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Abstract

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space,
using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume
conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume
conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different
types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known
to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis
of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing
a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior
electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor
mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong
occipital rhythms rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are
solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power,
power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the
effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in
order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
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1. Introduction

Alpha rhythms (8–13 Hz) are a prominent feature of human
non-invasive electrophysiological recordings. Different types of
rhythms are found within this band, with generators in occipital,
parietal, temporal and sensorimotor cortices [1, 2]. The different
alpha rhythms show a functional specificity, with event-related
desynchronization due to motor action for the sensorimotor
rhythm, or strong modulation due to eye-opening or closing
for the occipital alpha rhythm. Within each rhythm type there
may be an even finer degree of organization, with differential
modulation of the sensorimotor mu rhythms by hand vs. foot
movements [3] or differential modulation of occipital alpha
rhythms by stimuli in different parts of the visual field [4, 5]. In
addition, alpha rhythms have been shown to be associated with
attention showing stronger amplitude in cortical areas where
neuronal activity should be suppressed [6]. In general, these
rhythms remain a topic of active research directed at elucidating
their role in cognition, perception and motor systems.

A fundamental challenge in the analysis and interpretation of
signals recorded with electroencephalography (EEG) or magne-
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toencephalography (MEG) is volume conduction [7]. Volume
conduction leads to overlap of signals from different generators
in space and time [8]. This overlap is especially problematic for
sensor space analysis, in which signals from sensors are used
directly, by aid of a standard reference, e.g., common average,
linked mastoids or nose-reference. Yet, despite distortions intro-
duced by volume conduction, sensor space analysis remains a
popular approach for the analysis of EEG/MEG signals [9]. The
wide-spread use of sensor space analysis is certainly due to the
convenience of the procedure. In contrast to sensor space, source
analysis requires: 1) data analysis training in inverse modelling
and understanding of its parameters, 2) more computational
resources required by inverse modelling algorithms 3) more
training in statistical analysis, as corrections for multiple com-
parisons across sources are required 4) possibly more resources
need to be spent on the acquisition of individual anatomical
magnetic resonance imaging data. However, despite the relative
ease with which sensor space analysis can be performed, it may
potentially obfuscate any fine degree of spatial specificity of neu-
ronal rhythms to behavior. Therefore, it is of interest to assess in
more detail how analysis in sensor space may blur contributions
of different types of rhythms.

The methodological validity of measures derived from sensor
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space data is especially relevant for studies involving EEG
recordings with a small number of electrodes. For instance,
in a clinical setting, time constraints often limit the number
of electrodes which can be placed on a patient. For instance,
[10] used 1-electrode EEG to study a large cohort of patients
with schizophrenia. In neurofeedback studies, typically partic-
ipants receive feedback in the form of oscillatory power of a
single/limited number of sensors. In closed-loop EEG studies
[11, 12], where magnetic stimulation is given dependent on fea-
tures of EEG rhythms, only a small number of EEG electrodes is
used for the extraction of features of interest to be robust against
experimental noise. If only a small number of sensors is to be
used, the sensitivity of measures for this specific recording setup
has to be considered in order to reliably detect the phenomena
of interest.

In this article, we illustrate the impact of spatial mixing on
neuronal rhythms on the sensor space level compared to the
source-level. A number of studies has evaluated consistency
and sensitivity of measures in sensor vs source space in the
realm of connectivity metrics with respect to volume conduction
and linear mixing [13, 14]. But here we focus on univariate
properties of neuronal rhythms, mainly band-power of rhythms
in the alpha-band. While many previous studies acknowledge
the problem of volume conduction for the EEG/MEG analysis
in sensor space in general, to the best of our knowledge there are
no reports directly showing how individual components/sources
are actually mixed at the level of sensors. We do so in this paper
using specifically alpha rhythms, while the main conclusions
can be generalized to other oscillations and evoked responses.

The main contribution of the following article is the quantifica-
tion of spatial mixing of rhythms on the sensor space level. First,
we discuss an easy-to-use method for assessing origin and spa-
tial spread of extracted rhythms given a standard sensor scheme
via the calculation of spatial patterns and demonstrate practical
applications. We then use spatial patterns to assess spatial mix-
ing of neuronal rhythms on the sensor space level compared to
source level by using simulations in a realistic head model and a
large dataset of EEG resting-state rhythms. Here, we illustrate
constituent band-power contributions of different rhythms in the
alpha-band in single sensors. Additionally, we show how spatial
mixing is even more problematic when using ratio-measures of
oscillations, due to the dynamic nature of oscillations, with high
varying amplitude modulation of neuronal rhythms, affecting
relative contributions of specific rhythms. We hope that our
illustrations provide intuitions for basic and clinical researchers,
in order to evaluate whether sensor space analysis may or may
not be appropriate for their use case.

2. Materials and Methods

The analysis was performed using python and MNE version 0.23
[15] for the empirical analysis. The analysis code needed to re-
produce the analysis and figures is available here: https://github.com/nschawor/eeg-
leadfield-mixing. While we show examples for single partici-

pants in the following, it is possible to generate these types of
plots for all other participants with the provided code.

2.1. Experimental recordings

For the empirical data analysis, we analyzed EEG data which
was previously collected in the project “Leipzig Cohort for Mind-
Body-Emotion Interactions” (LEMON). We summarize partici-
pant details and EEG data acquisition briefly in the following. A
more extensive description of the dataset of all study components
can be found in the original publication [16].

2.1.1. Participants

EEG data was collected from 216 volunteers who did not have
a history of neurological disease or usage of drugs that target
the central nervous system. The study protocol was approved
by the ethics committee at the medical faculty at the University
of Leipzig (reference number 154/13-ff) and conformed to the
Declaration of Helsinki. Written informed consent was obtained
from all participants prior to the experiment. Data from 13
participants were excluded because the files lacked event infor-
mation, had a different sampling rate, mismatched header files or
insufficient data quality. In addition, the data from 4 participants
was excluded because it had a low signal-to-noise ratio in the
alpha-band as indicated by a 1/f-corrected spectral peak in the
alpha-band below 5 dB (see Spectral analysis section for exact
procedure). This resulted in datasets from 199 participants (127
male, 72 female, age range: 20–77 years)

2.1.2. EEG recording setup

Scalp EEG was recorded from a 62-channel active electrode
cap (ActiCAP, Brain Products GmbH, Germany). In this con-
figuration, 61 electrodes were in the international 10-20 system
arrangement, and one additional electrode below the right eye
was used to monitor vertical eye movements. The reference
electrode was located at FCz, and the ground electrode at the
sternum. The impedance for all electrodes was kept below 5 kΩ.
Data was acquired with a BrainAmp MR plus amplifier (Brain
Products GmbH, Germany) at an amplitude resolution of 0.1 µV
with an online band-pass filter between 0.015 Hz and 1 kHz
and with a sample rate of 2500 Hz. Recordings were made in a
sound-attenuated EEG booth.

In the experimental session, a total of 16 blocks were recorded,
each lasting 60 seconds. Two conditions were interleaved, eyes
closed and eyes open, starting in the eyes closed condition. Dur-
ing eyes open blocks, participants were instructed to fixate on
a digital fixation cross. Changes between conditions were an-
nounced with the software Presentation (v16.5, Neurobehavioral
Systems Inc., USA).
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Figure 1: Analysis pipeline for quantifying the contributions of independent rhythms on sensor activity. A. The dataset consisted of 62-channel resting-state
EEG recordings for eyes open and eyes closed conditions. B. Spatial filters and patterns were calculated with spatio-spectral decomposition (SSD) using narrow-band
data in the individual spectral peak in the alpha frequency-band. C. The entries of the spatial patterns for each sensor were extracted and normalized, the absolute
value was taken to calculate the sensor complexity for each EEG electrode.

2.2. Data analysis

2.2.1. Preprocessing

We used the available preprocessed data of the LEMON dataset,
with the preprocessing as applied by the data creators. The pre-
processing is described briefly in the following: Raw data was
downsampled from 2500 Hz to 250 Hz and band-pass filtered
in the frequency range 1–45 Hz with a Butterworth filter, with
filter order 4. Raw activity traces were visually inspected and
outlier electrodes with frequency shifts in voltage and of poor
signal quality were excluded. Data was inspected for intervals
with extreme peak-to-peak deflections and large bursts of high-
frequency activity and these intervals were discarded. In order to
reduce the dimensionality of EEG signals, principal component
analysis was used to keep principal components that explain 95%
of the total data variance. Next, independent component anal-
ysis based on the Extended Infomax algorithm was performed
(step size: 0.00065/log(number of electrodes), annealing policy:
weight change > 0.000001, learning rate is multiplied by 0.98,
stopping criterion: maximum number of iterations 512 or weight
change < 0.000001). Any component that reflected eye move-
ments, eye blinks, or heartbeat related activity was removed.

The remaining independent components (mean number: 21.4,
range: 14–28) were projected back to sensor space.

2.2.2. Spectral analysis

As the focus here is oscillatory activity in the alpha frequency-
band, we included only participants which exceeded a signal-
to-noise ratio in the alpha frequency-band. For this, we used a
criterion of > 5 dB as in our previous work [17]. To determine the
signal-to-noise ratio in the alpha band, the frequency spectrum
was computed with Welch’s method (Hann window, 1 second
window length, 50% overlap). To subtract the 1/f-contribution
from the spectrum, we used spectral parametrization [18]. Par-
ticipants were included if at least one electrode on the midline
displayed an oscillatory peak > 5 dB in the alpha band, as evalu-
ated over the whole recording length.

2.2.3. Extraction of neuronal sources

We used spatio-spectral decomposition (SSD) [19] which is a
well-validated technique allowing us to extract neuronal oscil-
lations with the maximized signal-to-noise ratio in a specified
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frequency band. The method is based on generalized eigenvalue
decomposition of covariance matrices across sensors and maxi-
mizes the oscillatory power of a component at a specified target
frequency band, while simultaneously minimizing the power at
flanking frequency bands, yielding oscillatory components with
highest signal-to-noise ratio. The computation can be performed
fast and with few parameters. For our use case, we defined the
frequency band of interest as the participant-individual peak in
the alpha band, with a bandwidth of ± 2 Hz.

2.2.4. Assessing spatial mixing with the aid of spatial patterns

To examine how different components mix on a chosen sensor,
we analyzed the spatial pattern coefficients associated with the
SSD spatial filters. The general pipeline is shown in Fig. 1.
Spatial patterns describe the contribution of sources S on the
activity recorded from sensors X in a linear way: X = AS, with
A being the matrix of spatial patterns, sometimes also called
mixing matrix. In our convention, the columns of the matrix
contain the spatial patterns for the individual sources, and the
rows of the matrix contain the contributions of the contribution
of the individual sensors to each source. Spatial patterns were
computed according to [20] on the basis of the covariance of
activity filtered in the alpha band multiplied with the spatial filter
obtained with SSD. As generalized eigenvalue decomposition
methods are polarity invariant, we analyzed the absolute value
of the spatial patterns in some cases.

To assess how rhythms contribute to each sensor, we then com-
puted a measure quantifying the deviation from a scenario where
all components contribute with equal power to the signal of a
given sensor. This measure is called sensor complexity in the
following and allowed us to assess the relative contribution of
each source in the observed EEG activity:

normalized spatial pattern coefficients Mij =
|Aij |∑
i |Aij |

sensor complexity Cj = −
∑
i

Mij logMij

with Aij as the spatial pattern coefficient for EEG electrode j
and SSD component i. In the case of simulations, this is the lead
field entry for a specific EEG electrode j and a specific source i.
A free parameter in this context is how many components per par-
ticipant are considered. Because not all components returned by
SSD contain pronounced oscillatory activity in the alpha-band,
we restricted the number of components to a fixed number of
10. The number of components influences the absolute value of
the sensor complexity. The number of components was chosen
empirically on the basis of the percentage of explained variance
in the alpha-band.

2.3. Simulations

For the simulations, we distributed several sources of rhythms
in the alpha-band in specified cortical locations in a realistic 3D
head model. We then extracted the lead field coefficients for
each EEG electrode and computed a sensor complexity for each
sensor, which enables us to investigate spatial mixing of rhythms
per sensor basis.

2.3.1. Head and lead field model

We used the New York Head, a realistic precomputed lead field
model of Huang et al. [21] and Haufe et al. [22]. Here we give a
brief description of the generation of the head model and lead
field, with full details given in the above articles. Briefly, the
anatomical basis for this model is the detailed ICBM152 head
model, based on the average of 152 adult brains, imaged with
magnetic resonance imaging [23]. For this head model, the
finite element lead field solution is provided for a set of 231
standardized electrode positions and 75,000 nodes distributed
on a cortical surface mesh. We extract the lead field entries
where dipole orientations are assumed to be perpendicular to the
cortical surface. The New York head lead field is provided for a
common average reference. For the demonstration in Fig. 4, the
‘fsaverage’ example data and head model provided by MNE was
used.

2.3.2. Placement of alpha generators in a 3D cortex model

Sixteen sources were placed in each hemisphere with locations
approximated according to [2]. We considered six occipital, two
inferior parietal, three somatosensory and five temporal alpha
sources. As physiological rhythms are known to have different
amplitudes, e.g., the more pronounced visual alpha rhythm, the
different rhythm types were multiplied with a specified gain fac-
tor, as listed in Table 1, with higher power for occipital, parietal
and sensorimotor sources and lower power for temporal sources.
Additionally, we modelled a state change from eyes open to eyes
closed state, during which the sources placed in the occipital re-
gion increase in strength, while other sources remain unchanged.
The lead field coefficients were multiplied with the type specific
gain factors for the respective conditions. The lead field entries
were calculated for each sensor and visualized as a proportion on
a topographic map. The original head model contains 231 EEG
electrodes, the number of visualized electrodes was reduced to
match the number of electrodes in the empirical data.

2.3.3. Assessing spatial mixing with the aid of the lead field

To examine how different oscillatory sources mix on a given
sensor, we analyzed the lead field coefficients for each sensor.
The lead field for a constrained dipole orientation is given by a
matrix L with dimensions number of dipoles times number of
sensors. Because the only sources contributing to activity in our
simulations are the 16 above listed for each hemisphere, all other
rows of the lead field matrix can be disregarded, resulting in 32
times number of electrodes lead field coefficients to consider.
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The complexity measure was calculated using the same formula
as for the empirical data using the lead field coefficients weighted
by the respective gain factors.

3. Results

3.1. Spatial patterns as a tool to investigate spatial correlations

First, we discuss the concept of spatial patterns. Spatial patterns
are an easy way to assess the spatial distribution of activity
associated with the signal from one particular sensor or spatial
filter by looking at the correlation across sensors. In EEG/MEG
analysis, neighboring sensors will always be correlated to a large
extent due to volume conduction. Spatial patterns show how
neuronal activation of sources/components in the brain maps
onto EEG/MEG sensors.

In order to compute a spatial pattern, first a spatial filter needs
to be defined. A spatial filter is a vector with as many entries
as sensors, with a numerical weight value for each sensor. Each
sensor has a certain weight in a spatial filter vector, these weights
can be zero as well. For instance, the spatial filter vector for
a sensor that is taken as is from the recording file without re-
referencing would have an entry of 1 for that respective sensor
and 0 otherwise. Referencing can be seen as the matrix multipli-
cation of a spatial filter with the data, which yields an activity
trace. Similarly, for common average referencing and Laplacian
referencing a spatial filter vector can be easily constructed (see
Fig. 2A). Spatial patterns are distinct from scalp potential maps,
as spatial patterns reflect the spatial spread of activity originat-
ing from a specified spatial filter vector, so in the simplest case
from a single sensor, whereas scalp potential maps reflect the
superposition of all activity at a particular time point.

Spatial patterns are then computed by a multiplication of a spe-
cific spatial filter vector with the covariance matrix of activity
across sensors. In this process, the covariance entries are added
according to the polarity and strength of the spatial filter weights.
The spatial filter would be equal to the spatial pattern, if the
activity of sensors would be uncorrelated and the covariance
matrix would be an identity matrix. But this is never the case
for EEG/MEG data, therefore we need to transform spatial fil-
ters into spatial patterns in order to make statements about the
location of extracted signals. For instance, the spatial pattern for
a non re-referenced sensor (using the referencing at the time of
data acquisition) would be exactly the covariance of this sensor
to other sensors, reflecting the signal spread across sensors. The
signal activity is typically band-pass filtered before computing
the covariance matrix to investigate the correlation structure of
the signals for a specific frequency band of interest. Different
constraints can be used to calculate spatial patterns, for instance
when enforcing sparsity of spatial patterns is desired, a regular-
ization term can be used [20]. In general, spatial patterns can be
seen as least squares coefficients when attempting to fit the data
time series using the source time series as for instance returned
by SSD.

Spatial patterns can help to verify and check the location of the
signal of interest, e.g., help check for appropriate presence of
oscillations to improve validity of measures. In Fig. 2B, we show
the spatial patterns associated with electrode C3 over the left
sensorimotor cortex, that has been referenced in three different
ways: using a FCz-reference (the reference at time of signal ac-
quisition), common average reference and Laplacian-reference,
for activity in the 8–13 Hz range. It can be seen that the focality
of the signal changes, depending on the respective referencing.
In the ideal case, the contribution from areas far away from the
chosen region should be minimized, approaching a value of 0
for the spatial pattern coefficients. It can be seen that the spatial
spread is relatively broad in the FCz-referenced case and be-
comes more focal for a Laplacian reference. Despite improved
focality for Laplacian referencing in general, the signal will not
have a local origin in all cases where a Laplacian reference is
used. In Fig. 2C, we show an example of a participant where
applying a Laplacian filter over the electrode C3 does result in
a signal originating in the vicinity of the sensorimotor cortex,
but has the strongest contribution from posterior activity. In
the above cases the posterior alpha activity is just very strong
compared to the sensorimotor mu rhythm, which is not really de-
tectable in this particular participant. Fig. 2D shows an example
where the aim was to extract theta activity in the frequency band
of 4–7 Hz using a frontal sensor, but insufficient data cleaning
regarding eye movement artefacts has been performed. There-
fore, the extracted activity in the theta-band is contaminated by
artefacts as evident from a topography reflecting eye movements.

In summary, spatial patterns may be an easy-to-use tool for data
exploration for EEG analysis. Note that all these considerations
presented in Fig. 2 are in general applicable for neuronal activity
in different frequency ranges and therefore these examples can
be generalized to other bands, i.e., rhythms in the delta-, theta-,
beta- and gamma-bands.

3.2. Simulations: Contribution of different alpha rhythms to
sensor signals

While previously we looked at spatial patterns associated with a
specific component, next we illustrate how the spatial mixing of
rhythms can be assessed by analyzing multiple spatial patterns.
For this, we use simulations in a realistic head model. We place
16 sources into cortical locations per hemisphere, according to
[2], see Fig. 3A, with corresponding lead field entries plotted in
Fig. 3B. The free parameters here are the number of sources and
the strength of each source relative to others.

In Fig. 3C we visualize for each sensor the contribution of each
rhythm by showing the absolute spatial pattern coefficient as
taken from the lead field. Several observations can be noted:
First, a non-trivial amount of signal is contributed from the
opposite hemisphere, which may complicate the evaluation of
the lateralized effects. Second, it can be seen that the majority
of alpha activity at frontal sensors consists of contributions from
propagated posterior alpha sources. To a large extent this is due
to the orientation of the dipoles. Third, on central sensors, only
a small portion of the activity in the alpha band is contributed
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location of alpha source rhythm type specific
gain factor

state change: eyes open →
eyes closed gain factor

occipital/superior parietal 1 4
inferior parietal 1 1 (no change)
somatosensory 1 1 (no change)
temporal 0.5 1 (no change)

Table 1: Gain factors for types of alpha activity sources, indicating their relative strength and state change properties.

Figure 2: Spatial patterns aid in assessing focality and origin of extracted sensor signals. A. Spatial filters for three different referencing scenarios: referenced to
electrode FCz (reference at the time of signal acquisition), common-average reference, with filter weights = 1/N with N being the number of sensors, Laplacian
referenced. B. Demonstration of how activity spread is attenuated by different referencing schemes. Reference types from left to right as in A. Activity extracted with
a Laplacian filter around electrode C3 shows a reduced spatial spread around the region of interest compared to referencing to electrode FCz or common average
referencing. C. Demonstration of how even a Laplacian does not extract activity below the activity center, the occipital alpha activity in this participant is so strong
that occipital activity shows up in the Laplacian referenced electrode C3. D. Demonstration how theta activity shows a topography reminiscent of eye movement type
activity, instead of more mid-frontal distribution. because of insufficient data cleaning.

by sensorimotor mu sources. In Fig. 3D, we show the effect of
changing signal-to-noise ratio for one type of rhythm, posterior
alpha. This could for instance occur in the case in an eyes-closed

condition where the power of posterior alpha sources increases
drastically. It can be seen that the relative contributions of visual
alpha activity increase, making up a majority of the signal in the
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alpha band.

To further illustrate how changing the orientation of a central
alpha source changes contributions in frontal sensors, we provide
Fig. 4. Here, we display the location and three different possible
dipole orientations in Fig. 4A with the corresponding lead field
topographies in Fig. 4B and the absolute lead field coefficients
for each dipole orientation in Fig. 4C and 4D. It can be seen
that, while for a radial orientation of the dipole, the contribution
on frontal sensors is minimal, the contribution increases for
tangential orientations of the dipole.

3.3. Resting state data: Contribution of different alpha rhythms
to sensor signals

To illustrate how rhythms in the alpha-band spatially overlap
on sensors in empirical data, we show data for two individual
participants in Fig. 5. This illustration is constructed similar
to the simulation illustration shown in Fig. 3C and 3D. Since
the ground truth mixing coefficients are not known for empir-
ical data, we estimate the components and the spatial patterns
using a statistical approach based on spatio-spectral decomposi-
tion (SSD). Example topographies of components are shown in
Fig. 5A, ordered by signal-to-noise ratio in the alpha frequency-
band. Components reflecting typical occipital alpha and sen-
sorimotor mu rhythm topographies can be seen. In Fig. 5B,
the contribution for each component onto individual sensors as
evaluated in terms of band-power is shown. Fig. 5C and 5D are
analog for a different participant. The figures generated are for
a fixed number of components (N=10).

Analog to the simulation, it is evident that for frontal sensors a
large part of the activity in the alpha-band is from posterior alpha
components with strongest contributions to occipital and parietal
sensors. Over the sensorimotor sensors, occipital alpha activity
also contributes a major part to sensor space alpha activity. Since
the spatial patterns are the results of an estimation procedure,
the proportions may change depending on the method used for
decomposition. But the overall results are in correspondence
to the simulation results, hinting at the fact that some rhythms
and phenomena may be easier to detect in EEG due to higher
amplitude in general.

3.4. Resting state data: Spatial mixing across participants

After demonstrating the qualitative effect of spatial mixing in
single participants, we aim to see if we can see generalities re-
garding spatial mixing across participants. For instance, whether
we can identify sensor locations where the mixing of different
rhythms is particularly pronounced and thus representing chal-
lenges for the interpretation of the electrophysiological results.
We compute a sensor complexity measure for all EEG electrodes
and different states (eyes open/closed) to quantify the degree of
spatial mixing.

Fig. 6A and Fig. 6B show the mean sensor complexity for both
eyes closed and eyes open conditions. The eyes closed condition
features a much higher power for occipital alpha sources, and a

large deviation from uniform contribution for occipito-parietal
sensors. This is expected since only a few sources contribute
a large proportion of the power in the alpha-band. For the cen-
tral sensorimotor sensors, there is a relatively high complexity
since here, there are contributions from the sensorimotor mu
rhythm as well as from the occipital alpha rhythms. In the eyes
open condition, the situation changes, since the occipital alpha
sources are now much weaker and we see less spatial mixing on
central sensors. In addition, we also show complexity values for
individual participants in Fig. 6C and 6D for an occipital and
sensorimotor sensor respectively, to demonstrate high variability
regarding spatial mixing across participants.

3.5. Adding a dimension: temporal fluctuations of EEG alpha
rhythms

For our calculations so far, we averaged power across time, dis-
regarding temporal fluctuations. But neuronal oscillations also
display prominent fluctuations over fast and slow time scales.
Therefore, in the following we briefly illustrate oscillatory fluc-
tuations over time for individual participants, in order to show
how contributions from individual rhythms change over time for
different EEG electrodes in Fig. 7A and 7B. The corresponding
topographies are shown in Fig. 7C, showing sensorimotor and
posterior alpha rhythms. When expressing the alpha power of
SSD components as a ratio of the SSD component #2 over com-
ponent #1, it can be seen the range of the power ratio between
the components changing substantially over time, see Fig. 7D
and 7E. Note that at different time segments the proportion/ratio
of different rhythms may change. If one examines the changes
in the amplitude in a frequency band of one sensor, the changes
can reflect different underlying scenarios. For instance, only
one source is changing or many sources are changing simulta-
neously. This can depend on different factors, ranging from the
strength of their amplitude envelope correlations [24] or other
time domain properties, e.g., whether the rhythms appear in
bursts or are of more continuous nature. In general, the stronger
the spatial mixing on a given sensor, the harder it is to make
inferences regarding specific rhythms from the activity recorded
at the specific single EEG electrode. While we show an example
of one participant here, the dynamic changes of the amplitude
of alpha rhythms are a general phenomenon and are present in
all other participants to some extent, if they display oscillatory
rhythms in the alpha-band.

4. Discussion

With this article, we aim to raise awareness for the effects of
spatial mixing on alpha rhythms as detected with EEG/MEG.
We first illustrated the usage of spatial patterns to analyze focal-
ity and origin of EEG activity as a practical tool for researchers.
Using this tool, we evaluated the contributions of different alpha
rhythms on EEG electrodes. First, we simulated the presence of
different alpha generators in a realistic head model and computed
contributions using the corresponding lead field. The simulation
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Figure 3: Different alpha rhythms contribute to activity recorded on each sensor, simulated example. A. 3D model of the head and cortical gray matter, with
EEG electrodes and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha source, green: temporal alpha source, red:
sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions with positive (red) and negative (blue) polarity to the
signal of each electrode for each alpha source. C. Simulated rhythm contributions onto individual sensors, eyes open condition. Each pie ploot represents one EEG
electrode. The proportions displayed are colored according to rhythm type as in B, with more faint colors indicating contributions from sources located in the right
hemisphere and more saturated colors indicating contributions from sources located in the left hemisphere. D. Rhythm contributions onto individual sensors, eyes
closed condition, with an increased contribution of occipital alpha.

analysis was complemented by empirical data analysis in a large
dataset, where we analyzed spatial pattern coefficients for alpha
rhythms as extracted by SSD. A complexity measure on indi-
vidual sensor level was defined and used to illustrate how alpha
sources map onto EEG electrodes, also depending on state.

4.1. Implications

4.1.1. Amplitude of rhythms and alpha asymmetry measures

To date, many EEG/MEG studies are performed in sensor space.
One of the clear advantages of such an approach is its relative
technical simplicity not requiring source analysis using biophys-
ical or statistical constraints (for example using independent
component analysis or SSD). Typical examples include spectral
analysis, amplitude dynamics, e.g., event-related desynchroniza-

tion/synchronization [25], microstates [26], diverse complexity
measures such as long-range temporal correlations [27], approx-
imate and sample entropy [28]. A typical approach in such
studies is to define regions of interest on the basis of spatial
locations of sensors, for instance frontal, central temporal, pari-
etal and occipital regions. This is often done with the hope that
the activity picked-up by the sensors in these regions of inter-
est would reflect cortical processes generated in the proximity
of these sensors. However, as one can see from the simula-
tion illustrated in Fig. 3A very large part of activity detected in
frontal sensors can originate from the occipital sources. This
situation is particularly important for the inference regarding
alpha sources calculated on the basis of sensor space activity in
electrodes F3 and F4. The asymmetry in alpha power between
these EEG electrodes is often used as an indication for making
conclusions about approach/avoidance behavior [29]. In this
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Figure 4: Changing the dipole orientation of a central alpha source affects sensor space activity on frontal electrodes. A. Different dipole orientations are
shown on a 3D gray matter model. The color corresponds to the color in the topographies in B. B. The corresponding lead field entries for each dipole, plotted
as a topography. C. Absolute lead field contribution to one sensorimotor electrode for different dipole orientations. Sensor activity is highly dependent on dipole
orientation. D. Same as in C but for a frontal electrode.

context, a stronger activation of the left hemisphere (smaller
alpha power) indicates a tendency toward approach behavior
while a stronger activation of the right hemisphere indicates
rather avoidance. These conclusions are naturally based on the
assumption that alpha activity in these frontal electrodes reflect
neuronal processing, for instance in dorsolateral prefrontal cor-
tex. However, this assumption can be very misleading. In fact,
our analysis shows that the contribution of a combination of

occipital and central sources can be as high as 75% in frontal
sensors. This in turn makes inferences about the activation of the
dorsolateral prefrontal cortex on the basis of frontal electrode
activity quite problematic. Moreover, using real data, Fig. 5
shows that many occipital and central sources contribute to the
power of alpha rhythms in frontal electrodes. On the one hand,
it’s possible to investigate alpha asymmetry in different pairs
of electrodes to show that primarily asymmetry in the frontal
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Figure 5: Different alpha rhythms contribute to sensor space activity, empirical example for two participants. A. The first ten patterns in the alpha-band for
one participant, for the eyes open condition. Each rhythm was assigned a color which corresponds to the colors in the next subplot. B. The proportion of the ten SSD
components present at each EEG electrode, as assessed with aid of the relative contribution. While sensors in the sensorimotor regions show the highest proportion of
sensorimotor rhythms, also alpha rhythms originating from occipital regions contribute to the activity recorded at these sensors. C and D are analog to A and B for a
different participant.
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Figure 6: Mean sensor complexity across participants indicates less spatial mixing for posterior channels. A. Mean sensor complexity over participants for
eyes open condition. B. Mean sensor complexity over participants for the eyes closed condition. Higher complexity is observed for sensorimotor sensors in the eyes
closed condition, indicating a higher spatial mixing. C. Sensor complexity for individual participants for occipital electrode Oz (paired rank-sum test, p<0.0001) and
D. sensorimotor electrode Cz (paired rank-sum test, p<0.0001).

electrodes corresponds best to the behavioral quantification of
approach/avoidance traits. However, such conclusions would
not necessarily be correct since mixing of alpha rhythms might
be more complex/different in occipital areas compared to frontal
ones and thus asymmetry of alpha sources outside of frontal ar-
eas can still be a major contributing factor for alpha asymmetry
in frontal electrodes [30]. In general, we would recommend to
perform some simple decomposition of alpha sources with inde-
pendent component analysis or SSD to calculate the proportion
of components with clear central and occipital patterns to the
whole power at frontal electrodes. If this proportion is more
than 50% a caution should be applied when interpreting frontal
alpha asymmetry. Such decompositions can be performed even
when the recording consists of approximately 20 EEG electrodes
since spatial patterns of the components could be identifiable as
having central, frontal or occipital sources.

A similar logic can be applied to other locations of electrodes
and other phenomena where the power of oscillations or their
asymmetry should be deduced. For instance, for the sensori-
motor mu rhythm, an oscillatory power difference between two
hemispheres can indicate asymmetry in excitation/inhibition-
balance between the hemispheres on the basis of which a certain
therapeutic transcranial magnetic stimulation protocol can be
prescribed [31]. In this case, a careful evaluation of alpha-band
mixing complexity is also important if one is using standard ref-
erence schemes such as those based on common average, linked
mastoids etc. Again, we would like to emphasize that for a more
refined spatial estimation a source analysis is preferred.

4.1.2. Neurofeedback in sensor space

Another important example for the use of alpha power, obtained
in sensor space, is neurofeedback. Here, the main idea is to voli-
tionally up- or down-regulate power of oscillations at a specific
sensor location [32]. The main premise is that the changes in al-
pha power are likely to be associated with functional changes of
the corresponding neuronal networks. Typically, a relationship is
assumed between the power of alpha rhythms and a spatially re-
stricted neuronal network generating these alpha rhythms. How-
ever, our simulations show that power in a given sensor reflects
activity from generators in a variety of different brain areas.
Therefore, no exact correspondence between the increase of os-
cillations e.g., at electrode Pz and spatial activation in a given
cortical patch can be established, even if activation is defined
quite broadly, i.e., frontal, central or occipital locations. More-
over, the power ratio of different SSD components varies as a
function of time (see Fig. 7) thus further obscuring a relation-
ship between changes of alpha rhythms and underlying neuronal
processing. Such complexity of spatial mixing should inevitably
lead to a decrease in the efficacy to learn neurofeedback since
reinforcing a specific power of alpha rhythms at a given sen-
sor biologically would correspond to reinforcing undetermined
and ever-changing patterns of corresponding neuronal activity.
This can be one of the reasons for the observation that many
participants are not able to learn neurofeedback effectively [32].
In fact, on the basis of our results we hypothesize that the par-
ticipants with the lower spatial complexity of alpha rhythms
should be more efficient in performing reliably in neurofeedback
sessions. This can be tested directly in future studies. Since
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Figure 7: Relative alpha rhythm contributions to sensor space activity change over time. A. Time resolved contributions from different rhythms for central
sensorimotor electrode C3. Vertical bars indicate block breaks. The y-axis limits are adjusted to highlight alpha power variations. B. Same as in A but for posterior
electrode PO8. C. Topographies of components, color-coded as shown in A and B. E. Ratios of amplitude contributions over time for different SSD components #2
over SSD component #1 F. Same as E but for SSD component #3 over SSD component #1. Relative power contributions to sensor space activity vary substantially
over time.

neurofeedback typically requires multiple sessions and this is a
time-consuming procedure, as a practical recommendation we
suggest performing at least one recording with a high number
of sensors (for instance 60) in order to quantify the presence
and spatial complexity of alpha rhythms at different sensors.

One can then determine sensors with sufficiently low complexity
to be used later with low-electrode montages (for multisession
training) or in case of participants with high spatial complexity,
one can proceed with more electrodes in order to enable visual-
izations of spatial patterns corresponding to spatially restricted
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neuronal activity for validation of the paradigm.

4.1.3. Spatial complexity and connectivity

Previous studies have already explored effects of volume con-
duction on the calculation of connectivity relationships based
on coherence or phase locking values [13, 14]. Here, a spurious
connectivity can be detected when the same neuronal source is
mapped to many sensors and therefore a high connectivity value
does not reflect functional interactions but rather the fact that the
same neuronal trace is mapped to different sensors thus leading
to high coherence of phase locking. Clearly, volume conduction
is also the reason for complex spatial patterns obtained in the
present study. While we will not describe strategies to overcome
detection of spurious interactions here, as it has been done in
previous studies [13, 33], we want to emphasize another impor-
tant aspect relating to our findings. Sensors, reflecting a high
degree of spatial mixing of different components, are also likely
to reflect a rich structure of neuronal interactions which can be
picked up with different graph theoretical metrics even when
controlled for volume conduction. Therefore, we suggest that if
connectivity studies are based on a sensor space analysis, a com-
plementary spatial sensor complexity can be computed in order
to assess the possibility of obtaining hub structures particularly
in sensors with the highest sensor complexity.

4.2. Limitations

For the empirical data analysis sections, we used a simple
method for source reconstruction. With SSD, as with any other
decomposition technique, it is not possible to separate all indi-
vidual alpha rhythms. After all, we only record data with 60
EEG electrodes and there are many more generators than that.
Therefore, the decomposition will feature components that are
not of a dipolar structure, where multiple sources that are highly
co-active have been combined into a single source by the de-
composition algorithm. While improvements can be made in
this regard, by using more sophisticated source reconstruction
algorithms, our general statement is not dependent on the spe-
cific source reconstruction method we used: the activity of a
single EEG electrode will reflect multiple sources in the alpha-
band, for which the contributions will dynamically vary across
time. In general, the existence of statistical based source sepa-
ration techniques like SSD makes investigation of rhythms in
source/component space easy and allow separation of individual
rhythmic contributions without anatomical head models, to best
utilize information from electrophysiological data.

5. Conclusion

Spatial mixing due to volume conduction is inherent to data
recorded with EEG/MEG. Here, we have shown the extent of
spatial mixing of different alpha-type rhythms and elaborated
on the consequences in terms of activity contributions to sensor
space activity. For detecting relationships between EEG/MEG

signatures and behavior, the signal-to-noise ratio available needs
to be carefully considered. While prominent posterior rhythms
show less spatial mixing in sensor space, the situation is more
complicated for sensorimotor and temporal alpha rhythms of
smaller amplitude, potentially compromising analyses that are
solely conducted in sensor space. We hope that the provided
practical illustrations may be of use to EEG researchers for
evaluation whether sensor space is sufficient for their topic of
investigation.
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