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Abstract 23 

Blood cell counts often fail to report on immune processes occurring in remote tissues. Here we use 24 

immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying 25 

human immune cell dynamics. We characterized cfDNA released from specific immune cell types in 26 

healthy individuals (N=242), cross sectionally and longitudinally. Immune cfDNA levels had no 27 

individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects 28 

adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation 29 

of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza 30 

vaccination (N=92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and 31 

predicted efficacy of antibody production. Patients with Eosinophilic Esophagitis (N=21) and B-cell 32 

lymphoma (N=27) showed selective elevation of eosinophil and B-cell cfDNA respectively, which 33 

were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for 34 

monitoring immune responses to physiological and pathological processes that are not accessible using 35 

conventional methods. 36 

 37 

 38 

  39 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460029doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460029
http://creativecommons.org/licenses/by/4.0/


 3 

INTRODUCTION  40 

Circulating biomarkers for monitoring inflammatory or immune responses are an essential part of 41 

diagnostic medicine and an important tool for studying physiologic and pathologic processes. These 42 

include, among others, counts of specific immune cell types in peripheral blood, RNA expression 43 

profiles in blood cells(Maas et al., 2002; Tuller et al., 2013), and levels of circulating proteins such as 44 

CRP(Gabay and Kushner, 1999; Sproston and Ashworth, 2018). A major limitation of circulating 45 

immune cell analysis is that it often fails to report on immune processes taking place in remote 46 

locations. Conversely, CRP and similar proteins do reflect the presence of tissue inflammation but are 47 

highly non-specific with regard to tissue location and the nature of inflammatory process(Gabay and 48 

Kushner, 1999).  49 

Dying cells release nucleosome-size fragments of cell-free DNA (cfDNA), which travel transiently in 50 

blood before being cleared by the liver(Heitzer et al., 2019). Analysis of the sequence of such 51 

fragments is emerging as a powerful diagnostic modality. Liquid biopsies using cfDNA have been 52 

applied to reveal the presence of mutations in a fetus as reflected in maternal cfDNA(Bianchi et al., 53 

2014; Christina Fan et al., 2012; Lo et al., 1997), identify and monitor tumor dynamics via the presence 54 

of somatic mutations in plasma(Wan et al., 2017), and detect the rejection of transplanted organs when 55 

the levels of donor-derived DNA markers are elevated in recipient plasma(De Vlaminck et al., 2015, 56 

2014). More recently, we and others have shown that tissue-specific DNA methylation patterns can be 57 

used to determine the tissue origins of cfDNA, allowing to infer cell death dynamics in health and 58 

disease even when no genetic differences exist between the host and the tissue of interest(Cheng et al., 59 

2019; Lehmann-Werman et al., 2016)  60 

Although the majority of cfDNA in healthy individuals is known to originate in hematopoietic 61 

cells(Lehmann-Werman et al., 2016; Moss et al., 2018b; Sun et al., 2015), it has often been regarded 62 

as background noise, against which one may look for rare cfDNA molecules released from a solid 63 

tissue of interest. We hypothesized that identification of immune cell-derived cfDNA could open a 64 
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window into immune and inflammatory cell dynamics, even in cases where peripheral blood counts 65 

are not informative. Here we describe the development of a panel of immune cell type-specific DNA 66 

methylation markers, and the use of this panel for cfDNA-based assessment of human immune cell 67 

turnover in health and disease. We show that immune cell cfDNA measurement can provide clinical 68 

biomarkers in multiple disease and treatment conditions, otherwise undetectable by cell subset 69 

enumeration in blood.     70 

  71 

RESULTS  72 

 73 

Identification of cell type-specific DNA methylation markers for immune cells 74 

Using a reference methylome atlas of 32 primary human tissues and sorted cell types(Moss et al., 75 

2018b), we searched for CpG sites that are hypomethylated in a specific immune-cell type and 76 

hypermethylated elsewhere. Consistent with the fundamental role of DNA methylation as a 77 

determinant of cell identity, we identified dozens of uniquely hypomethylated CpG sites for most cell 78 

types examined, qualifying these as biomarkers for DNA derived from a given cell type (Figure 1A). 79 

Based on this in silico comparative analysis, we selected for further work 17 different CpG sites, whose 80 

combined methylation status could distinguish the DNA of 7 major immune cell types: neutrophils, 81 

eosinophils, monocytes, B-cells, CD3 T-cells, CD8 cytotoxic T-cells, and regulatory T-cells (Tregs). 82 

For each marker CpG we designed PCR primers to amplify a fragment of up to 160bp flanking it, 83 

considering the typical nucleosome size of cfDNA molecules. Amplicons included additional adjacent 84 

CpG sites, to gain enhanced cell type specificity due to the regional nature of tissue-specific DNA 85 

methylation(Lehmann-Werman et al., 2016). We then established a multiplex PCR protocol, to co-86 

amplify all 17 markers from bisulfite-treated DNA followed by next generation sequencing for 87 

assessment of methylation patterns(Neiman et al., 2020). Methylation patterns of amplified loci across 88 

18 different human tissues validated the patterns inferred from in silico analysis and supported the 89 
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ability of this marker cocktail to specifically identify the presence of DNA from each of the seven 90 

immune cell types (Figure 1B). We also assessed assay sensitivity and accuracy via spike-in 91 

experiments. We mixed human leukocyte DNA with DNA from the HEK-293 human embryonic 92 

kidney cell line and used the methylation cocktail to assess the fraction of each immune cell type. The 93 

markers quantitatively detected the presence of DNA from specific immune cell types even when blood 94 

DNA was diluted 10-20 fold (Figure 1C and Supplementary Figure S1). These findings establish 95 

specificity, sensitivity and accuracy of the methylation marker cocktail for detection of DNA derived 96 

from the 7 selected immune cell types.  97 

  98 
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 99 

Immune cfDNA reflects cell turnover rather than counts of circulating blood cells 100 

To validate assay accuracy, we applied the immune cell methylation markers to genomic DNA of 101 

blood cells, expecting to observe signals that agree with cell ratios as determined by Complete Blood 102 

Counts (CBC). We obtained 392 blood samples from 79 healthy individuals at different time points, 103 

and simultaneously tested for CBC, and methylation marker cocktail both in DNA extracted from 104 

whole blood as well as in cfDNA extracted from plasma. Theoretically, immune-cell cfDNA could be 105 

a mere reflection of the counts of each cell type (for example, if it is released mostly from blood cells 106 

that have died during blood draw or preparation of plasma). In such a case, immune cfDNA should 107 

correlate well with CBC (and with immune methylation markers measured in genomic DNA from 108 

whole blood). Alternatively, if cfDNA reflects cell death events that took place in vivo, the correlation 109 

to cell counts is expected to be weaker.   110 

Comparing the CBC to DNA methylation pattern, we observed a strong correlation between 111 

assessments of specific cell fractions in the two methods (Pearson’s correlations; r=0.67-0.83, P-112 

value<0.0001, Figure 2A and Supplementary Figure S2), supporting validity of the methylation 113 

assay for identifying fractions of DNA derived from specific immune cell types, consistent with 114 

Figure 1:  Identification of specific immune-cell DNA methylation markers. 

 A, Methylation atlas, based on Illumina 450K arrays, composed of 32 tissues and sorted cells (columns). For 

each immune cell type we chose the top 10 CpGs that are hypomethylated (yellow) in the specific immune 

cell type and hypermethylated (blue) in other tissues and cells. This yielded 70 cell specific CpG sites (rows) 

for 7 different immune-cell subtypes– B-cells, CD8 cytotoxic T-cells, CD3 T-cells, regulatory T-cells, 

eosinophils, monocytes and neutrophils. B, methylation patterns of 17 loci, selected from the 70 shown in 

panel A, based on the presence of multiple adjacent hypomethylated CpGs within an amplicon of up to 160bp. 

Each methylation marker (columns) was assessed using genomic DNA from 18 different tissues and cell types 

(rows). All 17 markers were amplified in one multiplex PCR reaction. C, Spike-in experiments assessing 

assay sensitivity. Human leukocyte DNA was mixed with DNA from HEK-293 cells (human embryonic 

kidney cells) in the indicated proportions. Colored lines show the inferred proportion of DNA from each 

immune cell type using markers specific to neutrophils (NEUT1, NEUT2, NEUT3), monocytes (MONO1, 

MONO2), eosinophils (EOSI2, EOSI3), B-cells (B-CELL1, B-CELL2, B-CELL3), CD3-T-cells  (T-CELL1, 

T-CELL2), CD8 cytotoxic T cells (CD8A, CD8B), and regulatory T cells (TREG1, TREG2). 
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previous findings(Baron et al., 2018).  However, comparison of cfDNA methylation markers in plasma 115 

to blood DNA methylation markers and CBC, we observed that proportion of cfDNA from specific 116 

immune cell types did not correlate with the proportion of the same markers in circulating blood cells 117 

and with CBC (Pearson’s correlations; r=0.14-0.53, Figure 2B-C and Supplementary Figure S2). 118 

These findings suggest that immune cfDNA levels are the result of biological processes beyond 119 

immune cell counts. 120 

We reasoned that over- or under-representation of DNA fragments from a specific immune cell type 121 

in plasma compared with blood counts most likely result from differences in cell turnover. The 122 

concentration of cfDNA from a given cell type should be a function of the total number of cells that 123 

have died per unit time (turnover rate), which is derived from the number of cells and their lifespan: 124 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟

𝐿𝑖𝑓𝑒 𝑠𝑝𝑎𝑛
= 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑒 125 

The larger the population of a given cell type (both circulating and tissue-resident), the more cfDNA 126 

it will release; similarly, the shorter is lifespan, the more DNA will be released to plasma. The cfDNA 127 

findings were consistent with this model. For example, the fraction of lymphocyte cfDNA in plasma 128 

was always smaller than the fraction of lymphocyte DNA in circulating blood cells or the fraction of 129 

lymphocytes in CBC (Figure 2B-C and Supplementary Figure S2), in agreement with the long half-130 

life of lymphocytes compared with other blood cell types(Macallan et al., 2005; Michie et al., 1992). 131 

Conversely, the fraction of monocyte cfDNA was larger than the fraction of monocyte DNA in 132 

genomic DNA from whole blood or the fraction of monocytes in CBC (Figure 2B-C), consistent with 133 

the shorter half-life of monocytes(Patel et al., 2017). 134 

To further examine the relative presence of immune cfDNA in plasma and whole blood, we employed 135 

an independent set of samples and an independent technology to measure and interpret methylation 136 

markers. Specifically, we performed deconvolution(Moss et al., 2018b) of methylomes obtained by 137 

whole genome bisulfite sequencing (30x coverage), on genomic DNA from whole blood, and matched 138 
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plasma cfDNA from 23 healthy donors (see Methods). This analysis, based on genome-wide 139 

methylation patterns, also revealed that lymphocyte and monocyte cfDNA was under- and over-140 

represented, respectively, relative to the abundance of DNA from these cells in blood (lymphocytes, 141 

p-value=0.002; monocytes, p-value=0.0005, Kruskal-Wallis) (Figure 2D). 142 

These findings support the exciting idea that cfDNA levels from a given immune cell type integrate 143 

total cell number and the lifespan of that cell type, and can provide information on processes not 144 

evident from circulating cell counts. For example, if the level of cfDNA from a specific immune cell 145 

type increases while the circulating counts of this cell type are unchanged, this can indicate either 146 

growth in the size of a tissue-resident population, or increased cell turnover, both of which are 147 

important immune parameters that cannot be easily obtained otherwise. Below we provide evidence 148 

that such information can be extracted following perturbations of immune homeostasis.  149 

 150 

Estimation of immune cfDNA baseline in healthy individuals  151 

To define the baseline levels of immune-derived cfDNA in healthy individuals, we collected and tested 152 

plasma samples from 227 healthy donors (males and females, ages 1-85 years). Consistent with our 153 

previous plasma methylome analysis(Moss et al., 2018a) , we found that neutrophils were the main 154 

source of immune-derived cfDNA (Mean=390, range 10-1064 genome equivalents [GE] /ml), 155 

followed by monocytes (Mean=101, range 6-233 GE/ml), eosinophils (Mean=38,range 0-111 GE /ml) 156 

and  lymphocytes (T cells, Mean=30, range1-79; B cells, Mean=17,range 3-42; CD8 T-cells, 157 

Mean=8,range 0-27; Tregs, Mean=2, range 0-9 GE/ml) (Supplemental Figure S3). These data chart 158 

the normal range of cfDNA concentrations from specific immune cell types, including age and gender 159 

characteristics, against which pathologic deviations can be identified (see below).  160 

We also conducted a longitudinal study, to understand how immune-derived cfDNA is changing over 161 

time in the same individual. We collected weekly blood samples from 15 healthy donors over a period 162 

of 6 weeks. For each sample we obtained CBC and measured immune DNA methylation markers in 163 
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genomic DNA of blood cells and in plasma cfDNA. We then calculated the coefficient of variation 164 

(CV) among CBC, blood methylation markers and cfDNA methylation markers, within and between 165 

individuals. In circulating blood cells, the inter-individual variation in immune methylation markers 166 

and CBC was always higher than the intra-individual variation in these markers (Figure 2E and 167 

Supplementary Figure S3). This is consistent with previous reports that blood cell counts among 168 

individuals are more similar to themselves than to others, indicating distinct set-points per person for 169 

the total number of specific immune cell types circulating in blood(Alpert et al., 2019; Carr et al., 170 

2016). Strikingly, cfDNA values of the same immune methylation markers varied to the same extent 171 

among samples of the same individual and among samples of different individuals (Figure 2F). This 172 

argues that unlike cell counts, cfDNA of immune cells has no individual set-point. Rather, cfDNA 173 

levels appear to reflect homeostatic maintenance of cell number, whereby cell birth and death are 174 

modulated to maintain a desired cell count. 175 
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 177 

 178 

Elevation of B-cell derived cfDNA after influenza vaccination precedes changes in cell counts 179 

and correlates with specific antibody production  180 

We hypothesized that upon perturbations of the immune system, cfDNA markers will reveal 181 

information about immune cell dynamics that is not present in peripheral blood cell counts, for example 182 

extensive cell death during the process of affinity maturation, which repeatedly selects for B cell clones 183 

with increased antibody-target affinity. To test this hypothesis, we examined longitudinal blood 184 

samples from healthy individuals who received an annual quadrivalent influenza vaccination(Nakaya 185 

Figure 2: immune cfDNA methylation markers distribute differently than circulating 

immune cells and reflect immune cell turnover.  

A, levels of immune methylation markers in genomic DNA extracted from whole blood, versus 

Complete Blood Counts (CBC) from same donors. A total of 392 plasma and blood samples 

were obtained from 79 healthy donors (47 females, 32 males; age range 20-73). Shown are 

Pearson’s correlations; P-value<0.0001. B, cfDNA methylation versus whole blood methylation 

of the same donors. C, cfDNA methylation versus CBC of the same donors. Note that cfDNA 

proportions of immune cells differ from the proportions of these cell types in peripheral blood. 

D, deconvolution of cfDNA and blood cell (WBC) methylomes generated using whole genome 

bisulfite sequencing (WGBS) of 23 healthy donors. Note under-representation of lymphocyte 

DNA and over-representation of monocyte DNA in cfDNA compared with blood DNA 

(lymphocytes, p-value=0.0021; monocytes, p-value=0.0005, Kruskal-Wallis). E-F, XY scatter 

plots showing the average of inter-individual coefficient of variation (X-axis) and intra-

individual coefficient of variation (Y-axis) for each immune cell type in whole blood (E) and in 

cfDNA (F) based on methylation markers. Black line represents perfect correlation between 

inter- and intra-individual dual variation. Dots below the black line reflect greater inter-

individual variation and dots that are above reflect greater intra-individual variance. A smaller 

intra-individual variation in whole blood suggests a setpoint for proportions of blood cell types 

in each individual. By contrast, cfDNA levels of immune markers vary similarly within and 

between individuals.  
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et al., 2011; Voigt et al., 2018). The influenza vaccine response is mediated mostly by the humoral 186 

immune system (B cells) aided by CD4 T-cells(Gage et al., 2018). Changes in circulating cell counts 187 

occur a week after vaccination, reflecting processes such as plasma cell formation (Victora and Wilson, 188 

2015). cfDNA responses to vaccination were not previously reported. We recruited 92 healthy 189 

volunteers (age range 20-73, mean age 37.4) who received the vaccination in 2018 or 2019. From each 190 

volunteer we obtained blood samples a day before vaccination (day zero, D0), and at day 3, 7 and 28 191 

post-vaccination. Consistent with previous reports, B cell counts (measured by methylation analysis 192 

of DNA from whole blood) were moderately but significantly elevated on day 7, and persisted to day 193 

28 (p-value=0.0048, Kruskal-Wallis) (Figure 3A)(Li et al., 2012). Surprisingly, B-cell derived cfDNA 194 

levels increased as early as day 3, peaked on day 7 and returned to baseline levels on day 28 (p-195 

value<0.0001, Kruskal-Wallis) (Figure 3B,D), suggesting that cfDNA reveals an early increase in the 196 

turnover of B-cells following vaccination, which is not portrayed in circulating B-cells. We observed 197 

a similar trend in the ratio of B-cell cfDNA to B-cell counts in each individual (Figure 3C, p-198 

value=0.016, Kruskal-Wallis, B-cell counts calculated from methylation markers in whole blood). Of 199 

note, this response was specific to B-cell-derived cfDNA; total cfDNA levels did not change over the 200 

time course of vaccination, nor did cfDNA levels of other immune cell types (Supplementary Figure 201 

4S). Taken together, this strengthens evidence that cfDNA changes reflect processes beyond alterations 202 

in absolute circulating cell counts in a cell-specific manner.  203 

To ask if the elevation of B-cell cfDNA has functional significance in the development of an immune 204 

response, we obtained information on the production of antibodies. We classified all volunteers into 205 

responders or non-responders according to the hemagglutinin antibody titer measured at 28 days post-206 

vaccination, and asked if B-cell cfDNA or B-cell counts correlated with antibody production. 207 

Strikingly, responders had a higher peak elevation of B-cell cfDNA relative to their pre-vaccination 208 

baseline levels compared with non-responders (p-value=0.044, Mann-Whitney) (Figure 3E and 209 

Supplementary Figure S4). Peripheral B-cell counts were not different between responders and non-210 
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responders (p-value=0.2, Mann-Whitney) (Figure 3F). It is well established that influenza vaccination 211 

is more effective in younger individuals(Del Giudice et al., 2015; Ranjeva et al., 2019; Siegrist and 212 

Aspinall, 2009; Wagner et al., 2018). To examine the relationship between age, antibody production 213 

and cfDNA we plotted the fold elevation of B-cell cfDNA from baseline as a function of donor age, 214 

and marked responders and non-responders. Non-responders to vaccination in our cohort were all 215 

above 35 years and tended to have a minimal elevation of B-cell cfDNA above baseline even when 216 

compared to people in their age group (Figure 3G and Supplementary Figure S4, peak elevation of 217 

B cell cfDNA in responders vs non-responders p value=0.089), suggesting that B-cell cfDNA 218 

dynamics report on a biological process independent of age. We conclude that B-cell turnover (as 219 

reflected in B-cell cfDNA but not in B-cell counts) captures an early response of the immune system 220 

to influenza vaccination that predicts a functional outcome, suggesting cell-specific cfDNA could 221 

serve as a sensitive biomarker of functional immune changes.  222 

 223 

 224 

 225 

 226 

 227 
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 228 

Selective elevation of eosinophil-derived cfDNA in patients with Eosinophilic Esophagitis  229 

To test the hypothesis that immune-derived cfDNA can reveal pathologic inflammatory processes in 230 

remote locations, we studied patients with Eosinophilic Esophagitis (EoE). EoE is a chronic 231 

inflammatory disease characterized clinically by esophageal dysfunction, and histologically by 232 

eosinophil-predominant inflammation of the esophagus(Liacouras et al., 2011). Diagnosis of EoE 233 

requires an invasive endoscopic biopsy. Notably, most patients do not show peripheral 234 

eosinophilia(Aceves et al., 2007; Dellon et al., 2009). We analyzed blindly immune cfDNA markers 235 

in plasma samples from patients with active EoE (N=21), patients with EoE in remission (N=24) and 236 

healthy controls (N=14). Patients with active EoE had elevated levels of Eosinophil cfDNA 237 

Figure 3: Elevation of B-cell derived cfDNA after influenza vaccination precedes changes in 

cell counts and reflects efficacy of response to vaccination. 

Plasma, serum, and blood samples were obtained from 92 healthy donors receiving the influenza 

vaccination (55 females, 37 males, age range 20-73y). A, circulating B-cells, assessed using 

methylation markers, are elevated on day 7 (p-value=0.03) and 28 (p-value=0.021) compared to 

baseline (Kruskal-Wallis).  B, B-cell derived cfDNA markers where normalized to the levels of each 

individual at baseline (D0) and represented as fold change. B-cell derived cfDNA is elevated 

compared to baseline on day 3 and day 7 after influenza vaccination (p-value<0.0001, Kruskal-

Wallis). C, the ratio of B-cell derived cfDNA and B-cells in blood was calculated for each individual. 

On day 3 the ratio was significantly higher than at baseline (p-value=0.016). Bars indicate the median 

and error bars indicate the confidence interval. D, a heat map showing the change of B-cell derived 

cfDNA in each individual following vaccination relative to baseline. Donors are ordered by their age. 

E, serum antibody titers were used to divide donors into responders (n=45) who have developed 

antibodies following vaccination, and non-responders (n=11) who have not. Graph shows the 

maximal elevation (fold change [FC] from baseline) in B-cell derived cfDNA that was recorded for 

each donor. (P-value=0.045, Mann-Whitney). F, Maximal elevation in B-cell counts in blood based 

on methylation markers does not differ between responders and non-responders. P-value=0.2, Mann-

Whitney test. G, XY Scatter plot for peak B-cell cfDNA elevation as a function of age.  Non-

responders (colored with red) tend to be older and show reduced elevation of B-cell cfDNA.  
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(Mean=115 GE/ml) compared with both healthy controls (Mean=34 GE/ml, p-value =0.0056) and 238 

patients with inactive EoE (Mean=36 GE/ml, p-value=0.0003, Kruskal-Wallis), while other immune 239 

cfDNA markers were not elevated in active EoE patients (Figure 4A,B and Supplemental Figure 240 

5S). The fraction of eosinophils in blood was not significantly elevated in EoE patients (Figure 4C, p-241 

value=0.1, Kruskal-Wallis), consistent with restriction of eosinophil abundance to the esophagus and 242 

further supporting the idea that immune cfDNA is not a reflection of circulating immune cells.  243 

Among a small subset of donors for which we had access to plasma, PBMC and CBC (12 active EoE, 244 

8 inactive EoE, 3 controls), elevated eosinophil counts and elevated eosinophil cfDNA levels were 245 

observed in non-overlapping groups of EoE patients (elevated eosinophil counts in  4/12 patients with 246 

active EoE, 2/8 patients with inactive EoE, as previously reported(Dellon et al., 2009); elevated 247 

eosinophil cfDNA in 5/12 patients with active EoE), suggesting that counts and cfDNA reflect 248 

different biological processes (Figure 4D). Finally, we tested our ability to distinguish active EoE 249 

patients from healthy individuals, noting high specificity and sensitivity (Figure 4E, AUC 0.83, p-250 

value = 0.001). These findings suggest that cell type-specific cfDNA can be used to detect clinical 251 

inflammation occurring in solid tissues that is not reflected in peripheral cell counts.  252 
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 253 

B-cell derived cfDNA elevation in patients with B-cell lymphoma    254 

Hematologic malignancies occurring in remote immune organs such as the bone marrow, spleen and 255 

lymph nodes are often undetectable in peripheral blood(Conlan et al., 1991) . We reasoned that 256 

increased turnover of cancer cells in such malignancies would release cfDNA molecules carrying 257 

methylation marks of the normal cell type from which the tumor originated, informing on tumor 258 

presence and dynamics. In addition, cell type-specific cfDNA markers could reveal collateral damage 259 

incurred by the tumor to normal adjacent cells(Ménétrier-Caux et al., 2019; Ray-Coquard et al., 2009). 260 

To test this idea we examined blood samples from patients with B-cell lymphoma, a disease which 261 

often requires imaging and invasive biopsies for diagnosis and monitoring(Barrington et al., 2014; 262 

Laurent et al., 2017). We studied plasma and blood cells from 17 newly diagnosed (treatment-naïve) 263 

B-cell lymphoma patients (diffuse large B-cell lymphoma, n=6; Hodgkin’s lymphoma, n=5; Follicular 264 

lymphoma, n=6) and age-matched healthy controls (Data file S1). Lymphoma patients (Mean=264.4 265 

GE/ml) had dramatically elevated levels of B-cell derived cfDNA compared with controls (Mean=18.3 266 

GE/ml, p-value<0.0001), while B cell counts in peripheral blood were actually decreased (control; 267 

Mean=0.162, Lymphoma; Mean=0.079, 109/L, p-value=0.0059, Mann-Whitney) (Figure 5A-C). We 268 

observed that the level of B-cell cfDNA accurately distinguished B-cell lymphoma patients from 269 

healthy controls, much better than did B-cell counts (cfDNA, AUC=0.98, p-value<0.0001; B-cell 270 

counts, AUC=0.75, p-value=0.006; Figure 5D,E). Total levels of cfDNA as well as the levels of other 271 

Figure 4: Selective elevation of eosinophil-derived cfDNA in patients with Eosinophilic 

Esophagitis. A, eosinophil derived cfDNA in Active EoE patients (n=21) compared with healthy 

controls (n=14, p-value=0.0056) and patients with EoE in remission (inactive EoE, n=24, p-

value=0.0003, Kruskal-Wallis). B, differences between immune cfDNA populations in Active EoE 

patients and healthy controls (mean active EoE/ mean control). C, eosinophil DNA markers in whole 

blood of patients and controls (p-value=0.1, Kruskal-Wallis test). D, XY Scatter plot for eosinophil 

derived cfDNA levels vs. eosinophil absolute count (ABS) in blood. Dashed lines indicate healthy 

maximal baseline levels of eosinophil absolute counts in blood, and eosinophil-derived cfDNA in 

plasma. E, receiver operating characteristic (ROC) curve for the diagnosis of active EoE, using 

eosinophil cfDNA levels in plasma of healthy controls and patients with Active EoE.  
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immune cfDNA markers were also elevated in lymphoma patients, consistent with reports on 272 

alterations in non-B-cells in lymphoma(Simone, 2013). We observed the strongest response in the 273 

levels of B-cell cfDNA (14.4 fold increase compared with controls), CD8 cytotoxic T-cells (10.7 fold) 274 

and Tregs (13.8 fold) (Figure 5F, Supplemental Figure 6S). Lymphocyte counts were decreased, 275 

such that the ratio of cfDNA to cell count for each cell type was dramatically elevated in lymphoma 276 

patients (Figure 5G). We did not observe a correlation between lymphoma type and immune cfDNA 277 

patterns, perhaps because of the small sample size. To validate these findings, we performed the 278 

analysis on plasma samples from a second, independent cohort of lymphoma patients and healthy 279 

controls. As in the first cohort, we observed elevated B cell cfDNA in patients (lymphoma n=10, 280 

Mean=1473 GE/ml; Control n=34, Mean=15 GE/ml, p-value<0.0001) (Figure 5H), accompanied by 281 

lower B cell counts and elevated T cell cfDNA (Supplemental Figure S7).   282 

These findings indicate that lymphoma growth causes an elevation in the levels of B-cell cfDNA. In 283 

addition, a massive loss of normal T cells leads to extensive release of cfDNA, potentially reflecting 284 

an immune response against the tumor or collateral damage. Taken together across all three conditions 285 

(influenza vaccination, EoE and lymphoma), immune cell dynamics in remote locations that are not 286 

evident in peripheral blood are detectable via cell-specific methylation markers in plasma.  287 

  288 
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 290 
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 291 

DISCUSSION  292 

We describe a novel method for monitoring turnover dynamics of the human immune system, using 293 

cell type-specific cfDNA methylation markers. The assay opens a window into aspects of human 294 

immune and inflammation biology that are not reflected in blood cell counts or gene expression 295 

patterns. Specifically, the concentration of cfDNA derived from a given immune cell type is a function 296 

of the total number of cells of that type (circulating and remote pools, combined), the lifespan of this 297 

population, determinants of cfDNA release (e.g. efficiency of phagocytosis) and determinants of 298 

cfDNA clearance from plasma (e.g. liver uptake). While many of these parameters are typically 299 

unknown, in some cases cfDNA dynamics may allow to infer a change in cell turnover or in total cell 300 

number outside systemic circulation. 301 

Since the method relies on highly stable methylation marks of cell identity(Dor and Cedar, 2018), it is 302 

expected to be universal, with the same markers allowing to accurately monitor immune cell dynamics 303 

in all individuals. While our current assay uses a panel of 17 methylation markers specific to 7 key 304 

immune cell types, future improvements (such as adding markers specific to other cell types) should 305 

increase the resolution of analysis to target essentially all immune cell types. We note that dynamic 306 

Figure 5: B-cell derived cfDNA elevation in patients with B-cell lymphoma. A, B-cell derived 

cfDNA in patients with lymphoma (n=17) compared with age-matched healthy controls (n=23, p-

value<0.0001, Mann-Whitney). B, B-cell absolute counts in patients with lymphoma compared with 

age-matched healthy controls (p-value=0.0059, Mann-Whitney). C, XY Scatter plot for B-cell derived 

cfDNA levels versus B-cell absolute counts in blood. Dashed lines indicate healthy baseline levels of 

B-cell absolute counts in blood and B-cell cfDNA. D, ROC curve for the diagnosis of lymphoma based 

on B-cell cfDNA levels in healthy subjects and patients with B cell lymphoma. E, ROC curve for 

diagnosis of lymphoma based on B-cell counts. F, levels of immune cell type-specific cfDNA in 

lymphoma patients and healthy controls (mean lymphoma/ mean control). G, the ratio between the 

percentage of cfDNA from a given immune cell type and the percentage of cells from this population in 

blood according to CBC, in each donor among the healthy volunteers (n=23, blue bars) and patients 

with lymphoma (n=17, red bars).  Boxes represent 25th and 75th percentiles around the median, 

whiskers span min to max. H, B-cell derived cfDNA in an independent cohort of 44 donors including 

10 patients with lymphoma and 34 healthy controls (p-value<0.0001, Mann-Whitney). 
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cellular states may involve changes in gene expression that do not involve reprogramming of DNA 307 

methylation patterns, representing a limitation of the approach. 308 

Our cross-sectional and longitudinal analysis of immune cfDNA dynamics in healthy individuals 309 

begins to define the normal range among the population, an essential step towards using the assay for 310 

identifying with confidence deviations from health. More extensive characterization of immune cell 311 

cfDNA in healthy individuals is necessary to interpret trends that were revealed by our healthy cohorts. 312 

For example, we noticed lower levels of neutrophil cfDNA in adult females compared with adult males, 313 

suggesting that neutrophils in females live longer; we speculate that such differences in lifespan 314 

explain why women have a higher steady state neutrophil count(Bain and England, 1975) (and data 315 

not shown). Additional observations of healthy immune cfDNA dynamics that merit further 316 

investigation regard age-related changes, for example elevated monocyte cfDNA and reduced 317 

lymphocyte cfDNA in individuals older than 60. Finally, the intra- and inter-individual variation in 318 

immune cfDNA levels show that unlike blood cell counts, cfDNA levels vary wildly, apparently with 319 

no regulatory mechanism that attracts them to a certain setpoint typical to an individual. We propose 320 

that varying cfDNA levels reflect the action of regulated cell death as a mechanism by which the 321 

healthy body dynamically maintains homeostatic cell numbers within a desired range (model, Figure 322 

6). 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 
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 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

Beyond the healthy baseline, we studied immune cfDNA dynamics in three settings of immune system 339 

perturbation. First, post influenza vaccination we identified an early elevation of B cell cfDNA, 340 

preceding an increase in circulating B-cell counts and showing a striking correlation to the 341 

effectiveness of antibody production, which was independent of the known age-related risk of non-342 

responsiveness. We propose that elevated B-cell cfDNA reflects early stages in the successful response 343 

of B-cells to the vaccine, including the process of affinity maturation whereby large numbers of B-344 

cells are generated and eliminated within lymph nodes as a result of insufficient binding to the target 345 

epitope. More work is needed to accurately define the population of B-cells that release cfDNA after 346 

vaccination, and to understand the physiological driver of this response. Practical applications may 347 

include an early indication for the success of experimental vaccination. Second, we examined immune 348 

cfDNA dynamics in EoE, a model for an inflammatory disease in which one tissue is damaged by 349 

infiltration of a specific immune cell population, while leaving a minimal mark on peripheral cell 350 

Figure 6: A schematic view of immune marker variance within individuals. 

Intra-individual variance of immune-cell count (blue) and immune-derived cfDNA (red) in multiple 

time points. Our findings suggest that while immune cell counts are stable and typical within an 

individual, immune cell cfDNA levels vary greatly, reflecting changes in cell turnover that help 

maintain the cell count set point. 
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counts. cfDNA analysis revealed the selective elevation of eosinophil turnover in EoE, in some cases 351 

even when circulating eosinophil cell counts are unchanged. Larger scale studies are warranted to 352 

determine if eosinophil cfDNA can be a sufficiently sensitive and specific biomarker for assisting the 353 

clinical diagnosis and monitoring of EoE, ultimately relieving the need for invasive biopsies of the 354 

esophagus. Lastly, cfDNA dynamics in patients with B-cell lymphoma revealed the impact of disease 355 

on the turnover of B-cells and other immune cell types. As with EoE, cfDNA in lymphoma provides a 356 

systemic biomarker of immune processes taking place in remote locations. However in lymphoma, 357 

these processes include both tumor dynamics and host responses – either bystander effects (collateral 358 

damage) or an immune response to the tumor. Potential uses of immune methylation markers in this 359 

field include early diagnosis of hematologic malignancies, detection of minimal residual disease, and 360 

monitoring response to treatment. Beyond hematologic malignancies, immune-derived cfDNA 361 

dynamics can inform on the response to immune checkpoint inhibitors.  362 

In summary, analysis of specific immune cell methylation markers in cfDNA allows for monitoring of 363 

human immune cell dynamics, providing temporal and spatial information not accessible via 364 

circulating cell counts. We propose that this novel tool can illuminate healthy and pathologic immune 365 

processes, including non-immune diseases having an inflammatory component such as cancer, 366 

rejection of transplanted organs, metabolic and neurodegenerative disease.    367 

 368 

MATERIALS AND METHODS  369 

Subject enrollment  370 

This study was conducted according to protocols approved by the Institutional Review Board at each 371 

study site, with procedures performed in accordance with the Declaration of Helsinki. Blood and tissue 372 

samples were obtained from donors who have provided written informed consent. When using material 373 
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from deceased organ donor those with legal authority were consented. Subject characteristics are 374 

presented in Data file S1.  375 

 376 

Healthy controls 377 

A total of 234 healthy volunteers (56% females, 44% males, age range 1–85y) participated in the study 378 

as unpaid healthy controls. All denied having any chronic or acute disease. 379 

 380 

Temporal experiment cohort 381 

15 healthy volunteers gave blood each week for 6 weeks (9 females, 6 males, age 21-68y).  382 

 383 

Vaccination cohort and determination of anti-hemagglutinin antibody titers 384 

92 healthy volunteers that received the annual influenza vaccination (55 females, 37 males, age range 385 

20-73y) gave blood samples a day before vaccination, and after 3, 7 and 28 days (+ 2 days). 386 

The anti-hemaggutinin antibody titers were determined using hemagglutination inhibition (HI) assay. 387 

Serum samples obtained from vaccinated and non-vaccinated individuals were stored at −20°C until 388 

tested treated with receptor destroying enzyme (RDE) (Sigma C8772, diluted 1:4), for 16 h prior to 389 

heat inactivation (30 min, 56°C). Absorption with erythrocytes was performed to remove non-specific 390 

hemagglutination, in accordance with a modified WHO protocol(Rowe et al., 1999). Serial two-fold 391 

dilutions (1:20–1:2560) of sera in 25 μl PBS were prepared in V-shaped well plates, and an equal 392 

volume of four hemagglutinin (HA) units of viral antigen was added. The mixture was then incubated 393 

at room temperature for 1 h. Fifty microliters of 0.5% chicken erythrocytes suspended in PBS, were 394 

added to the wells, and mixed by shaking the plates on a mechanical vibrator. Agglutination patterns 395 

were read after 30 min and the hemagglutination inhibition (HI) titer was defined as the reciprocal of 396 
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the last dilution of serum that fully inhibited hemagglutination. The cut-off value selected for a positive 397 

result was 1:40. The influenza antigens for 2018-19 and 2019-20 winter seasons were supplied by the 398 

WHO. 399 

 400 

EoE cohort 401 

21 active EoE patients, 24 EoE patients in remission and 14 controls where recruited to the study at 402 

Cincinnati Children's Hospital. Diagnosis of EoE patients was made based on an histological biopsy 403 

taken from the distal esophageal tissue.  404 

 405 

Lymphoma cohort 406 

27 newly diagnosed lymphoma patients that came for treatment in the hematological daycare unit in 407 

Hadassah medical center were recruited to the study in two cohorts (17 patients in cohort #1, 10 408 

patients in cohort #2). Diagnosis was made by PET-CT.   409 

 410 

Sample collection and processing  411 

Blood samples were collected by routine veinipuncture in 10 mL EDTA Vacutainer® tubes or Streck® 412 

blood collection tubes and stored at room temperature for up to 4 hours or 5 days, respectively. Tubes 413 

were centrifuged at 1,500×g for 10 minutes at 4°C (EDTA tubes) or at room temperature (Streck tubes). 414 

The supernatant was transferred to a fresh 15 mL conical tube without disturbing the cellular layer and 415 

centrifuged again for 10 minutes at 3000×g. The supernatant was collected and stored at -80oC. 416 

 cfDNA was extracted from 2-4 mL of plasma using the QIAsymphony liquid handling robot (Qiagen). 417 

cfDNA concentration was determined using Qubit double-strand molecular probes kit (Invitrogen) 418 

according to the manufacturer’s instructions.  419 
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DNA derived from all samples was treated with bisulfite using EZ DNA Methylation-Gold™ (Zymo 420 

Research), according to the manufacturer’s instructions, and eluted in 24μl elution buffer.  421 

 422 

Immune cell and tissue isolation and processing 423 

PBMCs from a healthy individual where isolated using ficoll-paque density gradient (Miltenyi Biotec). 424 

CD4+ T-cells, CD8+ T-cells, CD19+ B-cells and Nk CD56+ cells were positively selected using 425 

magnetic MicroBeads. Monocytes where negatively selected (Miltenyi Biotec) as instructed by the 426 

manufacturer. Regulatory T-cells (CD4+,CD25+,FOXP3+, 28.5% purity) where purchased from 427 

Astarte biologics.   Neutrophils and eosinophils where isolated based on a previously published 428 

protocol(Hartman et al., 2001; Sagiv et al., 2016)  Genomic DNA from other tissues was purchased as 429 

previously described(Lehmann-Werman et al., 2016; Zemmour et al., 2018). 430 

  431 

Selection of immune cell methylation markers 432 

immune-cell-specific methylation candidate biomarkers were selected using comparative methylome 433 

analysis, based on publicly available datasets(Moss et al., 2018a), to identify loci having more than 434 

five CpG sites within 150bp, with an average methylation value for a specific cytosine (present on 435 

Illumina 450K arrays) of less than 0.3 in the specific immune cell type and greater than 0.8 in over 436 

90% of tissues and other immune cells. From our previously-described atlas of human tissue-specific 437 

methylomes(Lehmann-Werman et al., 2016), we identified ~50 CpG sites that are unmethylated in 438 

specific immune-cells and methylated in all other major immune cells and tissues. We selected two to 439 

three of these sites for Neutrophils (i.e., NEUT1, NEUT2, NEUT3), Monocytes (i.e., MONO1, 440 

MONO2), Eosinophils (i.e., EOSI1, EOSI2, EOSI3), B-cells (i.e., B-CELL1, B-CELL2) T-cells (i.e., 441 

T-CELL1, T-CELL2), CD8 T-cells (CD8A, CD8B), Regulatory T-cells (TREG1, TREG2) and 442 

designed primers to amplify ~100bp fragments surrounding them using the multiplex two-step PCR 443 
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amplification method(Neiman et al., 2020). Marker coordinates and primer sequences are provided in 444 

Supplementary Table S1. 445 

 446 

PCR 447 

To efficiently amplify and sequence multiple targets from bisulfite-treated cfDNA, we developed a 448 

two-step multiplexed PCR protocol. In the first step, up to 30 pairs primer pairs were used in one PCR 449 

reaction to amplify regions of interest from bisulfite-treated DNA, independent of methylation status. 450 

Primers were 18-30 base pairs (bp) with primer melting temperature ranging from 58-62°C. To 451 

maximize amplification efficiency and minimize primer interference, the primers were designed with 452 

additional 25bp adaptors comprising Illumina TruSeq Universal Adaptors without index tags. All 453 

primers were mixed in the same reaction tube. For each sample, the PCR reaction was prepared using 454 

the QIAGEN Multiplex PCR Kit according to manufacturer instructions with 7μl of bisulfite treated 455 

cfDNA. Reaction conditions for the first round of PCR were: 95°C for 15 minutes, followed by 30 456 

cycles of 95°C for 30 seconds, 57°C for 3 minutes and 72°C for 1.5 minutes, followed by 10 minutes 457 

at 68°C.   458 

In the second PCR step, the products of the first PCR reaction were treated with Exonuclease I 459 

(ThermoScientific) for primer removal according to the manufacturer instructions. Cleaned PCR 460 

products were amplified using one unique TruSeq Universal Adaptor primer pair per sample to add a 461 

unique index barcode to enable sample pooling for multiplex Illumina sequencing. The PCR reaction 462 

was prepared using 2x PCRBIO HS Taq Mix Red Kit (PCR Biosystems) according to manufacturer 463 

instructions. Reaction conditions for the second round of PCR were: 95°C for 2 minutes, followed by 464 

15 cycles of 95°C for 30 seconds, 59°C for 1.5 minutes, 72°C for 30 seconds, followed by 10 minutes 465 

at 72°C. The PCR products were then pooled, run on 3% agarose gels with ethidium bromide staining, 466 

and extracted by Zymo GEL Recovery kit.  467 
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 468 

Next Generation Sequencing 469 

Pooled PCR products were subjected to multiplex next-generation sequencing (NGS) using the MiSeq 470 

Reagent Kit v2 (Illumina) or the NextSeq 500/550 v2 Reagent Kit (Illumina). Sequenced reads were 471 

separated by barcode, aligned to the target sequence, and analyzed using custom scripts written and 472 

implemented in R. Reads were quality filtered based on Illumina quality scores. Reads were identified 473 

as having at least 80% similarity to the target sequences and containing all the expected CpGs. CpGs 474 

were considered methylated if “CG” was read and unmethylated if “TG” was read. Proper bisulfite 475 

conversion was assessed by analyzing methylation of non-CpG cytosines. We then determined the 476 

fraction of molecules in which all CpG sites were unmethylated. The fraction obtained was multiplied 477 

by the concentration of cfDNA measured in each sample, to obtain the concentration of tissue-specific 478 

cfDNA from each donor. 479 

 480 

Deconvolution 481 

WGBS data were converted to an array-like format by calculating the average methylation at 7,890 482 

CpGs from the Moss et al methylation atlas(Moss et al., 2018a). We then ran the deconvolution 483 

algorithm (https://github.com/nloyfer/meth_atlas) for each WBC and cfDNA sample. 484 

 485 

Statistics 486 

To assess the correlation between groups we used Pearson's correlation test. To determine the 487 

significance of differences between groups we used a non-parametric two-tailed Mann–Whitney test. 488 

For multiple comparisons, a Kruskal-Wallis multiple comparison test was used. P-value was 489 

considered significant when <0.05. To detect outliers in the healthy population we applied a multiple 490 
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outlier detection ROUT-test (Q=5%)(Motulsky and Brown, 2006). Samples that were detected as 491 

outliers where excluded. All Statistical analyses were performed with GraphPad Prism 8.4.3. 492 

 493 

Intra-individual and inter-individual variation  494 

Intra-individual coefficient of variation for each immune cell type in CBC, whole blood and cfDNA 495 

was calculated for each person across six different time points. The Inter-individual coefficient of 496 

variation for each immune-cell type was calculated for each time point across all individuals. The 497 

average of the intra-individual coefficient of variation was calculated. To prevent a bias due to 498 

difference in sample size (intra-individual variation, 6 time points; inter-individual variation, 15 499 

individuals), we used R (version3.6.1) to sample all different combinations of a randomly selected 6 500 

person group and calculated the inter-individual coefficient of variation. Coefficients of variation of 501 

the different combinations were averaged. 502 
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Supplementary Table S1 

Genomic coordinates of immune cell type-specific methylation markers used in this 

study, and primer sequences used to amplify these loci after bisulfite conversion. 

Marker Coordinate of central 

CpG 

Forward primer Reverse primer 

Neut1 chr9: 129648322 TTTTAAGAAGTTTTTGTGTTATTAT TCTAAAAATACCTAAATACAAACC 

Neut2 chr8: 142180109 GTTTGTTTTGAGATGTGAGAAT 

 

ATAACATCCTTACAAACTCACAA 

 

Neut3 chr11: 33308345 

 

TGTAGGTATTTTAGATTGGGG AATTATCCAACTCCTCACTCTTA 

Mono1 chr11:32055233 TTTGTTAGGTTAAGTAATTTGTAAA CATCTCCTACTTAAATAACTTCAAT 

 

Mono2 chr10:114911652 TGAAGGAAATGAGAGTAAAGGT CCCTTCTCCCTAAAAAAAAC 

 

B-cell1 chr11:121440880 AGGTTGTTTTTTTATTTTTTAGAT TTTCCCTCCCTTTAATAACTAT 

B-cell2 chr17:3493666 TTTTAAAGAAGTTTTTATGGGT ATAAACCAAACAACACTACACAT 

 

B-cell3 chr11:34167855 

 

ATTTTTTTTGGTTGGATTGTT 

 

TCACAAACACACAAACCCAA 

 

T-cell1 chr14:61801201 

 

GGTGTTATAGGTAGGGTAGAGAA 

 

CCAACATTTATCATTTTCTTCA 

 

T-cell2 chr13:24825973 

 

AGTATTTTTATTGGGTTGGAT 

 

CCTACTACCTCAAATTAACTAAAA 

 

CD8A chr2:87012810 

 

TTAGTTTTTTTAGTATGATTTTGAG 

 

CACCACAAAAATCACAATACTAT 

 

CD8B chr:87048747 

 

GTTAAGAAATTAATAGGAAAAAGAA 

 

AAAACCCCATATTACTTCCC 

 

TREG1 chrx:49118313 

 

TTAGGTTTGGATTTTAATTTTG 

 

CCCTAACCCTTATCTACTCCA 

 

TREG2 chrx:49117224 TGGGTTTTGTTGTTATAGTTTT 

 

ATATCTACCCTCTTCTCTTCCTC 

 

EOSI1 chr3:195974300 GGGGTATTTTTTATTATTTTATT 

 

ACACACAACTTCAAAAACTTCA 

 

EOSI2 chr4:3123132 

 

GGAGTTGTTGTAGTAGTTTTTTAGA 

 

AAATTCCACAATACTCCCACTA 

 

EOSI3 chr1:6341327 TTTGAGAGTTGTTTATAATAGGGT 

 

CCTCCCTTCTCCACAAACTA 

 

 

Data file S1: Blood donor characteristics (see excel file). 
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Supplemental Figure S1 (Related to Figure 1)

Supplemental Figure S1: Identification of specific immune-cell

DNAmethylation markers.

A-G, Spike in experiments for the assessment assay sensitivity.

Human leukocyte DNA was mixed with DNA from HEK293 cells

in the indicated proportion. The fraction of DNA from each

immune type cell was assessed using the indicated methylation

markers. The Y axis shows cumulative values for percentage

contribution from each marker, to underscore the signal from each

individual marker.
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Supplemental Figure S2: Levels of immune cell-derived cfDNA are not correlated with the counts of

these cells in circulation, and reflect cell type-specific turnover rates.

Plasma and blood samples (n=392) were obtained from 79 healthy individuals that vary in age and gender.

Methylation-based immune markers were determined on genomic DNA from whole blood, and on plasma

cfDNA. Standard CBC values were also obtained. A-D, correlation between CBC and methylation markers

in cfDNA. E-H, correlation between cfDNAmethylation signals and whole blood methylation signals (left

graph in each panel) or CBC (right graph in each panel). I-L, correlation between cfDNA methylation

signals whole blood methylation signals for cell types that are not scored in CBC.
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Supplemental Figure S3 (Related to Figure 2)

Supplemental Figure S3: Immune derived cfDNA characterization in a healthy population.

A-H, total and immune derived cfDNA was characterized in healthy individuals (n=227) as a spline curve

fit showing the trend of the data across different age groups (black line), with a breakdown to gender

(female pink lines, male blue lines) for the indicated immune cell types. I, a categorical heat-map showing

significant (blue, p-value<0.05) and non-significant (red, p-value>0.05, Kruskal-wallis) differences in

cfDNA values for each immune cell type across different age groups and between genders. Age groups

were 1-10 years (n=21), 11-20 (n=30), 21-50 (n=134), and >50 (n=37). J, the normal cfDNA range for

each cell type: neutrophils (mean=390, range 10-1064 GE/ml), monocytes (mean=101, range 6-233

GE/ml), eosinophils (Mean=38, range 0-111 GE/ml) T cells (Mean=30, range1-79) B-cells (mean=17,

range 3-42 GE/ml) CD8 T-cells, (mean=8, range 0-27 GE/ml) and Tregs (mean=2, range 0-9 GE/ml) based

on samples from 227 individuals excluding outliers using the ROUT outlier test (Q=5%). K, XY scatter

plot showing the average of inter-individual coefficient of variation (X-axis) and intra-individual

coefficient of variation (Y-axis) for the fraction of cells from each immune cell types based on CBC. Black

line represents perfect correlation between inter- and intra-individual variation. Dots below the black line

represent greater inter-individual variation and dots above represent greater intra-individual variance.
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Supplemental Figure S4: Specific elevation of B-cell derived cfDNA after influenza vaccination,

prior to changes in cell counts and in correlation to efficacy of response to vaccination.

Plasma and blood samples were taken from volunteers (n=92) receiving the annual influenza vaccination.

Samples were obtained on the day before vaccination (D0), and at days 3,7 & 28 (D3, D7, D28). Immune

methylation markers where tested on both cfDNA and whole blood. Statistical significance is calculated

relative to the levels at D0. A, B-cell derived cfDNA markers are elevated on day 3 and day 7 (p-

value=0.0002) after influenza vaccination. Circulating B-cell counts did not change significantly at the

population level (p-value=0.078). B, Total cfDNA (p-value=0.9). C, White blood cells count (p-

value=0.28). D, Neutrophil DNA in plasma (p-value=0.65) and whole blood (p-value=0.53), and

neutrophil counts in CBC (p-value=0.47). E, Lymphocyte counts in CBC (p-value=0.26). F, T-cell DNA in

plasma (p-value=0.58) and whole blood (p-value=0.84). G, CD8 T-cell DNA in plasma (p-value=0.5) and

whole blood (p-value=0.83). H, Treg DNA in plasma (p-value=0.78) and whole blood (p-value=0.85). I,

Monocyte DNA in plasma (p-value=0.22) and whole blood (p-value=0.68), and monocyte counts in CBC

(p-value=0.79). J, Eosinophil DNA in plasma (p-value=0.76) and whole blood (p-value=0.81), and

eosinophil counts in CBC (p-value=0.93). K, cfDNA measurements normalized to baseline at D0 of each

individual: total cfDNA (p-value=0.37), neutrophil cfDNA (p-value=0.57), T-cell cfDNA (p-value=0.69),

CD8 cfDNA (p-value=0.48), monocyte cfDNA (p-value=0.01), and eosinophil cfDNA (p-

value=0.88).(Kruskal-wallis). L, a heat map showing the level of B-cell cfDNA in each individual

following vaccination. M-N, normalized B-cell derived cfDNA (M) and normalized circulating B-cells

(N) in responders versus non-responders on days 3, 7 and 28. There are no statistically significant

differences between the groups (Mann-Whitney test). Note that when the peak value of B cell cfDNA in

blood is considered (at any day after vaccination), responders have a stronger signal, as shown in main

Figure 4.
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Supplemental Figure S5: Selective elevation of eosinophil-derived cfDNA in patients with

Eosinophilic Esophagitis.

Plasma was collected from three groups: healthy controls (n=14), inactive EoE (n=24), and active EoE

(n=21). Some of the patients had also PBMCs collected: healthy controls (n=7), inactive EoE (n=9), and

active EoE (n=6). A, Total cfDNA levels were significantly higher in active EoE compared to inactive EoE

(p-value=0.01). B, neutrophil derived cfDNA (p-value=0.19) and neutrophil DNA in whole blood (p-

value=0.23) are not different in EoE. C, monocyte cfDNA (p-value=0.45) and monocytes DNA in whole

blood are not different in EoE (p-value=0.75). D, B-cell derived cfDNA is significantly higher in active

EoE compared with inactive EoE (p-value=0.0021), but B-cell DNA in whole blood is not significantly

different in EoE (p-value=0.47). E, T-cell derived cfDNA is not significantly different between the groups

(p-value=0.48). However the fraction of T-cell DNA in whole blood is significantly higher in inactive EoE

compared with active EoE (p-value=0.0454). F, there is no significant difference in CD8 derived cfDNA

(p-value=0.4) and in CD8-derived DNA in whole blood among EoE patients (p-value=0.6). G, Treg

cfDNA levels are significantly higher in inactive EoE compared with active EoE (p-value=0.009) while

Treg DNA in whole blood is not different between patients and controls (p-value=0.15, Kruskal-Wallis

test). H, XY Scatter plot for Eosinophil derived cfDNA levels versus Peak distal Esophagus Eosinophil

count, in healthy controls and in patients with inactive or active EoE. Dashed lines indicate thresholds for

negative and positive Peak distal Esophagus Eosinophil count (HPF), and negative and positive Eosinophil

cfDNA.
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Supplemental Figure S6: Immune derived cfDNA in lymphoma patients.

Plasma and blood were collected from healthy controls (n=22) and patients with lymphoma (n=17). A,

Total cfDNA levels are significantly higher in lymphoma patients compared with healthy controls (p-

value<0.0001 Mann–Whitney test). B, neutrophil-derived cfDNA levels are higher in lymphoma patients

compared with controls (p-value<0.0001), but neutrophil DNA levels in whole blood are not different

between patients and controls (p-value=0.17). C, monocyte-derived cfDNA levels are elevated in

lymphoma patients (p-value<0.0001), but monocyte DNA levels in whole blood are not different between

patients and controls (p-value=0.95). D, eosinophil-derived cfDNA are elevated in lymphoma patients (p-

value<0.0019) but eosinophil DNA in whole blood is not elevated (p-value=0.86). E, T-cell derived

cfDNA levels are elevated in lymphoma (p-value=0.003) while T-cell DNA is reduced in whole blood (p-

value<0.0001). F, CD8 T-cell derived cfDNA levels are elevated in lymphoma (p-value<0.0001) while

CD8 T-cell DNA is reduced in whole blood (p-value=0.003). G, Treg-derived cfDNA levels are elevated in

lymphoma patients (p-value<0.0001) while Treg DNA in whole blood is reduced (p-value=0.0026, Mann–

Whitney test).
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Supplemental Figure S7: cfDNA analysis of a second cohort of lymphoma patients.

Blood was collected from a 2nd cohort of donors including 34 healthy controls and 10 patients with

lymphoma.

A, B-cell counts (p-value=0.03, Mann-Whitney). B, XY Scatter plot for B-cell derived cfDNA levels

versus B-cell absolute counts. Dashed lines indicate healthy baseline levels of B-cell absolute counts and

B-cell cfDNA. C, ROC curve for the diagnosis of lymphoma based on B-cell cfDNA levels in healthy

subjects and patients with B cell lymphoma. D, ROC curve for diagnosis of lymphoma based on B-cell

counts. E, immune cell type-specific cfDNA in lymphoma patients and healthy controls (mean lymphoma/

mean control). F, the ratio between the percentage of cfDNA from a given immune cell type and the

percentage of cells from this population in blood according to CBC, in each donor of the 2nd cohort

(healthy blue bars; lymphoma red bars). Boxes represent 25th and 75th percentiles around the median,

whiskers span min to max. G, Total cfDNA levels are significantly higher in lymphoma patients compared

with healthy controls (p-value=0.0027 Mann–Whitney test). H, neutrophil-derived cfDNA levels are

higher in lymphoma patients compared with controls (p-value=0.0067), but neutrophil DNA levels in

whole blood are not different between patients and controls (p-value=0.07). I, monocyte-derived cfDNA

levels are elevated in lymphoma patients (p-value=0.001), but monocyte DNA levels in whole blood are

not different between patients and controls (p-value=0.71). J, eosinophil-derived cfDNA and whole blood

are not significantly higher in lymphoma patient's vs healthy controls (p-value=0.63; p-value=0.28). K, T-

cell derived cfDNA levels are elevated in lymphoma (p-value=0.0001) while T-cell DNA is reduced in

whole blood (p-value=0.036). L, CD8 T-cell derived cfDNA levels are elevated in lymphoma (p-

value<0.0001) while CD8 T-cell DNA in whole blood is not different between patients and controls (p-

value=0.37). M, Treg-derived cfDNA levels are elevated in lymphoma patients (p-value=0.0001) while

Treg DNA is not significantly different in whole blood (p-value=0.41, Mann–Whitney test).
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