syringe filters 

(Millex-GP, Sigma Millipore, Burlington, MA), mixed 1:1 with fresh growth medium, 8 µg/mL 

polybrene was added and the mixture added to target cells (70-80% confluency). Cells were 

incubated for 24h, the medium exchanged, and stable cell lines selected using puromycin 

(FOCUS: 4 µg/mL; SNU387 and SKHep1: 6 µg/mL; SNU761: 8 µg/mL) for 7-14 days. 

Puromycin-resistant cells were maintained in growth medium containing half of the selection 

concentration of puromycin. Target knockdown was validated using qPCR and immunoblotting, 

and the stable cell lines with the highest knockdown among the three shRNAs used for each 

target were chosen to perform all downstream experiments. 

Immunoblot analysis and antibodies  

Antibodies used were anti-E-cadherin (24E10, Cell Signaling Technology, CST, Cat # 3195), 

anti-AXL (C89E7, CST, Cat # 8661), anti-Snail (C15D3, CST, Cat # 3879), anti-ZEB1 (E2G6Y, 

CST, Cat # 70512), anti-CD44 (E7K2Y, CST, Cat # 37259), anti-GAPDH HRP conjugate 

(D16H11, CST, Cat # 8884), anti-AAK1 (E8M3P, CST, Cat # 61527), anti-RALBP1 (D87H8, 

CST, Cat # 5739), and anti-REPS1 (D6F4, CST, Cat # 6404). Cell lysis and immunoblotting 

experiments were performed using standard procedures. Briefly, cells were rinsed twice with 
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ice-cold phosphate buffered saline (PBS), lysed in modified RIPA buffer V1 (50 mM Tris-HCl, 

150 mM NaCl, 1% NP-40 (v/v), 0.25% Na-deoxycholate (w/v), 1 mM EDTA, 10 mM NaF, 5% 

glycerol (v/v), pH 7.8) supplemented with HALT protease inhibitor (100x, Thermo Fisher 

Scientific, Waltham, MA), and lysates clarified by centrifugation at 21,000 rcf for 20 minutes at 

4°C. Protein concentration was quantified using the Piece 660 nm Protein Assay Reagent 

(Pierce, Rockford, IL). Lysates were mixed with NuPAGE LDS Sample Buffer (4X, Thermo 

Fisher Scientific) containing 50 mM DTT and heated for 5 min at 95°C. 20 µg of protein were 

separated on Bolt 4-12% Bis-Tris Protein Gels (Thermo Fisher Scientific) and electro-

transferred onto nitrocellulose membranes. The buffer used for blocking and antibody incubation 

was 5% BSA in TBS-T (50 mM NaCl, 150 mM Tris-HCl, 1% Tween-20). Membranes were 

incubated with goat anti-rabbit HRP conjugate, and bands visualized using the Clarity Western 

ECL Substrate (Bio-Rad, Hercules, CA) and the Fluor Chem E imaging system (Protein Simple, 

San Jose, CA).  

Quantitative Real-Time PCR (qPCR) Analysis of mRNA Expression 

shRNA-mediated knockdown was validated by quantifying mRNA expression levels using 

quantitative real-time PCR (qPCR). Briefly, cells were cultured on 35 mm dishes until reaching 

80-90% confluency and total RNA was isolated using the TRIzol reagent according to 

manufacturer’s instructions (Thermo Fisher Scientific). mRNA quality was controlled by running 

1% agarose gels and checking the presence of sharp, clear 28S and 18S rRNA bands. 0.5 µg 

of total RNA was used to generate first-strand cDNA using the Protoscript II First Strand cDNA 

Synthesis Kit (New England Biolabs, Ipswich, MA). The resulting cDNA was subjected to qPCR 

using human gene-specific primers for AAK1, RALBP1, REPS1, and REPS2, and two 

housekeeping genes, i.e., PSMB2 and RAB7A. The qPCR reaction was performed using 

QuantStudio 5 Real-Time PCR System (Applied Biosystems, Thermo Fisher Scientific) using 

the following program: 

 

The mRNA levels of each gene were normalized relative to the mean levels of the two 

housekeeping genes and compared with the data obtained from cell lines carrying a stably 

incorporated scramble shRNA using the 2-ΔΔCt method. According to this method, the 

normalized level of a mRNA, X, is determined using Equation 1:  

 𝑋 = 2−𝐶𝑡(𝐺𝑂𝐼)/2−𝐶𝑡(𝐶𝑇𝐿) (1) 

 

where Ct is the threshold cycle (the number of the cycle at which an increase in reporter 

fluorescence above a baseline signal is detected), GOI refers to the gene of interest, and CTL 

refers to a control housekeeping gene. This method assumes that Ct is inversely proportional to 

the initial concentration of mRNA and that the amount of product doubles with every cycle. 
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Inhibitor treatment of RNAi lines and growth inhibition assay 

1800 cells/well were seeded onto white flat bottom half area 96-well plates (Greiner Bio-One, 

Kremsmünster, AT) in 50 µl of growth medium and allowed to attach in an incubator for 24 h. 

Then the drugs in DMSO and/or DMSO vehicle controls as 11X solutions in growth medium 

were added to a total volume of 55 µl and 0.1% DMSO final. The cells were grown in an 

incubator for another 72 h. Then, 55 µl of CellTiter-Glo 2.0 (Promega, Madison, WI) reagent/well 

were added according to the manufacturer’s instructions and luminescence was quantified with 

a SpectraMax 190 plate reader (Molecular Devices, San Jose, CA). The CHEK1/2 inhibitors 

AZD7762 (Selleckchem, Houston, TX) and CHIR-124 (ApexBio, Houston, TX) were applied at 8 

different concentrations between 10 µM and 4.6 nM (3-fold dilution steps). Experiments were 

performed in four biological replicates. Growth inhibition curves were fitted using the GraphPad 

Prism software package (V5.0a) with a least-squares nonlinear regression model for curve 

fitting (One site - Fit logIC50 function).  

Preparation of optimized kinobead mixture 

The seven kinobead affinity reagents used were synthesized in-house as described previously 
19,21,57. For optimal coverage of the human kinome an optimized mixture of the seven kinobead 

reagents was prepared as previously described 19. Briefly, 1 ml of reagent 1, 0.5 ml of reagents 

2, 3 and 7, respectively, and 0.25 ml of reagents 4, 5 and 6, respectively, were mixed to yield 

3.25 ml of the complete kinobead mixture. All reagents were a 50% slurry in 20% aq. ethanol. 

Kinase affinity enrichment, KI competition and on-bead digestion 

Kinase affinity enrichment, KI competition, and on-bead digestion was performed as previously 

described 21,23,58. Briefly, to 150 µL of cell lysate (5 mg protein per mL) in modified RIPA buffer 

V1 (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40 (v/v), 0.25% Na-deoxycholate (w/v), 1 mM 

EDTA, 10 mM NaF, 5% glycerol (v/v), pH 7.8) containing HALT protease inhibitor cocktail (100x, 

Thermo Fisher Scientific, Waltham, MA) and phosphatase inhibitor cocktail II and III (100x, 

Sigma-Aldrich, St Louis, MO) 1.5 µL DMSO (vehicle control) or the corresponding inhibitor 

solution in DMSO (competition) were added to a final concentration 1% DMSO. The lysate was 

vortexed at intermediate speed intermittently every 5 min for 20 min while being kept on ice. 

Meanwhile, 40 µl of a 50% slurry of the in-house-made, optimized kinobead mixture in 20% aq. 

ethanol were prepared for each pulldown experiment. The beads were washed twice with 400 µl 

modified RIPA buffer and lysates containing DMSO, or inhibitor were added. The mixture was 

incubated on a tube rotator for 3h at 4°C and then the beads were spun down rapidly at 2000 rcf 

on a benchtop centrifuge (5s). After removal of the supernatant, the beads were rapidly washed 

twice with 400 µl of ice-cold mod. RIPA buffer and three times with 400 µl ice-cold tris-buffered 

saline (TBS, 50 mM tris, 150 mM NaCl, pH 7.8) to remove detergents. 100 µl of freshly prepared 

denaturing buffer (8M urea, 100 mM Tris, pH 8.5) containing 5 mM tris(2-

carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 10 mM chloroacetamide (CAM), were 

added and the slurry agitated on a thermomixer at 37°C and 1400 rpm for 30 min. The mixture 

was diluted 2-fold with 100 mM triethylamine bicarbonate (TEAB), the pH adjusted to 8-9 by 

addition 1 N aq. NaOH; 2 µg LysC were added, and the mixture agitated on a thermomixer at 

1400 rpm at 37°C for 2 h. Then, the mixture was diluted another 2-fold with 100 mM TEAB, 2 µg 

MS-grade trypsin (Thermo Fisher Scientific, Waltham, MA) were added, and the mixture 

agitated on a thermomixer at 1400 rpm at 37°C overnight. Then, 6 µL of formic acid (FA) were 

added (1.5% FA final) to adjust to pH 3 and peptides were extracted ad desalted using C18 
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StageTips according to the published protocol 59. For kinobead/LC-MS profiling of RNAi cell 

lines the same protocol was applied except that lysates were not preincubated with DMSO or 

inhibitor. The following inhibitors were used for competition experiments at the given final 

concentrations: GSK-690693 (10 µM, MedChemExpress, MCE, Monmouth Junction, NJ), 

Miliciclib (10 µM, MCE), Rebastinib (10 µM, MCE), AT9283 (10 µM, MCE), TAK-901 (10 µM, 

MCE), RGB-286638 (10 µM, MCE), Flavopiridol*HCl (10 µM, MCE), PF-562271 besylate (10 

µM, MCE), Dabrafenib mesylate (10 µM, MCE), OTSSP167*HCl (10 µM, MCE), CYC-116 (10 

µM, MCE), Silmitasertib (10 µM, MCE), SB1317 (10 µM, MCE), XL228 (10 µM, MCE), 

Sapanisertib (10 µM, MCE), PF-3758309 (10 µM, ApexBio), Staurosporine (1 µM, LC Labs, 

Woburn, MA), AZD-7762 (10 µM Selleckchem), Bosutinib (10 µM, Selleckchem), Dasatinib (10 

µM, Selleckchem), Linsitinib (10 µM, ApexBio).  

Ki-CCA with formaldehyde-mediated protein crosslinking 

Ki-CCA with formaldehyde-mediated protein crosslinking was performed as described in 

“Kinase affinity enrichment, KI competition, and on-bead digestion” above with the following 

modifications. Briefly, to 150 µL of cell lysate (5 mg protein per mL) in modified RIPA buffer V2 

(50 mM HEPES, 150 mM NaCl, 1% NP-40 (v/v), 0.25% Na-deoxycholate (w/v), 1 mM EDTA, 10 

mM NaF, 5% glycerol (v/v), pH 7.8) containing HALT protease inhibitor cocktail (100x, Thermo 

Fisher Scientific, Waltham, MA) and phosphatase inhibitor cocktail II and III (100x, Sigma-

Aldrich, St Louis, MO) 1.5 µL DMSO (vehicle control) or the corresponding inhibitor solution in 

DMSO (competition) were added to a final concentration 1% DMSO. The lysate was vortexed at 

intermediate speed intermittently every 5 min for 20 min while being kept on ice. The mixture 

was added to the kinobeads and incubated on a tube rotator for 3h at 4°C and then 4 µL of 37 

wt% aq. Formaldehyde solution was added (1% concentration final). The mixture was incubated 

on a tube rotator for an additional 30 min at 4°C and then the beads were spun down rapidly at 

2000 rcf on a benchtop centrifuge (5s). After removal of the supernatant, the beads were rapidly 

washed twice with 400 µl of ice-cold mod. RIPA buffer V2 and three times with 400 µl ice-cold 

HEPES-buffered saline (HBS, 50 mM HEPES, 150 mM NaCl, pH 7.8) to remove detergents. 

100 µl of the denaturing buffer (6M Gdn*HCl, 100 mM Tris-HCl, pH 8.5) containing 5 mM tris(2-

carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 10 mM chloroacetamide (CAM), were 

added and the slurry agitated on a thermomixer at 70°C and 1400 rpm for 30 min to reverse 

crosslinking. The mixture was then subjected to the same digestion protocol and downstream 

handling as described above.   

Co-Immunoprecipitation of AAK1 Complex Components 

200 µl of FOCUS cell lysate in modified RIPA buffer V1 (5 mg/mL protein) containing protease 

and phosphatase inhibitors (see ‘Kinase affinity enrichment, KI competition and on-bead 

digestion’) were incubated with antibodies against AAK1, RALBP1, REPS1 (see ‘Immunoblot 

analysis and antibodies’), or GFP (control, D5.1, CST, Cat # 2956) at the manufacturer's 

recommended concentrations, respectively, and agitated overnight on a tube rotator at 4°C. The 

next day, Pierce Protein A Agarose (Thermo Fisher Scientific) was washed twice with ice-cold 

modified RIPA buffer V1 and 30 µL aliquots of a 50% bead slurry were added to each 

lysate/antibody mixture. The slurry was agitated for 3h on a tube rotator at 4°C and then the 

beads were washed two times with ice-cold modified RIPA buffer and three times with TBS. 

Proteins were reduced, alkylated, and eluted with 100 µL denaturing buffer (8M urea, 2mM 

TCEP, 4mM CAM, 100 mM Tris pH 7.8) for 30 min. The supernatant was transferred to a fresh 

tube and diluted two-fold with 100 mM TEAB, and the pH adjusted to 8.5 using 1N NaOH 
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solution. 2 µg of Lys-C (Wako Chemicals) were added, and samples incubated at 1,400 rpm at 

37°C for 2 h on a thermo mixer. Then, sampled were diluted another two-fold with 100 mM 

TEAB and 2 μg of MS-grade trypsin (Thermo Fisher Scientific) were added. The mixture 

agitated on a thermomixer at 1,400 rpm at 37°C overnight. The digests were acidified with 

formic acid to pH <3 (1.5% FA final) and desalted using C18 StageTips according to the 

published protocol 59. Co-IP-MS experiments were performed in three biological replicates per 

antibody. 

nanoLC-MS/MS analyses 

LC-MS analyses were performed as described previously with the following minor modifications 
19,21. Peptide samples were separated on an EASY-nLC 1200 System (Thermo Fisher Scientific) 

using 20 cm long fused silica capillary columns (100 µm ID) packed with 3 μm 120 Å reversed 

phase C18 beads (Dr. Maisch, Ammerbuch, DE). The LC gradient was 120 min long with 

5−35% B at 300 nL/min. LC solvent A was 0.1% (v/v) aq. acetic acid and LC solvent B was 20% 

0.1% (v/v) acetic acid, 80% acetonitrile. MS data was collected with a Thermo Fisher Scientific 

Orbitrap Fusion Lumos. Data-dependent analysis was applied using Top15 selection with CID 

fragmentation. 

Computation of MS raw files  

Data .raw files were analyzed by MaxQuant/Andromeda 60 version 1.5.2.8 using protein, peptide 

and site FDRs of 0.01 and a score minimum of 40 for modified peptides, 0 for unmodified 

peptides; delta score minimum of 17 for modified peptides, 0 for unmodified peptides. MS/MS 

spectra were searched against the UniProt human database (updated July 22nd, 2015). 

MaxQuant search parameters: Variable modifications included Oxidation (M) and Phospho 

(S/T/Y). Carbamidomethyl (C) was a fixed modification. Max. missed cleavages was 2, enzyme 

was Trypsin/P and max. charge was 7. The MaxQuant “match between runs” feature was 

enabled. The initial search tolerance for FTMS scans was 20 ppm and 0.5 Da for ITMS MS/MS 

scans. 

MaxQuant output data processing  

MaxQuant output files were processed, statistically analyzed and clustered using the Perseus 

software package v1.5.6.0 61. Human gene ontology (GO) terms (GOBP, GOCC and GOMF) 

were loaded from the ‘Perseus Annotations’ file downloaded on 01.08.2017. Expression 

columns (protein and phosphopeptide intensities) were log2 transformed and normalized by 

subtracting the median log2 expression value from each expression value of the corresponding 

data column. Potential contaminants, reverse hits and proteins only identified by site were 

removed. Reproducibility between LC-MS/MS experiments were analyzed by column correlation 

(Pearson’s r) and replicates with a variation of r > 0.25 compared to the mean r-values of all 

replicates of the same experiment (cell line or knockdown experiment) were considered outliers 

and excluded from the analyses. Data imputation was performed using a modeled distribution of 

MS intensity values downshifted by 1.8 and having a width of 0.2. 

Kinobead competition correlation analysis (Ki-CCA) 

For each cell line tested, 21 KIP competition experiments and one DMSO control experiment 

were performed in biological duplicate, resulting in 44 kinobead pulldown and LC-MS 

experiments per condition/cell line. We defined a kinase or non-kinase protein as competed if it 
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showed a log2 MS intensity ratio of ≥ 0.75 and passed a two-sample t-test p < 0.1 with at least 

one of the 21 KIs used, i.e., comparing the two DMSO control experiments and two 

corresponding KI competition experiments. We then extracted the log2-transformed, 

normalized, and imputed MS intensity values of all competed kinases and non-kinases and 

correlated all kinases with all non-kinases for individual cell lines using Pearson moment 

correlation (n = 44). Then, kinases that show similar competition behavior were combined into 

groups (see below), and the maximum r-value of members retained for that group. Finally, the 

kinase group which showed the highest r-value for each non-kinase protein was determined, 

presenting the most probably kinase group – protein interaction among all possible interaction 

for each cell line.   

Determining kinase groups with similar KIP binding profiles 

Like Ki-CCA correlation analysis, kinase MS Intensity values were correlated with one another 

for each cell lines tested to identify kinases with very similar competitor binding profiles. Thus, 

kinases that show an r-value > 0.9 in at least 7 of 21 tested cell line were combined into kinase 

groups, defining that the interactors of kinases in these groups cannot be distinguished using Ki-

CCA. Examples are PRKAA1 and 2, AAK1 and BMPK, as well as STK24 and STK26 (see Table 

S2, Tab ‘Kinase Groups’)  

Plotting STRING Interaction Networks 

PPI networks were plotted using the STRING web application version 11.5 with the following 

settings: Edges were scaled with confidence, and only ‘physical subnetwork’ interactions were 

considered, i.e., only considering text mining, experiments, and databases 62.  

KS-test analysis and Receiver Operating Characteristic (ROC) plots 

Combined PPIs from BioGrid, BioPlex, and Buljan et. al. 2020 were used to populate the 

‘known’ PPIs in our dataset and used as the binary classifier. The Pearson’s r is used as the 

discrimination variable. KS plots were generated with the ‘ROCit’ package in R. ROC p-values 

were determined with the ‘verification’ package in R.  

Kinome dendrograms 

Kinome dendrograms were prepared using the KinMap web application 

(http://kinhub.org/kinmap/)63. 
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