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Abstract 
The perception of animate things is of great behavioural importance to humans. Despite the 
prominence of the distinct brain and behavioural responses to animate and inanimate things, 
however, it remains unclear which of several commonly entangled properties underlie these 
observations. Here, we investigate the importance of five dimensions of animacy: “being alive”, 
“looking like an animal”, “having agency”, “having mobility”, and “being unpredictable” in brain 
(fMRI, EEG) and behaviour (property and similarity judgments) of 19 subjects using a stimulus 
set of 128 images that disentangles the five dimensions (optimized by a genetic algorithm). 
Our results reveal a differential pattern across brain and behaviour. The living/non-living 
distinction (“being alive”) was prominent in subjects’ judgments, but despite its prominence in 
neuroscience literature, did not explain variance in brain representations. The other 
dimensions of animacy explained variance in both brain and behaviour. The “having agency” 
dimension explained more variance in higher-level visual areas, consistent with higher 
cognitive contributions. The “being unpredictable” dimension instead captured representations 
in both lower and higher-level visual cortex, possibly because unpredictable things require 
attention. Animacy is multidimensional and our results show that distinct dimensions are 
differentially represented in human brain and behaviour.  
 
Animacy | Dimensions | Visual object recognition | EEG | fMRI | Similarity judgements 
 
Introduction 
The perception of animate things is of great behavioural and evolutionary importance to 
humans and other animals and is often a matter of life and death (e.g., quick recognition of a 
tiger in the wild). Consistent with the importance of animacy perception in classical 
neuropsychological literature, lesion studies established that living things are represented in 
dedicated regions of the cortex (Funnell & Sheridan, 1992; Ralph et al., 1998; Silveri et al., 
1996). However, it is less clear by virtue of what properties animate things are behaviourally 
distinguished and represented in the brain. An animal differs from an inanimate object in many 
respects, so animacy may be a multidimensional concept, rather than one property. The 
dimensions of animacy that have been explored include “being alive” (Connolly et al., 2012; 
Gray et al., 2007; Huth et al., 2012; Leib et al., 2016; Looser et al., 2013; Rogers et al., 2005; 
Wheatley et al., 2011), “looking like an animal” (Bracci et al., 2019; Connolly et al., 2012; Huth 
et al., 2012; Rogers et al., 2005; Sha et al., 2015; Wheatley et al., 2011), “having mobility” 
(Beauchamp et al., 2002, 2003; Shultz & McCarthy, 2014), “having agency” (Contini et al., 
2019; Gobbini et al., 2007, 2010; Lowder & Gordon, 2015; Shultz et al., 2015; Shultz & 
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McCarthy, 2014; Thorat et al., 2019), and “being unpredictable” (Lowder & Gordon, 2015). 
The emerging picture is complex. Animacy is an important representational division in 
nonhuman and human ventral visual cortical areas in the inferior temporal cortex as measured 
by functional magnetic resonance imaging (fMRI; Kriegeskorte et al., 2008). Beyond this 
binary distinction, there may be an animacy continuum, where objects are perceived as more 
animate when they are more similar to humans (e.g., images of monkeys would be perceived 
as more animate than insects, even though both species belong to the animal category; 
Connolly et al., 2012). Animate-looking (e.g., cow mug) and animate objects (e.g., cow) are 
dissociated in behaviour but not in the ventral visual stream measured by fMRI (Bracci et al., 
2019). Chosen animacy dimensions explain variance in the ventral visual stream fMRI 
measurements: agency (Thorat et al., 2019), animacy (Blumenthal et al., 2018), human-
likeness (Rosenthal-von der Pütten et al., 2019), and capacity for self-movement and thought 
rather than face presence (Proklova & Goodale, 2020). The time course with which animacy 
representations emerge has been investigated with magnetoencephalography (MEG), 
revealing the time course of agency (Contini et al., 2019). However, MEG patterns do not 
seem to carry information about the animate vs inanimate object category, in contrast to fMRI 
(Proklova et al., 2019). 
 
In sum, these studies offer important insights on aspects of animacy, but no unified account 
emerges. The likely reasons for this are that the stimuli used in previous studies were mostly 
handpicked to investigate a chosen dimension without controlling the other co-occurring 
properties of animacy. This procedure has limited our progress toward a comprehensive 
understanding of the representation of animacy as a multidimensional concept. Thus, despite 
decades of research that has established the prominence of the dimensions of animacy in 
brain and behaviour, it remains unclear which properties cause the distinct responses. 
 
Here, we comprehensively investigate the importance of five dimensions of animacy: “being 
alive”, “looking like an animal”, “having agency”, “having mobility”, and “being unpredictable”. 
We optimized a stimulus set of 128 images to disentangle the five dimensions of animacy 
using a genetic algorithm. The 128 stimuli were chosen among a set of 300 by the algorithm 
to decorrelate human ratings of the five dimensions. We evaluated how well dimensions of 
animacy can explain behaviour in two tasks (animacy ratings and similarity judgements) and 
brain representations, combining fMRI and EEG to assess representations at high spatial and 
temporal resolution. 
 
Results 
Stimuli selection procedure and stimulus set 
Evaluating the contribution of individual dimensions of animacy (“being alive”, “looking like an 
animal”, “having mobility”, “having agency”, and “being unpredictable”) would be best 
performed on a stimulus set that is as decorrelated on these dimensions as possible. We 
created such a stimulus set by optimizing stimuli using a genetic algorithm. We selected 
images that were maximally decorrelated on dimensions of animacy using a four-step 
procedure (Figure 1, see Methods for details). First, we created an animacy dimension grid 
where we asked participants to fill in names of the objects fulfilling each animacy dimension 
combination to then find images that satisfy all combinations of dimensions of animacy. 
Second, we assembled object images based on object names from step one. Third, an 
independent set of participants rated object images (which were assembled based on object 
names from step one) on each of the five dimensions of animacy to generate animacy ratings. 
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Fourth, we used a genetic algorithm to select a subset of images with the lowest maximum 
correlation between dimensions of animacy (10,000 generations). The maximum correlation 
between dimensions in the stimulus set was 0.35. This result was better than when randomly 
selecting the stimuli 10,000 times without optimization (maximum correlation between 
dimensions = 0.59) proving that our novel stimulus selection procedure was successful. This 
stimulus set was used in subsequent behavioural and brain imaging experiments.  
 

 
 
Figure 1. Stimuli selection procedure. 
First, we created an animacy grid with all dimensions of animacy combinations and asked 11 participants to fill in 
the names of objects that fulfilled these combinations. Second, we assembled object images based on object 
names from step one (images containing a human face are replaced by grey squares according to bioRxiv’s policy 
on images of individuals). Third, an independent set of 26 participants performed animacy ratings of 300 of these 
object images. Finally, we selected an optimal set of stimuli that had a low correlation between dimensions (as 
behaviourally rated) using a genetic algorithm. These stimuli were used in behavioural and brain representation 
experiments where a new set of participants was recruited to make sure that the stimulus generation and the actual 
experiments were independent. 
 
The stimulus set (Figure 2a) consisted of 128 images spanning almost all animacy dimension 
combinations. A wide range of objects was present, such as humans, human fetuses, human 
organs, human and animal shadows, plants, corals, forces of nature, game items, toys, 
vehicles, and electronic equipment covering 68 categories. This stimulus set was used for two 
behavioural studies: animacy ratings and similarity judgements, and two brain response 
measurement studies: EEG (to access temporal information) and fMRI (to access spatial 
information). Nineteen participants performed all the studies. Importantly, participants first 
performed EEG and fMRI studies, followed by similarity judgements and finally animacy 
ratings (Figure 2b). This experimental order was to ensure that participants did not know about 
animacy dimensions tested until the final animacy ratings.  
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Figure 2. Stimulus set and study overview. 
a. The genetic-algorithm driven stimulus set consisted of 128 images decorrelated on dimensions of animacy. The 
stimuli were coloured images of sport equipment, games, robots, dolls and puppets, plush toys, land vehicles, air 
vehicles, plants, forces of nature (water, air, fire, smoke), sea organisms, cells, organs and fetuses, humans, food, 
kitchen and office equipment, shadows (images containing a human face are replaced by grey squares according 
to bioRxiv’s policy on images of individuals).  
b. Study overview. All 19 participants performed two behavioural studies: animacy ratings and similarity 
judgements, and two brain response measurement studies: EEG (to access temporal information) and fMRI (to 
access spatial information). Importantly, participants first performed EEG and fMRI studies, then similarity 
judgements and finally animacy ratings. This experimental order was to ensure that participants did not know about 
animacy dimensions tested until the final animacy ratings.  
 
Consistency in animacy ratings across participants 
We first wanted to evaluate the contribution of each dimension of animacy when participants 
were asked to judge how animate an object image was. We first explored how consistent 
participants were in judging each dimension of animacy and each image. We used 
representational similarity analysis (RSA) to reveal which dimensions contribute most when 
participants judged animacy. We also examined which dimension(s) explained unique 
variance in the animacy ratings. 
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Participants judged each object image using a continuous scale from -10 to 10 for each 
dimension, e.g., -10 meant “inanimate” and 10 meant “animate” (Figure 3a). The same image 
was judged in the same way on the five investigated dimensions of animacy. The mean 
between-participant correlation was 0.6, which indicated that participants were generally 
consistent in their ratings. The mean within-participant consistency for thirty repeated stimuli 
was 0.89 meaning that participants consistently judged the same stimulus within a session. 
The raw data of animacy ratings shows that a given stimulus could be differently rated on each 
of the dimensions (Figure 3b). 
 
We wanted to know how consistent participants were in judging each dimension and each 
stimulus. This analysis had two purposes: to be able to determine whether the variability in 
animacy ratings is low enough to interpret the ratings at all and to test which dimensions and 
stimuli were particularly controversial for participants as reflected by higher variability.  
 
We first asked about the participants’ consistency across stimuli in all dimensions of animacy. 
There is variability in the consistency of ratings as some of the object images, e.g., "bike", was 
judged very consistently as expected, whereas other more controversial ones, e.g., “human 
fetus”, less consistently, with “human shadow” having the lowest consistency among the object 
images tested (Figure 3c).  
 
To get more insights into animacy dimension ratings, we explored the consistency of each 
stimulus per each animacy dimension. For "looking like an animal”, which was judged most 
consistently among the dimensions, "hammer" was one of the object images that were most 
consistently judged, whereas an image of a "human" was not judged very consistently. The 
lower consistency of judging an image of a human may be related to the fact that some 
humans do and others do not consider themselves animals, even though from a biological 
point of view Homo sapiens belong to the animal category. Looking at the other side of the 
spectrum - "having agency" dimension was judged least consistently - we observed that an 
example image that had a high consistency of ratings was "eyeball", whereas an image of a 
"robot" was not very consistently judged (Figure 3d).  
 
Among all the dimensions participants judged "having agency" least consistently and "looking 
like an animal" most consistently (Figure 3e). What about the animacy ratings (“being 
animate”)? Would object animacy be judged consistently across participants or given the 
ambiguous definition of this term, would the consistency be lower than some of the more 
precisely defined dimensions of animacy? We found that the latter was the case - animacy 
ratings had lower consistency than more precisely defined dimensions of animacy, except for 
the “having agency” dimension.  
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Figure 3. Animacy ratings and their consistency with examples of images judged consistently and not very 
consistently. 
a. Illustration of animacy ratings. Participants judged each object image using a continuous scale from -10 to +10 
for each animacy dimension, e.g., -10 meant “dead” and +10 meant “alive” for the “being alive” dimension. 
Additionally, participants performed a rating of "being animate" dimension in a similar fashion.  
b. Mean ratings of each animacy dimension and stimulus across participants. 
c. Consistency of each stimulus in animacy ratings across participants (standard error of the mean) with examples 
of stimuli with varying values of standard error. 
d. Consistency of each animacy dimension and stimulus in animacy ratings across participants with examples of 
stimuli with varying values of standard error for the most consistently judged ("looking like an animal") and the least 
consistently judged ("having agency") dimensions. 
e. Consistency of each animacy dimension in animacy ratings across participants (standard error of the mean). 
 
Contribution of each animacy dimension to animacy ratings 
To gain more intuition about what stimuli are considered to have the highest value on each 
animacy dimension, we visualized 10 object images with the overall minimum and 10 with the 
maximum rating on a given dimension (Figure 4a). Overall, images that had low values on 
animacy dimension ratings were similar among dimensions (e.g., plush toys, meat, washing 
machine). In contrast, images with high ratings did differ depending on a dimension tested 
(e.g., stimuli judged as the most unpredictable being humans and forces of nature, in contrast 
to humans and robots judged as having the most agency), proving that indeed these 
dimensions capture different aspects of animacy perception. 
 
Among all the dimensions, "having agency" and "being alive" explained more variance than 
other dimensions (Figure 4b) in animacy ratings (when participants were asked to judge how 
animate an object image was). This result means that when asked to judge animacy humans 
mostly think about whether an object is alive and whether it has agency. Even though "having 
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agency" and "being alive” explain more variance than the other dimensions, it does not mean 
that they explain unique variance. To test that, we performed a unique variance analysis (see 
Methods for details) and observed that only one dimension, "being alive", explains significantly 
more unique variance than "having agency" and "being unpredictable" dimensions (Figure 4c). 
"Being alive" is one of the dimensions that explain the most variance in animacy ratings and 
also the only dimension that explains significantly more unique variance than some of the 
other dimensions.  
 
In summary, when asked to rate object animacy, participants found "being alive" and "having 
agency" as dominant dimensions and were most consistent when judging the “looking like an 
animal” dimension and least consistent in judging the “having agency” dimension. 
 

 
Figure 4. Animacy ratings. 
a. Order of images with lowest and highest ratings on each animacy dimension. Out of 128 images, we show 10 
lowest and 10 highest rated images on each animacy dimension (images containing a human face are replaced by 
grey squares according to bioRxiv’s policy on images of individuals). 
b. Animacy dimension RDMs comparisons with animacy ratings (“being animate”) RDMs. Bars show the correlation 
between the animacy ratings RDMs and each animacy dimension RDM. A significant correlation is indicated by an 
asterisk (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). Error bars show the standard error of the mean 
based on single-participant correlations, i.e., correlations between the single-participant animacy ratings RDMs 
and animacy dimension RDM. The grey bar represents the noise ceiling, which indicates the expected performance 
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of the true model given the noise in the data. Horizontal lines show pairwise differences between model 
performance (p < 0.05, FDR corrected across all comparisons). 
c. Unique variance of each animacy dimension in explaining animacy ratings computed using a general linear 
model (GLM). For each animacy dimension, the unique variance is computed by subtracting the total variance 
explained by the reduced GLM (excluding the animacy dimension of interest) from the total variance explained by 
the full GLM, using non-negative least squares to find optimal weights. A significant unique variance is indicated 
by an asterisk (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The error bars show the standard error 
of the mean based on single-participant unique variance. Horizontal lines show pairwise differences between model 
performance (p < 0.05, FDR corrected across all comparisons). 
 
Contribution of each animacy dimension to similarity judgements 
After having established the contribution of animacy dimensions to animacy ratings, we tested 
whether any of the dimensions would explain similarity judgements. The similarity judgements 
task allows participants to evaluate objects in a more natural way concentrating on general 
object similarity. Please note that participants performed the similarity judgements task before 
competing dimensions of animacy ratings, so they were unaware of the dimensions of animacy 
tested. As participants were asked to arrange object images based on their similarity and not 
asked about animacy, dimensions of animacy may not explain these representations. Rather 
than the dimensions of animacy, either other categorical divisions or lower-level image 
features could be used for judging object similarity. Participants placed images of objects 
inside a circular arena according to how similar they judge them (Figure 5a). The procedure 
was repeated with different numbers of objects that had to be arranged indefinitely until 
reaching a predefined arrangement consistency (see Methods). We evaluated how well the 
dimensions of animacy explained the similarity judgements task using the RSA and the unique 
variance analysis. 
 
Visualizing the similarity judgements as a multidimensional scaling plot helped us to determine 
which object images were grouped together (Figure 5b). For example, object images of most 
robots, fetuses, and a human on life support were grouped, with human images separated but 
placed close to an image of a realistic humanoid robot. This grouping is related to the agency 
dimension as these images received the highest rating on “having agency” dimension (Figure 
4a). Animal robots formed their own cluster together with other moving objects such as 
boomerangs, balls, and buses. Different vehicles were grouped nearby with pictures of cars 
being placed near comets, clouds, and dominos. Games and toys were arranged in proximity 
to the “animal-like robot” group and the “human” group. Some unpredictable objects were also 
grouped together: geysers and game machines, or volcanos and waves. As a sanity check, 
images that depict the same object were grouped together, for example, two pictures of 
flowers or wheels. 
 
If we assume that the similarity judgements are based only on the similarity between low-level 
visual features, the dimensions of animacy should not explain a large fraction of the variance. 
This assumption is not what we observed - all dimensions of animacy explained a significant 
amount of variance in the similarity judgements task (Figure 5c). None of the dimensions fully 
explained the similarity judgements data but the "having agency" dimension was close to 
explaining the total explainable variance given the noise in the data. This result means that 
when judging object similarity humans use all dimensions of animacy with the emphasis on 
agency. 
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Even when all dimensions of animacy explain similarity judgements, maybe one or more 
dimensions explain unique variance. After having performed the unique variance analysis, we 
observed that each dimension explained unique variance in the similarity judgements (Figure 
5d). However, almost no dimension explained more unique variance than the other 
dimensions. This finding suggests that each dimension not only explains variance in the data 
but also explains a unique portion of that variance. 
 
Overall, each animacy dimension explained a similar amount of variance in a behavioural task 
of similarity judgements, meaning that participants use higher-level dimensions of animacy 
when judging object similarity.  
 

 
Figure 5. Dimensions of animacy and similarity judgements. 
a. Similarity judgement task. During this task, object images were shown on a computer screen in a circular arena, 
and participants were asked to arrange the objects according to their similarity, such that similar objects were 
placed close together and dissimilar objects were placed further apart (see Methods for details). 
b. Multidimensional scaling plot of similarity judgements (mean across participants). 
c. Animacy dimension RDMs comparisons with similarity judgements RDMs. Bars show the correlation between 
the similarity judgements RDMs and each animacy dimension RDM using the same conventions as in Figure 4b. 
d. Unique variance of each animacy dimension in explaining similarity judgements computed using the same 
conventions as in Figure 4c. 
 
Having shown the contribution of each animacy dimension in explaining animacy ratings and 
in a behavioural task of similarity judgements, we asked whether dimensions of animacy 
explain the time course of object image processing in the brain using EEG. One possibility is 
that once an image is shown for only half a second, the brain performs only an automated 
image processing, and higher-level dimensions of animacy do not contribute to this process 
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at all. The other possibility is that beyond low-level features, higher-level dimensions of 
animacy do play a role in forming brain representations of images even with a short stimulus 
presentation. To arbitrate between those possibilities, we evaluated the amount of variance 
explained by each animacy dimension and tested whether any dimension(s) explains unique 
variance in the EEG signal. 
 
We first performed multivariate pattern analysis (MVPA) to determine how well we could 
decode the pattern of activations evoked by each stimulus. We performed pair-wise decoding 
analysis and we could decode images in the stimulus set to a high decoding accuracy (62%) 
in a long time window (between 43 and 1000 ms after stimulus onset, Figure 6a). The peak 
decoding accuracy was at 197ms (+/- 7ms, standard error). 
 
Once we knew that we could decode our stimuli, we asked how much variance each animacy 
dimension explained in EEG recordings. To answer this question, we correlated each animacy 
dimension with EEG representations at every time point in every participant using RSA. Do 
any of the dimensions explain any variance at all? We found that most animacy dimensions 
explained a significant amount of variance in EEG recordings (Figure 6b); however, some 
dimensions explained variance at slightly different times. Despite differences in the exact 
timing of when dimensions of animacy explained the variance, a very clear pattern that one 
dimension explains representations earlier than the other was not observed. However, “being 
unpredictable” explained significantly more variance than most dimensions in early time 
points: specifically more than “looking like an animal” (89-130 ms), “having mobility” (89-113 
ms), and ”having agency” (79-126 ms). While “looking like an animal” explained more variance 
than most other dimensions in later time points: more than “being alive” (209-302 ms), ”having 
agency” (230-266 ms), and “being unpredictable” (146-184 ms). Finally, “having agency” 
explained more variance than most of the dimensions even later in time: more than “being 
alive” (268-301 ms), “having mobility” (261-289 ms) and “being unpredictable” (293-315 ms). 
 
Most animacy dimensions explained variance in EEG recordings. Is it the same or unique 
variance? Does one dimension explain more unique variance than the others, as in the case 
of animacy ratings, or is there no difference between the amount of unique variance explained 
by each dimension, as for the similarity judgements? We found that only one dimension -
"looking like an animal"- explained the unique variance in EEG recordings between 237 and 
301 ms. None of the other dimensions explained any significant unique variance (Figure 6c).  
 
Overall, most dimensions of animacy explained EEG recordings with subtle differences in 
timing, but only “looking like an animal” explained unique variance. Even for the rapid object 
recognition time course, higher-level dimensions of animacy explained a significant amount of 
variance in brain representations. 
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Figure 6. Dimensions of animacy and EEG time course. 
a. Mean decoding curve across participants. Significant decoding is indicated by a horizontal line above the graph 
(one-sided Wilcoxon signed-rank test, p < 0.05 corrected) and starts at 43ms (+/- 2ms, standard error) with a peak 
latency of 197ms (+/- 7ms, standard error, indicated by an arrow). The shaded area around the lines shows the 
standard error of the mean based on single-participant decoding. The grey horizontal bar on the x axis indicates 
the stimulus duration. 
b. Animacy dimension RDMs comparison with EEG RDMs across time. Lines show the correlation between the 
EEG RDMs and each animacy dimension RDM. A significant correlation is indicated by a horizontal line above the 
graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The grey horizontal bar on the x axis indicates 
the stimulus duration. 
c. Unique variance of each animacy dimension in explaining EEG RDMs computed using a GLM. For each animacy 
dimension, the unique variance is computed by subtracting the total variance explained by the reduced GLM 
(excluding the animacy dimension of interest) from the total variance explained by the full GLM, using non-negative 
least squares to find optimal weights. A significant unique variance (between 237 and 301ms) is indicated by a 
horizontal line above the graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The grey horizontal bar 
on the x axis indicates the stimulus duration. 
 
Contribution of each animacy dimension to fMRI representations 
We asked where in the brain dimensions of animacy explain patterns of responses to images 
using fMRI. We performed both regions of interest (ROI) analysis along the ventral and dorsal 
visual streams and searchlight analysis. The ROI analysis was performed to evaluate the 
contribution of dimensions of animacy in the brain regions along the visual stream where we 
know object images are represented. The searchlight analysis complemented the ROI 
analysis testing whether other regions in the visual stream exist where dimensions of animacy 
explain variance that we may have missed when preselecting ROIs.  
 
We first evaluated the contribution of each animacy dimension in ROIs across the ventral: 
V1v, VO2, PHC2 and dorsal: V1d, LO2, TO2 visual streams (Figure 7a). In the ventral visual 
stream, “being unpredictable”, “having mobility”, and to a lesser extent “having agency” 
explained variance in V1v, in contrast to higher-level visual areas (VO2, PHC2) where 
additionally “looking like an animal” explained a significant amount of variance and “having 
agency” explained more variance than in V1v. In the dorsal visual stream, “being 
unpredictable” and “having mobility” explained variance in V1d, with “having agency” 
explaining variance in higher-level visual areas (LO2, TO2), and “looking like an animal 
explaining variance only in TO2. As the dorsal stream carries information related to movement 
it is intuitive that “having mobility” and “being unpredictable'' explain variance in dorsal regions. 
It was not clear, however, whether “having agency” and “looking like an animal” would explain 
variance in dorsal regions but it is indeed what we observe. These results suggest that the 
dimensions of animacy are important for both ventral and dorsal visual streams, however, a 
substantial variance remained unexplained.  
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To investigate the contribution of each animacy dimension in a spatially unbiased fashion we 
performed a searchlight analysis in the visual stream (Figure 7b). Consistently with the ROI 
analysis “being alive” did not explain any significant amount of variance in the brain. “Looking 
like an animal” also did not explain any significant amount of variance in searchlight analysis 
but it is possible that with a larger amount of data we would see this dimension explaining 
some variance as the ROI analysis and EEG results pointed in that direction. “Having mobility” 
dimension explained variance in early visual cortex only (based on the correlation strength of 
the searchlight analysis). In contrast, “having agency” explained variance only in higher-level 
visual cortex, which is consistent with the ROI analysis where “having agency” explains more 
variance in higher-level visual areas and further suggests that this dimension best captures 
higher-level representations. One dimension that explained variance in both early and higher-
level visual areas was “being unpredictable” suggesting that unpredictability is important for 
attention and is already detected in the early visual cortex. Despite the living non-living 
distinction being thought to be important for brain representations “being alive” dimension did 
not explain any significant amount of variance in brain responses based on the ROI and 
searchlight analyses. This suggests that the ventral and dorsal visual streams do not represent 
the results of a deeper cognitive inference process that would assess whether something is 
alive.  
 

 
Figure 7. Dimensions of animacy and fMRI responses. 
a. Animacy dimension RDMs comparisons with fMRI ROI RDMs. Bars show the correlation between each animacy 
dimension RDM with fMRI ROI RDMs using the same conventions as in Figure 4b. We selected ROIs across the 
ventral (V1v, VO2, PHC2) and dorsal (V1d, LO2, TO2) visual streams.  
b. Searchlight analysis with each animacy dimension showing where in the brain animacy dimension explain image 
representations masked with the visual stream regions (Spearman’s ρ between animacy dimension and brain 
representations, one-sided Wilcoxon signed-rank test, FDR controlled at 0.05). 
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Figure 8. Summary of findings. Our results reveal a differential pattern across brain and behaviour. The living/non-
living distinction (“being alive”) is prominent in subjects’ judgments, but despite its prominence in neuroscience 
literature, does not explain variance in brain representations. The other dimensions of animacy explain variance in 
both brain and behaviour. The “having agency” dimension explains more variance in higher-level visual areas, 
consistent with higher cognitive contributions. The “being unpredictable” dimension instead captures 
representations in both lower and higher-level visual cortex possibly because unpredictable things require attention. 
Animacy is multidimensional and our results show that distinct dimensions are differentially represented in human 
brain and behaviour.  
 
Discussion 
We investigated the representation of the multiple facets of animacy in brain and behaviour 
(see summary in Figure 8). Including multiple dimensions in a linear model enabled us to 
disentangle their roles. To increase the power of these analyses, we decorrelated the five 
dimensions of animacy using an optimized set of natural stimuli. We managed to reduce the 
maximum pairwise correlation from 0.59 (for random selection) to 0.35 (optimized). Using 
natural images, it may not be possible to create a stimulus set that has no correlations between 
dimensions at all. However, as long as the predictors of the model do not form a linearly 
dependent set, they can be disentangled in analysis by considering the unique variance 
explained by each. Our novel stimulus selection procedure using a genetic algorithm could be 
adopted to disentangle other multidimensional concepts beyond animacy. 
 
It can be argued that we are not often exposed to some of the things depicted in this stimulus 
set, e.g., human fetuses. Despite some of the things depicted not being encountered often, all 
were familiar to the participants. Future studies may extend our approach to videos because 
some of the dimensions like "having mobility" may be better represented dynamically. 
 
Despite its prominence in neuroscience literature, the living/non-living distinction (“being 
alive”) did not explain variance in brain representations. This finding suggests that the ventral 
and dorsal visual streams do not represent the results of a deeper cognitive inference process 
that would assess whether something is alive. More perceptual dimensions such as “looking 
like an animal” explained more variance, especially in EEG time courses, and this dimension 
was most consistently judged by different people. For a stimulus set where dimensions of 
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animacy were not decorrelated, we predict that “being alive” would explain substantial 
variance. However, our decorrelated stimulus set revealed that other dimensions underlie the 
distinct responses to living things. The “being alive” dimension did explain variance in animacy 
ratings and similarity judgements suggesting that this dimension is present in cognition despite 
its lack of prevalence in the brain responses. 
 
Consistent with higher-cognitive contributions, the “having agency” dimension explained 
significant variance in higher-level visual areas, explained more variance than most other 
animacy dimensions later in time, and was prominent in the judgments. This dimension was 
least consistently judged in behavioural animacy ratings suggesting that different people have 
different intuitions on whether something has agency; for example, our subjects were divided 
as to whether the robots in our stimuli had agency or not. Seeing agency (or not) in robots 
mirrors an ongoing debate in society and may influence how humans interact with the 
increasing presence of robots in their environment.  
 
The “being unpredictable” dimension captured representations in both lower and higher-level 
visual cortex and earlier in time. One interpretation of this finding is that unpredictable things 
require attention and need to be processed early on. Humans need to know what to attend to 
in the visual world and if something unpredictable happens it captures attention, which enables 
us to stay on top of what is happening around us. This dimension of animacy has been studied 
mostly in the language domain (Lowder & Gordon, 2015), but we show that “being 
unpredictable” also explains visual representations. 
 
In summary, we disentangled the dimensions of animacy using a novel approach for stimulus 
decorrelation and showed the contribution of each animacy dimension in explaining human 
brain representations and behavioural judgments. Future studies may expand on the 
representation of each of the dimensions while avoiding their entanglement and may apply 
this approach to other multidimensional concepts.  
 
Methods 
Stimulus set generation 
Filling animacy dimension grid combinations 
We created a grid with all possible combinations of dimensions of animacy (2^5 = 32). We 
asked participants (S = 12, mean age = 33, 6 females) to write down object category names 
(e.g., “humanoid robot”) for each combination in the grid to obtain a list of object categories 
(Figure 1 Step 1). Participants listed 100 categories, and we selected 3 images per category 
(total = 300 images, Figure 1 Step 2), which formed the basis for the experiment to rate the 
dimensions of animacy.  
 
Ratings of dimensions of animacy to generate stimulus set 
Twenty-six participants (mean age = 25, 21 females) performed animacy ratings of 300 object 
images through an on-line web-based interface. Participants judged each object image using 
a continuous scale from -10 to +10 for each dimension, e.g., -10 meant “dead” and +10 meant 
“alive” for the “being alive” dimension (Figure 1 Step 3). Thirty images were repeated for a 
within-participant consistency measure.  
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Stimuli subset selection using a genetic algorithm 
To select a subset of 128 images for which ratings on the dimensions of animacy were 
maximally decorrelated we used a genetic algorithm. A genetic algorithm is an optimisation 
method that mimics biological evolution through natural selection. Fitness was defined as 
minimising the maximum correlation between dimensions of animacy (Figure 1 Step 4). We 
also introduced a penalty if the algorithm selected more than two stimuli from the same 
category (to ensure that stimuli were selected from a wide range of categories) and if the 
algorithm did not select at least one image of a human face and a human body (to have a 
reference point of object images that we know should have high ratings on the dimensions of 
animacy). 
 
Animacy ratings 
Stimuli 
All stimuli are displayed in Figure 2a. Stimuli were 128 coloured images of real-world objects 
with natural backgrounds, selected from the Internet.  
 
Participants 
Nineteen participants performed an on-line animacy rating experiment (mean age = 27, 13 
females). Participants had normal or corrected-to-normal vision. All of them were right-handed. 
Before completing the experiment, participants received information about the procedure of 
the experiment and gave their written informed consent. All participants received monetary 
reimbursement or course credits for their participation. The experiment was conducted in 
accordance with the Ethics Committee of the Department of Education and Psychology at 
Freie Universität Berlin.  
 
Experimental design and task 
Participants judged each object image using a continuous scale from -10 to +10 for each 
animacy dimension, e.g., -10 meant “dead” and +10 meant “alive” for the “being alive” 
dimension (Figure 3a). Additionally, participants performed a rating of "being animate" 
dimension in a similar fashion.  
  
Similarity judgements 
Stimuli 
All stimuli are displayed in Figure 2a. The stimuli were the same 128 coloured object images 
as in the animacy rating task. 
 
Participants 
The same nineteen participants who performed the animacy rating experiment performed the 
web-based similarity judgements experiment. Participants first completed the EEG and fMRI 
experiments, then similarity judgements experiment, and finally animacy ratings experiment 
so that they did not know about specific dimensions of animacy tested while performing EEG, 
fMRI, and similarity judgements experiments. 
 
Experimental design and task 
We acquired pairwise object-similarity judgements for all 128 images by asking participants to 
perform an on-line multi-arrangement task using Meadows platform (www.meadows-
research.com). During this task, object images were shown on a computer screen in a circular 
arena, and participants were asked to arrange the objects by their similarity, such that similar 
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objects were placed close together and dissimilar objects were placed further apart (Figure 
5a). The multi-arrangement method uses an adaptive trial design, showing all object images 
on the first trial, and selecting subsets of objects with weak dissimilarity evidence for 
subsequent trials. To determine which stimuli to select for the next trial, the evidence weight 
of each stimulus had an evidence utility exponent (E=10) applied to it, to calculate its utility if 
the stimulus was picked. The similarity judgments task was completed if, among all pairs of 
stimuli, the pair with the lowest evidence had an evidence weight higher than 0.5. The multi-
arrangement method allows the efficient acquisition of a large number of pairwise similarities. 
We deliberately did not specify which object properties to focus on, to avoid biasing 
participants’ spontaneous mental representation of the similarities between objects. We aimed 
to obtain similarity judgements that reflect the natural representation of objects without forcing 
participants to rely on one given dimension. However, participants were asked after having 
performed the task, what dimension(s) they used in judging object similarity. All participants 
reported arranging the images according to categorical clusters. The reports suggest that 
participants used a consistent strategy throughout the experiment. The method of the object 
similarity judgements has been described in Mur et al., 2013, where further details can be 
found. 
 
EEG 
Stimuli 
All stimuli are displayed in Figure 2a. The stimuli were the same 128 coloured object images 
as in animacy rating and similarity judgements tasks. 
 
Participants 
The same nineteen participants who performed the animacy rating and similarity judgements 
experiments performed the EEG experiment.  
 
Experimental design and task 
Stimuli were presented at the centre of the screen for 500 ms, while participants performed a 
paper clip detection task. Stimuli were overlaid with a light grey fixation cross and displayed 
at a width of 4° visual angle. Participants completed 15 trials. Each image was presented twice 
in every trial in random order with an inter-trial interval of 1–1.1 s. Participants were asked to 
press a button and blink their eyes in response to a paper clip image shown randomly every 
3 to 5 trials (mean performance 99% (+/- 0.09, standard error)). These trials were excluded 
from the analysis.  
 
Acquisition 
The electroencephalogram (EEG) signals were acquired using BrainVision actiCHamp 
EASYCAP 64 channel system at a sampling rate of 1,000 Hz. The arrangement of the 
electrodes followed the standard 10-20 system. 
 
Preprocessing 
The time series were analysed with Brainstorm (http://neuroimage.usc.edu/brainstorm/). We 
extracted EEG patterns for each millisecond time point (from 100ms before stimulus onset to 
1000ms after stimulus onset) for each trial. We filtered the responses between 0 and 50Hz. 
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Decoding 
We performed pairwise decoding using a support vector machine (SVM) approach (Cichy et 
al., 2014). For each time point, EEG signals were arranged in 64-dimensional vectors 
(corresponding to the 64 EEG channels), yielding M = 30 pattern vectors per time point and 
condition. We sub-averaged the M vectors in groups of k = 5 with random assignment, 
obtaining L = M/k averaged pattern vectors. This procedure was performed to reduce 
computational load and improve the signal-to-noise ratio. Subsequently, for each pair of 
conditions, we assigned L-1 averaged pattern vectors to train a linear SVM using the LibSVM 
implementation (www.csie.ntu.edu.tw/~cjlin/libsvm). We used the trained SVM to predict the 
condition labels of the left-out testing data set consisting of the Lth averaged pattern vector. 
This process was repeated 100 times with random assignment of the M raw pattern vectors 
to L averaged pattern vectors. For every time point, we assigned the average decoding 
accuracy to a decoding accuracy matrix. 
 
Peak latency analysis 
We defined peaks of the decoding accuracy as time points with the maximum decoding 
accuracy.  
 
fMRI 
Stimuli 
All stimuli are displayed in Figure 2a. The stimuli were the same 128 coloured object images 
as in EEG, animacy rating, and similarity judgements experiments. 
  
Participants 
The same nineteen participants who performed the animacy rating, similarity judgements, and 
EEG experiments performed the fMRI experiment.  
  
Experimental design and task 
Stimuli were presented using a rapid event-related design (stimulus duration, 500 ms) while 
participants performed a fixation-cross-brightness-change detection task, and their brain 
activity was measured with a 3T fMRI scanner. Stimuli were overlaid with a light grey fixation 
cross and displayed at a width of 4° visual angle. Each image was presented once per run in 
random order. Each run contained 32 randomly timed null trials without stimulus presentation. 
Participants had to report a short (100 ms) change in the luminance of the fixation cross via 
button press (mean performance 97% (+/- 0.14, standard error)). 
 
Acquisition 
Magnetic resonance imaging was acquired using Siemens 3T Trio with a 12-channel head 
coil. For structural images, we used a standard T1-weighted sequence (176 slices). The TR 
was 2 s and the ISI was 3 s. For fMRI, we conducted 9–13 runs in which 249 volumes were 
acquired for each participant. The acquisition volume covered the full brain. 
  
Estimation of single-image activity patterns 
The fMRI data were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). For each 
participant and session separately, functional data were spatially realigned, slice-time 
corrected, and coregistered to the participant-individual T1 structural image. We estimated the 
fMRI responses to the 128 image conditions with a general linear model (GLM), which included 
movement parameters as nuisance terms. To obtain a t-value for each voxel and condition, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2021. ; https://doi.org/10.1101/2021.09.12.459854doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.12.459854
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

GLM parameter estimates for each condition/stimulus were contrasted against a baseline. To 
assess the degree of the general visual stimulation we contrasted the parameter estimates for 
all images against the baseline. 
 
Definition of regions of interest 
For the ROI definition, we used a Probabilistic brain atlas (Wang et al., 2015). Anatomical 
masks were reverse-normalized from MNI-space to single-participant space. For each ROI, 
we extracted a multivoxel pattern of activity (t-values) for each of the 128 stimuli. We included 
100 most strongly activated voxels in the ROI analysis. 
 
Searchlight analysis 
To analyse fMRI data in a spatially unbiased approach, we performed a volume-based 
searchlight analysis (Kriegeskorte et al., 2006) in each participant (radius of 4 voxels) with 
each animacy dimension RDM. We restricted the voxels included in the significance testing to 
visual stream areas (one-sided Wilcoxon signed-rank test). 
 
Construction of representational dissimilarity matrix 
We used the Representational Similarity Analysis toolbox for animacy dimension comparison 
(Nili et al., 2014). We computed response patterns (across animacy ratings, similarity 
judgements, EEG, and fMRI signals) for each image. We then computed response-pattern 
dissimilarities between images and placed these in a Representational Dissimilarity Matrix 
(RDM). An RDM captures which distinctions among stimuli are emphasized and which are de-
emphasized.  
 
Inferential analysis of model performance 
We estimated animacy dimension performance by correlating the animacy dimension and data 
RDMs using Spearman's correlation coefficient. We determined whether each of the animacy 
dimension RDMs was significantly related to the data RDMs using a participant-as-random-
effect analysis (one-sided Wilcoxon signed-rank test). We subsequently tested for differences 
in animacy dimension performance between each pair of dimensions of animacy using a 
participant-as-random-effect analysis (two-sided Wilcoxon signed-rank test). For each 
analysis, we accounted for multiple comparisons by controlling the FDR at 0.05. 
 
Unique variance analysis 
We used a hierarchical general linear model (GLM) to evaluate the unique variance explained 
by dimensions of animacy (Kietzmann et al., 2019). For each animacy dimension m, the 
unique variance was computed by subtracting the total variance explained by the reduced 
GLM (excluding the dimension of interest) from the total variance explained by the full GLM. 
Specifically, for dimension m, we fit GLM on X = "all dimensions but m" and Y = data, then we 
subtract the resulting R2 from the total R2 (fit GLM on X = "all dimensions" and Y = data). We 
performed this procedure for each participant and used non-negative least squares to find 
optimal weights. A constant term was included in the GLM model. We performed a one-sided 
Wilcoxon signed-rank test to evaluate the significance of the unique variance contributed by 
each dimension across participants controlling the expected false discovery rate at 0.05. 
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