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Abstract

Population and community ecology traditionally has a very strong theoretical foundation with well-2

known models, such as the logistic and its many variations, and many modification of the classical Lotka-

Volterra predator-prey and interspecific competition models. More and more, these classical models are4

confronted to data via fitting to empirical time-series, from the field or from the laboratory, for purposes of

projections or for estimating model parameters of interest. However, the interface between mathematical6

population or community models and data, provided by a statistical model, is far from trivial. In order

to help empiricists make informed decisions, we here ask which error structure one should use when8

fitting classical deterministic ODE models to empirical data, from single species to community dynamics

and trophic interactions. We use both realistically simulated data and empirical data from microcosms10

to answer this question in a Bayesian framework. We find that pure observation error models mostly

perform adequately overall. However, state-space models clearly outperform simpler approaches when12

observation errors are sufficiently large or biological models sufficiently complex. Finally, we provide a

comprehensive tutorial for fitting these models in R.14
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Introduction

Studying biotic interactions, measuring their strength, correlations with other traits and understanding16

consequences of these interactions for ecological systems is at the heart of scientific ecology. Biotic

interactions are at the centre of classical questions in population ecology, such as density regulation18

(e.g., Sibly et al., 2005), but also in community ecology, including modern coexistence theory (Chesson,

2000; Godwin et al., 2020) and beyond, such as host-parasite (epidemiological parameters) and trophic20

interactions. Importantly, interaction strengths also provide a bridge between ecology and evolution as

biotic interactions directly or indirectly determine fitness. Biotic interactions are therefore central to22

eco-evolutionary dynamics and feedbacks (Yoshida et al., 2003; Hiltunen et al., 2014).

As a consequence, correct estimations of biotic interaction strengths are of great importance, be it24

using times series from the field (e.g., Sibly et al., 2005) or from laboratory systems (Rosenbaum et al.,

2019). The strength of ecology in this context is its important and solid body of theory and the availability26

of mechanistic models. As a consequence, researchers would like to fit these models to time series data to

extract the relevant parameters (e.g., Godwin et al., 2020). This exercise is not always straightforward28

as models often consist of (coupled) differential equations, such as classical models including logistic

or other limited local population growth, Lotka-Volterra-type models for interspecific competition and30

consumer-resource dynamics or SI-type epidemiological models.

Fitting such models to data is possible via multiple approaches, ranging from “naive” trajectory32

matching (e.g. Fronhofer and Altermatt, 2015) using nonlinear least-squares or Bayesian approaches (e.g.

Nørgaard et al., 2021) to state-space models that allow to explicitly take into account observation and34

process errors (for a recent overview, see Auger-Méthé et al., 2021). Ecologists and evolutionary biologists

faced with these choices may often wonder what the pros and cons or these different approaches are,36

especially given the varying degrees of complexity of these approaches and technical skills they may

require. These decisions are not made easier as the questions include multiple dimensions of complexity,38

such as frequentist versus Bayesian approaches, discrete-time versus continuous-time models, stochastic

versus deterministic models and, finally, multiple error structures.40

Importantly, these choices can impact scientific results and conclusions. For instance, Sibly et al.

(2005) used a rather simple likelihood approach to fit the θ-logistic model to population census data.42

The authors concluded that a large array of taxa exhibit similarly shaped density-regulation functions

which has important applied consequences for conservation and management. However, Clark et al.44

(2010) could show that these results are likely flawed due to likelihood ridges (parameter combinations of

similar likelihood), a problem which could have been mitigated, for instance, using a Bayesian approach46

with informed priors.
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Figure 1: Possible statistical approaches for fitting a population model to a time series of population
densities. The upper left panel depicts the underlying stochastic birth-death process (logistic growth)
and the black squares show the sampled data with corresponding errors. The simplest statistical model
assumes only observation errors and matches the trajectory of the ODE directly to the data (top right).
Assuming process error (“one step ahead fitting”; bottom left) takes into account the non-independence
of the subsequent data points in the time-series. Finally, the state-space model (SSM; bottom right)
takes both sources of error (observation and process) into account.

Here, we will explore with a Bayesian approach the use of statistical models accounting for observa-48

tion or process errors only, or full state-space models including both sources of errors to fit dynamical

population and community models to time-series data (Fig. 1).50

Including only observation error reduces model fitting to a nonlinear regression problem, matching

the whole trajectory to the time series. Process error only models, however, are nonlinear autoregressive52

models, where each observation in time is predicted from the previous one. State-space models cannot be

classified as standard regression problems, since they require the simultaneous estimation of latent state54

variables (true population abundances). For benchmarking we will rely on realistically simulated data

sets in which we can vary process and observation errors independently, but we will also apply our models56

to empirical time-series from microbial microcosms. We will consider both, single and multispecies ODE

models, with and without non-linearities in their density-regulation functions (Allee effects, Beverton-Holt58

2
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model). Multispecies models include horizontal communities as well as trophic interactions.

Our analysis builds on previous work, for example by Clark and Bjørnstad (2004), who focus on60

discrete-time models, including exponential growth and the Ricker model. While these authors also use

data to compare state-space approaches to simpler statistical models (e.g., pure observation error models),62

we explore biological models in continuous-time and more systematically using simulated data as well as

more biological scenarios. While our approach relies on Bayesian inference for reasons discussed above,64

de Valpine and Hastings (2002) compare state-space models to observation and process error models

using a likelihood framework. They show that state-space models overall have lower bias and variance66

than the other methods when fitting Ricker and Beverton-Holt density-regulation models.

We here only take into account observation and process errors and not other sources of stochasticity,68

such as environmental or demographic stochasticity (see Shoemaker et al., 2020). We don’t account for

detection error, but see Hefley et al. (2013) for a recent treatment of this question. Finally, we don’t70

include model errors (Xu et al., 2019).

Our work addresses specifically the questions: Which error structure should one use when fitting72

classical deterministic ODE models to empirical data, from single species to community dynamics and

trophic interactions. Does the presence of observation and process error in observed time series influence74

the identifiability of these models? Using a Bayesian approach, we find that pure observation error models

do not perform too badly overall. However, state-space models clearly outperform simpler approaches76

when observation errors are sufficiently large or biological models sufficiently complex. Additionally, we

provide a comprehensive tutorial for fitting these models in R.78

Material and methods

In order to understand under which conditions observation errors, process errors or both have to be80

modelled when analysing population and community dynamics data we consider ecological scenarios

of increasing complexity, ranging from single species dynamics up to predator-prey systems. Briefly,82

we use stochastic individual-based models to generate observations with known underlying processes

and sampling regimes following a “virtual ecologist” approach (Zurell et al., 2010). This allows us to84

include ecologically sound levels of demographic stochasticity, for example. We subsequently fit the

appropriate dynamical equations in R with Markov Chain Monte Carlo (MCMC) sampling using Stan86

(Stan Development Team, 2018). Finally, we complement our work with an analysis of real population

dynamic data from microbial laboratory systems using published data (Fronhofer et al., 2020).88
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Mathematical models

We assume that the following ecological models generate the observed data. Example time series are90

depicted in Fig. S1.

Single species dynamics: Logistic growth model92

As the simplest single species density regulation model we take the Verhulst (1838) model, that is, the

r − α formulation of the logistic growth equation (for a detailed discussion of the advantages of this94

formulation see Mallet, 2012)

dN

dt
= (r0 − αN)N (1)

with N as the size of the focal population, r0 as the intrinsic rate of increase and α as the intraspecific96

competition coefficient. The equilibrium population size can be calculated as K = r0
α .

We extend this model to include an Allee effect by adding a density-dependent mortality term as98

described in Thieme (2003) which can be derived mechanistically, for example, for mate-finding Allee

effects or satiating generalist predators:100

dN

dt
=

(
r0 − αN −

η

1 + γN

)
N (2)

with η as the amount by which growth is reduced at N = 0 and γ controlling the consequences of the

Allee effect for higher densities. Calculations the two equilibrium population densities A and K (dNdt < 0102

for N < A and for N > K) are given in the Supplementary Information.

Single species dynamics: Beverton-Holt model104

As a more mechanistic single species density-regulation function (Thieme, 2003; Fronhofer et al., 2020)

we explore the continuous-time Beverton-Holt model which follows106

dN

dt
=

(
b

1 + βN
− d
)
N (3)

with b as the birth rate and d as the mortality rate. The intrinsic rate of increase can be calculated as

r0 = b− d. The equilibrium population size is K = r0
βd .108

In analogy to Eq. 2 we can expand the Beverton-Holt model to include an Allee effect by adding a

mortality terms (Thieme, 2003), which yields110

dN

dt
=

(
b

1 + βN
− d− η

1 + γN

)
N (4)

4
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Again we refer to the Supplementary Information for the calculation of the equilibrium population den-

sities A and K.112

Interspecific competition: n-species Lotka-Volterra competition model

To capture interspecific competition and the dynamics of a horizontal community, we will first use an114

expansion of the logistic model (Eq. 1):

dNi
dt

= (r0,i −
n∑
j=1

αi,jNj)Ni (5)

where αi,j represent the inter- and intraspecific competition coefficients and form the community matrix.116

We investigate two separate two-species scenarios, which are different in their interspecific competition

coefficients. In the first scenario, the system reaches a stable equilibrium (coexistence), while in the118

second one species is outcompeted by the other and goes extinct (competitive exclusion).

Predator-prey interactions120

For predator-prey interactions, we use the following general model

dR

dt
= g(R)− f(R)N (6a)

dN

dt
= ef(R)N − dN. (6b)

where g(R) is the growth of the resources which can follow any of the above introduced single species122

population growth functions (Eqs. 1 – 4). For simplicity we will assume that g(R) follows Eq. 1. f(R) is

the consumer’s functional response which can be linear, saturating or sigmoid. e captures the consumer’s124

assimilation efficiency. In our analyses we will focus on a Holling type II (Holling, 1959), that is, saturating

functional response of the form a
1+ahR with a as the predator’s search efficiency and h as the handling126

time. This combination of growth and functional response is also known as the Rosenzweig-MacArthur

model and we investigate scenarios that feature a limit cycle (Rosenzweig and MacArthur, 1963).128

Individual-based simulations

In order to simulate the ecological models introduced above, we use an individual-based modelling ap-130

proach that relies on a modified Gillespie algorithm (Allen and Dytham, 2009). The main difference

to a classical Gillespie algorithm consists in calculating maximum rate constants which speeds up the132

simulation as updating occurs less frequently. More generally, our approach assumes that birth and death

events happen stochastically. Via increasing or decreasing birth and death rates but keeping the resulting134

5
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intrinsic rates of increase constant (d ∈ [0, 1], b = r0 + d, r0 = 0.1), we can simulate biologically relevant

increases or decreases in demographic stochasticity and therefore process error σproc. This approach has136

the disadvantage that the system’s frequency is changed at the same time, which is especially disturbing

for predator-prey dynamics. We therefore additionally include the possibility of a constant, additive138

process error in our predator-prey simulations.

We initially tested the coeffient of variation σ
µ of a logarithmic growth model in its equilibrium140

density K = 104 and found that it increases approximately linearly with d in that range, experiencing a

maximum of 0.05. Hence we identify σproc with d. See Fig. S1 for examples of stochastic time series and142

their deterministic counterparts.

Finally, we sample from the generated time series at varying time intervals to include observation error144

(Fig. 1). The first three days, sampling occurs every 12 hours, then every 24 hours until 14 days. We

assume a binomial sampling process with a fixed sampling fraction p, e.g. the fraction of space monitored146

or the faction of volume sampled. Observation error σobs is quantified as variation in equilibrium density

K, which reads σobs = σ
µ =

√
1−p
Kp for the binomial distribution. Sampling fraction p is randomly chosen148

from the interval [0.01, 1.0] (on a logarithmic scale), which for K = 104 results in observation errors

between 0 and ≈ 0.1.150

For each scenario, that is each population or community model, we ran 10,000 simulations with varying

process and observation error. In each simulation we ran 10 independent replicates. In the two-species152

scenarios, additional 5 independent replicates for the two single-species systems, each, were carried out.

They serve as control data that inform model parameters in addition to the two-species treatments.154

Empirical data example

In order to confront our statistical approach with empirical data, we complemented the above described156

simulations by using population times series data from microbial laboratory systems. More precisely, we

used the data collected by Fronhofer et al. (2020) from microcosms of the freshwater protist Tetrahymena158

thermophila. These cultures were grown from low density in volumes of 20 mL. Data was collected using

a computer-vision and video-analysis pipeline on sample volumes of 31 µL. For details see Fronhofer et al.160

(2020).

Statistical approach162

Let Yi denote the observations at times ti (i = 1, . . . , n) of one time series replicate of an experiment.

Each observation is univariate for single species systems (Yi ∈ R), or bivariate for two-species systems164

(Yi ∈ R2). Generally, we use m time series replicates denoted by Yij (i = 1, . . . , n, j = 1, . . . ,m). In the

6
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Table 1: Important model parameters, their meaning and tested values.

Parameter Values Meaning
r0 0.1 resource intrinsic growth rate
dR ∈ [0, 1] resource death rate (also determines process error)
b r0 + dR resource birth rate
K 104 resource carrying capacity

2 · 104 resource carrying capacity (predator-prey model)
α r0

K resource intraspecific competition coefficient (logistic model)
α(r0, η, γ,K) resource intraspecific competition coefficient

(logistic Allee model)
β r0

dRK
resource intraspecific competition coefficient

(Beverton-Holt model)
β(r0, dR, η, γ,K) resource intraspecific competition coefficient

(Beverton-Holt Allee model)
η 0.125 Allee effect strength at low densities
γ 0.0005 Allee effect strength at high densities
αi,j ∈ [0.5 · 10−5, 1.5 · 10−5] resource interspecific competition coefficient
a 3.333 · 10−4 consumer search efficiency
h 0.5 consumer handling time for type II functional response
e 0.05 consumer assimilation efficiency
dC 0.05 + c consumer death rate
c 0.1 · dR additive constant for consumer birth and death rate

(determines process error)
Tmax 300 maximal simulation time
R0 ∈ [102, 103] resource starting density
C0 400 consumer starting density

following, we describe the model fitting of single time series replicates for simplicity and briefly explain166

extensions to multiple replicates where needed.

U(t) is a deterministic prediction, or process model, for the population time series Y . Here we use168

U(t) = U(t|t1, U1, θ), the numerical solution of the continuous-time ODE ∂U
∂t = f(U(t), θ) with initial

value U(t1) = U1 and model parameters θ. A discrete-time process model U(t) would work analogously.170

We combine the deterministic prediction model with a statistical model to fit it to the observations

and to estimate model parameters θ. The following three statistical models vary in their treatment of172

observation and process error, i.e. their variance structure. Mathematically, they differ in the way Ui =

U(ti) is computed from information at the previous time point ti−1: either from the previous prediction174

Ui−1, the previous observation Yi−1, or the underlying previous true state Zi−1. We use a Bayesian

approach for parameter estimation, but the models can generally be fitted with maximum likelihood176

estimation as well (e.g. Xu et al., 2019; DeLong and Lyon, 2020). Both methodologies require the

evaluation of the likelihood function L(θ) = p(Y |θ) =
∏n
i=1 p(Yi|θ), where p(Y |θ) denotes the probability178

density function of the observed data Y given the model parameters θ.

7
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Observation error model180

When ignoring process error, the whole trajectory

U(t|t1, U1, θ), t ∈ [t1, tn] (7)

is computed with predictions U1, . . . , Un. These are confronted with the data by evaluating the likelihood182

L(θ, U1). The initial abundance U(t1) = U1 is also a free parameter to be estimated. Eq. 7 is identical to

Ui = U(ti|ti−1, Ui−1, θ), i = 2, . . . , n (8)

and predictions Ui are (iteratively) defined by initial state U1 and model parameters θ (Fig. 1b). The184

likelihood L(θ, U1) is defined by assuming pure observation error

Yi ∼ Dobs(Ui), i = 1, . . . , n (9)

with some distribution Dobs. E.g., in case of a normal distribution, Eq. 9 would read Yi ∼ N (Ui, σ) or,186

equivalently, Yi = Ui + εi, with residual errors εi ∼ N (0, σ) and standard deviation σ. Here, we chose

a negative binomial distribution which works with our integer observations Yi (including zeros) and can188

account for overdispersion (O’Hara and Kotze, 2010). For time series that did not include zeros as our

empirical data example, we found that a lognormal distribution works as well. By neglecting process error190

and assuming that the process is sufficiently described by a deterministic trajectory, parameter estimation

reduces to a nonlinear regression problem, fitting U(t) (Eq. 7) to observations Yi with independent192

residuals (Eq. 9).

In case of multiple time series replicates (observations Yij), we fitted m trajectories U(t|t1, U1j , θ)194

using a joint set of model parameters θ, but allowing individual initial values U1j (j = 1, . . . ,m) in one

statistical model, i.e. using a joint likelihood function L(θ, U11, . . . , U1m).196

Process error model

When observation error is ignored, we assume that the observations Yi are sufficiently close to the true198

states. Predictions are generated one-step-ahead

Ui = U(ti|ti−1, Yi−1, θ), i = 2, . . . , n (10)

8
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i.e. predicting Ui from the previous observation Yi−1 only (Fig. 1c). The deviations from this piecewise200

deterministic process

Yi ∼ Dproc(Ui), i = 2, . . . , n (11)

with some distribution for the process error Dproc define the likelihood L(θ). Again, we used a negative-202

binomial distribution. Thus, by neglecting observation error, parameter estimation reduces to a nonlinear

autoregressive problem with independent residuals.204

For multiple time series replicates, we straightforwardly iterate Eqs. 10,11 for Yij and Uij (j =

1, . . . ,m) with a joint set of model parameters θ, to evaluate the joint likelihood L(θ) in one statistical206

model.

State-space model208

This approach assumes both observation error and process error are present. It requires explicitly mod-

elling the time series of true states Zi (i = 1, . . . , n). These parameters are unknown a-priori, but can210

be estimated together with the model parameters θ from the data during the model fitting process. For

each “guess” of Z and θ, predictions are generated one-step-ahead212

Ui = U(ti|ti−1, Zi−1, θ), i = 2, . . . , n (12)

from the previous states Zi−1 (Fig. 1d). The process error in that prediction is quantified via

Ui ∼ Dproc(Zi), i = 2, . . . , n (13)

with some distribution for the process error Dproc. Here, we used a lognormal distribution allowing214

continuous parameters Zi. Additionally, the observations deviate from the true states defined by

Yi ∼ Dobs(Zi), i = 1, . . . , n (14)

with some distribution for the observation error Dobs. Again, we chose a negative-binomial distribution216

due to the integer observations. Eqs. 13,14 define the likelihood function L(θ, Z1, . . . , Zn) for each θ and

Z.218

When dealing with multiple time series replicates Yij (j = 1, . . . ,m), we fit m individual time series

of true states Z1j , . . . , Znj with a joint set of θ, using the likelihood function L(θ, Z11, . . . , Znm) in one220

statistical model.

9
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Parameter estimation222

We used MCMC to sample from the posterior probability distribution of the model parameters given

the observations p(θ|Y ) ∼ p(Y |θ) · p(θ), where p(Y |θ) = L(θ) is the likelihood function and p(θ) denotes224

some prior distribution for the model parameters θ. We coded the models using the “rstan” package

(Stan Development Team, 2018) and used the built-in Runge-Kutta method for numerical solutions of226

ODE predictions U(t), and the no-u-turn sampler for computing the posterior. Vague or uninformative

prior distributions p(θ) were chosen for all model parameters to guarantee that the measured model228

performance was not confounded with prior information (Table S1).

Each model fit was computed by 2000 warmup steps and 2000 samples in three chains, adding up to230

6000 posterior samples. We discarded every dataset from subsequent analysis if either of the three fitting

methods did non converge (more than 100 divergent iterations).232

Evaluation

For each model fit, we computed Bias and root mean squared error (RMSE) from the posterior distribution234

p(θ̂|Y ) to evaluate accuracy, where θ̂ = (θ̂1, . . . , θ̂k) and θ = (θ1, . . . , θk) denote the k estimated and true

model parameters, respectively. Relative Bias236

Bias(θ̂i) =
E(θ̂i)− θi

θi
(15)

is a measure of point estimates (posterior means E(θ̂i)), while the relative RMSE

RMSE(θ̂i) =

√
(E(θ̂i)− θi)2 + Var(θ̂i)

θi
(16)

also accounts for the uncertainty of the estimation (by including posterior variances Var(θi)). Addition-238

ally, we computed generalized additive models (GAMs) for geometric means over all k parameters of Bias

and RMSE, respectively, versus process and observation error with the “mgcv” package (Wood, 2011).240

Results

Fitting simulated data242

In most scenarios, SMM performed best in terms of the model parameters’ bias (Fig. 2) and RMSE

(Fig. 3). In cases where models were identifiable via SSM, OBS performed comparably or just slightly244

less accurately, while PROC generally produced the least accurate parameter estimates. The dependency

of accuracy on the data’s process and observation error is presented in Figs. S2–S13.246
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Figure 2: Distribution of relative bias, model parameters vs. statistical models for all population dynamics
models (10,000 simulated time series each). Dots are mean, thin lines are 95%, and bold lines are 66%
quantiles. For Allee models, A is computed from other model parameters and not a free parameter itself.

For the logistic growth model (Eq. 1), both SSM and OBS produced unbiased estimates. PROC

overstimated the growth rate r slightly but systematically, especially for high observation error (Fig. S2).248

In the Beverton-Holt model (Eq. 3), parameter d defines the mortality rate as well as the level

of process error in the individual-based simulations. Further, with increasing d, the density-regulation250

function converges to the linear version of logistic growth and time series resemble those of the logis-

tic growth model. In our parametrization, a nonlinear effect in the density-regulation function on the252

stochastic time series was only visible for d < 0.5 (approximately). Therefore, the exact values of large d
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Figure 3: Distribution of relative RMSE, model parameters vs. statistical models for all population
dynamics models (10,000 simulated time series each). Dots are mean, thin lines are 95%, and bold
lines are 66% quantiles. For Allee models, A is computed from other model parameters and not a free
parameter itself.

were not identifiable, which caused high variation in the estimates and their uncertainty. But if the data254

provided evidence for the Beverton-Holt model vs. logistic growth (d small), then all three statistical

models provided accurate estimates (Fig. S3).256

The parameter estimates of the logistic growth with Allee effect model (Eq. 2) were generally

biased. SSM still produced more accurate estimates than both other approaches, while OBS and PROC258

estimates were heavily biased if not process and observation error in the data were both low (Fig. S4).
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Their inaccuracy was most noticeable for high observation error. All statistical models suffered from260

highly correlated parameters r, η and γ in the posterior distribution (of a single fit). We assume that this

four parameter model is not accurately identifiable under the presence of process and observation error.262

However, the critical point A(r,K, η, γ) (see Supplementary Information), which separates positive and

negative population growth, was estimated comparably accurately by the SSM.264

With one additional parameter d for mortality, the Beverton-Holt with Allee effect model (Eq. 4)

featured problems similar to the Beverton-Holt model and the logistic Allee effect model. While an266

accurate estimation of d was not possible unless d was small (and therefore process error was low), other

parameters’ estimation accuracy was generally low, too. Again, we assume that this five parameter model268

is not identifiable with process or observation error present in the data (Fig. S5).

We tested a two-species Lotka-Volterra competition (Eq. 5) model in a coexistence scenario270

(both species reached a positive steady state) using additional control data (single species time series,

each growing to their carrying capacity). The accuracy level was generally high. While OBS and SSM272

mostly produced unbiased estimates, PROC slightly overestimated some parameters especially under the

presence of observation error (Fig. S6), comparable to the logistic growth model. Without control data,274

results were similar albeit slightly less accurate (Fig. S9).

In a competitive exclusion scenario (one species was outcompeted and went extinct, while the276

other one grew to its carrying capacity) using additional control data, accuracy levels were widely high

and just slightly lower than in the coexistence scenario. SSM produced marginally better estimates than278

the other two fitting approaches. Estimation errors grew with observation error (Fig. S7), especially for

parameters r1, α11 and α12 of the outcompeted species 1. Without control data however, estimation280

accuracy decreased rapidly with observation error (Fig. S10), leading to biased estimates for all three

fitting approaches. Without data on the carrying capacity K1 = r1
α11

of the outcompeted species, model282

identifiability was highly sensitive towards observation error.

We tested a predator-prey model (Eq. 6a, 6b) with cyclic dynamics. The parameters were chosen284

such that the system experienced approximately two full cycles in the observed time. First, we used

additional single-species control time series (resource growing to its carrying capacity, consumer going286

extinct). SSM and OBS provided mostly unbiased estimates, with slight overestimation of parameters

e, h and dC . Here, the posterior distributions of the individual fittings showed correlations in these288

parameters. PROC generally featured biased estimates for the species interaction parameters e, a and h.

Surprisingly, error levels of all three approaches were sensitive to observation error, but not so much to290

process error (Fig. S8). Second, we fitted the model without any control data (Fig. S11). While accuracy

decreased for parameters estimated with OBS, SSM results surprisingly were comparable to the estimates292

with control data.
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Additional scenarios294

The OBS and the SSM fitting approach performed comparably well in some two-species scenarios, even

under the presence of process and observation error. We repeated the analysis of the Lotka-Volterra com-296

petition model and the predator-prey model to validate the methods under more challenging conditions.

We fitted the Lotka-Volterra competition model using fewer replicates, i.e. only two instead of298

ten time series of the two-species mixtures, and only one instead of five single-species control time series

each. Our assumption was that, even though process error can speed up or slow down dynamics, these300

effects would average out over ten replicates and would inform parameters (e.g. the average growth rates)

correctly. We found that this generally holds even with fewer replicates, and results were only slightly302

less accurate (Fig. S12). In particular, OBS estimates were as accurate as SSM estimates across all levels

of observation and process error.304

We also fitted predator-prey models to longer time series over 35 days instead of 14 days, such

that the system featured approximately four full cycles instead of two. Additional single-species control306

time series were used as before. Our assumptions were that process error did not affect the estimation

quality significantly in the shorter time series, since the stationarity of the process (regularity of the308

cycles) was not seriously disturbed, and that regularity would only decrease with longer time series,

leading to less accurate results especially for the OBS model. Fitting longer time series (Fig. S13), results310

were however comparable to the results with shorter time series. Notably, OBS estimated parameters

only marginally less precise than for the shorter time series. We conclude that OBS and SSM are robust312

against the level of process variation and the resulting non-stationarity in the investigated simulations.

Fitting an empirical data set314

We fitted the Beverton-Holt model (Eq. 3) with all three statistical approaches to seven empirical datasets,

comprised of six time series replicates each (Fig. 4).316

Since all observed densities were positive, we used lognormally distributed residuals for process and

observation errors, both. Nonlinear effects on the density-regulation function were detected in datasets318

4, 6 and 7 by all three statistical models, indicated by low values of mortality rate d. For the remaining

datasets, larger values of d were estimated with a high uncertainty in the posterior distributions, which320

suggested no clear evidence for the Beverton-Holt model over the logistic growth model. Estimates of

the three model parameters r, K and d were similar across the three statistical approaches, but posterior322

uncertainty was generally higher in the PROC estimates. The SSM indicated that process error was

smaller than observation error in all datasets. OBS and PROC however have only one error term that324

has to account for the total variation, so estimates of observation error and process error were higher
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Figure 4: Empirical time series and posterior distributions of fitted Beverton-Holt models, including model
parameters r,K, d and standard deviation parameters sobs, sproc of the lognormal residuals distributions.
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than the respective SSM estimates.326

Discussion

Our work shows that using deterministic ODEs and Bayesian inference, it is possible to accurately328

estimate parameters from time series data of stochastic IBMs including process and observation error.

Practical identifiability, which is based both on the model and data quality (Raue et al., 2009), was330

validated for several widely-used population models with respect to the different statistical models used

here. Importantly, our work covers multiple dimensions of complexity, both in terms of population ecology332

and statistical models, from simple single species models, such as the logistic model, to multispecies

community models, and, in terms of statistical models, from pure observation (OBS), via process error334

(PROC) to state-space models (SSM). Overall, we can show that OBS and SSM can be generally preferred

over PROC models.336

More precisely, OBS can compete with the more complex SSM, especially when a true steady state >

0, such as an equilibrium density, is reached (logistic model, Beverton-Holt model (d small, so not logistic338

data), Lotka-Volterra model with coexistence) or when the biological models lead to regular cycles, such

as in some predator-prey dynamics. The good performance of OBS for predator-prey models is in line340

with recent studies (Rosenbaum et al., 2019; DeLong and Lyon, 2020). Interestingly, even for 2-species

Lotka-Volterra competition models with exclusion of one of the players, we can show that OBS performs342

only slightly worse than SSM. Therefore, OBS may be a viable alternative to SSM, especially if SSM

suffer from, e.g., extensive model complexity or convergence problems (Bolker, 2008; Auger-Méthé et al.,344

2016; Best and Punt, 2020).

Our work also shows that estimating Allee effect strengths and more generally fitting population346

growth models with Allee effects is challenging. For these models, the 4- or even 5-parameter density-

regulation functions may be overparameterised and nonidentifiable especially in the presence of process348

and observation error. As a consequence, these models may only be useful for data from highly controlled

experiments in combination with SSMs. It it important to note that these models can be derived mech-350

anistically (Thieme, 2003), which may allow to inform priors of one or multiple model parameters which

could help make the SSM more accurate. Of course, as an alternative, non-mechanistic formulations such352

as dN
dt = rN(1− N

K )(NA − 1) with less parameters could also be used.

In the case of two-species systems we highly recommend the use of control time series from single354

species settings (Figs. S6 & S9, S7 & S10, S8 & S11). If these are not available SSMs should be used.

Biological settings that lead to the exclusion of one species, such as some of the Lotka-Volterra competition356

models we have used here, make the statistical models non-identifiable without such control data, unless
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the observation error is very small.358

While we here explored model identifiability based on time series data alone, a Bayesian approach

easily allows including additional sources of information to improve parameter estimation. This infor-360

mation could enter the model via informed priors or hierarchical models (Kindsvater et al., 2018), or by

using multiple, potentially heterogeneous data sources (Barraquand and Gimenez, 2019). For example,362

feeding experiments (Rosenbaum and Rall, 2018) additionally inform functional response parameters in

predator-prey models (Barraquand and Gimenez, 2021).364

In conclusion, we have explored multiple dimensions of complexity, both in terms of biological com-

plexity as well as in terms of statical model complexity, in order to pinpoint which error structure one366

should use when fitting classical deterministic ODE models to empirical data, from single species to

community dynamics and trophic interactions. Our results show that, overall, observation and state-368

space models outperform process error models. Importantly, our continuous-time models allow to include

uneven sampling intervals (and therefore missing values), because the model is not linearised within a370

time-step as in discrete-time models. More generally, our work shows that deterministic models seem to

be sufficient to describe the stochastic dynamics emerging from process and observation errors.372

Code and data availability

Code for stochastic individual-based simulations is available from https://doi.org/10.5281/zenodo.5500442.374

A tutorial for fitting ODE models to time series data in R is presented in the Supplementary Information

and is also available online https://github.com/benjamin-rosenbaum/fitting deterministic population models.376
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