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Abstract

Predicting breast cancer prognosis helps improve the treatment and management of the

disease. In the last decades, many prediction models have been developed for breast

cancer prognosis based on transcriptomic data. A common assumption made by these

models is that the test and training data follow the same distribution. However, in

practice, due to the heterogeneity of breast cancer and the different environments (e.g.

hospitals) where data are collected, the distribution of the test data may shift from that

of the training data. For example, new patients likely have different breast cancer stage

distribution from those in the training dataset. Thus these existing methods may not

provide stable prediction performance for breast cancer prognosis in situations with the

shift of data distribution. In this paper, we present a novel stable prediction method for

reliable breast cancer prognosis under data distribution shift. Our model, known as

Deep Global Balancing Cox regression (DGBCox), is based on the causal inference

theory. In DGBCox, firstly high-dimensional gene expression data is transferred to

latent network-based representations by a deep auto-encoder neural network. Then after

balancing the latent representations using a proposed causality-based approach, causal

latent features are selected for breast cancer prognosis. Causal features have persistent

relationships with survival outcomes even under distribution shift across different

environments according to the causal inference theory. Therefore, the proposed

DGBCox method is robust and stable for breast cancer prognosis. We apply DGBCox
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to 12 test datasets from different breast cancer studies. The results show that DGBCox

outperforms benchmark methods in terms of both prediction accuracy and stability. We

also propose a permutation importance algorithm to rank the genes in the DGBCox

model. The top 50 ranked genes suggest that the cell cycle and the organelle

organisation could be the most relevant biological processes for stable breast cancer

prognosis.

Author summary

Various prediction models have been proposed for breast cancer prognosis. The

prediction models usually train on a dataset and predict the survival outcomes of

patients in new test datasets. The majority of these models share a common

assumption that the test and training data follow the same distribution. However, as

breast cancer is a heterogeneous disease, the assumption may be violated in practice. In

this study, we propose a novel method for reliable breast cancer prognosis when the test

data distribution shifts from that of the training data. The proposed model has been

trained on one dataset and applied to twelve test datasets from different breast cancer

studies. In comparison with the benchmark methods in breast cancer prognosis, our

model shows better prediction accuracy and stability. The top 50 important genes in

our model provide clues to the relationship between several biological mechanisms and

clinical outcomes of breast cancer. Our proposed method in breast cancer can

potentially be adapted to apply to other cancer types.

Introduction 1

Breast cancer prognosis can help tailor treatments for patients and improve their 2

survival outcomes. Traditional breast cancer prognosis mostly relies on the 3

tumour-node-metastasis (TNM) staging system [1]. However, tumours with the same 4

clinical characteristics can differ in both prognosis and treatment response because 5

breast cancer is heterogeneous with variable molecular mechanisms of carcinogenesis 6

and cancer development. Therefore, it is desirable to use transcriptomic data to conduct 7

breast cancer prognosis at molecular level. 8
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In the past decades, a large amount of transcriptomic data have been generated for 9

breast cancer using next-generation sequencing and microarray technologies, and many 10

computational methods have been developed to utilize the data for breast cancer 11

prognosis. Most of the methods are based on Cox regression [2]. For example, rorS [3] 12

trains a risk model by ridge penalized Cox regression based on the breast cancer 13

subtype information obtained from gene expression data. TAMR13 [4] builds a Cox 14

regression model based on the data of gene probe cluster centroids. Similarly, 15

OncotypeDX [5], GENIUS [6] and EndoPredict [7] use Cox regression to determine the 16

weights of the selected genes and then calculate the hazard risk as a weighted 17

combination of the gene expression levels. 18

Some machine learning based methods have also been used for cancer prognosis, 19

such as Cox regression regularized by elastic Net [8], Random Survival Forest (RSF) [9], 20

Support Vector Regression for Censored Data (SVRc) [10], Cox proportional hazards 21

deep neural network (DeepSurv) [11] and so on (see [12] for a review). These methods 22

take advantage of machine learning techniques, to selecting vital features in 23

high-dimension transcriptomic data and to model non-linear relationships between 24

features (genes) and survival outcomes. 25

These methods assume no distribution shift from the training data to the test data 26

(new unseen data). However, the assumption will be violated in real applications. For 27

example, gene expression data may be produced using different platforms, by different 28

labs and patients may come from different countries or have different breast cancer 29

stages. Users do not know what future unseen data will be like. Inaccurate prognosis 30

predictions will have resulted from the distribution shift even though the models 31

perform well in the training and hold out validation datasets. 32

The computational methods need to have stable prediction performance since their 33

predictions directly impact treatment decisions. Here the stability of a method means 34

that the method performs consistently with the training data and the test data (i.e. 35

unseen breast cancer patients) which may have different distributions. One strategy to 36

improve the stability of a prediction method is to utilize samples from multiple sources 37

to train the model. For example, several methods have been developed to select a set of 38

robust features from multiple datasets obtained from the studies of the same disease, 39

and use these features to build a more reliable prediction model [13,14]. Another 40
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strategy is to employ transfer learning techniques to train a robust prediction 41

model [15]. For example, the method in [16] transfers the weights of a variational 42

auto-encoder trained with all the transcriptomic data of 20 cancer types (source 43

domain) to the survival prediction model for patients from a single cancer type (target 44

domain). The transfer learning based methods enhance the robustness of survival 45

predictions in unseen cancer patients by extracting the shared genomic knowledge from 46

the source domain and transfer the knowledge to the target domain. 47

From the above discussion, we can see that these existing stable prediction methods, 48

when used for breast cancer prognosis, require cancer patient samples with 49

transcriptomic data and/or survival outcomes coming from either different sources or 50

multiple domains in the training phases. Both are challenging in practice because it is 51

time-consuming to follow up cancer patients over long-term periods and collect a wide 52

variety of data. Therefore, it is useful to develop survival prediction models that train 53

on an available dataset and are robust to distribution shifts in test data from new 54

environments. 55

In this paper, we focus on designing a model for stable survival prediction under new 56

environments where the data distribution has been shifted from that in the training 57

dataset. The new environment is agnostic to us and the distribution in the test data is 58

unknown. In this case, we cannot use any information from the test data when we train 59

a model. To learn a robust prediction model across different environments, the 60

predictors (signatures) must be causal genes, i.e. genes causing the development of the 61

disease [17]. The pinpointed causal genes in the model can be translated into disease 62

mechanism and clinical treatment [18]. Therefore, we will model stable breast cancer 63

prognosis predictions as a causal problem. 64

In the research area of causal inference, the causal effects are used for measuring the 65

impact of a treatment on patients. Covariate balancing strategies are used for 66

estimating the causal effect of a treatment variable on the outcome in the observational 67

data. A recent global balancing strategy by Kuang et al. [19] is a covariate balancing 68

strategy used to estimate the causal effects of covariates on the outcome when one does 69

not know which covariates are causal and which ones are not. This can be used for our 70

design because we do not know which genes are causal. However, three limitations 71

prevent this method from being immediately applied to achieve a stable breast cancer 72
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prognosis. Firstly, the method is for a classification problem with the categorical 73

outcome not for a regression problem with the continuous outcome as in prognosis 74

prediction. Secondly, this method is only applicable to data without censoring, 75

unfortunately, the survival outcomes in breast cancer datasets are almost always 76

censored. Thirdly, it cannot deal with high dimensional gene expression data used in 77

building breast cancer prognosis models. 78

We propose a novel method, Deep Global Balancing Cox regression (DGBCox) for 79

stable breast cancer prognosis based on censored survival data and gene expression data. 80

With DGBCox, we have made two main contributions: (1) We leverage the strengths of 81

both regularized Cox regression and global balancing approach and propose a novel 82

method for stable cancer prognosis. To the best of our knowledge, this is the first cancer 83

prognosis model which is aimed at stable predictions across different environments. (2) 84

We have developed a new deep learning based framework to deal with high dimensional 85

gene expression data. 86

We apply DGBCox to breast cancer datasets from different studies. The experiment 87

results have demonstrated that DGBCox performed better than baseline methods and 88

existing breast cancer prognosis methods with regard to accurate and stable breast 89

cancer prognosis. We interpret the important genes for the stable breast cancer 90

prognosis in our model. A high percentage of the top 50 important genes discovered by 91

DGBCox has been selected by previous research for breast cancer prognosis. The 92

important genes are enriched in several well-known biological processes involved in the 93

development of cancer. These findings may help to understand the biological 94

mechanisms of breast cancer development and progression. 95

Materials and methods 96

Datasets 97

In this study, we use 13 genome-wide expression datasets containing in total 5668 breast 98

cancer patients from different repositories (Table 1). Among these datasets, TCGA753 99

and TCGA500 are subsets of TCGA1093 generated by The Cancer Genome Atlas 100

(TCGA) program (https://www.cancer.gov/tcga). METABRIC is available at the 101
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European Genome-phenome Archive (EGA) (https://www.ebi.ac.uk/ega/, accession 102

number EGAS00000000083, access required). The MAINZ, TRANSBIG, UPP, UNT, 103

and NKI datasets are from Bioconductor (https://bioconductor.org/) data packages, 104

breastCancerMAINZ, breastCancerTRANSBIG, breastCancerUPP, breastCancerUNT, 105

and breastCancerNKI, respectively. The remaining datasets are all downloaded from 106

the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). 107

More details about the datasets are in Section 1 in S1 File. 108

Table 1. A summary of the datasets

Dataset Platform #Samples Min time1 Max time2 Event (%)3 Reference
METABRIC Illumina HumanHT-12 V3 1283 0 29.60 32.68 [20]
TRANSBIG Affymetrix Human Genome U133A 198 0.34 24.95 31.31 [21]
UNT Affymetrix Human Genome U133A/B 137 0.17 14.53 21.05 [22]
UPP Affymetrix Human Genome U133A/B 251 0.08 12.75 23.08 [23]
MAINZ Affymetrix Human Genome U133A 200 0.08 19.72 23.00 [24]
NKI Agilent Human Genome Microarray 337 0.02 18.35 34.17 [25,26]
GSE6532 Affymetrix Human Genome U133 Plus 2 414 0.02 16.85 34.66 [27]
GEO736 Affymetrix Human Genome U133 Plus 2 736 0 18.52 47.42 [4, 28–31]
TCGA1093 Illumina GA/HiSeq RNA-seq 1093 0 23.44 10.35 [32]
TCGA753 Illumina GA/HiSeq RNA-seq 753 0 17.90 9.57 [32]
TCGA500 Illumina GA/HiSeq RNA-seq 500 0.003 17.90 9.02 [32]
UK Illumina humanRef-8 V1 207 0.39 10.00 37.20 [33]
HEL Illumina HumanHT-12 V3 115 0 5.00 21.74 [34]
1: the minimum survival time in years in a dataset. 2: the maximum survival time in years in a dataset. 3: the percent of
patients experiencing events in a dataset.

The clinical outcomes included in the datasets used in this study include relapse free 109

survival time (UPP, GSE6532, GEO736, TCGA1093, TCGA753, TCGA500, 110

METABRIC, and UK), distant metastasis free survival time (TRANSBIG, UNT, 111

MAINZ, and NKI), and death or distant metastasis free survival time (HEL). In all the 112

datasets, the unit of survival time is a year. The maximum survival time in the datasets 113

ranges from 5 years to 29.6 years. The medical event in the datasets is breast cancer 114

relapse, metastasis or death. The event percentage in the datasets ranges from 9.02% to 115

47.42%. These breast cancer datasets were collected from different batches of 116

experiments with different RNA-sequencing platforms and different pipelines for 117

RNA-seq data processing and have different ranges of survival time and different ratios 118

of event occurrences. Therefore, it is reasonable to assume that the distributions of 119

these datasets are different. 120
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Stable cancer prognosis using Deep Global Balancing Cox 121

regression (DGBCox) 122

Overview of DGBCox 123

As illustrated in Fig 1, DGBCox has three main components in the training phase, a 124

deep auto-encoder neural network (DAE), a survival global balancing component (SGB) 125

and a regularized Cox regression (Cox). DAE is used for extracting the latent patient 126

representations from the original gene expression data of a patient. Cox is used to 127

predicting a patient’s hazard risk that indicates how likely the patient is to experience 128

an event. SGB re-weights the training data samples so that it is possible to infer the 129

causal relationships between latent features and the survival outcomes. The three 130

components of DGBCox are trained using the input dataset D = (X, T, E), where X is 131

gene expression data, T is observed survival time and E is event status. In the test 132

phase, DGBCox predicts the hazard risk of a patient only based on the trained DAE 133

and Cox components. In the following sections, we explain the three components, the 134

training and test phases of DGBCox. 135

Deep auto-encoder
(DAE) Latent

features

Survival global balancing
(SGB)

Regularized Cox
regression (Cox)

 

~

A: Training phase of DGBCox

B: Test phase of DGBCox

Prediction

Fig 1. The framework of DGBCox. A. DGBCox contains three main components
in the training phase, i.e. DAE, SGB and Cox. SGB balances weighted covariate
distributions in treated and control groups and then offers weights in W to Cox. DAE
provides latent representations in ϕK(X) to SGB and Cox. DAE, SGB and Cox are
jointly trained by an optimization algorithm. B. For an unseen test patient with gene
expression profile x, the survival prediction is an exponent of the linear combination of
latent features, where the coefficients β (in Cox) and the encoder function ϕK(·) (in
DAE) are determined in the training phase.
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Deep auto-encoder neural network (DAE) 136

The gene expression data of cancer patients are typical of high dimensionality, but the 137

global balancing technique employed by DGBCox (for the SGB component) cannot deal 138

with high dimensional data if it successively treats each gene as a treatment variable 139

and learns weights to balance the dataset (details in the next section). Therefore we 140

apply a deep auto-encoder neural network [35] to reduce the dimensionality of the gene 141

expression data and feed the low dimensional latent features to SGB. 142

DAE consists of two parts, the encoder and the decoder, which can be defined as 143

transitions ϕ : X → ϕ(X) and φ : ϕ(X) → φ(X), respectively. Specifically, the latent 144

representations for each hidden layer of the encoder can be given as: 145

ϕ1(X) = σ(A1X+ b1)

ϕk(X) = σ(Akϕk−1(X) + bk), k = 2, . . . ,K

(1)

where K is the number of hidden layers in the encoder. Ak and bk are the weight 146

matrix and bias vector on the k-th hidden layer of the encoder, respectively. σ(.) is an 147

activation function. 148

The decoder transitions the resulting latent representations ϕK(X) to a 149

reconstructed X̂ with the same shape of X: 150

φ1(X) = σ(À1ϕK(X) + b̀1)

φk(X) = σ(Àkφk−1(X) + b̀k), k = 2, . . . ,K

(2)

where Àk and b̀k are the weight matrix and bias vector on the k-th layer of the encoder 151

respectively. The reconstructed X̂ is the K-th layer output φK(X). DAE is trained to 152

minimize reconstruction errors between the input gene expression data X and the 153

reconstructed X̂, such as
∥∥∥X− X̂

∥∥∥2
2
. 154

The output of the DAE component is the low-dimensional latent features (in ϕK(X)) 155

which are the non-linear combinations of the input gene expression data. For the sake of 156

simplicity, the superscript K is dropped when the context is clear. ϕ(X) is used for 157

input data of SGB and Cox instead of X as described in the following sections. 158
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Survival global balancing (SGB) 159

It is known that causal relationships between covariates are persistent and stable across 160

different environments whereas noncausal relationships or purely correlations may 161

variant across different environments [36]. Therefore to achieve stable predictions for 162

cancer prognosis, for our proposed DGBCox, we aim to use the latent features which are 163

causally related to the survival outcomes (called causal latent features in this paper) as 164

the predictors in the prediction model (i.e. the Cox regression model) for prognosis. To 165

find the causal features, we need to estimate the causal effect of a latent feature on the 166

survival outcomes. Covariate balancing is a way to estimate causal effects [37]. Here we 167

extend the global balancing method [19] to censored survival data and propose the 168

survival global balancing (SGB) component for DGBCox. SGB re-weights the training 169

data samples, which enables estimation of the causal effect of each latent feature and 170

thus to identify the causal features. 171

In the following, we start with introducing the general idea of covariate balancing 172

and the global balancing method [19] for non-censored data. Then we propose our 173

method to extend the covariate balancing approach and the global balancing method to 174

censored survival data. Lastly, we incorporate the extended global balancing approach 175

with DAE for censored data. 176

Let Zi ∈ {0, 1} denote treatment assignment, with Zi = 1 indicating the i-th patient 177

is treated and Zi = 0 indicating the opposite. Xi and Yi describe the features and the 178

observed survival time for the i-th patient respectively. The subscript i will be dropped 179

when the context is clear. Y (z) (z ∈ {0, 1}) denote the potential survival outcomes of a 180

patient under the treatment assignment Z and Y = ZY (1) + (1− Z)Y (0). The observed 181

dataset is composed of i.i.d. samples (Yi, Zi,Xi), for i = 1, 2, . . . , N , where N is the 182

sample size of the training dataset. In causal inference, to estimate of average treatment 183

effect from observed data with non-random treatment assignment, covariate balancing is 184

a commonly used method to balance the distribution of the covariates between treated 185

and control groups [19]. Under the assumption of unconfoundedness 186

(Z ⊥⊥ (Y (1), Y (0))|X), the general idea of the covariate balancing approach is to 187

re-weight the training samples, i.e. re-weigtht the i-th sample with the weight Wi, and 188
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the weight vector W = {W1,W2, . . . ,WN} is obtained as follows: 189

argmin
W

∥∥∥∥∥
∑

i:Zi=1 Wi ·Xi∑
i:Zi=1 Wi

−
∑

i:Zi=0 Wi ·Xi∑
i:Zi=0 Wi

∥∥∥∥∥
2

2

(3)

Through the sample re-weighting, the average treatment effect can be estimated using 190

the difference of the expected weighted survival time of patients in treated and control 191

groups [19]. 192

When the causal features (regarded as treatments) are unknown, Kuang et al. 193

proposed a Global Balancing (GB) method to identify causal features from the 194

observational data [19]. GB successively takes each covariate as a treatment variable 195

and balance the distribution of all the other covariates between treatment and control. 196

As a result, GB learns global sample weights in W satisfied with 197

argmin
W

P̀∑
p=1

∥∥∥∥∥XT
.,−p · (W ⊙X.,p)

WT ·X.,p
−

XT
.,−p · (W ⊙ (1−X.,p))

WT · (1−X.,p)

∥∥∥∥∥
2

2

(4)

where P̀ is the dimension of X, X.,p is the p-th covariate or the binary of the p-th 198

covariate (for non-binary variable) in X, and X.,−p = X \X.,p holds all the remaining 199

covariates except the p-th covariate in X. ⊙ refers to element-wise multiplication. 200

Now we extend Formula 3 to right censored survival data. Right censoring occurs 201

when a patient does not experience an event but she is lost to follow-up or the medical 202

study ends. Therefore, when right censoring occurs to a patient, instead of observing Y , 203

one observes T = ZT (1) + (1− Z)T (0), and T (z) = min(Y (z), C), where C denotes the 204

censoring time. Similarly, one observes the event status E = ZE(1) + (1− Z)E(0), 205

where E(z) = I(C ≥ Y (z)) and I(·) is an indication function. Ei = 1 indicates an event 206

has been observed for the i-th patient and the realized survival time of the patient has 207

been completely observed, while Ei = 0 indicating the opposite. The censored survival 208

data are thus samples of i.i.d. random vectors (T,E,E · Y,Z,X). Similar to data 209

without censoring, we assume the treatment variable is independent of censored and 210

uncensored survival time given the gene expression data, the unconfoundedness 211

assumption is now extended to (T (1), T (0), Y (1), Y (0)) ⊥⊥ Z|X. In addition, we assume 212

the censoring is independent of survival time and gene expression data given the 213

treatment variable (T (1), T (0), Y (1), Y (0),X) ⊥⊥ C|Z). Inspired by estimating of average 214
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treatment effect for censored survival data [38], we extend the covariate balancing 215

approach to censored survival data by: 216

argmin
W

∥∥∥∥∥
∑

i:Zi=1
Wi·Ei·Xi

𭟋1(Ti,Zi)∑
i:Zi=1

Wi·Ei

𭟋1(Ti,Zi)

−
∑

i:Zi=0
Wi·Ei·Xi

𭟋0(Ti,Zi)∑
i:Zi=0

Wi·Ei

𭟋0(Ti,Zi)

∥∥∥∥∥
2

2

(5)

where 𭟋z(T,Z) = Pr(C > T |Z = z) denotes the conditional censoring distribution 217

which is estimated by the Kaplan–Meier method [39,40]. 218

With the extended covariate balancing approach, we propose SGB to learn global 219

sample weight vector W from censored survival data: 220

argmin
W

P̀∑
p=1

∥∥∥∥∥XT
.,−p · (W ⊙ π̀p ⊙X.,p)

(W ⊙ π̀p)T ·X.,p
−

XT
.,−p · (W ⊙ π̀p ⊙ (1−X.,p))

(W ⊙ π̀p)T · (1−X.,p)

∥∥∥∥∥
2

2

(6)

where π̀p = E ⊘𭟋z(T,X.,p), and ⊘ refers to element-wise division. 221

In gene expression data X, the dimension P̀ is large. There may be no sufficient 222

samples and computational resources to estimate W by optimizing Formula 6. 223

Therefore we successively regard each latent feature in a low-dimensional space from 224

DAE as a treatment variable and learn W by: 225

argmin
W

P∑
p=1

∥∥∥∥∥ΦT
.,−p · (W ⊙ πp ⊙ Z.,p)

(W ⊙ πp)T · Z.,p
−

ΦT
.,−p · (W ⊙ πp ⊙ (1− Z.,p))

(W ⊙ πp)T · (1− Z.,p)

∥∥∥∥∥
2

2

(7)

where Φ = ϕ(X), P is the dimension of Φ, and Z.,p is the p-th treatment variable via 226

dichotomizing Φ.,p by its mean value. Φ.,p is the p-th covariate in Φ, and 227

Φ.,−p = Φ \ Φ.,p. πp = E ⊘𭟋z(T,Z.,p). 228

Regularized Cox regression (Cox) 229

In survival analysis literature, a hazard function is used for modelling the instant 230

probability of an individual will experience an event at time t given that she has already 231

survived up to time t. One can estimate the hazard risk score(s) using the hazard 232

function for each individual based on their baseline data. Cox regression [2] is a 233

commonly used survival analysis method. Here we first introduce the general Cox 234

regression model build on original gene expression data. The hazard function of Cox 235

September 10, 2021 11/29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460002
http://creativecommons.org/licenses/by/4.0/


regression is defined as: 236

h(t|X, β̀) = h0(t)exp(β̀
TX) (8)

where h0(t) is the baseline hazard function which is not specified in Cox regression. The 237

prediction of Cox regression is the ratio h(t|X)
h0(t)

= exp(β̀TX) which represents the 238

relative hazard risk of a patient. β̀ holds the coefficients of the predictors and can be 239

estimated from training data, and this is often done through minimizing the following 240

loss function (called average negative log partial likelihood): 241

−
∑

i:Ei=1

(β̀TXi − log
∑

j∈ℜ(Ti)

exp(β̀TXj)) (9)

where ℜ(Ti) = {j : Tj ≥ Ti} is the set of patients who are still at risk of event at time 242

Ti. 243

However, Cox regression for high-dimensional data is challenging and often does not 244

behave well [8]. Thus we build a regularized Cox regression model based on the latent 245

features found by DAE instead of the original gene expression data. Moreover, to 246

estimate the causal effects of latent features on survival outcomes, we need to 247

re-weighting training samples by the weights obtained by SGB (Formula 7). Therefore, 248

we use the following loss function of our modified Cox regression: 249

−
∑

i:Ei=1

Wi · (βTϕ(Xi)− log
∑

j∈ℜ(Ti)

exp(βTϕ(Xj)))

s.t. ∥β∥1 ≤ λ1, ∥β∥22 ≤ λ2.

(10)

where the L1 regularization (also known as lasso regularization) term (∥β∥1 ≤ λ1) and 250

the L2 regularization term (∥β∥22 ≤ λ2) help to avoid overfitting of our modified Cox 251

regression model. After survival global balancing, causal latent features are more likely 252

selected as predictors, which leads to stable performance for cancer prognosis. 253

Joint optimization of the three components in DGBCox 254

A joint optimization strategy is used for tradeoffs between the prediction accuracy (by 255

Cox), the reconstruction error (by DAE) and the global balancing regularization (by 256
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SGB) in DGBCox. The loss function of DGBCox is defined as: 257

−
∑

i:Ei=1

Wi · (βTϕ(Xi)− log
∑

j∈ℜ(Ti)

exp(βTϕ(Xj)))

s.t. ∥β∥1 ≤ λ1, ∥β∥22 ≤ λ2,∥∥∥X− X̂
∥∥∥2
2
≤ λ3,

K∑
k=1

(
∥∥Ak

∥∥2
2
+

∥∥∥Àk
∥∥∥2
2
) ≤ λ4,

∑P
p=1

∥∥∥∥ΦT
.,−p·(W⊙πp⊙Z.,p)

(W⊙πp)T ·Z.,p
− ΦT

.,−p·(W⊙πp⊙(1−Z.,p))

(W⊙πp)T ·(1−Z.,p)

∥∥∥∥2
2

≤ λ5,

Wi ≥ 0, ∥W∥22 ≤ λ6,
N∑
i=1

(Wi − 1)2 ≤ λ7.

(11)

The condition of
∑N

i=1(Wi − 1)2 ≤ λ7 helps to avoid all the weights to be 0. 258

Cancer prognosis with DGBCox 259

The relative hazard risk score for a new patient is calculated by r = exp(βTϕ(x)). The 260

patient with a low (hazard) risk score is expected to have a better prognosis than the 261

one with a high risk score. 262

Evaluation metrics 263

We first introduce the traditional evaluation metrics for cancer prognosis methods, and 264

then define the metrics for evaluating the stability of a prognosis method. 265

Concordance index C-index [41] is a commonly used measure for evaluating the 266

accuracy of the risk score prediction of a cancer prognosis method. Let Yi and ri be the 267

potential survival time and the risk score for a patient i, respectively. C-index is defined 268

as the concordance probability Pr(rj > ri|Yj < Yi) for all randomly selected pairs of 269

patients (i, j). The concordance means that the patient with a high risk score survives 270

shorter than the one with a low risk score. In other words, the predicted risk score 271

should be negatively associated with the length of survival. However, the potential 272

survival time Y cannot be observed in the right censored survival data. The observed 273

survival outcomes contain observed survival time T and event status E. For the right 274

censored survival data, the concordance probability is extended to 275
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Pr(rj > ri|Tj < Ti, Ti ≤ Ci), where Ci is the right censoring time. Ti ≤ Ci indicates 276

that the patient i experienced an event during the follow-up time and Ei = 1. 277

Therefore, C-index can be computed with the following formula: 278

∑
i

∑
j I(Tj > Ti) · I(rj < ri) · Ei∑

i

∑
j I(Tj > Ti) · Ei

(12)

C-index ranges from 0 to 1. If the C-index of a method equals 0.5, that means this 279

method is no better than a random guess model. A model with a C-index of 1 indicates 280

that the model’s predictions and survival outcomes are perfectly concordant. On the 281

contrary, a model with a C-index of 0 means that the model’s predictions and survival 282

outcomes are discordant. In this case, the predicted risk score is positively associated 283

with the length of survival which is not true in cancer prognosis. 284

Hazard ratio A commonly used metric for evaluating risk group predictions is 285

hazard ratio [42]. We obtain the predicted groups G for patients via dichotomizing the 286

predicted hazard risk scores by their median value. If a patient’s risk score is bigger 287

than the median predicted hazard risk score of the cohort, the patient is put into the 288

high-risk group, otherwise, the patient is put into the low-risk group. Then the risk 289

groups G is fitted in a Cox regression model: 290

h(t|G,µ) = h0(t)exp(µG) (13)

where h0(t) is the same as that in Eq 8. The quantity exp(µ) is defined as hazard ratio 291

which indicates the risk difference between the two groups of patients. The method with 292

the high hazard ratio performs better than the one with the low hazard ratio. 293

The Log-rank test We use the Log-rank test [43] to assess whether a method 294

successfully stratified patients into two risk groups with statistically significant different 295

survival distributions. In the Log-rank test, the null hypothesis is that there is no 296

difference between the survival distribution in the two risk groups at any time point. If 297

the p-value of the Log-rank test for a method is less than 0.05, we reject the null 298

hypothesis and consider that the method successfully stratified patients into two risk 299

groups with distinct survival patterns. 300
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Metrics for stability evaluation Given a set of test datasets (D1, D2, . . . , DM ), 301

CIm and HRm are the C-index and hazard ratio on dataset Dm, m ∈ {1, 2, . . . ,M}, 302

where M is the number of test datasets. To assess whether a cancer prognosis model is 303

a stable and accurate model, we define a set of stability evaluation metrics as below. 304

Stability
ci
= mean({CIm}Mm=1)− sd({CIm}Mm=1)

Stability
hr
= mean({HRm}Mm=1)− sd({HRm}Mm=1)

(14)

where mean(·) and sd(·) returns the mean and standard deviation of a given vector that 305

holds C-indices or hazard ratios of a method on all the M test datasets. The larger 306

Stability
ci
or Stability

hr
is, the more stable the cancer prognosis method will be. In this 307

study, a cancer prognosis model with high stability implies that the model has not only 308

a high average accuracy but also a low standard deviation of accuracy across different 309

environments. 310

Prioritizing stable features 311

To interpret the DGBCox method, we propose a permutation importance approach to 312

measure how much DGBCox’s stability depends on the information in each covariate 313

(gene). The permutation importance algorithm calculates the decrease in prediction 314

stability when a covariate is permuted (randomly shuffled). The pseudocode of the 315

permutation importance algorithm is illustrated in Algorithm 1 in S1 File. 316

Experimental setting 317

To evaluate the effectiveness of DGBCox, we create and implement the following 318

baselines to investigate the contribution of the components (in particular DAE and 319

SGB) proposed for DGBCox. 320

� A Cox regression model with elastic net regularization (Coxnet) 321

� Deep Auto-Encoder Cox regression (DAECox) 322

The first baseline (Coxnet) is to evaluate the effect of both DAE and SGB, and the 323

second baseline (DAECox) is to evaluate the effect of SGB. Only integrating SGB and a 324

regularized Cox regression is impractical to the high dimensional gene expression data, 325

September 10, 2021 15/29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460002
http://creativecommons.org/licenses/by/4.0/


therefore, we do not compare DGBCox with such a method. The details of the two 326

baselines are described in Section 2 in S1 File. 327

Since the proposed method aims at stable prediction of the hazard risks of new 328

breast cancer patients from unknown environments, we train the proposed method and 329

baselines based on METABRIC and test the models on the other 12 independent 330

datasets. C-index is the primary metric to evaluate the accuracy for risk score 331

prediction of a cancer prognosis method. Thus, in this study, the hyper-parameters of 332

the methods are determined by maximizing Stability
ci
on validation datasets by a 333

Bayesian hyper-parameters search [44]. More information about the hyper-parameters 334

and the training data partition is in Section 3 in S1 File. 335

We also compare our methods with the state-of-the-art methods, including 336

DeepSurv [11], Robust [13], AURKA [45], ESR1 [45], ERBB2 [45], GGI [22], 337

GENIUS [6], Endopredict [7], OncotypeDx [5], TAMR13 [4], PIK3CAGS [27], 338

GENE70 [25] and rorS [3]. We implement DeepSurv and Robust as follows. The optimal 339

hyper-parameters of DeepSurv are selected based on cross validation on METABRIC by 340

the Bayesian hyper-parameters Optimization. Robust is trained based on METABRIC 341

to determine the parameters of its predictive model. The remaining methods have 342

selected gene signatures (predictors) based on prior knowledge and clinical information. 343

These methods have been implemented by R package CancerSubtypesPrognosis 344

(https://github.com/XiaomeiLi1/CancerSubtypesPrognosis). 345

Results 346

Effectiveness of DGBCox 347

Fig 2A shows the risk score prediction performance of DGBCox and the two baselines 348

(Coxnet and DAECox). Fig 2B shows the risk group prediction performance of the three 349

methods. Fig 2 also shows the stability results based on Stability
ci
and Stability

hr
. 350

Please note that the higher the better for all the evaluation metrics. 351

From the results shown in Fig 2, we have the following observations: 352

� Compared with Coxnet, DAECox achieves better performance in terms of 353

Stability
ci
and Stability

hr
. This indicates that the DAE component improves the 354

September 10, 2021 16/29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.13.460002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.13.460002
http://creativecommons.org/licenses/by/4.0/


Method
●

●

●

Coxnet

DAECox

DGBCox

Stabilityci: 0.590

Stabilityci: 0.607

Stabilityci: 0.628

Method
●

●

●

Coxnet

DAECox

DGBCox

Stabilityhr: 1.284

Stabilityhr: 1.521

Stabilityhr: 1.712

A B

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.60

0.64

0.68

Co
xn
et

DA
EC
ox

DG
BC
ox

Method

C
o

n
co

rd
an

ce
 in

d
ex

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

1

2

3

4

Co
xn
et

DA
EC
ox

DG
BC
ox

Method

H
az

ar
d

 r
at

io

Fig 2. The box plots for the performance of DGBCox and baselines on the
independent test datasets. A: the box plot for the concordance indices. B: the box
plot for the hazard ratios. The horizontal line in each box indicates the mean value.

performance of Coxnet for both risk score and risk group predictions. This is 355

because Coxnet only models the linear relationship between genes and survival 356

outcomes, while DAECox can capture the non-linear relationship between genes 357

and survival outcomes. 358

� In comparison with DAECox and Coxnet, DGBCox makes the most stable risk 359

score and risk group prediction. This is because the SGB component ensures 360

approximate estimation of the causal effect of features, therefore, causal features 361

can be selected in the prediction model, which leads to accurate and stable 362

prediction across different environments. Moreover, DGBCox obtains the highest 363

average C-index of 0.662 and the highest average HR of 2.586, outperforming the 364

other two methods. 365

Furthermore, we use the Log-rank test to analyze whether the survival pattern in 366

one risk group is significantly different from that in another one. The results are shown 367

in Fig 3. From the figure, we see that DGBCox outperforms Coxnet and DAECox by 5 368

and 3 respectively in terms of the number of datasets where a method obtains small 369

p-values (less than 0.05). The results confirm that DGBCox is a viable approach for 370

improving the performance in stratifying breast cancer patients into two risk groups 371

that have distinct survival patterns. 372
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Fig 3. The bar plot for the performance of DGBCox and baselines on 12 test
datasets. The x-axis stands for the dataset, and the y-axis shows the log
transformation of the p-value of the Log-rank test. The red horizontal line indicates the
threshold for significantly results i.e. the results over the red line are statistically
significant, while the results under the line are not.

Comparison with the state-of-the-art methods 373

Fig 4 shows the C-indices of DGBCox and each of the 13 state-of-the-art methods 374

compared on each of the 12 test datasets, and the Stability
ci
of each method across all 375

test datasets. As shown in Fig 4, DGBCox outperforms the state-of-the-art methods on 376

five datasets (UNT, UPP, GSE6532, TCGA1093, TCGA500) in terms of C-index. 377

Meanwhile, the state-of-the-art methods only display the best results on up to two 378

datasets. For a model which is capable of making predictions correctly, the C-index of 379

the model on each test dataset should be higher than 0.5. From Fig 4, we can see that 380

most methods are capable of making predictions correctly on most test datasets, but 381

DGBCox achieves the most notable performance with the C-indices over 0.6 on all the 382

datasets. We observed that the C-indices of some methods (ESR1, ERBB2, Robust, and 383

PIK3CAGS) are less than 0.5 on many datasets, which means the correlations between 384

the predicted risk scores by those methods and the survival outcomes of patients in 385

different cohorts are contradictory. These incoherent associations may be attributable 386

to that some signatures used in these methods vary across different environments, while 387

the Cox regression method cannot correct the distribution shift. 388

When assessing the stability of each method across different environments for the 389

risk score prediction, DGBCox also outperforms all the existing methods because it 390

achieves the highest Stability
ci
(0.628) as shown in Fig 4. A good method should have a 391
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high average C-index and a low standard deviation of C-indices across test datasets. 392

Conversely, even ESR1 has a low standard deviation (0.038) of C-indices, it performs 393

poorly in most datasets and has a low average C-index (0.439). 394
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Fig 4. Comparison of different methods for risk score prediction. The left
block holds the C-indices of methods on each test dataset. The x-axis stands for the
dataset, and the y-axis stands for the method. The C-indices are coloured from white to
steel blue. The best result for each data is highlighted in bold. The right block displays
Stability

ci
of methods across the test datasets. The values of Stability

ci
are coloured

from white to tomato colour.

We further conduct the comparison of different methods for risk group prediction. 395

As shown in S1 Fig, DGBCox outperforms all the state-of-the-art methods for risk 396

group prediction based on Stability
hr
and the number of datasets for which a method 397

has the best HR. All the HRs of most methods (except ESR1, ERBB2, Robust, and 398

PIK3CAGS) are larger than 1, which means the patients in the predicted high risk 399

group have higher risks of an event when compared to those in the predicted low risk 400

group. These results are consistent with the results of the risk score prediction. 401

We also use the Log-rank test to evaluate the methods for risk group prediction. The 402
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results show that DGBCox successfully stratifies patients in all the twelve test datasets 403

into two risk groups that have distinct survival patterns (S2 Fig). In the meantime, the 404

state-of-the-art methods only succeed on up to nine datasets. 405

Important genes for stable prognosis 406

To further understand which genes are influential in DGBCox, we use the permutation 407

importance algorithm to prioritize genes based on their contributions to prediction 408

stability. Since the signatures discovered by the existing breast cancer prognosis 409

methods (including AURKA, ESR1, ERBB2, GGI, Robust, GENIUS, Endopredict, 410

OncotypeDx, TAMR13, PIK3CAGS, GENE70 and rorS) have been validated as breast 411

cancer related genes, we compare the top 50 ranked genes in DGBCox with these 412

signatures. We map the probe identifiers of signatures to gene symbols if needed. As 413

shown in Fig 5, there are two to three genes in common between the top 50 ranked 414

genes and the breast signature genes identified by Endopredict, OncotypeDx and 415

GENE70 respectively. Four of the 50 genes are confirmed as PIK3CA 416

mutation-associated gene signatures (by PIK3CAGS). Seven of the 50 genes are related 417

to breast cancer histologic grade (by GGI). A significant portion of the top 50 ranked 418

genes of DGBCox is overlapped with the 50 gene signatures of rorS (hypergeometric 419

p-value: 6e-11). Eleven genes are common in the top 50 ranked genes of DGBCox and 420

the 127 genes identified by Robust. Based on the curated list of breast cancer signatures 421

by Huang et al. [46], 25 of the top 50 ranked genes have been used for breast cancer 422

prognosis in previous studies. 423

We then compare the top 50 ranked genes of DGBCox with cancer causal genes to 424

demonstrate the quality of DGBCox and its findings. It has been confirmed that cancer 425

development and progression are caused by gene mutations [47], and these genes are 426

called cancer causal genes or cancer drivers. We observe that three of the top 50 ranked 427

genes of DGBCox appear in the Cancer Gene Census (CGC) [47], which is a manually 428

curated list of likely cancer drivers. The full list of the top 50 ranked genes and their 429

overlapping with signatures and cancer drivers can be found in S1 Table. 430

To investigate which biological mechanisms are important for stable breast cancer 431

prognosis, we conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 432
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Fig 5. Overlapping genes between DGBCox and the existing methods. The
bottom left bar shows the number of signatures in each method. The dotted lines and
the diagram on top show that the interaction overlaps between DGBCox and other
methods.

Genomes (KEGG) pathway enrichment analysis (detailed in Section 5 in S1 File). As 433

shown in Fig 6, 16 out of the top 50 ranked genes of DGBCox are mainly enriched in 434

the cell cycle (GO:0140014, GO:0000070 and GO:0007088) and the organelle 435

organization (GO:0000226 and GO:0048285) processes, which are consistent with the 436

functions of most current breast cancer signatures [46]. We also observed some genes 437

are functionally enriched the maternal process involved in female pregnancy 438

(GO:0060135) or the anaphase-promoting complex-dependent catabolic process 439

(GO:0031145). These genes have been reported to be associated with breast cancer 440

development or metastasis. For example, ESR1 and PGR are breast cancer biomarkers 441

that are commonly used for breast cancer subtype diagnosis [48]. STC2 is reported to 442

be associated with breast cancer cell development [49]. ANGPT2 is reported to be 443

capable of promoting breast cancer metastasis [50]. PTTG1 is known as an oncogene 444

that promotes cancer cell proliferation [51], migration, and invasion [52] as well as 445

associated with the epithelial-mesenchymal transition (EMT) in breast cancer [53]. The 446

top 50 ranked genes of DGBCox are significantly enriched (adjusted p-value less than 447
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0.01) in the oocyte meiosis pathway (KEGG ID: hsa04114, as shown in S3 Fig. Several 448

studies have suggested that this pathway plays an important role in the development of 449

breast cancer [54, 55], however, the underlying biological mechanism needs to be verified 450

by further laboratory and clinical researches. 451
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Fig 6. The non-redundant GO terms contained 16 of the top 50 ranked
genes. The genes (illustrated by dots) are coloured by their values of permutation
feature importance. The size of the circle for a GO term is proportional to the number
of genes annotated to this term.

Conclusion 452

In this study, we proposed DGBCox to improve the stability of cancer prognosis across 453

unknown environments. To the best of our knowledge, this is the first method designed 454

for the stable cancer prognosis task. Results on 12 independent test datasets 455

demonstrated that DGBCox is effective and stable for breast cancer prognosis across 456

different environments. 457

We further analyzed which genes are important for the stable breast cancer 458

prognosis. Genes were ranked by the proposed permutation importance algorithm. 459

Interestingly, 25 of the top 50 ranked genes have been used for breast cancer prognosis 460

in previous studies. These 50 genes are significantly enriched in seven non-redundant 461

GO terms and one KEGG pathway which have been reported to be related to the 462

development of breast cancer. The important genes help us understand the molecular 463

mechanism of breast cancer development and also potentially be exploited to improve 464

precision medicine for breast cancer treatment. We believe DGBCox is a useful method 465
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in predicting breast cancer prognosis and it will aid researchers in other cancer research 466

fields. 467

Supporting information 468

S1 File. Supplementary information. 469

S1 Table. The top 50 ranked genes in DGBCox and their overlapping with 470

other studies. 1: An Entrez ID is a gene’s identifier at the National Center for 471

Biotechnology Information (NCBI)’s database. 2: The gene has been included in Cancer 472

Gene Census (CGC) database [47], which indicates the dysfunction of this gene may 473

cause cancer. 3: The gene has been used for breast cancer prognosis in previous studies 474

based on the list curated by Huang et al. [46]. 475

S1 Fig. Comparison of different methods for risk group prediction. The left 476

block holds the hazard ratios of methods on each test dataset. The x-axis stands for the 477

dataset, and the y-axis stands for the method. The hazard ratios are coloured from 478

white to steel blue. The best result for each data is highlighted in bold. The right block 479

displays Stability
hr
of methods across the test datasets. The x-axis shows the Stability

hr
, 480

and the y-axis stands for the method. The values of Stability
hr
are coloured from white 481

to tomato colour. 482

S2 Fig. Comparison of different methods based on the p-values by the 483

Log-rank tests. The x-axis stands for the dataset, and the y-axis stands for the 484

method. The steel blue tile means that the p-value of a method is less than 0.05, which 485

indicates that the method can successfully stratify patients in the dataset into two risk 486

groups with distinct survival patterns. The grey tile indicates the opposite. 487

S3 Fig. The oocyte meiosis pathway (hsa04114) contains six important 488

genes for DGBCox. These six important genes are highlighted by red colour. 489
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