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ABSTRACT 

Large-scale phospho-proteome profiling using mass spectrometry (MS) provides 

functional insight that is crucial for disease biology and drug discovery. However, 

extracting biological understanding from this data is an arduous task requiring 

multiple analysis platforms that are not adapted for automated high-dimensional data 

analysis. Here, we introduce an integrated pipeline that combines several R 

packages to extract high-level biological understanding from largescale phospho-

proteomic data by seamless integration with existing databases and knowledge 

resources. In a single run, PhosPiR provides data clean-up, fast data overview, 

multiple statistical testing, differential expression analysis, phospho-site annotation 

and translation across species, multi-level enrichment analyses, proteome-wide 

kinase activity and substrate mapping and network hub analysis. Data output 

includes graphical formats such as heatmap, box-, volcano- and circos-plots. This 

resource is designed to assist proteome-wide data mining of pathophysiological 

mechanism without a need for programming knowledge. 
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INTRODUCTION 

Protein phosphorylation is a reversible post-translational modification (PTM) 

catalyzed by protein kinases of the transferase class [1]. Since its discovery in 1932, 

numerous studies have highlighted the importance of phosphorylation as a central 

regulatory process in cells [2]. High numbers of often tightly interconnected 

phosphoproteins participate in cell signaling and all aspects of cellular function from 

proliferation and differentiation to metabolism and neurotransmission, to name a few  

[3] [4] [5]. Phosphorylation is the most abundant “signaling” post-translational 

modification exceeding ubiquitination, methylation, and acetylation [6]. To 

understand how complex phosphorylation changes, especially shifts introduced by 

pathophysiological states coordinate function, systems-level phosphoproteomics 

study becomes necessary [6]. Advanced mass spectrometry methods enable high 

throughput measurement of phosphoproteomes [7], however traditional downstream 

analysis does little beyond phosphopeptide identification and quantification. Recent 

developments in R packages have taken advantage of protein phosphorylation 

databases and annotation advances, thereby supporting the creation of an analysis 

tool that can better exploit phosphopeptide data.  

Here we introduce PhosPiR, a pipeline which takes advantage of available open-

source tools for a complete downstream analysis of mass spectrometry-derived data 

after phosphopeptide identification. No programing knowledge is required to run the 

pipeline. Our workflow consists of peptide quality control, data overviewing with 

histogram, boxplot, heatmap, and PCAs, data annotation utilizing UniProt and 

Ensembl database, differential expression analysis including four statistical test 

options and post-hoc testing, phospho-site translation across species, four 

enrichment analyses for phosphoproteins, PTM-SEA (post translational modification 
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set enrichment analysis) for phosphopeptide, kinase analysis, network analysis and 

hub analysis (Figure 1). The pipeline is accompanied by video tutorials and we 

exemplify the functionality of the tool using previously published largescale 

phosphoproteomic study of circadian clock changes in synaptoneuroscomes [8]. 
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METHODS 

Input data 

PhosPiR accepts output files directly from MaxQuant or preprocessed files from 

similar MS data processing platforms that provide peptide sequence identification 

and intensity data on post-translational modifications (PTMs) [9]. The input file for 

PhosPiR is “Phospho (STY)Sites.txt” from the “combined/txt” folder within MaxQuant. 

In case another spectra analysis tool is preferred instead of MaxQuant, such as 

Progenesis, Spectronaut, openMS, or PEAKS, PhosPiR has an “Other” option for 

input file. The following steps are all outlined in the user support video found at our 

GitHub page. The data input should follow the following format:  

 

1. File format should be .csv. 

2. The first 6 columns should contain information as follows. Column 1 contains 

the UniProt protein ID, column 2 contains the protein description, column 3 

displays gene name, column 4 shows the phosphorylated amino acid residue, 

column 5 records the phosphorylation site position within the protein, and 

column 6 shows the sequence window. The sequence window should have 

the phosphorylation site in the center position and extend in both directions by 

at least 7 amino acids. The order of the columns is crucial and should not be 

randomized.  

3. Column 7 onward should contain sample intensity values. Each column 

corresponds to 1 sample, and each row corresponds to 1 phosphorylation 

pattern. Intensity values should not be in log scale. 

4. Missing values should be written as “NA” or 0. Intensity columns should be 

numeric columns. 
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An example input file is shown in Supplementary Table 1. PhosPiR also supports 

proteomics data with the “Other” option for non-phospho proteomics data. In this 

case, when following the above format, column 5 and 6 should be marked “NA” for 

every row. To start the workflow, simply run the “run.R” script in R program. R can be 

downloaded from https://www.r-project.org/. 

 

 

 

Filtering and normalization setup 

Filtering and normalization steps are implemented as data quality control. It is 

important to understand the data and make educated choices here to bring forth the 

most reliable result. Filtering removes outlier rows and/or columns with excess 

missing values. The user can always choose not to filter. For normalization, there are 

3 choices, normalize and impute, only normalize, or neither. proBatch package [10] 

and MSImpute package [11] are utilized for normalization and imputation, 

respectively.  Median normalization is performed when “only normalize” is chosen. 

Quantile normalization and low-rank approximation imputation is performed when 

“normalize and impute” is chosen. These normalization methods were chosen as 

they have proven successful with phosphoproteomics [8, 10, 12]. Imputation requires 

at least 4 non-missing values per row, if the input data does not satisfy this 

requirement, the user will be forced to choose one of the other two options.   

 

 

Other information setup 
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Organism information, sample group information, and comparison information 

needed to be setup by the user. PhosPiR provides a prompt window accompanied 

by a guide for the setup process. For organism selection, the user should highlight 

an organism from the organism list, or if the organism is not available from the list, 

select “Other” from the list, then input the scientific name of the source organism. A 

few analysis steps are only available for human, mouse, or rat data.  

For sample group information, the user will be asked how many group classifications 

are found in the data, for each classification, a brief description is entered e.g. 

treatment or genotype, followed by group order. The group order is entered by 

providing a single number for each sample that represents its group classification, 

separated by a comma. For example, if a dataset contains 10 samples, the first 5 

from a patient group designated “1” and the other 5 from a healthy group designated 

“0”, the user would enter “1,1,1,1,1,0,0,0,0,0” in the prompt, and so on for additional 

groups. Multiple group comparisons can also be setup. In this case, the user 

chooses the group classification first, and then enters e.g. “1,2” to specify the groups 

that should be compared against each other. The process can be repeated for as 

many group comparisons are wished. Lastly, the user can select whether to run all 

analysis steps, or only annotation/overview figure step. After setup, PhosPiR will run 

the analyses automatically, however, between analyses, step-specific choices will be 

given to the user, and the pipeline will not continue until the user has responded. 

 

Overview Figures  

Several figures will be plotted automatically in order to provide an overview of the 

data distribution. Boxplot and histograms are suitable visuals for comparing sample 
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distributions. Heatmaps, PCA with k-means clustering, and 3D PCA plots will 

automatically display the results from unsupervised clustering of the data, providing 

informative biological patterns from the data. Log 2 intensity values are automatically 

generated and used for overview figures. A few packages are utilized for this step. 

Boxplot and histogram are plotted with “ggplot2” [13]; heatmap is plotted with 

“pheatmap” [14]; PCAs and 3D PCA are plotted with “rcdk” [15], “fingerprint” [16], 

“vegan” [17], “rgl” [18], “FactoMineR” [19], “factoextra” [20], “plot3D” [21], and 

“magick” [22]. 

 

Data annotation 

A data annotation step utilizes information from all organisms found in the Ensembl 

database to identify for example reviewed accession and phosphorylation site 

position, Entrez ID, genome position of the protein, human ortholog genome position, 

accession, identify score and sequence alignment, protein pathology, expression, 

posttranslational modifications, subcellular location, and links to publications 

containing information on the protein in question. For each unique protein i.d., this 

information is extracted from both the Ensembl and Uniprot database. For non-

human organisms, the human ortholog information is also included for comparison. 

Due to the long run time, the user has the choice to opt out of UniProt and human 

ortholog information mining.  

Non-human organism data usually has many unreviewed accessions within the 

dataset. Some databases such as PhosphoSitePlus, host site information based on 

Swiss-Prot accessions, and does not include unreviewed accessions. This results in 

difficulties matching the input phospho-site identity to the database’s information. 
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PhosPiR solves this issue by identifying the Swiss-Prot accession for the protein and 

aligning the sequences to generate the equivalent reviewed phospho-site position. 

This reviewed site information can be used for database searches by data 

annotation tools, thereby maximizing the identification of associated biological 

information. Human ortholog information allows for direct comparison of model 

organism data to human information. Pairwise alignment to human ortholog protein 

sequences allows the user to identify orthologous phosphorylation sites in human for 

any site of interest identified in their organism. Sequence alignment should only 

serve as a reference. While it should be accurate for alignments with high identity 

scores, its practicality decreases as sequence identify score decreases. The 

following packages are utilized for this step: “biomaRt” [23], “Biostrings” [24], 

“GenomicAlighments” [25], “protr” [26], and “UniprotR” [27]. 

 

Differential expression analysis  

Statistical tests are performed based on the group comparison setup. The user 

selects whether or not the data is paired in the given comparison and is offered a 

choice of statistical tests. For two group comparisons, fold change is automatically 

calculated. The fold change direction is determined by the group number, where the 

group with the larger number is the numerator. Group numbering should therefore 

take this into account. Four statistical tests T-test, Wilcoxon signed-rank test, 

reproducibility-optimized test statistic (ROTS) and rank product test can be chosen. 

T-test should not be chosen for nonparametric data. All tests can be selected if 

desired. Each test will yield a p-value and an FDR value for each data row. For a 

multiple group comparison, ANOVA with post-hoc Tukey HSD Test will be performed 
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if the groups are not paired, and linear mixed effect modeling (LME) is performed if 

groups are paired. Next, the user can set thresholds based on p-value or FDR for 

example. The significant lists will then be used as input for enrichment and network 

analyses. The user can choose volcano plots to visualize the statistical results. 

Multiple comparisons (maximum 4) can be plotted together. Based on the selected 

statistical cut-off, significant entries in the plot will be labeled if the number of 

significant changes is less than 60 in total. ROTS analysis utilizes the “ROTS” 

package [28], “RankProd” [29] performs the rank product analysis, “multcompView” 

[30], “lsmeans” [31], and “nlme” [32] are ultilized for LME modeling. “ggrepel” [33] 

and “gridExtra” [34] are utilized in addition to “ggplot2” for volcano plots. 

 

Enrichment Analysis 

Enrichment analysis is performed on both phospho-protein intensity data and 

phospho-site data. Protein level enrichment utilizes the “clusterProfiler” package [35]. 

This powerful analysis tool enables gene ontology (GO) enrichment, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and cell marker 

enrichment, and for human data, disease-association enrichment. For KEGG 

analysis, it automatically utilizes the current latest online version of KEGG database 

which for example includes the COVID-19 pathway from the newest release (v.98). 

All the listed enrichment analyses are performed for each significant list created 

earlier. Both universal background and dataset background are applied for separate 

analyses. Only enrichments with significant entries are recorded as a result. 

Phospho-site enrichment utilizes the “PTM-SEA” (PTM-signature enrichment 

analysis) tool and its library PTMsigDB [36]. PTMsigDB curates detailed post-

translational modification (PTM) information based on perturbation-induced site-
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specific changes, such as the direction of phosphorylation change upon a signaling 

event, and the affected signature sets that are collectively regulated. PTM-SEA 

analysis is performed on the entire dataset for all group comparisons. It is available 

for human, mouse, and rat. 

 

Kinase Substrate Analysis 

A kinase–substrate relationship analysis is performed with the “KinSwingR” package 

[37], on each group comparison. It predicts a kinase-substrate interactome based on 

a library of motifs, and then integrates the fold change direction and P-value from the 

statistical results, to calculate a normalized swing score. The score resembles a z-

score which predicts kinases’ activity changes. The P-value is calculated to 

determine the significance level based on a permutation test. PhosPiR utilizes the 

latest kinase information from the PhosphoSitePlus human, mouse, and rat data for 

customized kinase library [38] instead of the kinase dataset included in KinSwingR, 

which has become outdated and is only available for human.  

A kinase-substrate network Circos plot is automatically created with the “circlize” 

package [39] which shows the top 250 significant substrates. Kinases are connected 

with edges to their specific substrate sites with phosphorylation sites grouped by 

phosphoprotein. 

 

Phosphoprotein/Protein Network Analysis 

The phosphoprotein network is built using the “STRINGdb” package [40]. The 

STRING tool uses its own protein:protein interaction database which is used in 
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PhosPiR to build an interaction network from each significant data list. Only 

interactions with greater than 0.4 confidence score (ranging from 0-1) are included in 

the STRING network figure (e.g. Supplementary Figure 1). The user can choose to 

identify hubs from within each network, and a hub interaction-enrichment score is 

also calculated. Hub phosphoproteins represent highly connected proteins within the 

network and are therefore likely to be functionally informative. The user can also 

choose from two cut-offs for defining hubs: the top 10% highest interactions, or an 

interaction count of one standard deviation above the mean. The hub interaction 

enrichment is calculated by generating 1000 control networks for each hub and 

comparing hub interactions in control networks to the query network. Both p-value 

and FDR are presented in the result. 
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RESULTS 

Description of example setup and output 

To demonstrate the functionality of PhosPiR, we analyzed synaptoneurosome 

phosphoproteome data from Brüning et al., 2019 [8]. In the original study, the 

authors studied the phosphorylation changes over time in synaptic terminals 

(otherwise known as synaptoneurosomes) from sleep-deprived mice and control 

mice. Here, we compared the overall differences in synaptoneurosome protein 

phosphorylation from mice while awake or asleep under control or sleep-deprived 

conditions.  

 

The original study processed the synaptoneurosome phosphopeptide data with the 

EasyPhos platform. The sleep wake cycles were controlled as follows: mice were 

kept in a light:dark 12 hours cycle, synaptoneurosomes were taken every 4 hours 

(n=4) in a single day for sleep-deprived mice and baseline mice, totaling to 48 

samples [8].  For the re-analysis of this data, we downloaded the raw MS files from 

the PRIDE database with identifier PXD010697. Taking the original data preparation 

as a reference [8], we preprocessed the raw data in a similar fashion using 

MaxQuant 1.6.17.0 [9] and Perseus 1.6.7.0 [41] (Supplementary Table 1). When 

inputting the preprocessed data into PhosPiR, “Neither” was selected for 

normalization and imputation, as it is done outside of the pipeline.  

 

The folder organization of the output files from PhosPiR is shown schematically in 

Supplementary Figure 2. The Group Information folder describes the group 

comparisons as setup by the user. Examples of group information can be found in 
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Supplementary Tables 2 and 3, respectively. In the Overview Figure folder, the 

overall data distribution is visualized in several ways including histograms, heat-

maps, PCA, and boxplots plots. An example is shown in Supplementary Figure 3. 

The Statistical Analysis folder presents the statistical data including significance 

threshold for several tests as well as volcano plot output of significantly changing 

phosphopeptides or proteins, for each comparison and for every statistical test 

selected. Examples of statistical analysis output are shown in Figure 2A and 

Supplementary Table 4. The Enrichment folder stores the protein-centric result on 

cell marker enrichment, GO enrichment and KEGG enrichment (Figure 2B and 

Supplementary Table 5), and peptide-centric PTM-SEA enrichment result. PTM-SEA 

data is stored in the PhosphoSite enrichment subfolder, which includes 

converted .GCT input files and PTM-SEA analysis results, one per comparison, each 

in its own folder. Example rank plots of phosphorylation signatures can be found in 

Figure 2C. Kinase Analysis folder includes predicted significant kinases analyzed 

from KinSwingR, and resembled by swing scores, similar to z-scores for kinase 

activity change, and p-values, which indicate the significance of this change. Kinase 

activities are evaluated from the entire set rather than from the significant list. 

Examples of motif diagrams and kinase swing score output can be found in Figure 3 

and Supplementary Table 6, respectively. The Network folder provides interaction 

figures of kinases to substrates spinning off from kinase analysis (Figure 4), also 

provides output from the STRING database network analysis and hub significance 

analysis. Examples are shown in Supplementary Figure 1 and Figure 5. The 

Annotation folder includes important ID information, UniProt database information, 

human homolog information and sequence alignment for all proteins as well as 

phosphorylation sites from the dataset. An example of human homolog ID 
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information and UniProt database information can be found in Supplementary Table 

7 and 8, respectively.  

 

Description of example results 

The MS data used here [8], incorporated intensity data for 13,634 phosphosites from 

which, 8,386 remained after filtering. Among these, PhosPiR identified 61 known 

disease associated phosphorylation sites, and 256 known regulatory sites using the 

automatic detection annotation tools (Supplementary Tables 9 and 10). The group 

comparisons (control verses sleep-deprived, and wake period verses sleep period 

with or without sleep-deprivation), identified 367 significantly changing 

phosphorylation sites with fold change ≥ 2, and Rank product FDR of <0.05. These 

results can be seen from volcano plot and csv file output (Figure 2A, Supplementary 

Table 11).  Interestingly, the proteins with significantly altered phosphorylation 

between wake and sleep time were enriched for changes on the dopaminergic 

synapse pathway, as shown in Figure 2B. Thus, significant phosphopeptide changes 

were identified for voltage gated ion channels VGCC, VSSC and Cav2.1/2.2, and for 

signaling proteins PLC, PKC and CamKII (Figure 2).  

In the phosphosite-centric enrichment analysis, the signature set “rapamycin” was 

40% downregulated and the “mTOR” signature set was 14% upregulated, in sleep-

deprived synaptoneurosomes (Figure 2C), consistent with known negative regulation 

of mTOR by Rapamycin [42]. This demonstrates the utility of the PhosPiR pipeline to 

make functionally accurate predictions as the mTOR pathway is known to regulate 

sleep-deprivation induced responses [43, 44]. Moreover, as the PhosPiR identifies 

specific phosphorylation sites from these signature sets, as well as their regulatory 
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function, where documented (Supplementary Table 12), far more detailed 

mechanistic insight can be gained using PhosPiR’s integrated approach than would 

be possible with a stand-alone phospho-site analysis. This is further supported by 

the PhosPiR kinase activity analysis, which uses the KinSwingR package to predict 

kinase activity changes (Figure 3, Supplementary Table 13).  

Examples of identified kinase substrates that undergo altered phosphosphorylation 

at synapses during wake verses sleep hours, or following sleep-deprivation, are 

shown in the Circos plots in Figure 4A and B. In Figure 4A, neurofilament M (NEFM) 

which shows the greatest fold change in phosphorylation (-115x) can be seen to be 

regulated by SRC, ADRBK1 (GRK2), CSNK1D and PRKCD in synaptoneurosomes 

when comparing wake hours to sleep hours. Examination of the corresponding 

statistics file reveals that RPS6KA1 has the most increased activity among kinases 

based on motif phosphorylation, and PRKCZ shows the largest decrease in activity 

during wake hours in sleep-deprived mice based on observed phosphorylation 

changes on known kinase motifs (Figure 4B). This figure also highlights mTOR, this 

time as one of the kinases with the largest number of substrates that undergo altered 

phosphorylation in synaptoneurosomes from sleep-deprived mice. The precise 

substrates; adhesion G-potein coupled receptor L1 (LPHN1), cell cycle exit and 

neural differentiation protein 1 (CEND1), piccolo (PCLO), F-actin mono-oxygenase 

(MICAL3), spectrin beta chain (SPTBN1), MARCKS, GJA1 and MAP1B, and their 

altered phosphorylation sites, can be read directly from the plot (Figure 4B). 

 

The hub analysis of protein phosphorylation in synaptoneurosomes during wake time 

verses sleep time has identified that the NMDA receptor subunit GRIN2B was a 
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highly significant signaling hub (Figure 5A). This is consistent with several reports 

pointing to NMDAR in sleep regulation especially in the context of autoimmune 

encephalitis-induced sleep disturbance [45, 46]. Similarly, SHANK3 was highly 

connected to the changing phosphoproteins, consistent with its reported action in the 

control of circadian rhythm [47]. Synapsin I (SYN1), a neurotransmitter release 

regulatory protein, was also highly networked with the wake cycle phospho-proteins. 

SYN1 has previously been associated with synaptic changes following sleep 

deprivation [48]. Conversely, in sleep-deprived mice, there were fewer hubs overall 

consistent with the finding of Bruning et al, which showed that phosphorylation 

cycling was reduced upon sleep deprivation [8]. Nonetheless, synapsin I, 

neurofilament (NEFM) and MAPT showed increased connectivity to the regulated 

phosphoproteins (Figure 5B). MAPT phosphorylation has been shown to increase 

upon sleep deprivation stress [49]. Thus, PhosPiR automated analysis identified 

known regulators of sleep/wake cycle and sleep deprivation stress in synaptic 

terminal preparations from mouse brain. Moreover, PhosPiR provides site-specific 

and network information that can assist detailed parsing of mechanism. 

As evident from the results, in addition to kinase-substrate prediction, kinase activity 

directional changes are also predicted by PhosPiR. Significantly, phosphorylated 

substrates are linked to kinases that are predicted to change activity, and the 

enrichment is checked with PTM-SEA. Moreover, as all identified sites are matched 

to their human homolog with pairwise alignment (Supplementary Table 14), analysis 

of pathological implications could be further confirmed from database search of 

aligned homolog sites. These are some of the highlights of PhosPiR. 
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Discussion 

PhosPiR is an automated pipeline that does not require any coding knowledge from 

its user. It integrates several new phosphoproteomic analysis tools such as PTM-

SEA and KinSwingR into a single pipeline while it simultaneously translates 

phosphoproteomic data from model organisms to human in order to exploit a range 

of customized databases that facilitate identification of functionally relevant 

information.  

Although all analysis steps are automatic, the pipeline retains flexibility through its 

setup options. The user is free to fully customize group comparisons. For example, 

in addition to the examples shown here, a time series analysis can also be included, 

by choosing the pairwise multi-group comparison option. All user options are 

presented with textboxes created using the “svDialogs” package [50] creating a 

straightforward and seamless experience for the user. Although the pipeline can be 

applied also to non-phospho proteomic data, several of the functions are specific to 

phospho-proteomics. For example, the ortholog alignment function, PTM-SEA 

enrichment analysis, kinase substrate analysis and the kinase network figure 

generation all rely on phosphorylation-site information. Among the unique features is 

the ortholog alignment tool that provides a human reference site for every single 

phosphorylation-site from mouse or rat. An important benefit of PhosPiR is that it 

integrates several packages, such as PTM-SEA that utilize customized, curated 

libraries that contain up to date information. The integrated “kinase analysis” function 

in PhosPiR not only predicts which kinases are linked to the input data, but also 

predicts activity changes based on the generated statistics. The “kinase network” 

function clearly labels substrate phospho-site position and organizes them by 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.14.460225doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460225


19 
 

protein, thereby providing a clear visual summary for significant kinase substrate 

changes. 

Many important functions of the pipeline come from recently developed, powerful R-

packages, which the pipeline unifies and provides important customizations. For 

example, most of the included analysis packages require strict input formats and 

generate diverse output formats. PhosPiR utilizes packages such as “reshape2” [51], 

“vroom” [52], “openxlsx” [53], “textreadr” [54], “plyr” [55] and “cmapR” [56] to 

transform data between analysis steps, so that input requirements are satisfied, and 

output results are unified. Output figures are expanded from the originals, modified 

with packages such as “gplots” [57], “gridExtra” [34], and “RColorBrewer” [58] to be 

informative at a glance. Many more packages are utilized and listed within Method 

section, we wanted to include all of them to offer their functionalities and 

customizations to a wider audience of non-bioinformaticians. PhosPiR also supports 

a wide range of organisms. With the exclusion of the disease ontology semantic 

enrichment analysis (DOSE), kinase analysis and PTM-SEA which search only 

human data, whereas all other analysis steps support up to 18 organisms. 

Our pipeline offers unique functionalities compared to even the most recent analysis 

packages such as PhosR [59], which provides a kinase analyses toolkit for 

bioinformaticians working in R coding language. In contrast, the PhosPiR workflow 

doesn’t require coding knowledge and can be performed by non-bioinformaticians. 

Furthermore, PhosPiR provides automated protein and site annotation from UniProt, 

Ensembl, and PhosphoSitePlus. The annotation files provide information on 

functionality and associated pathologies. Scientific references for identified functions 

are included in the output. Another unique feature of the pipeline is the protein-
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centric network and hub analysis, which provides aligned sequence information on 

human homolog when for example the input data is from a model organism. Finally, 

the annotations accompanying the kinase enrichment function (using the PTM-SEA 

database) takes into account directionality of phosphorylation change when 

identifying pathology and regulatory signatures. These many exclusive features 

enable users to study their data from multiple angles and distinguishes PhosPiR 

from existing phospho-proteomic data analysis software. 

The current pipeline marks version 1.0. New functionalities are already in 

development. We aim to provide an automated result report in the next version and 

provide direct input support for results generated from more spectra analysis tools. 

The most time-consuming step of comparison setup will also be further optimized. 

We hope PhosPiR provides an opportunity for users with limited programming 

knowledge to experience great R packages for comprehensive functional prediction 

analysis with statistical support, from their phosphoproteomics data.  
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LEGENDS 

Figure 1. Flowchart overview of pipeline architecture. The main pipeline steps 

are outlined. Information on software packages utilized and/or information on the 

approach used is provided in adjoining boxes. 

 

Figure 2. Sample output from the statistical and enrichment analysis feature of 

PhosPiR. Phosphoproteome changes in synaptoneurosomes of sleep-deprived 

verses normal sleep cycle mice. A. Normalized phosphoproteomic data was loaded 

to PhosPiR. Automated statistical analysis was done on user-defined group 

comparisons for up to 4 statistical tests and visualized as volcano plots and csv files. 

A representative volcano plot is shown for the rank product statistical analysis 

output. Significant proteins are labeled in the volcano plots only when there are ≤ 60 

significant datapoints, otherwise the labels overlap. In this example the number of 

significant hits are > 60. Every volcano plot is accompanied by a csv file providing 

detailed numerical output from all statistical tests, including UniProt and gene 

accession identifiers.  B. PhosPiR performs several enrichment analyses on the data 

e.g. GO, cell marker and KEGG enrichment analyses. The KEGG analysis output is 

shown from the comparison between wake and sleep time synaptoneurosomes 

phosphopoteome, as an example. C. Phosphosite enrichment using the post-

translational modification set enrichment analysis (PTM-SEA) compares 

synaptoneurosomes from sleep-deprived mice and control mice during wake hours. 

Enrichment P-values and FDR (adjusted p-value) are indicated. This analysis 

highlights synaptic upregulation of mTOR pathway phosphorylation in sleep-deprived 

mice. Information on specific proteins and regulated sites are found in the 

accompanying csv file in the Enrichment\PhosphoSite enrichment folder. 

 

Figure 3. PhosPiR utilizes the KinSwingR tool to predict increases or 

decreases in kinase activities for defined group comparisons. PhosPiR 

integrates the KinSwingR tool which assesses local connectivity (swing) of kinase-

substrate networks. Automated output from PhosphoPiR kinase analysis predicts 

regulated kinase activity based on identified substrate motifs. The final swing score 

is a normalized and weighted score of predicted kinase activity. Swing scores, 
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positive and negative represent the direction of kinase activity change. 

Representative output tiffs are shown and accompanying csv file 

(ComparisonX_swingscore) is found in the Kinase analysis output folder.  

 

Figure 4. Kinase substrate network prediction tool. PhosPiR performs a 

proteome-wide kinase analysis using the KinSwingR package as shown (Fig. 3). The 

PhosPiR Network Analysis tool finds the top kinase-substrate relations and presents 

them in a Circos plot. A, B. Predicted kinase-substrate connections from the 

significantly changing data for group comparisons (A) wake hours verses sleep 

hours from control mice and (B) sleep deprived vs control mice during wake hours 

are shown. Colored ribbons link the kinase of interest with the substrate 

phosphorylation site that is significantly changed in the comparison. Predictions rely 

on known kinase-substrate phosphorylation sites. Only the top 250 most significant 

kinase-substrate relationships are plotted, to facilitate labeling. All output data is 

available in the accompanying csv file ComparisonX_significant_kinaseNetwork. 

 

Figure 5. PhosPiR identifies network hubs based on protein:protein 

interactions. Sample output from the Network Analysis tool hub analysis is shown in 

A and B. Hubs are defined as proteins with interaction number > 1 standard 

deviation from the mean. Hub significance is calculated from the number of 

interactions within the data set compared to 1000 equal sized background datasets 

randomly generated from the total data. The hub interaction count in the background 

dataset is shown as a boxplot, and interaction count (hubness) in the target network 

is indicated by a red star. P-values calculated from the permutation test are indicated 

above the boxplots. Hubs from comparisons of sleep deprived vs control mice during 

wake hours, and wake hours verses sleep hours from sleep-deprived mice are 

shown in A and B, respectively. 
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Figure 4

Synapse kinase substrate phosphorylation network
in control mice (wake hours versus sleep hours)

A B

Synapse kinase substrate phosphorylation network
in sleep-deprived versus control mice during wake hours
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Hubs of sleep-deprived versus control mice 
comparison in wake hours
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