
Title		
NeuroML-DB:	Sharing	and	characterizing	data-driven	neuroscience	models	described	in	NeuroML	

Short	Title		
Database	for	sharing	and	characterizing	NeuroML	models		

Authors	
Justas	Birgiolas1,	Vergil	Haynes2,3,	Padraig	Gleeson4,	Richard	C.	Gerkin5,	Suzanne	W.	Dietrich6,	Sharon	M.	Crook2	

Affiliations	
1Ronin	Institute	

2School	of	Mathematical	and	Statistical	Sciences,	Arizona	State	University	

3College	of	Health	Solutions,	Arizona	State	University	

4Department	of	Neuroscience,	Physiology,	and	Pharmacology,	University	College	London	

5School	of	Life	Sciences,	Arizona	State	University	

6School	of	Mathematical	and	Natural	Sciences,	Arizona	State	University	

	

Author	Contributions	
Conceptualization:	JB,	SMC.	Data	curation:	JB,	PG.	Methodology:	JB,	VH,	SMC,	RCG.	Software:	JB,	VH,	RCG,	PG,	SWD.	
Validation:	JB,	SMC,	RCG.	Analysis:	JB,	VH.	Visualization:	JB,	VH,	SMC.	Writing:	JB,	VH,	SMC.	Editing:	JB,	VH,	PG,	RCG,	SWD,	
SMC.	Funding	and	administration:	RCG,	SMC.		 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Striking	Image		

	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract		
As	researchers	develop	computational	models	of	neural	systems	with	increasing	sophistication	

and	scale,	it	is	often	the	case	that	fully	de	novo	model	development	is	impractical	and	inefficient.	Thus	
arises	a	critical	need	to	quickly	find,	evaluate,	re-use,	and	build	upon	models	and	model	components	
developed	by	other	researchers.	We	introduce	the	NeuroML	Database	(NeuroML-DB.org),	which	has	been	
developed	to	address	this	need	and	to	complement	other	model	sharing	resources.	NeuroML-DB	stores	
over	1,500	previously	published	models	of	ion	channels,	cells,	and	networks	that	have	been	translated	to	
the	modular	NeuroML	model	description	language.	The	database	also	provides	reciprocal	links	to	other	
neuroscience	model	databases	(ModelDB,	Open	Source	Brain)	as	well	as	access	to	the	original	model	
publications	(PubMed).	These	links	along	with	Neuroscience	Information	Framework	(NIF)	search	
functionality	provide	deep	integration	with	other	neuroscience	community	modeling	resources	and	
greatly	facilitate	the	task	of	finding	suitable	models	for	reuse.	

Serving	as	an	intermediate	language,	NeuroML	and	its	tooling	ecosystem	enable	efficient	
translation	of	models	to	other	popular	simulator	formats.	The	modular	nature	also	enables	efficient	
analysis	of	a	large	number	of	models	and	inspection	of	their	properties.	Search	capabilities	of	the	
database,	together	with	web-based,	programmable	online	interfaces,	allow	the	community	of	researchers	
to	rapidly	assess	stored	model	electrophysiology,	morphology,	and	computational	complexity	properties.	
We	use	these	capabilities	to	perform	a	database-scale	analysis	of	neuron	and	ion	channel	models	and	
describe	a	novel	tetrahedral	structure	formed	by	cell	model	clusters	in	the	space	of	model	properties	and	
features.		

	

Author	Summary		
Computational	models	of	neurons	and	their	circuits	are	increasingly	used	by	neuroscience	

researchers	as	a	tool	to	probe	fundamental	aspects	of	brain	function.	Here	we	describe	a	database	of	
computational	models	of	neurons	and	networks	that	makes	it	easier	to	evaluate	and	reuse	these	models.	
The	models	in	the	database	are	available	in	a	standard	format,	called	NeuroML,	that	makes	it	easier	to	
extend	and	reuse	the	models	in	simulation	studies	using	a	wide	range	of	simulation	software	platforms.	
The	use	of	this	standard	format	also	makes	it	easier	to	characterize	models	in	an	automated	way	and	
analyze	relationships	across	the	features	of	simulated	data	from	model	simulations.	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction	
There	are	thousands	of	previously	published	data-driven	neuron	and	neuronal	network	models	in	

computational	neuroscience.	When	a	researcher	wishes	to	create	a	new	cell	or	circuit	model,	often	
existing	model	components	could	provide	an	efficient	starting	point	for	model	development.	However,	
the	time	saved	with	model	reuse	must	outweigh	the	effort	required	to	find,	evaluate,	and	reproduce	
previous	models.	These	tasks	are	supported	by	an	ecosystem	of	resources	for	making	models	accessible	
and	promoting	model	reuse,	including	model	repositories	and	standardized	model	description	languages.	
One	such	model	description	standard	is	NeuroML	(1),	which	provides	a	modular,	machine	readable,	
simulator-independent	format,	and	is	supported	by	a	set	of	software	tools	for	describing,	simulating,	and	
analyzing	models	in	the	format	ranging	in	scales	from	ion	channels	to	large	networks.	We	have	created	an	
online	database,	NeuroML-DB.org,	which	currently	includes	over	1,500	previously	published	models	that	
have	been	translated	to	NeuroML.	In	addition	to	providing	an	interface	for	downloading	models	or	their	
components,	NeuroML-DB	provides	the	results	of	systematic	characterizations	of	the	electrophysiology,	
morphology,	and	computational	complexity	of	each	model.	Overall,	this	database	adds	to	the	existing	
ecosystem	of	resources	to	make	it	easier	to	find,	evaluate,	and	reuse	previously	published	models.	

Neuroscience	data	are	being	synthesized	into	increasingly	complex	computational	models	

Since	the	early	explorations	of	neurons	and	their	circuits	by	Golgi	(2)	and	Cajal	(3,4),	humans	have	
been	fascinated	by	neuron	diversity	and	complexity.	In	the	1950’s,	Hodgkin	and	Huxley	(5)	were	the	first	
to	synthesize	channel	electrophysiology	data	into	a	mathematical	model	that	accurately	predicted	the	
propagation	of	axonal	action	potentials.	Their	approach	has	been	extended	to	include	a	wider	variety	of	
ion	channels	and	neuronal	morphologies	(6,7).	More	recently,	data	acquisition	has	escalated	so	that	large	
data	sets	have	been	collected	that	describe	neurons	and	the	networks	the	neurons	form.	In	parallel,	
exponentially	increasing	computing	power	has	allowed	the	construction	of	large,	biophysically-realistic	
network	models	of	connected	cells	(8–12).		

The	ability	to	rapidly	find,	evaluate,	select,	and	reuse	earlier	models	is	becoming	more	important	

Despite	the	availability	of	thousands	of	previously-created	neuron	models	(13,14),	it	is	still	
relatively	difficult	and	tedious	to	find,	evaluate,	and	select	previously	created	models	or	their	components	
like	channels	and	synapses	for	reuse	in	a	new	project.	Lack	of	consistent	and	easily	accessible	
information	about	a	model’s	electrophysiology,	morphology,	and	computational	complexity	makes	it	
difficult	to	rapidly	evaluate	whether	a	neuron	model	is	fit	for	a	particular	modeling	purpose,	resulting	in	
the	problem	of	model	selection.	Once	a	previously	published	model	is	found	to	be	suitable,	the	use	of	
heterogeneous	programming	and	simulator	languages	makes	it	difficult	to	easily	reuse	models	or	model	
components,	resulting	in	the	problem	of	model	reuse.	These	two	problems	hinder	progress	within	the	
field.	If	current	trends	towards	system-level	modeling	continue	to	progress	toward	realistic	models	of	
entire	brains,	the	ability	to	rapidly	leverage	previously	developed	models	will	be	paramount.	

Online	platforms	for	model	sharing	such	as	ModelDB	(13,15)	and	Open	Source	Brain	(16,17)	
provide	rich	model	search	and	inspection	capabilities	to	help	address	the	model	evaluation	problem.	
Meanwhile,	efforts	to	standardize	computational	neuroscience	model	descriptions	like	PyNN	(18)	and	
NeuroML	(1)	help	address	the	problem	of	model	reuse.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

ModelDB	is	an	online	repository	with	an	extensive	database	of	published	computational	
neuroscience	models.	While	many	models	are	implemented	using	the	NEURON	simulator	(19,20),	other	
simulators	and	programming	languages	are	represented	as	well	(14).	ModelDB	provides	extensive	model	
search	and	browse	capabilities	and,	for	models	that	are	implemented	in	NEURON,	allows	users	to	view	
some	aspects	of	the	model	structure	like	cell	morphology	and	ion	channel/synapse	files.	Similarly,	Open	
Source	Brain	is	an	online	collaborative	environment	for	the	development	of	multiscale	neuroscience	
models.	The	platform	leverages	the	structure	and	relationships	of	NeuroML	models,	version	control	
provided	by	GitHub,	and	simulation	visualization	using	the	web-based	Geppetto	(21)	platform.	On	Open	
Source	Brain,	model	files,	3D	structure,	and	simulation	results	can	be	inspected,	and	models	or	model	
components	can	be	downloaded.	Many	of	the	models	available	in	NeuroML-DB	were	originally	translated	
to	NeuroML	at	Open	Source	Brain.	Similarly,	an	emerging	online	platform	like	Arkheia	(22),	where	users	
can	examine	models,	their	parameters,	and	simulation	results	could	also	make	it	easier	to	evaluate	
models.	A	more	narrowly	focused	resource,	the	ICGenealogy	project	(23,24)	applies	consistent	and	
uniform	stimulation	protocols	to	ion	channel	models	implemented	in	the	NEURON	NMODL	language	
(25,26).	The	uniform	protocols	enable	the	comparison	of	channel	models	to	each	other,	providing	insight	
into	channel	model	taxonomy	and	publication	genealogy.	Additionally,	a	new	model	or	biological	channel	
voltage	clamp	data	can	be	uploaded	to	the	website	(24,27),	which	identifies	similar	channel	models	in	the	
database	allowing	rapid	identification	of	channel	dynamics	and	a	list	of	seed	models	which	could	be	used	
for	further	fitting.	The	Allen	Brain	Atlas	Cell	Types	Database	shares	models	developed	based	on	
experimental	data	from	neurons	in	visual	cortex	and	the	corresponding	electrophysiology	and	
morphology	data	(28,29);	however,	this	resource	is	limited	to	data	and	models	from	the	Allen	Institute.		

NeuroML	model	description	standardization	effort	promotes	model	reuse	

The	above	resources	make	it	easier	to	find	and	evaluate	previously	published	models.	Meanwhile,	
the	standardization	initiatives	make	it	easier	to	reuse	whole	or	parts	of	existing	models.	Through	PyNN	
(18),	users	can	specify	network	models	composed	of	abstract	or	single	compartment	conductance	based		
cell	models	using	an	expressive	connectivity	syntax	in	Python.	Then	by	adjusting	a	single	line	of	code,	the	
model	can	be	executed	on	any	compatible	software	or	hardware	simulator.	On	the	other	hand,	NeuroML	
and	associated	tools	(30)	can	be	used	to	specify	network	models	composed	of	multi-compartment	cells	
and	biophysically	realistic	channels	and	synapses,	as	well	as	more	abstract	model	formulations.	Though	
earlier	NeuroML	models	could	only	be	specified	using	the	human-readable	XML	format,	the	latest	version	
supports	compact	storage	using	the	HDF5	format	(31),	which	facilitates	the	development	of	large,	
systems-level	models.	The	modular	nature	of	NeuroML	makes	it	easy	to	extract	subcomponent	channel,	
cell,	or	synapse	models	for	reuse.	Additionally,	these	extracted	components	can	be	converted	to	a	variety	
of	simulator	formats	using	automated	tools	(30),	allowing	rapid	development	of	novel	models	by	
composition	of	subcomponents	of	earlier	models.	

NeuroML	database	catalogs	over	1,500	NeuroML	models	and	facilitates	model	evaluation		

Ideally,	to	rapidly	develop	a	novel	model,	a	user	would	be	able	to	use	an	online	resource	to	
simultaneously	evaluate	many	models	and	then	easily	select	models	or	their	components	for	reuse.	While	
the	model	repositories	described	above	help	with	locating	and	evaluating	models,	and	modular	and	
simulator-agnostic	languages	help	with	the	reuse	of	model	components,	no	online	resource	exists	that	
combines	rapid	search,	deep	model	inspection,	and	evaluation	of	features	with	the	modular	architecture	
of	NeuroML	and	exposes	the	features	via	an	automated	interface.	To	make	progress	towards	this	vision,	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

we	developed	the	NeuroML	Database	and	its	web-based	interface	(32,33)	(https://neuroml-db.org),	
catalogued	published	models	translated	to	NeuroML,	added	model	search	and	extensive	characterization	
features,	and	implemented	a	web	accessible	web-based	Application	Programming	Interface	(API)	to	
make	it	easier	for	researchers	to	evaluate,	select,	and	reuse	these	models.	

Models	and	search	are	integrated	with	the	computational	neuroscience	community	

NeuroML-DB	contains	over	1,500	models.	Previously	developed	keyword	and	ontology-based	
search	functionality	(33)	was	supplemented	with	the	integration	of	search	features	of	ModelDB	
(https://senselab.med.yale.edu/ModelDB/),	OpenSourceBrain.org,	and	the	Neuroscience	Information	
Framework	(http://neuinfo.org	(34).	In	addition	to	keyword	search	results,	the	ontology-based	search	
feature	can	display	matching	cell	models	by	their	anatomical	brain	region	locations	and/or	by	their	
neurotransmitter,	based	on	the	NeuroLex	ontology	(35).	On	ModelDB,	the	model	detail	view	of	a	
published	model	provides	links	to	NeuroML-DB	records	whenever	a	model	appears	in	both	databases.	
Similarly,	using	the	search	feature	of	Open	Source	Brain	will	display	matching	models	that	are	also	
cataloged	in	the	NeuroML	database.	Finally,	the	Neuroscience	Information	Framework	(NIF),	a	federated	
database	of	neuroscience	data	and	biomedical	resources,	includes	NeuroML	database	models	in	its	search	
results.	

Standardized	model	characterizations	are	accessible	online	

Standardized	voltage	and	current	clamp	protocols	were	used	to	characterize	channel	and	cell	
models,	with	simulation	results	accessible	with	online	interactive	plots	(see	Results	below).	In	addition	to	
electrophysiological	characterization,	detailed	cell	model	morphology	was	analyzed	using	L-Measure	
(36)	and	visualized,	together	with	sample	propagations	of	activity,	using	rotating	online	animations.	
Additionally,	the	computational	complexity	of	cell	models	was	assessed	and	compared	to	the	reference	
Hodgkin-Huxley	model	(5)	using	both	fixed	and	variable	time	step	integration	methods.	Finally,	the	
newly	added	models,	their	conversions,	and	their	characterization	data	have	been	made	available	online	
via	a	machine-readable	API	interface.	

NeuroML	database	models	were	used	to	characterize	the	relationships	across	cell	models		

The	main	objective	of	this	study	was	to	catalog	1,500+	published	cell	and	ion	channel	models	
within	the	NeuroML	database,	rigorously	characterize	them,	make	those	characterizations	available	
online,	and	describe	the	structure	of	and	relationships	within	the	cell	model	electrophysiology	space.	The	
electrophysiology	properties	of	1,222	cell	models	were	assessed	using	a	standardized,	uniform	protocol.	
We	identified	the	most	differentiating	properties	using	a	dimensionality	reduction	method	and	
performed	nested	clustering	analysis	to	identify	high-density	regions	within	the	differentiating	property	
space.	This	effort	revealed	a	roughly	tetrahedral	structure	formed	by	the	clusters	of	multi-spiking	cell	
models	(see	Results).	We	named	the	clusters	and	assessed	the	strength	of	apparent	linear	relationships	
within	some	of	the	clusters.	To	elucidate	the	underlying	mechanisms	of	the	clusters,	we	also	
characterized	the	contributions	of	ion	channel	currents	of	cell	models	in	each	cluster.		 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Results	
Over	1,500	channel,	synapse,	cell,	and	network	models	were	added	to	NeuroML-DB	

We	identified	45	publications	whose	models	had	been	translated	to	NeuroML	(see	Table	1)	and	
developed	a	custom,	semi-automated	procedure	to	include	these	models	in	the	NeuroML	database.	After	
parsing	the	individual	model	components	such	as	the	cells,	ion	channels,	and	synapses,	the	database	
includes	a	total	of	1,222	cell,	183	channel,	141	synapse,	27	ion	concentration,	and	11	network	models	
(1,584	overall).	The	translation	of	some	of	these	models	to	NeuroML	was	part	of	other	efforts	related	to	
the	NeuroML	initiative	(31,37,38).	Additional	models	can	be	incorporated	into	the	database	rapidly	and	
easily	using	this	same	procedure,	and	we	encourage	readers	to	refer	us	to	any	other	published	models	
that	have	been	translated	to	NeuroML.		

Channel	electrophysiology	was	characterized	using	ICGenealogy	project	voltage	clamp	protocols	

The	ICGenealogy	project	has	developed	a	uniform	set	of	voltage	clamp	protocols	(24)	that	can	be	
used	to	stimulate	ion	channel	models	and	compare	their	responses	(and	compute	their	similarity	indices)	
in	an	automated	fashion.	These	protocols	can	be	used	to	differentiate	a	variety	of	ion	channel	behaviors.	
While	the	ion	channel	equations	stored	in	the	NeuroML	Database	are	stored	in	a	structured,	cross-
platform	XML	format,	it	can	be	difficult	to	rapidly	assess	the	broad	ion	channel	behavior	properties	from	
the	model	equations	and	their	parameters	alone.	To	facilitate	this	assessment,	we	subjected	the	ion	
channels	stored	in	the	database	to	a	subset	of	ICGenealogy	protocols	and	made	the	model	response	
waveforms	available	online	in	the	form	of	interactive	plots	(see	Figure	1).	These	plots	allow	the	user	to	
rapidly	gauge	the	general	dynamics	of	an	ion	channel	model.		

For	each	ion	channel	model,	the	plots	show	the	channel	model	input	voltage	and	output	
conductance	and	current	levels	recorded	over	the	course	of	simulations.	A	choice	of	protocols	
(Activation,	Deactivation,	and	Inactivation)	can	be	selected	from	a	drop-down	list	and	an	interactive	
slider	and	plot	zoom	controls	can	be	used	to	inspect	individual	traces.	The	waveforms	are	also	machine	
accessible	via	the	NeuroML	database	API.	The	reversal	potentials	and	input	voltage	waveforms	were	
identical	to	those	used	in	ICGenealogy	(23).	

Cell	morphology	was	characterized	using	L-Measure	and	visualized	using	BlenderNEURON		

Cell	models	vary	in	their	morphological	detail.	Some	are	single-compartment	“point	neurons”,	
while	others	include	detailed,	reconstructed	morphologies.	Similar	to	channel	models,	while	cell	models	
are	defined	in	a	machine-readable	NeuroML	format,	it	can	be	difficult	to	visualize	the	3D	shape	of	a	cell	
model	just	from	the	coordinates	of	its	neurite	compartments.	On	NeuroML-DB,	we	made	it	easy	to	
immediately	view	an	animated	3D	rendering	of	each	cell	model	with	more	than	one	compartment	(see	
Figure	2B).		

To	visualize	it,	each	cell	model’s	morphology	was	first	aligned	along	its	first	principal	component	
and	a	360°	view	of	the	model	is	shown	from	a	slightly	tilted,	horizontal	orbit.	Additionally,	a	square	
current	is	injected	into	the	model	cell’s	soma,	and	the	resulting	action	potential	propagation	(if	any)	is	
shown	as	illuminated	compartments.	The	animations	are	in	the	form	of	.GIF	files,	which	do	not	require	
any	additional	software	or	plugins,	and	can	be	embedded,	in	animated	form,	into	presentations	and	
shared	on	social	media	platforms.	To	create	the	animations,	we	developed	an	open-source	tool,	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

BlenderNEURON	(60),	which	creates	a	Python	interface	between	the	NEURON	simulator	and	the	open-
source	3D	modeling	software	Blender.	

In	addition	to	visual	characterization,	cell	model	morphology	was	characterized	by	computing	the	
morphology	metrics	provided	by	the	widely	used	L-Measure	(36)	tool.	The	same	metrics	that	are	visible	
for	each	reconstructed	cell	on	NeuroMorpho.org	(61)	are	also	shown	on	the	database	website	(Figure	2B	
bottom).	The	full	set	of	computed	L-Measure	metrics	is	accessible	via	the	NeuroML	database	API.	

	

Publication	 Model	
Count	

Short	Description	of	Models	

Markram	et.	al.	(2015)	(8)	 1035	 Detailed	cortical	neuron	models	
Traub	et.	al.	(2005)	(9)	 154	 Cortical-thalamus	circuit,	geometric	neuron	models	
Gouwens	et.	al.	(2018)	(12,39)	 106	 Detailed	and	point	neuron	models	of	visual	cortex	
Bezaire	et.	al.	(2016)	(10)	 42	 Hippocampus	CA1,	geometric	neuron	models	
Traub	et.	al.	(2003)	(40)	 30	 Ion	channel	models	
Prinz	et.	al.	(2004)	(41)		 28	 Crustacean	stomatogastric	ganglion	circuit,	point	models	
Maex	&	De	Schutter	(1998)	(42)		 25	 Cerebellum,	detailed	neuron	models	
Vervaeke	et.	al.	(2010)	(43)	 21	 Cerebellum,	detailed	neuron	models	
Izhikevich	(2003)	(44)		 20	 Point	neuron	models	with	many	behaviors	
Hay	et.	al.	(2011)	(45)	 15	 Detailed	cortical	pyramidal	neuron	models	
Smith	et.	al.	(2013)	(46)		 13	 Visual	cortex,	detailed	neuron	models	
Dura-Bernal	et.	al.	(2017)	(47)	 10	 Motor	cortex	M1,	point	neuron	models	
Migliore	et.	al.	(2005)	(48)	 10	 Detailed	hippocampus	pyramidal	neuron	model	
Pospischil	et.	al.	(2008)	(49)	 9	 Point	neuron	models	of	cortical	and	thalamic	cells	
Teeter	et.	al.	(2018)	(50)		 8	 Cortical	point	neuron	models	
Migliore	et.	al.	(2014)	(11)	 6	 Detailed	olfactory	bulb	neuron	models	
Boyle	&	Cohen	(2008)	(51)	 6	 Point	model	of	C.	elegans	muscle	cell	
Hodgkin	&	Huxley	(1952)	(5)	 4	 Point		model	of	squid	giant	axon	
De	Schutter	&	Bower	(1994)	(52)	 2	 Detailed	cerebellar	Purkinje	cell	model	
Brunel	(2000)	(53)	 1	 Network	model	of	excitatory	and	inhibitory	point	neurons	
Pinsky	&	Rinzel	(1994)	(54)	 1	 Two	compartment	model	of	CA3	neuron	
Fitzhugh	(1961)	(55)	 1	 Point	neuron	model	
Solinas	et.	al.	(2007)(56)	 1	 Geometric	cerebellar	Golgi	cell	model	
Ferguson	et.	al.	(2013)	(57)	 1	 Point	model	of	CA1	interneuron	
Additional	ion	channel	models	from:	Korngreen	&	Sakmann	(2000),	Reuveni	et.	al.	(1993),	Poolos	et.	al.	(2002),	
Migliore	et.	al.	(2010),	Kole	et.	al.	(2006),	Colbert	&	Pan	(2002),	Wang	et.	al.	(1996),	Avery	&	Johnston	(1996),	
Adams	et.	al.	(1982),	Shu	et.	al.	(2007),	Magistretti	&	Alonso	(1999),	Köhler	et.	al.	(1996),	Rettig	et.	al.	(1992),	
Ramaswamy	et.	al.	(2015),	Connor	&	Stevens	(1971),	McCormick	&	Huguenard	(1992),	Huguenard	et.	al.	
(1988),	Hamill	et.	al.	(1991),	Astman	et.	al.	(2006),	McCormick	et.	al.	(1993),	Destexhe	et.	al.	(1996)	

	

Table	1:	The	publications	whose	models	have	been	translated	into	NeuroML	and	indexed	by	NeuroML-
DB.	Model	counts	include	the	top-level	network	or	cell	models	as	well	as	any	distinct	subcomponent	
synapse	and	channel	models.		 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	1:	NeuroML-DB	displays	voltage	clamp	characterizations	of	all	indexed	channel	models.	This	
screenshot	from	NeuroML-DB	depicts	the	characterization	of	an	example	potassium	channel	model	(58).	
In	addition	to	the	activation	protocol,	users	can	view	responses	to	deactivation	and	inactivation	protocols	
using	the	drop-down	list	widget.	The	slider	and	plot	zoom	controls	can	be	used	to	inspect	individual	
traces.	The	above	plots	can	be	viewed	online	(59)	and	also	accessed	programmatically	using	the	
NeuroML-DB	API.	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	2:	Screenshots	of	characterizations	of	a	Descending	Axon	Cell	(8)	model	available	through	the	
NeuroML-DB	interface.	A)	An	electrophysiology	tab	shows	plots	of	current	clamp	responses,	closest	
electrophysiology	clusters,	differentiating	property	values,	and	other	cell	models	with	similar	behaviors.	
B)	A	morphology	tab	shows	animated	3D	visualizations	of	multi-compartment	cell	model	geometry	and	
electrical	behavior,	as	well	as	a	list	of	morphology	metrics	as	computed	by	the	L-Measure	software	
package.	C)	A	computational	complexity	tab	shows	model	equation	counts	and	cell	model	simulation	
speed	comparisons	relative	to	the	Hodgkin-Huxley	model.	An	example	of	the	above	plots	can	be	viewed	
online	(62).	

	

Cell	model	computational	requirements	were	characterized	using	numerical	benchmarks	

When	evaluating	cell	models	for	a	particular	purpose,	one	often	overlooked	aspect	is	
computational	complexity	–	for	practical	purposes,	how	“fast”	does	the	model	run?	The	computational	
complexity	of	a	model	will	affect	the	implementation	choices	needed	for	the	optimization	algorithm	used	
for	parameter	fitting,	as	well	as	the	overall	pace	of	model	development.	In	general,	if	all	other	model	
aspects	are	approximately	the	same,	a	model	with	a	lower	computational	complexity	likely	is	preferable	
to	one	with	higher	complexity.	Computational	efficiency	might	be	especially	important	in	model	reuse	
scenarios	where	a	new	candidate	model	(for	example	a	single	component	in	a	larger	system)	requires	a	
much	smaller	time	step	than	all	of	the	other	model	components,	making	it	the	rate-limiting	step	in	
simulating	that	system.		

In	modeling	publications,	the	choice	of	time	step	is	often	reported,	but	rarely	rigorously	justified.	
For	example,	often	it	is	not	trivial	to	know	how	sensitive	a	particular	model	is	to	deviations	from	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

published	time	step.	To	facilitate	such	assessment	and	allow	for	automated	evaluation	of	model	
simulation	efficiency	and	stability,	we	developed	a	simple	approach	for	characterizing	the	computational	
requirements	under	fixed	and	variable	time	step	integration	methods.	Fixed	step	integration	methods	
advance	model	state	simulation	by	a	constant	time	interval,	while	variable	time	step	methods	adjust	the	
size	of	the	time	interval	depending	on	how	quickly	the	cell	state	changes	(e.g.	smaller	step	during	an	
action	potential,	larger	step	when	the	cell	has	reached	a	steady	state).	
	
Cell	model	computational	requirements	under	the	fixed	time	step	integration	method	can	be	measured	using	
optimal	and	maximum	numerically	stable	time	step	sizes	
	

When	using	a	fixed	time	step	integration	method,	the	equation	count	of	a	cell	model,	as	well	as	the	
size	of	the	chosen	time	step	are	the	most	important	determinants	of	model	run-time	for	a	given	machine	
and	simulator	combination.	While	changing	the	number	of	model	equations	might	be	difficult,	changing	
the	simulation	time	step	size	is	not.	However,	for	a	given	time	step	size,	there	is	a	tradeoff	between	model	
error	(relative	to	an	arbitrarily	small	step	size)	and	simulation	runtime:	increasing	the	time	step	size	will	
decrease	model	runtime	but	will	increase	model	error.	Thus,	each	model	must	have	a	time	step	size	that	
will	balance	these	two	concerns.	We	call	such	time	step	the	“optimal	fixed	time	step	size”	or	“optimal	time	
step”	for	short.		

To	find	each	model’s	optimal	time	step,	we	assessed	the	effect	of	time	step	size	on	model	error	and	
on	runtime	using	NEURON’s	default	fixed	step	integration	method.	For	step	sizes	of	~1µs	to	1ms	(or	each	
model’s	maximum	stable	step	size,	if	1ms	resulted	in	numerical	overflow),	we	found	that	model	error	
obeyed	a	roughly	linear	relationship	with	step	size	(see	Figure	3A),	while	runtime,	as	expected,	was	
proportional	to	the	reciprocal	of	time	step	size	(Figure	3B).	After	normalizing	the	error	and	runtime	to	
their	respective	maxima,	and	fitting	the	error	values	to	an	equation	of	the	form	𝑏 ∗ 𝑑𝑡 + 𝑐	and	runtime	
values	to	𝑎/𝑑𝑡,	we	obtained	the	equation	for	the	total	cost	(error	and	runtime,	Figure	3C)	of	each	time	
step	size:		

!
"#
+ 𝑏 ∗ 𝑑𝑡 + 𝑐.			(Equation	1)	

When	𝑎, 𝑏, 𝑑𝑡 > 0,	the	cost	minimum,	and	therefore	the	optimal	time	step,	occurs	at	

𝑑𝑡$%# = .
𝑎
𝑏	

noted	by	the	arrow	in	Figure	3C.	To	visualize	how	sensitive	model	error	is	to	time	step,	we	superimposed	
the	membrane	potential	waveforms	obtained	using	the	smallest	time	step	and	the	largest	numerically	
stable	time	step	(Figure	3D).	To	visualize	how	well	the	optimal	time	step	captures	the	model	behavior,	we	
superimposed	the	smallest	and	optimal	time	step	waveforms	(Figure	3E)	to	find	that	the	difference	
between	the	two	waveforms	was	visually	indistinguishable.	Informally,	we	found	that	as	the	time	step	
was	reduced,	the	output	waveform	approached	the	smallest	time	step	waveform,	and	the	time	step	
values	near	the	optimal	time	step	corresponded	to	a	range	where	additional	reductions	in	time	step	did	
not	result	in	visually	noticeable	differences.	
	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	3:	Identifying	cell	models’	optimal	fixed	time	step	size	(model	from	(8)).	A)	Normalized	point-
wise	model	output	error	as	a	function	of	integration	step	size.	Step	sizes	above	0.0625	ms	were	
numerically	unstable	for	this	model.	B)	Normalized	model	runtime	as	a	function	of	step	size.	C)	The	
optimal	time	step	is	located	at	the	minimum	of	the	sum	of	error	and	runtime.	D)	The	output	responses	of	
the	model	using	smallest	and	largest	stable	time	step	(red:	1/1024	ms,	blue:	1/16	ms).	E)	The	
superimposed	responses	when	using	the	smallest	and	optimal	time	steps	(arrow:	the	two	traces	are	
visually	indistinguishable).	F)	The	input	waveform	used	to	generate	model	responses	(see	Methods).	

The	computational	requirements	of	cell	models	were	compared	to	those	of	the	Hodgkin-Huxley	model	

For	all	cell	models	in	the	NeuroML	database,	including	the	Hodgkin-Huxley	model,	we	computed	
each	model’s	optimal	fixed	time	step	size.	To	assess	the	relative	computational	complexity	of	each	model,	
we	measured	the	mean	time	to	compute	a	single	time	step	of	each	model	(based	on	60	s	simulations	on	a	
specific	machine	and	simulator).	Using	each	model’s	optimal	time	step	and	the	time	required	to	execute	it	
we	determined	the	absolute	computational	complexity	of	each	model	on	a	specific	machine	and	simulator	
combination	(e.g.	if	the	optimal	time	step	is	0.1	ms,	and	one	step	takes	10	wall-clock	ms	to	simulate	on	a	
given	machine/simulator,	then	a	1000	ms	simulation	will	take	100	wall-clock	seconds	to	complete).	To	
remove	the	machine/simulator	dependence,	we	scaled	the	absolute	complexities	to	the	absolute	
complexity	of	the	Hodgkin-Huxley	model	and	obtained	the	relative	complexities	of	all	models	in	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

database	relative	to	the	Hodgkin-Huxley	model.	This	allowed	us	to	compare	each	cell	model’s	fixed	time	
step	computational	requirements,	at	each	model’s	optimal	time	step,	to	the	Hodgkin-Huxley	model	at	its	
optimal	time	step	in	a	machine	and	simulator	independent	way	(Table	2).		

	

Model(s)	

Computational	requirements	
relative	to	the	Hodgkin-Huxley	model	

Using		
Optimal		
Time	Step	

Using		
Variable	
	Time	Step	

Using		
Maximum	Stable		

Time	Step	
Least	computationally	intensive	models	in	the	database:	
Teeter,	et.	al.	(2018)	GLIF	model	of	
V1	Layer	4	Spiny	Cell	(NMLDB	ID:	
NMLCL001485)	

0.211	HH	 0.051	HH	 0.102	HH	

Dura-Bernal,	et.	al.	(2017)	
Izhikevich-based	model	of	M1	PV	
Cell	(NMLDB	ID:	NMLCL001664)		

0.132	HH	 0.159	HH	 0.064	HH	

Dura-Bernal,	et.	al.	(2017)	
Izhikevich-based	model	of	M1	IT	
Cell	(NMLDB	ID:	NMLCL001663)	

0.125	HH	 0.178	HH	 0.068	HH	

Teeter,	et.	al.	(2018)	GLIF	models	 0.21-0.53	HH	 0.05-0.18	HH	 0.10-0.26	HH	
Izhikevich	(2003)	models	 0.17-0.27	HH	 0.29-0.77	HH	 0.10-0.14	HH	
	 	 	 	
Reference	model:	 	 	 	
Hodgkin	&	Huxley	(1952)	Squid	
giant	axon	model	(NMLDB	ID:	
NMLCL001426)	

1	HH	 1	HH	 1	HH	

		 	 		 		
Markram,	et.	al.	(2015)	models	 69-4,236	HH	 70-2,009	HH	 136-29,597	HH	
Traub,	et.	al.	(2005)	models	 5,134-10,863	HH	 9,291-27,017	HH	 14,326-41,089	HH	
		 	 	 	
Most	computationally	intensive:	
Migliore,	et.	al.	(2005)	Multi-
compartment	model	of	CA1	
pyramidal	cell	(NMLDB	ID:	
NMLCL000001)	

13,652	HH	 8,588	HH	 37,706	HH	

Traub,	et.	al.	(2005)	Multi-
compartment	model	of	LTS	
interneuron	(NMLDB	ID:	
NMLCL001136)	

10,863	HH	 27,017	HH	 41,089	HH	

	
Table	2:	Computational	complexities	(“speeds”)	of	select	cell	models	in	the	NeuroML	database.	
Complexities	are	relative	to	the	Hodgkin	&	Huxley	model,	for	which	complexity	is	defined	to	be	1	HH.	Top	
rows:	models	with	complexities	smaller	than	the	Hodgkin	&	Huxley	model	(e.g.	0.2	HH	means	the	model	
was	5	times	faster	than	the	Hodgkin	&	Huxley	model).	Bottom	row:	models	more	complex	than	the	
Hodgkin	&	Huxley	model	(e.g.	50	HH	means	model	was	50	times	slower	than	the	Hodgkin	&	Huxley	
model).	Columns:	Optimal	time	step:	complexity	evaluation	performed	using	NEURON	fixed	time	step	
integration	method,	using	each	model’s	optimal	time	step.	Variable:	using	NEURON	CVODE	variable	step	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

integration	method.	Maximum	Stable:	performance	evaluation	done	using	each	model’s	maximum	
numerically	stable	fixed	time	step.	

After	assessing	each	model’s	relative	computational	requirements,	we	compared	the	
computational	complexity	of	the	Izhikevich	(44)	and	Generalized	Leaky	Integrate	and	Fire	(GLIF)	(50)	
classes	of	models	to	the	Hodgkin-Huxley	model.	These	classes	of	models	are	some	of	the	simplest	spiking	
models	and	are	often	used	in	large	network	simulations.	A	previous,	frequently	cited,	computational	
complexity	analysis	(Figure	2	of	(63))	based	on	floating	point	operations	(FLOPS)	suggested	a	92-fold	
speed	difference	between	the	Izhikevich	and	the	Hodgkin-Huxley	model	(13	vs.	1,200	FLOPS).		

In	our	analysis,	comparing	empirical	simulation	run	times,	using	the	optimal	time	step	method	for	
each	model,	we	found	the	actual	speedup	for	the	Izhikevich	model	variants	(63)	to	be	between	only	3.7	
and	5.7	times	faster	than	the	Hodgkin-Huxley	model	(Table	2).	Additionally,	of	all	models	in	the	database	
that	have	been	derived	from	the	original	Izhikevich	model,	the	fastest	model	(47)	had	an	8-fold	speedup	
relative	to	the	Hodgkin-Huxley	model	(Table	2,	top	rows).		

Optimal	time	step	analysis	of	the	simplest	(1	state	equation)	GLIF	models	(50)	revealed	them	to	be	
between	1.9	and	4.7	times	faster	than	the	Hodgkin-Huxley	model	(Table	2).	

It	should	be	noted	that	these	performance	comparisons	were	between	NeuroML	models	converted	
to	NEURON	using	automated	conversion	tools.	It	is	possible	that	comparing	manually	optimized	model	
versions	would	yield	different	speedup	ratios.	While	such	hand-tuned	model	comparisons	were	not	in	
scope	of	this	research,	they	could	be	performed	in	follow-up	studies	using	the	methods	described	here.		
	
Cell	model	complexity	using	variable	time	step	size	integration	method	can	be	measured	using	baseline	
steps/sec	and	mean	steps/AP	at	a	target	firing	rate	
		

While	using	a	fixed	time	step	integration	method	is	common,	the	popular	NEURON	simulator	also	
enables	simulations	to	use	a	variable	time	step	integration	method	(CVODE)	(64),	which	adjusts	the	size	
of	the	time	step	to	maintain	a	constant	local	error	tolerance.	Because	the	size	of	integration	steps	varies	
during	the	simulation,	evaluating	the	computational	complexity	of	a	cell	model	using	CVODE	requires	a	
different	method	than	the	one	using	fixed	time	step	integration.	To	develop	such	a	method,	we	first	
observed	the	number	of	steps	the	NEURON	simulator	used	during	each	millisecond	to	compute	the	
response	during	current	injections	that	produce	an	action	potential	(spike)	(Figure	4).	We	noted	that	
each	model	tended	to	have	a	baseline	number	of	steps,	which	increased	significantly	during	action	
potentials.	When	higher	intensity	current	injections	produced	more	action	potentials,	the	total	number	of	
steps	to	compute	1s	long	simulation	increased	roughly	linearly	with	the	number	of	action	potentials,	
across	a	variety	of	cell	models.	Thus,	we	modeled	the	number	of	steps	required	to	compute	1	s	of	a	cell	
model’s	simulation	as	a	linear	function	in	the	form	of:	𝑠𝑡𝑒𝑝𝑠&'(= 𝑠𝑡𝑒𝑝𝑠)!&' + 𝑠𝑡𝑒𝑝𝑠*+ ∗ 𝐴𝑃𝑠.	For	each	
model,	the	slope	and	intercept	terms	were	fitted	using	a	linear	regression	of	total	steps	vs.	number	of	
action	potentials	produced	in	response	to	a	series	of	square	current	injections	(see	Methods).	Each	
model’s	absolute	1s	complexity	was	computed	using	an	assumed	10	Hz	(10	APs/sec)	rate,	and	scaled	to	
the	absolute	1s	complexity	of	the	Hodgkin-Huxley	model.		

As	we	did	for	the	fixed	step	complexity	measure	above,	we	compared	the	GLIF	and	Izhikevich	
classes	of	models	in	our	database	to	the	Hodgkin-Huxley	model	(Table	2).	Using	variable	time	step	
method,	the	GLIF	models	were	between	5.5	and	20	times	faster	than	the	Hodgkin-Huxley	model,	while	
the	Izhikevich	models	were	between	1.3	to	3.5	times	faster	than	the	Hodgkin-Huxley	model.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

After	computing	the	fixed	and	variable	time	step	computational	complexity	metrics	for	each	cell	
model,	we	made	the	analyses	viewable	online	(Figure	2C).		

	
Cell	model	electrophysiology	was	characterized	using	Allen	Brain	Atlas	protocols	and	Human	
Brain	Project	electrophysiology	properties		

When	assessing	cell	model	electrophysiology,	detailed	cell	model	traces	in	response	to	different	
current	clamp	stimulation	protocols	are	usually	not	available	in	the	original	publications.	One	must	
generally	download	the	full	model	and	perform	the	current	clamp	experiments	manually.	While	this	is	
feasible	when	evaluating	a	handful	of	models,	it	quickly	becomes	impractical	for	a	large	number	of	
models.	This	limits	the	number	of	evaluated	models,	possibly	resulting	in	a	sub-optimal	set	of	initial	
candidates.	To	facilitate	this	task,	similarly	to	channel	models,	we	have	made	the	responses	of	current	
clamp	responses	to	a	set	of	standard	protocols	available	online	as	interactive	plots	(Figure	2A).	We	
characterized	cell	model	responses	using	the	electrophysiology	protocols	used	by	the	Allen	Cell	Type	
Database	(29),	which	included	square,	long	square,	pink	noise,	ramp,	short	square,	and	short	square	
triple	protocols	(see	(65)	pages	7	and	15	for	protocol	details).		

Additionally,	we	computed	38	cell	model	membrane	properties	described	in	Druckmann,	et.	al.	
(2013)	(66),	which	were	used	in	cell	type	classification	by	the	Human	Brain	Project	(8).	Broadly,	these	
measures	assessed	the	properties	of	individual	and	trains	of	action	potentials.	Example	action	potential	
properties	included	amplitude,	width,	and	after	hyperpolarization	potential,	while	example	action	
potential	train	properties	included	action	potential	delays,	inter-spike	interval	statistics,	and	degrees	of	
spike	accommodation	(for	full	list	of	measures	and	their	computation	details	see	Table	1	and	
Supplementary	Methods	of	(66),	respectively).	These	neuron	model	characterizations	are	available	as	
online	tables	(Figure	2A).	Furthermore,	to	facilitate	reuse	of	these	properties,	we	implemented	them	as	
standardized	tests	within	the	SciUnit/NeuronUnit	framework	(67,68).		

	

	
	

Figure	4:	Number	of	integration	steps	required	when	using	a	variable	time	step	integration	method	
(NEURON	CVODE)	depends	on	the	baseline	step	rate	and	additional	steps	per	action	potential	(AP)	for	an	
example	model	(11).	The	plot	shows	membrane	potential	(orange)	and	the	number	of	integration	steps	
per	ms	computed	by	the	simulator	(blue)	in	response	to	a	square	current	injection	with	onset	at	50	ms.	
This	“baseline	+	APs”	pattern	was	similar	across	other	types	of	input	current	waveforms.	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cluster	analysis	revealed	the	structure	of	model	neuron	electrophysiology	property	space		

After	characterizing	the	electrophysiology	properties	of	cell	models	in	the	NeuroML	database,	we	
wanted	to	explore	the	structure	of	the	space	formed	by	the	electrophysiology	measures.	We	were	
interested	in	identifying	the	features	that	could	be	used	to	summarize	cell	model	behavior	and	identify	
any	high-density	clusters	(e.g.	cell	model	types)	that	existed	within	this	space.	These	features	and	cluster	
memberships	could	then	be	displayed	online,	facilitating	the	model	selection	task.		

In	previous	work,	the	nomenclature	established	during	the	Petilla	convention	(69)	provided	a	
broad	classification	scheme	of	interneuron	electrical	behavior	based	on	the	consensus	of	the	convention	
attendees.	Later,	Druckmann	and	others	(66),	used	a	set	of	38	action	potential	and	spike	train	measures	
of	rat	cortical	interneurons	to	perform	automated	classification	of	interneurons	into	electrical	types,	
which	were	then	utilized	in	Human	Brain	Project	cortical	column	simulations	(8).	Similarly,	a	taxonomy	
of	mouse	cortical	cells	performed	at	the	Allen	Institute	(70),	and	available	to	explore	online	(71),	was	
constructed	using	automated	clustering	of	single-cell	RNA	sequencing	data.	

We	ask	wheter	these	classifications	are	recapitulated	in	neuron	models.	For	all	neuron	models	in	
NeuroML-DB,	we	computed	the	38	properties	described	in	(66).	We	reduced	the	dimensionality	of	the	
features	by	using	principal	component	analysis	(72)	and	used	k-means	and	HDBSCAN	clustering	
algorithms	(73,74)	to	identify	high-density	regions	of	cell	models	within	the	reduced	space.	The	analysis	
resulted	in	three	levels	of	nested	model	clusters,	with	four	clusters	at	the	top	level,	two	clusters	in	the	
second	level,	and	six	clusters	in	the	third	level	(Figure	5).	

At	the	first	level	of	this	analysis,	we	identified	four	clusters	of	cell	models:	Multi-Spikers	(MS),	
Rapidly	Adapting	(RA),	Abstract	Spikers	(AS),	and	Non-Positive	Rheobase	(npRB)	(see	Figure	6	for	
examples	of	models	belonging	to	these	clusters).	Multi-Spikers	are	a	large	group	of	cell	models	that	
produce	multiple	spikes	in	response	to	square	current	injections.	The	Rapidly	Adapting	cluster	contains	
neuron	models	which	produce	single	spikes	in	response	to	square	current	injections.		While	some	action	
potential	properties	can	be	computed	for	these	cell	models	(e.g.	delay	to	first	spike,	amplitude,	half-
width),	spike	train	properties	generally	cannot	be	computed.	Abstract	Spikers	are	a	group	of	neuron	
models	for	which	traditional	measures	of	action	potentials	do	not	apply,	for	example	the	GLIF	cell	models	
(50)	have	a	resting	potential	at	0	mV	and	do	not	define	action	potential	amplitude	or	width	(Figure	6).	
However,	the	defining	properties	of	the	final	six	clusters	in	the	third	level	are	predominantly	related	to	
spike	train	patterns	(Figure	7).	For	many	applications,	spike	train	patterns	are	of	exclusive	interest.	While	
not	associated	with	the	final	clusters	in	this	analysis,	the	Abstract	Spikers	would	likely	belong	to	one	of	
the	six	cluster	types.	Finally,	the	Non-positive	Rheobase	cluster	contains	neuron	models	that	do	not	have	
a	positive	rheobase	current	and	produce	spikes	without	stimulation.	Because	the	majority	of	the	
Druckmann	properties	assume	positive	rheobase	currents,	their	values	could	not	be	computed	(see	
Discussion).	

We	then	performed	the	same	PCA	and	clustering	analysis	on	the	property	values	of	the	neuron	
models	that	belong	to	the	Multi-Spiker	cluster.	At	this	second	level	of	analysis	(Figure	7),	we	identified	a	
large	cluster	of	Regular	Multi-Spikers	(rMS)	and	a	smaller	cluster	of	Accommodating	Wide	Multi-Spikers	
(awMS).	The	Accommodating	Wide	Multi-Spikers	are	different	from	the	Regular	Multi-Spikers	in	that	
they	display	much	longer	peak-to-trough	action	potential	widths	and	exhibit	spike	accommodation	
(Figure	8,	top).	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Finally,	we	performed	the	same	cluster	identification	procedure	on	the	models	that	belong	to	the	
Regular	Multi-Spiker	cluster.	At	this	third	level,	we	identified	6	clusters	of	models:	Regular	Spikers	(RS),	
Delayed	Regular	Spikers	(dRS),	Non-accommodating	Regular-Spikers	(naRS),	Fast	Spikers	(FS),	
Accommodating	Fast	Spikers	(aFS),	and	Bursters	(B)	(see	Figure	9	for	examples	of	each).	To	provide	a	
general	overview	of	each	neuron	model’s	electrical	behavior,	we	identify	which	cluster	center	is	closest	to	
the	model	and	display	the	information	for	that	cluster	on	the	NeuroML	database	interface	(see	Figure	2A	
for	an	example).	

Component	loadings	identified	features	responsible	for	clustering	of	Regular	Multi-Spiker	models		

The	space	formed	by	the	first	few	principal	components	of	the	PCA	procedure	is	somewhat	
abstract	and	lacks	an	intuitive	mapping	to	the	individual	features	that	are	analyzed.	To	gain	a	more	
intuitive	understanding	of	what	the	components	represent	for	Regular	Multi-Spikers,	we	first	selected	the	
first	three	principal	components	and	identified	single	features	with	the	highest	absolute	principal	
component	weights.	For	the	first	component,	the	delay	to	first	action	potential	had	the	highest	weight,	the	
second	component	was	most	heavily	weighted	by	the	median	inter-spike	interval,	and	the	third	
component	was	most	heavily	weighted	by	the	mean	steady	state	accommodation	percent.	

When	the	values	of	these	three	features	are	plotted	for	the	models	in	the	cluster	of	Regular	Multi-
Spikers,	we	observe	a	roughly	tetrahedral	shape	(Figure	8).	The	Fast-Spikers	form	the	left	base	corner.	
Then,	with	an	increased	degree	of	accommodation,	the	Accommodating	Fast	Spikers	form	the	center	base	
corner.	From	there,	Bursters,	with	a	decreased	steady	state	spike	rate,	form	the	right	base	corner.	The	
cluster	of	Delayed	Regular	Spikers	lies	between	the	Bursters	and	the	Fast	Spikers,	forming	the	apex	of	the	
tetrahedron.	The	Non-Accommodating	Regular	Spikers	and	Regular	Spikers	form	the	sides	of	the	
tetrahedron.	

	

Figure	5:	The	three-level	hierarchy	of	cell	model	types	identified	during	clustering	analysis	of	NeuroML-
DB	neuron	models	according	to	electrophysiology	features.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

	

Figure	6:	Responses	of	neuron	models	closest	to	the	centers	of	clusters	in	the	first	and	second	levels	of	
the	cluster	hierarchy.		Model	output	examples	shown	above	come	from	models	referenced	for	each	type	
below.	awMS:	Accommodating	Wide	Multi-Spikers	exhibit	spike	rate	accommodation	and	long-lasting	
action	potentials	(NeuroML	DB	ID:	NMLCL000670).	RA:	Rapidly	Adapting	models	produce	single	spikes	
in	response	to	strong	square	current	injections	(ID:	NMLCL001126).	AS:	Abstract	Spikers	do	not	have	
physiologically	realistic	waveforms	(e.g.	resting	voltage	at	0	mV	or	0	mV	action	potential	amplitudes.	ID:	
NMLCL001491).	npRB:	Non-positive	Rheobase	models	produce	action	potentials	at	rest	(ID:	
NMLCL001588).	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	7:	Responses	of	neuron	models	closest	to	centers	of	clusters	for	electrical	types	located	in	the	
third	level	of	the	cluster	hierarchy.	RS:	Regular	Spikers	exhibit	mild	spike	delay,	some	spike	rate	
accommodation,	and	an	average	steady	state	spiking	rate	(NeuroML	DB	ID:	NMLCL000314).	dRS:	
Delayed	Regular	Spikers	are	similar	to	Regular	Spikers	with	longer	spike	onset	delay	(ID:	
NMLCL000468).	naRS:	Non-accommodating	Regular	Spikers	are	similar	to	Regular	Spikers	but	exhibit	
little	accommodation	(ID:	NMLCL000829).	FS:	Fast	Spikers	exhibit	rapid	spike	onset,	little	
accommodation,	and	a	high	steady	state	spike	rate	(ID:	NMLCL001025).	aFS:	Accommodating	Fast	
Spikers	are	similar	to	Fast	Spikers	but	exhibit	some	accommodation	(ID:	NMLCL000728).	B:	Bursters	
exhibit	rapid	spike	onset,	high	accommodation,	and	a	relatively	low	steady	state	spike	rate	(ID:	
NMLCL000203).	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	8:	Tetrahedron	of	the	models	assigned	to	the	high-density	cluster	cores	of	Regular	Multi-Spikers.	
A)	The	level	three	cell	model	clusters	plotted	within	the	space	of	the	three	most	informative	properties	
(Delay,	Accommodation,	Median	ISI)	form	a	tetrahedral	structure	(gray	lines).	B)	Left,	Top-Down,	and	
Right	views	of	the	tetrahedral	structure.	Note	the	strong	linear	relationships	within	the	dRS	and	RS	
(delay	vs.	accommodation),	and	naRS	clusters	(delay	vs.	median	ISI).	C)	Left:	the	responses	of	two	
extreme	models	of	the	dRS	cluster	(circled	in	B	Left	View).	Note	the	relationship	between	spike	delay	and	
accommodation.	Right:	Extreme	models	of	the	naRS	cluster	(circled	in	B	Right	View).	Note	the	
relationship	between	median	ISI	and	delay.	For	clarity,	several	scattered	cell	models	that	were	not	in	the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

vicinity	of	the	cluster	cores	are	not	shown	(they	were	included	in	analysis,	see	Methods.	Interactive	plots	
that	include	all	models	can	be	viewed	at	https://tabsoft.co/32nHnNd).	

	

The	sides	of	the	tetrahedron	suggested	that	the	three	properties	of	models	belonging	to	the	Regular	
Spiker	sub-clusters	exhibit	linear	relationships.	We	found	that	the	Delay	to	First	AP	was	strongly	
negatively	correlated	to	the	Mean	Accommodation	at	Steady	State	for	models	within	the	Delayed	Regular	
Spikers	(Figure	8B	and	8C	left)	and	Regular	Spikers	(Figure	10B)	clusters	(dRS:	Pearson	r=0.94,	p<0.001;	
RS:	Pearson	r=0.77,	p<0.001).	Similarly,	the	Non-accommodating	Regular	Spikers	exhibit	a	strong	linear	
relationship	between	the	Delay	to	First	AP	and	Median	Inter-spike	Interval	(naRS:	Pearson	r=0.96,	
p<0.001).	Interestingly,	these	relationships	are	weak	or	not	significant	within	the	models	belonging	to	
the	Fast	Spiker,	Accommodating	Fast	Spiker,	and	Burster	clusters.	

The	NeuroML-DB	interface	facilitates	rapid	integration	of	model	characterizations	and	metadata		

As	illustrated	above,	various	voltage	clamp	responses	of	ion	channel	models	are	openly	available	
from	NeuroML-DB.	Here	we	demonstrate	the	utility	of	NeuroML-DB	for	facilitating	analyses	of	neuron	
models	across	multiple	scales.	We	ask	how	the	transitions	along	the	tetrahedral	structure	of	the	
discovered	model	property	space	may	be	explainable	in	terms	of	model	ion	channel	densities	–	thus	
bridging	channel	mechanisms	to	neuron	electrophysiology.	To	that	end,	we	first	characterized	channel	
model	voltage-responses	using	the	ICGenealogy	analysis	protocols	(24).	This	characterization	results	in	
compact	quantitative	PCA-based	representations	of	responses	for	each	individual	channel	model	within	
their	respective	ionic	channel	families	(Kv,	Nav,	Cav,	Ih,	and	KCA).	F	inally,	these	PCA-based	
representations	were	used	to	cluster	channel	models	into	channel	model	sub-types	using	agglomerative	
hierarchical	clustering.	The	resulting	22	channel	model	sub-types	were	then	used	to	probe	differences	
between	cell	model	clusters	for	6	multiple	regular	spiking	clusters.		

The	22	resultant	channel	model	sub-types	were	not	easily	interpretable	due	to	a	lack	of	
correlations	to	recognizable	computed	features	(e.g.,	mean	delay	or	interspike	intervals).	However,	
channel	model	metadata	is	programmatically	available	via	the	NeuroML-DB	API.	Channel	model	
metadata	were	downloaded,	and	channel	model	names	were	grouped	by	their	associated	sub-types.	
Using	these	names,	channel	models	could	be	characterized	by	common	channel	model	names.	Such	
names	reflect	the	intended	purpose	of	the	models,	the	expertise	of	the	original	modelers,	and	common	
naming	conventions	used	in	the	literature.		

Consistency	in	channel	model	descriptions	is	observable	for	the	larger	channel	model	sub-type	
clusters.	The	three	largest	clusters	belonged	to	the	Kv	(N=22	and	N=19)	and	Nav	(N=32)	ion	channel	
families,	while	the	rest	of	the	cluster	sizes	ranged	from	1-7	models	(Figure	9A).	These	largest	clusters	
were	populated	with	1)	delayed	rectifiers	and	slow	non-inactivating	potassium	channels	(Kv	Cluster	A,	
Figure	9B),	2)	A-type	and	slow	inactivating	potassium	channels	(Kv	Cluster	B,	Figure	9B),	and	3)	fast	
transient	inactivating	sodium	channels.		

Joint	large-scale	analysis	integrated	model	characterizations	across	multiple	scales	

Channel	models	are	used	to	model	active	conductances,	which	are	spread	across	the	channel	
membrane.	The	conductance	densities,	which	may	be	non-uniform	across	the	cell,	can	be	extracted	from	
the	NeuroML	model’s	description.	Understanding	the	emergence	of	the	global	structure	of	cell	model	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

electrophysiology	requires	mapping	the	contributions	of	model	mechanisms	at	these	lower	scales	to	the	
computed	electrophysiological	features	at	the	scale	of	the	cell	model.	To	gain	such	an	understanding,	we	
integrated	the	channel	densities	for	co-clustered	channel	models	into	a	single	normalized	channel	density	
(NCD)	representing	the	sum	presence	of	the	channel	model	cluster	within	the	cell	model.	This	was	done	
for	each	channel	model	cluster	and	enabled	joint	visualization	of	the	parameter	space	of	channel	models	
over	the	property	space	of	cell	model	behaviors	(Figure	9B).		

	 The	tetrahedral	structure	of	the	electrophysiological	property	space	suggests	a	straight-forward	
way	of	relating	the	underlying	mechanisms	shared	within	a	cell	model	cluster	to	this	global	structure.	By	
examining	how	changes	in	average	NCD	correlate	to	movements	within	different	property	regions	of	the	
tetrahedron	(Figure	9C),	we	observed	distinct	trends	for	the	two	largest	potassium	channel	clusters.	
These	channel	clusters	are	known	to	influence	long	timescale	dynamics.	Kv	Cluster	A	consists	of	voltage-
gated	channels	with	non-activating	outward	currents	with	slow	activation.	Kv	Cluster	B	consists	of	
voltage-gated	channels	with	activating	outward	currents	on	similar	timescales	to	Kv	Cluster	A.		While	Kv	
Cluster	A	models	only	have	one	non-activating	subprocess,	Kv	Cluster	B	models	have	two	independent	
subprocesses	that	become	present	at	different	levels	of	depolarization.	Additionally,	the	inactivation	
subprocess	of	Kv	Cluster	B	models	can	have	time	constants	upward	of	40-50	ms	providing	a	slowly	
decreasing	outward	current.	The	differences	between	these	two	channel	model	clusters	results	in	
competing	resonance	effects	that	can	both	decrease	and	increase	cell	model	spike	frequency,	
respectively.		

To	what	extent	are	transitions	along	the	tetrahedral	structure	explainable	by	the	relative	
contribution	of	the	two	potassium	channel	model	sub-types?	First,	transitions	along	the	base	corners	
indicate	trade-offs	between	accommodation	and	interspike	intervals	(Figure	9C).	These	transitions	of	the	
average	model	in	the	dominant	base	clusters	(FS,	aFS,	B)	revealed	first	that	increasing	accommodation	
was	associated	with	decreasing	mean	NCD	for	Kv	Cluster	B	shifting	the	NCD	ratio	of	Kv	Cluster	A	to	Kv	
Cluster	B	to	greater	than	1	-	illustrated	in	moving	from	the	FS	corner	to	the	aFS	corner.	This	ratio	also	
appeared	to	be	conserved	when	examining	the	shift	from	the	aFS	corner	to	the	B	corner.	The	transition	
was	also	associated	with	increasing	mean	NCD	for	both	Kv	channel	model	sub-types	(Figure	9D,	top)	and	
increasing	median	ISI.			

Secondly,	the	transition	into	the	middle	property	region	(increasing	delay	to	first	action	potential)	
toward	the	RS	cluster	also	conserved	the	mean	NCD	ratio	of	Kv	Cluster	A	to	Kv	Cluster	B	(greater	than	1)	
but	was	associated	with	decreasing	mean	NCD	for	both	Kv	channel	model	sub-types	(Figure	9D,	bottom-
left).	However,	the	transition	into	the	middle	property	region	between	the	FS	corner	to	the	naRS	cluster	
was	associated	with	a	decrease	in	the	mean	NCD	of	Kv	Cluster	A	and	an	increase	in	the	mean	NCD	of	Kv	
Cluster	B	(Figure	9D,	bottom-middle).	This	shifted	the	NCD	ratio	to	be	less	than	1.	Interestingly,	the	dRS	
cluster	in	the	apex	of	the	tetrahedron	also	exhibits	a	decreasing	mean	NCD	of	Kv	Cluster	A,	an	NCD	ratio	
less	than	1,	and	spans	the	range	of	accommodation	between	the	two	middle	clusters.	These	results	
suggest	that	the	ratio	of	channel	densities	between	the	two	largest	potassium	channel	sub-types	
influences	the	degree	of	accommodation.	Finally,	a	decrease	in	the	overall	channel	density	of	delayed	
rectifiers	and	slow	non-inactivating	potassium	channels	(Kv	Cluster	A)	increases	the	first	spike	latency	
evident	in	both	sides	of	the	tetrahedral	property	space.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Figure	9.	Analysis	of	properties	of	Regular	Multi-Spikers	based	on	discovered	channel	model	sub-types.	
A)	Dimensionality	reduction	and	clustering	reveal	multiple	channel	model	sub-types	across	different	
channel	model	families.	B)	NCDs	of	large	potassium	channel	model	sub-types	(Z-Score<3)	plotted	against	
the	electrophysiological	feature	space	reveals	global	patterns	for	cell	model	parameterization.	(Selected	
channel	family	clusters	are	indicated	by	gray	arrows.)	Note	the	increasing	absence	along	the	delay	to	1st	
AP	axis	for	Kv	Cluster	A	(Left)	and	the	mixed	patterns	for	Kv	Cluster	B	(Right).	C)	Reference	schematic	of	
Regular	Multi-Spiker	high-density	cluster	cores	in	the	tetrahedral	property	space.	D)	Average	NCDs	for	
each	Regular	Multi-Spiker	cluster	using	all	models	within	the	base	(Top),	middle	(Bottom-Left	and	
Bottom-Middle),	and	apex	(Bottom-Right)	property	regions	(with	bootstrapped	95%	confidence	
intervals).		
	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

Discussion	
The	components	of	models	published	in	research	journals	or	stored	in	online	model	repositories	

can	be	difficult	to	quickly	evaluate	and	re-use.	The	NeuroML	database	takes	advantage	of	the	modularity	
of	NeuroML	to	efficiently	provide	systematic	and	uniform	assessments	of	model	electrophysiology,	
morphology,	and	computational	complexity.	By	providing	the	results	of	these	assessments	via	a	freely	
accessible,	user-friendly	web	interface	and	a	machine	programmable	API,	the	website	facilitates	the	
modeler’s	task	of	model	selection	with	the	aim	of	increasing	researcher	productivity	and	in	turn	
accelerating	the	rate	of	scientific	discovery.	The	breadth	of	represented	models	and	the	uniformity	of	
their	characterizations	is	made	possible	by	the	unique	modular	design	of	NeuroML	models,	which	
enables	automated	assessments.	Modelers	who	either	developed	their	models	using	NeuroML	initially	or	
have	translated	them	to	NeuroML	should	contact	us	to	submit	their	models	to	the	NeuroML	database,	
where	automated	procedures	will	make	the	model	assessment	results	available	online	without	any	
additional	effort	by	the	model	authors.	Depending	on	the	complexity	of	the	submitted	model	and	curator	
availability,	analysis	results	can	become	available	online	within	a	week	after	submission.	

NeuroML	models	on	NeuroML-DB	can	be	easily	extended	and	reused	

Models	in	the	NeuroML	database	are	stored	and	made	available	for	download	in	the	NeuroML	
format.	Software	tools	that	are	able	to	take	this	format	as	input	can	then	be	used	to	further	process	these	
models.	For	example,	the	jNeuroML	(75)	and	pyNeuroML	(76)	libraries	can	be	used	to	convert	the	
NeuroML	models	to	simulator	formats	such	as	NEURON	(64),	NetPyNE	(77),	XPP	(78),	and	MOOSE	(79).	
Additionally,	it	is	possible	to	convert	spiking	neuron	network	models	to	PyNN	scripts	(18),	allowing	for	
simulations	across	NEST	(80),	NEURON,	and	Brian	(81).		

NeuroML-DB	provides	tested,	pre-converted	versions	of	channels	(‘.mod’)	and	cells	(‘.hoc’)	in	
formats	compatible	with	NEURON;	these	can	then	be	used	in	any	other	software	tools	that	can	take	
NEURON	files	as	inputs.	Furthermore,	pyNeuroML	has	additional	features	which	allow	automated	
analysis	of	channel	model	dynamics	beyond	what	is	provided	by	NeuroML-DB.	Additionally,	model	
construction	tools	like	neuroConstruct	(82)	and	NetPyNE	(77)	allow	the	composition	of	larger	models	
from	NeuroML	components.	NeuroML	files	can	be	visualized	using	the	Open	Source	Brain	Model	Explorer	
(16,17,38)	powered	by	the	Geppetto	(21)	platform.	

Novel	methods	quantify	computational	requirements	and	reveal	speed	differences	among	model	
classes	

We	developed	a	set	of	measures	of	model	computational	requirements,	where	complexity	is	
approximated	relative	to	the	well-known	Hodgkin-Huxley	model.	When	the	absolute	measures	for	a	
target	and	the	Hodgkin-Huxley	model	are	computed	on	the	same	machine	and	simulator	combination,	the	
relative	measure	is	independent	of	machine	speed	or	simulation	method	choice.	However,	the	measures	
are	dependent	on	the	choice	of	integration	method:	fixed	or	variable	time	step.	For	the	fixed	step	
integration	method,	we	developed	a	protocol	to	find	the	optimal	time	step	size	which	balances	model	
error	and	runtime.	For	the	variable	step	integration	method,	we	developed	a	protocol	to	identify	the	
baseline	number	of	simulation	steps	required	to	compute	a	unit	of	simulation	time	and	the	number	of	
additional	steps	required	to	compute	each	additional	action	potential.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

While	it	is	possible	to	estimate	model	complexity	by	examining	a	model’s	time	constants	or	
performing	an	analysis	of	required	FLOPs	(63),	the	measures	we	developed	here	are	strictly	empirical	
and	amenable	to	automation	because	they	do	not	require	an	examination	of	each	model’s	equations	and	
parameters.	Using	this	automated	method,	we	were	able	to	assess	the	computational	complexity	of	
1,000+	neuron	models	and	identify	the	Izhikevich	and	GLIF	models	to	be	the	fastest	classes	of	models	in	
the	database.		

The	relative	complexity	measures	we	developed	have	some	limitations.	For	fixed	step	complexity,	
we	utilized	a	rheobase-scaled	input	current	waveform	that	was	designed	to	elicit	common	steady	state,	
subthreshold,	spiking,	and	recovery	behaviors.	This	waveform	was	used	to	produce	the	output	response	
at	different	time	step	sizes	and	assess	model	waveform	error.	It	is	possible	the	waveform	is	not	
appropriate	for	all	cell	models	and	that	for	some	models	the	error	curve	(Figure	3A)	may	not	be	linear	
under	a	different	stimulation	waveform.	Perhaps	different	clusters	of	cell	models	could	have	different,	
more	tailored	input	waveforms.	If	shown	to	be	the	case,	we	could	add	different	protocols	in	future	
versions	of	the	database.	Furthermore,	model	error	and	runtime	are	weighted	equally	in	our	measure	
(Equation	1).	Different	results	would	likely	be	produced	if	the	weights	are	chosen	differently.	Similarly,	
the	variable	step	measure	assumes	a	10	Hz	spiking	rate	to	compute	the	relative	model	complexity.	It’s	
possible	that	this	spiking	rate	is	not	appropriate	for	some	cells	or	provides	an	unfair	assessment.	Using	
an	expected	firing	rate	for	each	cell	could	be	a	more	accurate	way	to	assess	the	model’s	complexity.	
Finally,	this	metric	ignores	any	increases	to	step	counts	due	to	simulator	events	external	to	the	cell	(e.g.	
synaptic	activity	in	network	simulations).	
	
Automated	assessment	identifies	key	model	electrophysiology	properties	and	behavior	clusters	

Using	raw	traces	of	cell	model	responses	to	a	standardized	set	of	protocols,	it	is	possible	to	
identify	a	small	number	of	features	that	capture	a	large	portion	of	variability	in	model	electrical	behavior.	
If	high	density	regions	are	present	within	the	space	formed	by	these	features,	knowing	to	which	cluster	a	
given	model	is	closest	also	provides	information	about	the	model’s	behavior.	To	identify	such	features	
and	clusters,	we	performed	a	nested	PCA	and	clustering	analysis	of	the	cell	model	electrophysiology	
features.	This	analysis	was	consistent	with	previous	findings	that	suggested	that	cell	electrical	behavior	is	
not	uniformly	distributed	(66),	that	it	exhibited	clusters	of	models	with	familiar	spiking	behaviors	such	
as	Regular	and	Fast	spiking,	and	reflected	some	of	the	important	features	(e.g.	accommodation,	delay)	
identified	during	the	Petilla	convention	(69).	Importantly,	it	identified	the	delay	to	first	spike,	median	
inter-spike	interval,	and	steady	state	spike	accommodation	as	three	individual	measures	which	are	highly	
informative	of	cell	model	behavior.	By	making	the	values	of	these	three	features	and	the	cluster	
membership	of	each	model	available	on	NeuroML-DB,	we	have	provided	an	efficient	public	summary	of	
each	cell	model’s	electrical	behavior.		

Top	level	neuron	model	clusters	reveal	opportunities	to	improve	electrophysiology	protocols	

The	electrophysiology	protocols	and	computed	properties	used	here	effectively	assessed	the	
electrical	behavior	of	multi-spiker	models	–	neuron	models	with	negative	resting	potentials	that	
produced	multiple	spikes	in	response	to	1.5x	and	3.0x	rheobase	square	current	injections	with	no	
spontaneous	spiking.	However,	this	protocol	and	its	set	of	electrophysiology	properties	did	not	
effectively	characterize	cell	models	which	did	not	meet	these	criteria.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

For	example,	cell	models	in	the	Rapidly	Adapting	cluster	do	not	produce	spikes	at	1.5x	rheobase	
(1.5x	rheobase	is	sub-threshold	stimulation,	e.g.	RA	in	Figure	6).	For	such	models,	properties	that	rely	on	
the	production	of	more	than	one	spike	(e.g.	second	spike	amplitude,	or	median	inter-spike	interval)	
cannot	be	computed.	Because	some	of	these	properties	are	highly	informative	within	the	large	group	of	
multi-spikers,	the	inability	to	compute	them	makes	it	difficult	to	place	the	rapidly	adapting	cell	models	
within	the	multi-spiker	space.	Similarly,	the	Hodgkin-Huxley	model	does	not	produce	multiple	spikes	at	
1.5x	rheobase	but	does	at	3.0x.	It	is	known	that	electrical	behavior	of	cells	can	differ	under	“normal”	vs.	
“strong”	stimulation	conditions	(69).	However,	the	definition	of	“normal”	vs.	“strong”	is	not	clearly	
defined.	Druckmann	and	others	(66),	as	used	here,	defined	it	as	1.5x	vs.	3.0x	rheobase.	But	is	there	
anything	intrinsically	special	about	these	rheobase	multiples?	For	example,	could	the	1.5x	value	be	
already	too	strong	for	some	models,	and	the	behavior	at	3.0x	will	not	be	qualitatively	different?	A	similar	
issue	would	occur	if	3.0x	were	not	strong	enough	to	produce	behavior	different	from	the	1.5x	stimulation.	
Ideally,	these	stimulation	values	would	be	based	on	the	dynamical	bifurcation	structure	of	the	cell	
membrane	or	cell	model,	sampling	the	regions	of	qualitatively	different	behaviors.	An	automated	method	
which	could	identify	such	regions	in	a	black-box	manner	(e.g.	without	knowing	the	governing	equations)	
would	greatly	facilitate	the	electrophysiology	assessment	of	both	cell	models	and	large	numbers	of	cells.		

Another	example	of	models	which	do	not	easily	lend	themselves	to	analysis	under	the	current	
protocol	is	the	cluster	of	intrinsically	spiking	neuron	models.	Because	these	models	spontaneously	
produce	spikes,	their	rheobase	currents	are	negative	(e.g.	some	amount	of	hyperpolarizing	current	must	
be	injected	to	reduce	the	number	of	spikes	from	non-zero	to	zero).	Because	the	protocols	used	here	use	
positive	multiples	of	rheobase	as	stimulation,	little	information	about	spikes	or	spike	trains	of	such	
models	or	biological	cells	can	be	gained	from	using	the	protocol.	An	understanding	of	the	diversity	of	
intrinsically	spiking	or	bursting	cells	could	be	used	to	develop	an	automated	experimental	protocol	for	
stimulation	and	feature	extraction	to	assess	such	cells	and	their	models.		

Finally,	neuron	models	in	the	Abstract	Spiker	cluster	have	unusual	membrane	potential	properties	
such	as	positive	resting	potential	or	0-width	or	undefined-amplitude	action	potentials	(Figure	6).	Given	
the	variety	of	different	abstract	models	that	could	be	developed,	it’s	not	clear	if	a	single	protocol	could	be	
developed	that	would	allow	placing	all	such	cells	within	the	same	space	as	the	more	physiologically	
realistic	neuron	models.	One	partial	solution	would	be	to	identify	separate	sub-spaces	for	evaluating	
model	spike	train	properties	and	action	potential	shape	properties.		

Identifying	the	function	of	Regular	Multispiker	model	clusters	requires	further	comparisons	to	
experimental	recordings	

Model	clusters	from	the	lowest	level	of	the	hierarchy	form	a	tetrahedron	in	the	3D	space	formed	
by	the	features	1)	delay	to	first	AP,	2)	steady	state	accommodation,	and	3)	median	inter-spike	interval	of	
regular	multi-spikers.		This	shape	appears	due	to	the	strong	linear	relationships	between	delay	and	
accommodation	and	between	delay	and	median	inter-spike	interval	within	Regular	Spiking	models	(RS,	
dRS,	and	naRS,	Figure	5).	The	overall	significance	of	this	structure	is	not	completely	clear.	If	confirmed	
with	larger	and	more	diverse	datasets	of	recordings	from	cells	or	simulation	results	from	associated	
models,	it	may	indicate	fundamental	dynamical	system	constraints	among	these	three	properties.	AP	
onset,	accommodation,	and	spike	rate	play	important	roles	in	neural	representations	of	the	magnitude	
and	variation	of	an	input	signal.	Since	many	of	the	models	were	constructed	to	exhibit	predefined	types	of	
firing	patterns	(e.g.,	continuous	accommodation	or	burst	accommodation),	the	identified	linear	subspaces	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

that	capture	the	diverse	types	of	firing	patterns	suggest	possible	compatibility	between	different	modes	
of	neuronal	output.		

The	clusters	that	are	missing	are	also	interesting.	For	example,	there	are	no	high-density	clusters	
of	what	could	be	called	“non-accommodating	slow	spikers”,	or	“delayed	fast	spikers”,	or	“delayed	
bursters”	(Figure	8).	It’s	possible	that	the	tetrahedron	is	a	product	of	an	undersampling	of	potential	
models	by	the	database.	As	additional,	novel	models	are	added,	this	structure	might	disappear.	Similarly,	
because	stochastic	channels	are	currently	not	supported	by	NeuroML,	models	with	stochastic	firing	
patterns	could	affect	the	results.	As	the	capabilities	of	NeuroML	are	further	developed,	the	effects	of	such	
stochasticity	could	be	tested.	Finally,	the	tetrahedron	might	only	reflect	a	structure	within	neuron	model	
space,	and	it	might	not	exist	within	the	space	occupied	by	experimental	data.	This	could	be	tested	with	
access	to	a	diverse	database	of	raw	electrophysiology	recordings,	similar	to	the	Allen	Cell	Type	Database	
but	with	a	larger	variety	of	represented	brain	regions.	More	speculatively,	the	tetrahedron	might	form	a	
volume	that	real	biological	neurons	occupy	due	to	constraints	on	proper	neuronal	function.	Future	
investigations	of	how	neurons	with	electrical	behavior	that	falls	outside	the	tetrahedron	affect	network	
level	dynamics	or	how	neurons	of	various	stages	of	disease	migrate	within	this	space	could	help	test	this	
hypothesis.	

Large-scale	analysis	of	models	elucidates	mechanisms	across	multiple	scales	

	 The	joint	visualization	of	cell	model	electrophysiological	properties	and	their	associated	
aggregated	channel	densities	in	this	study	is	unique	in	that	it	incorporated	additional	information	shared	
across	models,	e.g.,	the	statistical	structure	of	model	channel	densities	across	the	database.	While	other	
high-dimensional	visualizations	of	channel	model	mechanisms	for	neuron	model	databases	exist	(83,84),	
this	study	aimed	to	find	common	channel	model	mechanisms	across	a	variety	of	cell	and	channel	models	
spanning	brain	regions.	Our	approach	demonstrated	the	feasibility	of	a	functional	and	mechanistic	
mapping	between	the	(in)activation	properties	of	channel	family	model	subtypes	and	the	
electrophysiological	properties	of	cell	model	subtypes	within	the	NeuroML	database.		

	 The	primary	goal	of	the	combined	analysis	is	to	relate	cell	model	electrophysiology	to	underlying	
channel	mechanisms.	We	find	that	the	two	largest	potassium	channel	model	sub-types	are	associated	
with:	1)	delayed	rectifiers	and	slow	non-inactivating	potassium	channels,	and	2)	A-type	and	slow	
inactivating	potassium	channels.		

Intuitively,	we	can	see	that	the	ratio	of	these	two	discovered	channel	model	sub-types	indeed	can	
affect	the	degree	of	accommodation	(relative	deceleration	of	spiking)	of	their	associated	cell	models	
(Figure	9B).	Further,	the	difference	in	activation	thresholds	provides	useful	information	for	interpreting	
the	delay	to	first	spike	under	“strong”	current	injection	conditions	(3x	the	rheobase).	Kv	Cluster	B	models	
are	activated	under	weak	stimulation	while	Kv	Cluster	A	are	activated	only	under	strong	stimulation	of	
the	cell	model.	This	additional	activation	of	outward	currents	from	Kv	Cluster	A	is	one	of	the	dominant	
causes	of	the	delay	to	first	spike	(Figure	9B).		

Future	directions	

The	current	release	of	the	NeuroML	database	focuses	on	the	characterization	of	ion	channel	and	
neuron	model	electrophysiology,	neuron	model	morphology,	and	model	complexity.	Based	on	the	
requests	of	researchers,	we	could	add	additional	features	to	the	database	to	help	make	the	selection	and	
reuse	of	previously	published	models	more	efficient.	In	future	releases,	based	on	user	demand,	we	may	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

provide	characterizations	of	synapse	models,	and	similar	dimensionality	reduction	and	clustering	
analysis	could	be	performed	with	synapse	and	cell	morphology	data.	For	network	models,	we	could	
provide	visualizations	of	their	structure	and	connectivity	and	display	traces	of	network	outputs	in	
response	to	arbitrary	inputs.	Another	useful	feature	might	be	to	identify	cell	models	in	the	database	that	
have	similar	responses	when	provided	with	a	set	of	user-uploaded	electrophysiology	recordings	from	
experiments.	

Finally,	we’ve	made	the	analysis	code	available	online	(85),	which	allows	other	researchers	to	
compute	the	electrophysiology,	morphology,	and	complexity	properties	from	responses	of	other	models	
or	even	experimental	data.		

Methods	
NeuroML	tools	and	simulator	

jNeuroML	v0.8.3	was	used	to	parse	and	convert	all	NeuroML	models	to	NEURON	format	(.mod	and	.hoc).	
All	simulations	were	performed	using	NEURON	simulator	v7.5	on	an	Intel(R)	Xeon(R)	CPU	E3-1240	V2	@	
3.40GHz,	32	GB	RAM	machine	running	Ubuntu	Linux	16.04	LTS.	For	fixed	step	simulations,	NEURON	
cvode_active	variable	was	set	to	0,	while	for	variable	step	simulations	the	variable	was	set	to	1	before	
starting	simulations.	

Fixed	time	step	computational	complexity	

For	each	spiking	cell	model	that	was	not	intrinsically	spiking,	the	following	procedure	was	used	to	
compute	the	fixed	time	step	complexity.	

Input:	An	input	current	waveform	(see	Figure	3F)	consisting	of	100	ms	at	0	nA,	50	ms	at	0.75	rheobase	
(RB),	50ms	of	a	pink	noise	waveform	at	0.75	RB,	100	ms	at	1.5	RB,	50	ms	of	pink	noise	waveform	at	1.5	
RB,	50	ms	at	-0.25	RB,	50ms	of	pink	noise	at	-0.25	RB,	and	100	ms	at	0	nA	(total	length	600	ms)	was	
injected	into	the	center	of	the	soma	section	and	the	voltage	of	the	compartment	was	recorded.	The	pink	
noise	waveform	can	be	downloaded	from	(85)	(file	labeled	“dtSensitivity.pickle”).		

Time	step	sensitivity:	The	simulation	of	the	above	protocol	was	repeated	multiple	times,	each	time	using	a	
different	time	step	size.	Starting	with	a	time	step	of	0.0009765625	ms	(1/1024	ms),	the	time	step	size	
was	doubled	until	it	either	reached	1	ms	or	the	simulation	became	numerically	unstable	(“blew	up”).	The	
largest	time	step	size	that	did	not	blow	up	was	saved	as	the	maximum	stable	step	size.		

Error:	The	output	waveform	produced	using	the	smallest	time	step	size	(1/1024	ms)	was	assumed	to	be	
the	reference	waveform	and	assigned	error	of	zero.	The	waveforms	produced	by	larger	time	steps	were	
compared	to	this	waveform	at	1	ms	intervals.	Each	waveform’s	error	was	computed	as	the	average	of	
point-by-point	differences	from	a	reference	waveform	expressed	as	percentages	of	the	reference	
waveform	min-max	range	(code	for	this	function	can	be	found	in	(85)).	

Optimal	time	step:	The	optimal	time	step	(example	seen	in	Figure	3C)	was	found	by	identifying	the	
minimum	of	the	sum	of	time	step	error	(Figure	3A)	and	time	step	runtime	(Figure	3B).	Time	step	error	
depends	linearly	on	the	time	step	(𝑑𝑡)	and	was	fitted	to	a	linear	function	𝑏 ∗ 𝑑𝑡 + 𝑐.	Runtime	is	inversely	
proportional	to	the	time	step	and	was	fitted	to	a	function	𝑎/𝑑𝑡.	Fitting	was	performed	using	
scipy.optimize.curve_fit	function	(86).	The	sum	of	these	two	functions	(𝐶 = 𝑎/𝑑𝑡	 + 𝑏 ∗ 𝑑𝑡 + 𝑐)	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

represents	the	total	cost	of	using	a	particular	time	step	to	perform	a	simulation.	The	minimum	cost,	and	
therefore	the	optimal	time	step	occurs	where	the	derivative	of	the	cost	curve	is	zero	as	demonstrated	in	
Figure	3A.	Code	for	finding	the	optimal	time	step	is	available	(85).	

Mean	runtime	per	step:	Due	to	background	operating	system	processes,	the	time	required	to	compute	one	
model	time	step	is	variable.	For	this	reason,	the	mean	runtime	per	time	step	(𝑟𝑢𝑛𝑡𝑖𝑚𝑒&#'%)	was	measured	
for	each	model.	Each	model	was	simulated	without	any	stimulation	using	a	time	step	of	0.0078125	ms	
(1/128	ms),	for	approximately	60	wall-clock	seconds.	To	get	the	mean	runtime	per	time	step,	the	actual	
simulation	time	was	divided	by	the	number	of	steps	required	to	perform	the	simulation.	To	maximize	
accuracy,	the	simulations	were	performed	one	at	a	time,	on	the	same	machine	without	any	other	running	
tasks.	

Absolute	and	relative	complexities:			Absolute	complexity	𝛺!)&was	defined	as	the	total	wall-clock	time	
required	to	run	a	model	at	its	optimal	time	step	to	simulate	its	output	in	response	to	the	600	ms	test	
waveform	(see	Figure	3F).	This	complexity	partially	depends	on	the	computational	power	of	the	
executing	machine.	To	obtain	a	complexity	measure	that	is	machine-invariant,	the	absolute	complexity	of	
a	model	can	be	divided	by	the	absolute	complexity	of	a	reference	model,	yielding	a	quantity	which	
represents	a	complexity	multiple	relative	to	the	reference	model.	Here,	the	reference	model	was	the	
Hodgin-Huxley	single	compartment	model	(5),	and	all	model	complexities	were	expressed	relative	to	it.	A	
model’s	absolute	complexity	can	be	computed	from	the	length	of	the	input	waveform	(600	ms),	the	
optimal	time	step	(𝑑𝑡$%#),	and	the	mean	runtime	per	step	(𝑟𝑢𝑛𝑡𝑖𝑚𝑒&#'%)	using	the	equation	𝛺!)& =
𝑟𝑢𝑛𝑡𝑖𝑚𝑒&#'% 	 ∗ 600/𝑑𝑡$%# .	Each	target	model’s	absolute	complexity	𝛺!)&was	divided	by	the	absolute	
complexity	of	the	Hodgkin-Huxley	model	to	obtain	the	target	model’s	complexity	relative	to	the	Hodgkin-
Huxley	model	(𝛺,,).	

Variable	time	step	computational	complexity	
For	each	spiking	neuron	model	that	was	not	intrinsically	spiking,	the	following	procedure	was	used	to	
compute	the	variable	time	step	complexity.	The	procedure	assumes	a	positive	rheobase	current,	which	
does	not	exist	for	intrinsically	spiking	models.	

Input:	Square	current	1s	long	after	a	1s	delay	were	injected	into	each	model’s	soma	section.	The	current	
amplitudes	were:	0	nA,	the	largest	known	sub-rheobase	current,	and	11	evenly	spaced	currents	valued	
between	the	rheobase	and	1.5	times	the	rheobase.	The	number	of	steps	the	CVODE	integrator	used	to	
compute	the	output	and	the	number	of	action	potentials	produced	in	response	to	each	current	waveform	
was	recorded	(code	available	in	(85)).		

Baseline	steps	and	steps	per	spike:	The	number	of	action	potentials	produced	in	the	waveforms	was	
linearly	regressed	using	the	curve_fit	function	(86)	versus	the	number	of	simulator	steps	required	to	
compute	the	waveforms.	The	intercept	was	interpreted	as	the	baseline	number	of	steps	required	to	
compute	1s	of	simulation	(𝑠𝑡𝑒𝑝𝑠)!&'),	and	the	slope	was	the	mean	number	of	additional	steps	required	
for	each	additional	action	potential	(𝑠𝑡𝑒𝑝𝑠!%,	also	see	Figure	4).	The	code	for	this	computation	can	be	
viewed	in	(85).	

Absolute	and	relative	complexities:	The	absolute	variable	time	step	complexity	of	a	model	was	defined	as	
the	wall-clock	time	required	to	simulate	1s	of	model	output	which	contains	10	action	potentials	(target	
firing	rate	of	10	Hz).	The	equation	for	it	was	𝛺!)& = V𝑠𝑡𝑒𝑝𝑠)!&' + 𝑠𝑡𝑒𝑝𝑠!% ∗ 10X ∗ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒&#'%,	where	10	
was	the	target	spike	rate,	and	𝑟𝑢𝑛𝑡𝑖𝑚𝑒&#'%	was	the	mean	runtime	per	step	described	in	the	“Fixed	time	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

step	computational	complexity”	section	above.	The	absolute	complexity	depends,	in	part,	on	the	
computational	power	of	the	executing	machine.	Similar	to	the	fixed	time	step	complexity,	the	machine	
speed	factor	can	be	removed	by	dividing	the	target	model’s	absolute	complexity	by	the	absolute	
complexity	of	a	reference	model.	Here,	the	relative	variable	time	step	complexity	of	a	model	(𝛺,,)	was	
computed	by	dividing	each	target	model’s	𝛺!)&	by	the	𝛺!)&of	the	Hodgkin-Huxley	model.	

Nested	cell	electrophysiology	dimensionality	reduction	and	clustering	

Properties,	Missing	Values,	and	Transformations	

All	38	electrophysiology	properties	from	(66)	were	defined	using	reusable,	Python-based	tests	within	the	
NeuronUnit	(87)	validation	framework	(the	tests	are	available	in	(67)).	Additionally,	the	following	four	
properties	were	used	in	the	PCA	and	clustering	analysis.	Resting	Action	Potential	Count	was	computed	by	
counting	the	number	of	action	potentials	produced	by	the	cell	without	current	stimulation.	Time	to	First	
Ramp	Spike	was	computed	by	measuring	the	number	of	milliseconds	required	for	the	cell	model	to	
produce	an	action	potential	while	it	was	injected	with	a	ramp	current	increasing	at	the	rate	of	1	
rheobase/sec.	Finally,	frequency	filtering	response	of	each	cell	model	was	assessed	by	fitting	the	number	
of	action	potentials	produced	in	response	to	square	current	triples,	spaced	at	frequencies	ranging	from	
29	to	143	Hz	(from	(65)),	to	bi-sigmoidal	frequency	response	curves	(“hat”),	and	using	the	fitted	
inflection	point	locations	as	the	frequency	filter	pass	above-	and	below-	filter	parameters	(the	code	for	
this	procedure	can	be	found	at	(85)).	

The	values	of	some	properties	of	some	models	were	missing	(e.g.	amplitude	of	2nd	AP	when	cell	only	
spiked	once).	In	such	cases,	the	missing	values	were	replaced	with	either	minimum	or	maximum	possible	
or	mean	values,	as	deemed	appropriate.	The	code	to	fill	the	missing	values	can	be	viewed	at	(85).	

Some	property	values	had	strongly	skewed	distributions	and	non-linear	relationships	with	PCA	
components.	To	reduce	the	effect	of	outliers	on	PCA	results	and	to	achieve	closer	concordance	with	the	
PCA	linearity	assumption,	such	properties	were	transformed	using	the	bi-symmetric	log	transformation	
(88).	This	transformation	could	scale	negative	values,	did	not	exaggerate	values	between	±1,	and	resulted	
in	higher	PCA	component	vs.	transformed	property	correlation	r	values	than	the	more	common	“offset	
and	then	take	the	log”	method	for	properties	with	large	negative	and	positive	values.	The	result	of	
subsequent	clustering	analysis	was	qualitatively	similar	to	the	result	obtained	when	using	the	more	
common	log	and	cube	root	transformations.	Transformation	code	and	properties	transformed	can	be	
found	in	(85).	

Dimensionality	Reduction	

The	dimensionality	of	the	42	features	was	reduced	by	the	use	of	PCA.	Z-scores	of	filled,	and	bi-log	
transformed	property	values	were	used	as	inputs	to	the	PCA	function	implemented	in	scikit-learn(89).	
The	first	N	components	that	accounted	for	95%	of	variance	were	retained	(starting	dimensions	=	42,	
post-PCA	dimensions	=	21,	n	=	1222).	

Nested	Clustering	

K-means	(89)	and	HDBSCAN	(74)	clustering	algorithms	(scikit-learn),	were	used	to	group	the	values	of	
principal	components	of	cell	model	features.	HDBSCAN	with	minimum	cluster	size	of	10	was	used	for	the	
first	two	levels	of	cell	model	clusters	(in	Figure	5,	“multi-spiker”	cluster	in	level	one	and		“regular	multi-
spiker“	cluster	in	level	two).	K-means	algorithm	was	used	in	level	three.	There,	the	number	of	selected	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

clusters	was	chosen	by	exploring	the	range	of	2-10	clusters	with	silhouette	analysis	(90),	and	picking	the	
cluster	count	with	the	largest	silhouette	score	(89).	Across	all	levels,	the	number	of	clusters	identified	by	
the	algorithms	was	validated	with	visual	inspection	by	plotting	the	first	three	PCA	components.		

In	all	levels,	HDBSCAN	was	used	to	identify	cell	models	that	were	not	in	the	vicinity	of	the	high-density	
cluster	cores.	These	“noise”	models	were	excluded	when	using	the	K-means	algorithm.	Post-clustering,	
each	“noise”	model	was	assigned	to	the	cluster	whose	geometric	center	had	the	smallest	Euclidean	
distance	in	PCA	space.	The	cluster	assignments	for	all	cell	models	were	stored	in	NeuroML-DB.	

Linear	relationships	observed	in	Figure	5	were	assessed	after	each	model	was	assigned	to	a	cluster.	
Pearson	correlation	coefficients	and	their	p-values	were	computed	using	the	SciPy	Python	package.	

The	code	for	the	above	procedures	can	be	viewed	at	(85).	

Channel	model	electrophysiology	dimensionality	reduction,	clustering,	and	parameter	analysis	

Pre-Processing	and	Dimensionality	Reduction	

Unlike	the	cell	model	data,	no	computed	features	are	available	for	channel	models	at	Neuro-ML	DB.	
Instead,	the	voltage-clamp	response	data,	as	well	as	corresponding	metadata,	were	programmatically	
downloaded	from	NeuroML-DB	via	the	API.	Pre-processing	the	data	followed	a	previously	established	
pipeline	(24).		The	final	result	was	a	condensed	representation	of	the	temporal	responses	of	all	channel	
model	voltage-clamp	responses	grouped	by	protocol	type	(activation,	deactivation,	and	inactivation)	and	
channel	family	(Kv,	Nav,	Cav,	KCa,	and	Ih).	Dimensionality	reduction	was	applied	to	this	reduced	
representation	also	following	the	pre-established	protocol	from	(24).		In	summary,	PCA	was	
independently	applied	to	the	matrix	of	model	temporal	responses	for	each	protocol	with	the	number	of	
components	chosen	to	account	for	99%	of	the	variance.	This	first	application	of	PCA	reduced	the	
dimensionality	of	each	time	series	for	the	different	protocols	and	removed	temporal	correlations	while	
maintaining	the	majority	of	variance	across	channel	model	outputs	within	a	given	protocol.	Subsequently,	
the	individual	channel	models	were	then	given	a	score	based	on	the	fit	of	the	different	PCA	
representations	for	each	model,	i.e.,	the	log-likelihood	of	each	model	sample	under	the	different	learned	
PCA	models.	This	resulted	in	a	three-dimensional	score	for	each	channel	model	serving	as	computed	
feature	vectors	from	the	independent	PCA	spaces.		The	matrix	of	channel	family	scores	was	then	subjected	
to	PCA	(99%	explained	variance	retained).	This	second	application	of	PCA	discovered	the	directions	of	
maximal	variance	of	the	channel	family	scores	across	all	protocols	suitable	for	clustering.		

Hierarchical	Clustering	

Agglomerative	hierarchical	clustering	was	performed	on	the	each	of	the	final	channel	family	score	
matrices	using	Ward’s	minimal	variance	linkage	(91)	implemented	in	scikit-learn	(89).	A	dynamic	tree	
cut	algorithm	(92)	was	used	to	determine	cluster	cut-off	values	for	the	resulting	dendrogram	of	
agglomerative	clustering.	Here,	singleton	clusters	were	allowed.		

Population	analysis	of	channel	model	parameters	

As	a	single	channel	model	could	be	shared	across	multiple	models,	we	mapped	channel	density	values	
into	the	same	conductance	space	for	direct	comparison.	First,	the	analysis	was	constrained	to	parameters	
associated	with	the	somatic	compartment	of	cell	models	for	easy	comparison.	Next,	the	“conductance	
density”	values	for	each	channel	model	within	the	database	was	extracted	from	NeuroML	cell	model	files	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

using	the	ElementTree	XML	API	in	the	Python	Standard	Library.	If	a	given	channel	model	was	not	present	
in	the	cell	model	file,	then	a	value	of	zero	was	set	for	the	conductance	density.	If	a	channel	model	was	
present	in	the	cell	model	file,	the	conductance	density	was	expressed	in	units	mS/cm2	for	consistency.	
Thus,	conductance	density	values	across	all	channel	models	for	each	cell	model	were	expressed	in	matrix	
form.	This	conductance	density	matrix	was	then	scaled	for	each	column	vector	of	channel	model	
conductance	density	values	across	the	population	of	cell	models	sharing	the	same	channel	model.	The	
maximum	value	was	found	across	the	cell	models	and	the	column	vector	divided	by	that	maximum	value.	
This	preserved	the	statistical	structure	across	cell	models	for	the	same	channel	model.	Finally,	the	scaled	
conductance	density	values	were	then	integrated	to	form	a	cumulative	conductance	density	for	the	
channel	model	cluster	in	the	case	that	multiple	channel	models	belonged	to	the	same	discovered	channel	
model	cluster	and	were	embedded	in	the	same	cell	model.	This	final	non-negative	value	was	referred	to	
as	the	normalized	channel	density	(NCD).	

For	the	joint	visualization,	we	restricted	the	visualization	of	the	electrophysiological	property	space	to	
those	models	with	Z-score	less	than	three	within	the	3-D	property	space.	In	the	following	statistical	
analysis,	all	models	were	used	for	computing	the	average	NCD,	as	well	as	the	bootstrapped	95%	
confidence	intervals	reported.		

Acknowledgements	
We	would	like	to	acknowledge	Angus	Silver	and	all	of	the	current	and	previous	NeuroML	Editors	for	
NeuroML	language	development	(https://docs.neuroml.org/NeuroMLOrg/Board).	We	thank	the	model	
translators	who	converted	published	models	to	NeuroML	format	
(https://github.com/orgs/OpenSourceBrain/people),	and	those	who	contributed	to	the	NeuroML	
toolchain	(https://github.com/orgs/NeuroML/people).	We	also	thank	Charly	McCown,	Ashwin	
Rajadesingan,	Harsha	Velugoti	Penchala,	and	Veer	Addepalli	for	their	contributions	to	NeuroML-DB.	

Financial	Disclosure	Statement	
This	work	was	funded	in	part	by	the	National	Institute	on	Deafness	and	Other	Communication	Disorders	
through	award	F31DC016811	to	JB,	by	the	National	Institute	of	Mental	Health	through	award	
R01MH106674	to	SMC,	and	by	the	National	Institute	of	Biomedical	Imaging	and	Bioengineering	and	
National	Institute	of	Neurological	Disorders	and	Stroke	through	awards	R01EB021711	and	
U19NS112953	to	RCG.	VH	was	funded	in	part	by	the	National	Institute	on	Deafness	and	Other	
Communication	Disorders	through	award	R01DC019278.	These	funding	institutions	had	no	role	in	the	
study	design,	data	collection	and	analysis,	decision	to	publish,	or	preparation	of	the	manuscript.	

	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

References	
	 	 	 	

1.		 Gleeson	P,	Crook	S,	Cannon	RC,	Hines	ML,	Billings	GO,	Farinella	M,	et	al.	NeuroML:	A	Language	for	Describing	Data	
Driven	Models	of	Neurons	and	Networks	with	a	High	Degree	of	Biological	Detail.	PLOS	Computational	Biology.	2010	
Jun	17;6(6):e1000815.		

2.		 Golgi	C.	Sulla	sostanza	grigia	del	cervello.	Gazetta	Medica	Italiana.	1873;33:244–6.		

3.		 Cajal	SR,	others.	Histology	of	the	nervous	system	of	man	and	vertebrates.	History	of	Neuroscience	(Oxford	Univ	
Press,	New	York).	1995;(6).		

4.		 Cajal	SR	y.	Cajal’s	Degeneration	and	Regeneration	of	the	Nervous	System.	Oxford	University	Press;	1991.	977	p.		

5.		 Hodgkin	AL,	Huxley	AF.	A	quantitative	description	of	membrane	current	and	its	application	to	conduction	and	
excitation	in	nerve.	J	Physiol	(Lond).	1952	Aug;117(4):500–44.		

6.		 Bower	JM.	20	years	of	computational	neuroscience.	Springer;	2013.		

7.		 Rall	W,	Shepherd	GM,	Reese	TS,	Brightman	MW.	Dendrodendritic	synaptic	pathway	for	inhibition	in	the	olfactory	
bulb.	Experimental	Neurology.	1966	Jan;14(1):44–56.		

8.		 Markram	H,	Muller	E,	Ramaswamy	S,	Reimann	MW,	Abdellah	M,	Sanchez	CA,	et	al.	Reconstruction	and	Simulation	of	
Neocortical	Microcircuitry.	Cell.	2015	Oct	8;163(2):456–92.		

9.		 Traub	RD,	Contreras	D,	Cunningham	MO,	Murray	H,	LeBeau	FEN,	Roopun	A,	et	al.	Single-column	thalamocortical	
network	model	exhibiting	gamma	oscillations,	sleep	spindles,	and	epileptogenic	bursts.	J	Neurophysiol.	2005	
Apr;93(4):2194–232.		

10.		Bezaire	MJ,	Raikov	I,	Burk	K,	Vyas	D,	Soltesz	I.	Interneuronal	mechanisms	of	hippocampal	theta	oscillations	in	a	full-
scale	model	of	the	rodent	CA1	circuit.	Elife.	2016	23;5.		

11.		Migliore,	Cavarretta	F,	Hines	ML,	Shepherd	GM.	Distributed	organization	of	a	brain	microcircuit	analyzed	by	three-
dimensional	modeling:	the	olfactory	bulb.	Front	Comput	Neurosci	[Internet].	2014	[cited	2016	Nov	19];8.	Available	
from:	http://journal.frontiersin.org/article/10.3389/fncom.2014.00050/abstract	

12.		Billeh	YN,	Cai	B,	Gratiy	SL,	Dai	K,	Iyer	R,	Gouwens	NW,	et	al.	Systematic	Integration	of	Structural	and	Functional	Data	
into	Multi-scale	Models	of	Mouse	Primary	Visual	Cortex.	Neuron.	2020	May;106(3):388-403.e18.		

13.		Hines,	Morse	T,	Migliore	M,	Carnevale	NT,	Shepherd	GM.	ModelDB:	A	Database	to	Support	Computational	
Neuroscience.	J	Comput	Neurosci.	2004	Aug;17(1):7–11.		

14.		Birgiolas	J,	Gerkin	RC,	Crook	SM.	Resources	for	Modeling	in	Computational	Neuroscience.	In:	Hippocampal	
Microcircuits	[Internet].	2nd	ed.	Springer	International	Publishing;	2018.	p.	805–21.	(Springer	Series	in	
Computational	Neuroscience).	Available	from:	https://www.springer.com/us/book/9783319991023	

15.		McDougal	RA,	Wang	R,	Morse	TM,	Migliore	M,	Marenco	L,	Carnevale	T,	et	al.	ModelDB.	Encyclopedia	of	
Computational	Neuroscience.	2015;1727–30.		

16.		Gleeson	P,	Piasini	E,	Crook	S,	Cannon	R,	Steuber	V,	Jaeger	D,	et	al.	The	Open	Source	Brain	Initiative:	enabling	
collaborative	modelling	in	computational	neuroscience.	BMC	neuroscience.	2012;13(1):O7.		

17.		Gleeson	P,	Cantarelli	M,	Piasini	E,	Silver	RA.	Advanced	3D	visualisation	of	detailed	neuronal	models	using	the	Open	
Source	Brain	repository	and	interaction	with	other	neuroinformatics	resources.	BMC	neuroscience.	
2013;14(1):P363.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

18.		Davison	AP,	Brüderle	D,	Eppler	JM,	Kremkow	J,	Muller	E,	Pecevski	D,	et	al.	PyNN:	a	common	interface	for	neuronal	
network	simulators.	Front	Neuroinform	[Internet].	2009	[cited	2019	Feb	4];2.	Available	from:	
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008/full	

19.		Carnevale	T.	Neuron	simulation	environment.	Scholarpedia.	2007;2(6):1378.		

20.		Hines	ML,	Carnevale	NT.	The	NEURON	simulation	environment.	Neural	computation.	1997;9(6):1179–209.		

21.		Cantarelli	M,	Marin	B,	Quintana	A,	Earnshaw	M,	Court	R,	Gleeson	P,	et	al.	Geppetto:	a	reusable	modular	open	
platform	for	exploring	neuroscience	data	and	models.	Philosophical	Transactions	of	the	Royal	Society	B:	Biological	
Sciences.	2018;373(1758):20170380.		

22.		Antolík	J,	Davison	AP.	Arkheia:	Data	Management	and	Communication	for	Open	Computational	Neuroscience.	Front	
Neuroinform	[Internet].	2018	[cited	2019	Feb	5];12.	Available	from:	
https://www.frontiersin.org/articles/10.3389/fninf.2018.00006/full	

23.		Podlaski	WF,	Seeholzer	A,	Groschner	LN,	Miesenboeck	G,	Ranjan	R,	Vogels	TP.	ICGenealogy:	Mapping	the	function	of	
neuronal	ion	channels	in	model	and	experiment.	bioRxiv	[Internet].	2016;	Available	from:	
https://www.biorxiv.org/content/early/2016/06/16/058685	

24.		Podlaski	WF,	Seeholzer	A,	Groschner	LN,	Miesenböck	G,	Ranjan	R,	Vogels	TP.	Mapping	the	function	of	neuronal	ion	
channels	in	model	and	experiment.	eLife.	2017	Mar	6;6:e22152.		

25.		Hines	M.	NEURON—a	program	for	simulation	of	nerve	equations.	In:	Neural	systems:	Analysis	and	modeling.	
Springer;	1993.	p.	127–36.		

26.		Kohn	MC,	Hines	ML,	Kootsey	JM,	Feezor	MD.	A	block	organized	model	builder.	Mathematical	and	Computer	
Modelling.	1994;19(6–8):75–97.		

27.		ICGenealogy	-	Submit	your	channel	[Internet].	2019	[cited	2019	Feb	5].	Available	from:	
https://web.archive.org/web/20190205184217/https://icg.neurotheory.ox.ac.uk/submit/	

28.		Hawrylycz	M,	Anastassiou	C,	Arkhipov	A,	Berg	J,	Buice	M,	Cain	N,	et	al.	Inferring	cortical	function	in	the	mouse	visual	
system	through	large-scale	systems	neuroscience.	PNAS.	2016	Jul	5;113(27):7337–44.		

29.		Overview ::	Allen	Brain	Atlas:	Cell	Types	[Internet].	2019	[cited	2019	Feb	6].	Available	from:	http://celltypes.brain-
map.org/	

30.		Vella	M,	Cannon	RC,	Crook	S,	Davison	AP,	Ganapathy	G,	Robinson	HPC,	et	al.	libNeuroML	and	PyLEMS:	using	Python	
to	combine	procedural	and	declarative	modeling	approaches	in	computational	neuroscience.	Frontiers	in	
neuroinformatics.	2014;8:38.		

31.		Gleeson	P,	Cantarelli	M,	Marin	B,	Quintana	A,	Earnshaw	M,	Sadeh	S,	et	al.	Open	Source	Brain:	A	Collaborative	
Resource	for	Visualizing,	Analyzing,	Simulating,	and	Developing	Standardized	Models	of	Neurons	and	Circuits.	
Neuron.	2019	Aug	7;103(3):395-411.e5.		

32.		Crook	SM,	Dietrich	S.	Model	exchange	with	the	NeuroML	model	database.	BMC	Neuroscience.	2014	Jul	
21;15(1):P171.		

33.		Birgiolas	J,	Dietrich	SW,	Crook	S,	Rajadesingan	A,	Zhang	C,	Penchala	SV,	et	al.	Ontology-assisted	Keyword	Search	for	
NeuroML	Models.	In:	Proceedings	of	the	27th	International	Conference	on	Scientific	and	Statistical	Database	
Management	[Internet].	New	York,	NY,	USA:	ACM;	2015	[cited	2019	Feb	4].	p.	37:1-37:6.	(SSDBM	’15).	Available	
from:	http://doi.acm.org/10.1145/2791347.2791360	

34.		Gardner	D,	Akil	H,	Ascoli	GA,	Bowden	DM,	Bug	W,	Donohue	DE,	et	al.	The	Neuroscience	Information	Framework:	A	
Data	and	Knowledge	Environment	for	Neuroscience.	Neuroinform.	2008	Oct	23;6(3):149–60.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

35.		Larson	SD,	Martone	ME.	NeuroLex.org:	an	online	framework	for	neuroscience	knowledge.	Front	Neuroinform.	
2013;7:18.		

36.		Scorcioni	R,	Polavaram	S,	Ascoli	GA.	L-Measure:	a	web-accessible	tool	for	the	analysis,	comparison	and	search	of	
digital	reconstructions	of	neuronal	morphologies.	Nature	protocols.	2008;3(5):866–76.		

37.		Gleeson	P,	Silver	A,	Cantarelli	M.	Open	source	brain.	Encyclopedia	of	Computational	Neuroscience.	2015;2153–6.		

38.		Quintana	A,	Cantarelli	M,	Marin	B,	Silver	RA,	Gleeson	P.	Visualizing,	editing	and	simulating	neuronal	models	with	the	
Open	Source	Brain	3D	explorer.	BMC	neuroscience.	2015;16(1):P82.		

39.		Gouwens	NW,	Berg	J,	Feng	D,	Sorensen	SA,	Zeng	H,	Hawrylycz	MJ,	et	al.	Systematic	generation	of	biophysically	
detailed	models	for	diverse	cortical	neuron	types.	Nat	Commun.	2018	19;9(1):710.		

40.		Traub	RD,	Buhl	EH,	Gloveli	T,	Whittington	MA.	Fast	rhythmic	bursting	can	be	induced	in	layer	2/3	cortical	neurons	
by	enhancing	persistent	Na+	conductance	or	by	blocking	BK	channels.	J	Neurophysiol.	2003	Feb;89(2):909–21.		

41.		Prinz	AA,	Bucher	D,	Marder	E.	Similar	network	activity	from	disparate	circuit	parameters.	Nat	Neurosci.	2004	
Dec;7(12):1345–52.		

42.		Maex	R,	De	Schutter	E.	Synchronization	of	golgi	and	granule	cell	firing	in	a	detailed	network	model	of	the	cerebellar	
granule	cell	layer.	J	Neurophysiol.	1998	Nov;80(5):2521–37.		

43.		Vervaeke	K,	Lorincz	A,	Gleeson	P,	Farinella	M,	Nusser	Z,	Silver	RA.	Rapid	desynchronization	of	an	electrically	
coupled	interneuron	network	with	sparse	excitatory	synaptic	input.	Neuron.	2010	Aug	12;67(3):435–51.		

44.		Izhikevich	EM.	Simple	model	of	spiking	neurons.	IEEE	Trans	Neural	Netw.	2003;14(6):1569–72.		

45.		Hay	E,	Hill	S,	Schürmann	F,	Markram	H,	Segev	I.	Models	of	neocortical	layer	5b	pyramidal	cells	capturing	a	wide	
range	of	dendritic	and	perisomatic	active	properties.	PLoS	Comput	Biol.	2011	Jul;7(7):e1002107.		

46.		Smith	SL,	Smith	IT,	Branco	T,	Häusser	M.	Dendritic	spikes	enhance	stimulus	selectivity	in	cortical	neurons	in	vivo.	
Nature.	2013	Nov	7;503(7474):115–20.		

47.		Dura-Bernal	S,	Neymotin	SA,	Kerr	CC,	Sivagnanam	S,	Majumdar	A,	Francis	JT,	et	al.	Evolutionary	algorithm	
optimization	of	biological	learning	parameters	in	a	biomimetic	neuroprosthesis.	IBM	J	Res	Dev.	2017	May;61(2–
3):6.1-6.14.		

48.		Migliore,	Hines	ML,	Shepherd	GM.	The	role	of	distal	dendritic	gap	junctions	in	synchronization	of	mitral	cell	axonal	
output.	J	Comput	Neurosci.	2005	Apr;18(2):151–61.		

49.		Pospischil	M,	Toledo-Rodriguez	M,	Monier	C,	Piwkowska	Z,	Bal	T,	Frégnac	Y,	et	al.	Minimal	Hodgkin–Huxley	type	
models	for	different	classes	of	cortical	and	thalamic	neurons.	Biol	Cybern.	2008	Nov	1;99(4–5):427–41.		

50.		Teeter	C,	Iyer	R,	Menon	V,	Gouwens	N,	Feng	D,	Berg	J,	et	al.	Generalized	leaky	integrate-and-fire	models	classify	
multiple	neuron	types.	Nat	Commun.	2018	19;9(1):709.		

51.		Boyle	JH,	Cohen	N.	Caenorhabditis	elegans	body	wall	muscles	are	simple	actuators.	BioSystems.	2008	Nov;94(1–
2):170–81.		

52.		De	Schutter	E,	Bower	JM.	An	active	membrane	model	of	the	cerebellar	Purkinje	cell.	I.	Simulation	of	current	clamps	
in	slice.	J	Neurophysiol.	1994	Jan;71(1):375–400.		

53.		Brunel	N.	Dynamics	of	sparsely	connected	networks	of	excitatory	and	inhibitory	spiking	neurons.	J	Comput	
Neurosci.	2000	Jun;8(3):183–208.		

54.		Pinsky	PF,	Rinzel	J.	Intrinsic	and	network	rhythmogenesis	in	a	reduced	traub	model	for	CA3	neurons.	J	Comput	
Neurosci.	1994	Jun	1;1(1–2):39–60.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

55.		Fitzhugh	R.	Impulses	and	Physiological	States	in	Theoretical	Models	of	Nerve	Membrane.	Biophys	J.	1961	
Jul;1(6):445–66.		

56.		Solinas	S,	Forti	L,	Cesana	E,	Mapelli	J,	De	Schutter	E,	D’Angelo	E.	Computational	reconstruction	of	pacemaking	and	
intrinsic	electroresponsiveness	in	cerebellar	Golgi	cells.	Front	Cell	Neurosci.	2007;1:2.		

57.		Ferguson	KA,	Huh	CYL,	Amilhon	B,	Williams	S,	Skinner	FK.	Experimentally	constrained	CA1	fast-firing	parvalbumin-
positive	interneuron	network	models	exhibit	sharp	transitions	into	coherent	high	frequency	rhythms.	Front	Comput	
Neurosci.	2013;7:144.		

58.		Korngreen	A,	Sakmann	B.	Voltage-gated	K+	channels	in	layer	5	neocortical	pyramidal	neurones	from	young	rats:	
subtypes	and	gradients.	J	Physiol	(Lond).	2000	Jun	15;525	Pt	3:621–39.		

59.		K	Slow	Potassium	Channel	[Internet].	2019	[cited	2019	Feb	19].	Available	from:	https://neuroml-
db.org/model_info?model_id=NMLCH000122	

60.		BlenderNEURON	[Internet].	BlenderNEURON.	2019	[cited	2019	Feb	21].	Available	from:	http://blenderneuron.org/	

61.		Ascoli	GA,	Donohue	DE,	Halavi	M.	NeuroMorpho.Org:	a	central	resource	for	neuronal	morphologies.	J	Neurosci.	2007	
Aug	29;27(35):9247–51.		

62.		Descending	Axon	Cell	[Internet].	2019	[cited	2019	Feb	19].	Available	from:	https://neuroml-
db.org/model_info?model_id=NMLCL000274	

63.		Izhikevich	EM.	Which	model	to	use	for	cortical	spiking	neurons?	IEEE	transactions	on	neural	networks.	
2004;15(5):1063–70.		

64.		Hines	ML,	Carnevale	NT.	NEURON:	a	tool	for	neuroscientists.	The	neuroscientist.	2001;7(2):123–35.		

65.		Technical	White	Paper:	Electrophysiology	[Internet].	Allen	Cell	Types	Database.	2019	[cited	2019	Feb	11].	Available	
from:	https://web.archive.org/web/20190211181328if_/http://help.brain-
map.org/download/attachments/8323525/CellTypes_Ephys_Overview.pdf?version=2&modificationDate=1508180
425883&api=v2&download=true	

66.		Druckmann	S,	Hill	S,	Schürmann	F,	Markram	H,	Segev	I.	A	Hierarchical	Structure	of	Cortical	Interneuron	Electrical	
Diversity	Revealed	by	Automated	Statistical	Analysis.	Cereb	Cortex.	2013	Dec	1;23(12):2994–3006.		

67.		A	package	for	data-driven	validation	of	neuron	and	ion	channel	models	using	SciUnit:	scidash/neuronunit	[Internet].	
scidash;	2019	[cited	2019	Feb	14].	Available	from:	https://github.com/scidash/neuronunit	

68.		Gerkin	RC,	Birgiolas	J,	Jarvis	RJ,	Omar	C,	Crook	SM.	NeuronUnit:	A	package	for	data-driven	validation	of	neuron	
models	using	SciUnit.	bioRxiv.	2019	Jun	9;665331.		

69.		Ascoli	GA,	Alonso-Nanclares	L,	Anderson	SA,	Barrionuevo	G,	Benavides-Piccione	R,	Burkhalter	A,	et	al.	Petilla	
terminology:	nomenclature	of	features	of	GABAergic	interneurons	of	the	cerebral	cortex.	Nature	Reviews	
Neuroscience.	2008;9(7):557.		

70.		Tasic	B,	Menon	V,	Nguyen	TN,	Kim	TK,	Jarsky	T,	Yao	Z,	et	al.	Adult	mouse	cortical	cell	taxonomy	revealed	by	single	
cell	transcriptomics.	Nature	Neuroscience.	2016	Feb;19(2):335–46.		

71.		A	Cellular	Taxonomy	of	the	Mouse	Visual	Cortex ::	Allen	Institute	for	Brain	Science	[Internet].	2019	[cited	2019	Feb	
12].	Available	from:	http://casestudies.brain-map.org/celltax	

72.		Duda	RO,	Hart	PE,	Stork	DG.	Pattern	Classification.	John	Wiley	&	Sons;	2012.	679	p.		

73.		Hartigan	JA,	Wong	MA.	Algorithm	AS	136:	A	k-means	clustering	algorithm.	Journal	of	the	Royal	Statistical	Society	
Series	C	(Applied	Statistics).	1979;28(1):100–8.		

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

74.		McInnes	L,	Healy	J,	Astels	S.	hdbscan:	Hierarchical	density	based	clustering.	The	Journal	of	Open	Source	Software.	
2017;2(11):205.		

75.		A	single	package	(command	line	tool	and	library)	in	Java	to	validate,	simulate,	translate	and	analyse	NeuroML	2	
models:	NeuroML/jNeuroML	[Internet].	NeuroML;	2018	[cited	2019	Feb	12].	Available	from:	
https://github.com/NeuroML/jNeuroML	

76.		A	single	package	in	Python	unifying	scripts	and	modules	for	reading,	writing,	simulating	and	analysing	
NeuroML2/LEMS	models.:	NeuroML/pyNeuroML	[Internet].	NeuroML;	2019	[cited	2019	Feb	12].	Available	from:	
https://github.com/NeuroML/pyNeuroML	

77.		Dura-Bernal	S,	Suter	BA,	Neymotin	SA,	Kerr	CC,	Quintana	A,	Gleeson,	Padraig,	et	al.	NetPyNE:	a	Python	package	for	
NEURON	to	facilitate	development	and	parallel	simulation	of	biological	neuronal	networks.	BMC	Neuroscience.	
2016	Aug	18;17(Suppl	1):P105.		

78.		Ermentrout	B.	Simulating,	analyzing,	and	animating	dynamical	systems:	a	guide	to	XPPAUT	for	researchers	and	
students.	Vol.	14.	Siam;	2002.		

79.		Dudani	N,	Ray	S,	George	S,	Bhalla	US.	Multiscale	modeling	and	interoperability	in	MOOSE.	BMC	Neuroscience.	
2009;10(1):1.		

80.		Gewaltig	M-O,	Diesmann	M.	NEST	(neural	simulation	tool).	Scholarpedia.	2007;2(4):1430.		

81.		Goodman	DFM,	Brette	R.	The	brian	simulator.	Frontiers	in	neuroscience.	2009;3:26.		

82.		Gleeson	P,	Steuber	V,	Silver	RA.	neuroConstruct:	a	tool	for	modeling	networks	of	neurons	in	3D	space.	Neuron.	
2007;54(2):219–35.		

83.		Prinz	AA,	Billimoria	CP,	Marder	E.	Alternative	to	Hand-Tuning	Conductance-Based	Models:	Construction	and	
Analysis	of	Databases	of	Model	Neurons.	Journal	of	Neurophysiology.	2003	Dec;90(6):3998–4015.		

84.		Taylor	AL,	Hickey	TJ,	Prinz	AA,	Marder	E.	Structure	and	Visualization	of	High-Dimensional	Conductance	Spaces.	
Journal	of	Neurophysiology.	2006	Aug	1;96(2):891–905.		

85.		neuroml-db/2021-manuscript-links.md	[Internet].	[cited	2021	Mar	15].	Available	from:	
https://github.com/scrook/neuroml-db/blob/master/Documentation/2021-manuscript-links.md	

86.		Virtanen	P,	Gommers	R,	Oliphant	TE,	Haberland	M,	Reddy	T,	Cournapeau	D,	et	al.	SciPy	1.0:	Fundamental	Algorithms	
for	Scientific	Computing	in	Python.	Nature	Methods.	2020;17:261–72.		

87.		Gerkin	RC,	Omar	C.	NeuroUnit:	Validation	tests	for	neuroscience	models.	Front	Neuroinform.	2013;		

88.		Webber	JBW.	A	bi-symmetric	log	transformation	for	wide-range	data.	Meas	Sci	Technol.	2012	Dec;24(2):027001.		

89.		Pedregosa	F,	Varoquaux	G,	Gramfort	A,	Michel	V,	Thirion	B,	Grisel	O,	et	al.	Scikit-learn:	Machine	learning	in	Python.	
the	Journal	of	machine	Learning	research.	2011;12:2825–30.		

90.		Rousseeuw	PJ.	Silhouettes:	A	graphical	aid	to	the	interpretation	and	validation	of	cluster	analysis.	Journal	of	
Computational	and	Applied	Mathematics.	1987	Nov	1;20:53–65.		

91.		Ward	JH.	Hierarchical	Grouping	to	Optimize	an	Objective	Function.	Journal	of	the	American	Statistical	Association.	
1963;58(301):236–44.		

92.		Langfelder	P,	Zhang	B,	Horvath	S.	Defining	clusters	from	a	hierarchical	cluster	tree:	the	Dynamic	Tree	Cut	package	
for	R.	Bioinformatics.	2008	Mar	1;24(5):719–20.		

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.11.459920doi: bioRxiv preprint

https://doi.org/10.1101/2021.09.11.459920
http://creativecommons.org/licenses/by-nc-nd/4.0/

