1 Manuscript for Journal of Experimental Biology

2 Characterization of aquaporin1b (AQP1b) mRNA in mud loach (*Misgurnus mizolepis*)

- 3 in response to heavy metal and immunostimulant stimuli
- 4 **Running title:** Characterization of mud loach AQP1b
- 5
- 6 Sang Yoon Lee^a, Yoon Kwon Nam^b, Yi Kyung Kim^{a,c*}
- 7
- 8 ^aEast Coast Life Science Institute, Gangneung-Wonju National University
- 9 ^b Department of Marine Bio-Materials and Aquaculture, Pukyong National University
- ^cDepartment of Marine Biotechnology, Gangneung-Wonju National University

11

12 *Author for correspondence:

13	Yi Kyung Kim
14	Department of Marine Biotechnology
15	Gangneung-Wonju National University
16	Gangneung 25457, Korea

17 E-mail: yikyung1118@gwnu.ac.kr

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

18 Tel.: +82-33-640-2409

19 Fax: +82-33-640-2955

20

21 Abstract

22	Aquaporins (AQPs) facilitate the transport of water or other small solutes into cells in the
23	presence of osmotic gradients. However, the current understanding of piscine AQP gene with
24	cellular stress responses has been still limitedly exemplified. In present study, we
25	characterized the mud loach AQP1b gene at the nucleotide and amino acid levels. We
26	identified three AQP 1b transcript variants (mmAQP1b_tv1, mmAQP1b_tv2, and
27	mmAQP1b_tv3). Then, we examined the AQP1b promoter region and observed several
28	transcription factor binding sites (TFBS) for nuclear factor of activated T-cells (NFAT),
29	SRY-box, c-AMP responsive element binding protein (CREB), GATA binding factor, and
30	hepatic nuclear factor-1. Interestingly, mmAQP1b transcription was differentially modulated
31	by heavy metal or immunostimulant challenge. Further studies to deepen the knowledge of
32	fish AQP-mediated adaptation response potentially relevant to molecular pathogenesis are
33	warranted.
34	Key words: Aquaporin, heavy metal, immunostimulant, stress, osmoregulation
• •	

35 Summary statement:

36	We identified n	nud loach AO	P1b transcrip	ot variants and	consensus seq	uences involved in

- 37 stress or innate immunity in promotor region. AQP1b transcription was differentially
- 38 modulated by heavy metal or immunostimulant challenge.
- 39

40 Introduction

- 41 Teleost species have the remarkable ability to withstand acute or long-term fluctuations in
- 42 environmental salinity. Fish cells monitor the osmolality difference between the intracellular
- 43 and extracellular spaces, and transport water to recover their volume following cell swelling
- 44 or shrinkage. Salinity stress is linked to a wide range of biological processes *e.g.* metabolism,
- 45 mortality, growth, and even immune responses (Baltzegar et al., 2014; Moshtaghi et al.,
- 46 2016). After being subjected to an imbalance between environments, proteins trigger various
- 47 complex responses such as changes in structure or function, a consequence of which is
- 48 altered enzyme activity (Fiol and Kültz, 2007).
- 49 Aquaporins (AQPs) facilitate the transport of water or other small solutes into and out of cells
- 50 in the presence of osmotic gradients. These integral membrane proteins have been identified
- 51 across phyla, from Archaea (Kozono et al., 2003) to primates (King et al., 2004). Based on
- amino acid sequence similarity, 13 different AQPs (AQPs 0-12) can be divided into three
- 53 subfamilies: classical aquaporins that selectively transport water; aquaglyceroporin that
- 54 transport glycerol and other small molecules in addition to water; and an unorthodox

55	subgroup (Zardoya, 2005; Ishibashi et al., 2011). Genomic and phylogenetic analyses
56	revealed that teleosts possess several AQP isoforms which have undergone lineage-specific
57	changes and divergence via whole-genome duplication events (Tingaud-Sequeira et al., 2010).
58	Zebrafish (Danio rerio) shows a much higher diversity of AQPs than tetrapod AQPs.
59	Duplicated or triplicated sub-isoforms have been retained in the zebrafish genome (Tingaud-
60	Sequeira et al., 2010; Finn and Cerdà, 2011; Finn et al., 2014; Madsen et al., 2015). The
61	valuable information regarding the entire aquaporin sequence in water fleas (Daphnia pulex)
62	have been recently published in the NCBI non-redundant protein database (Lind et al., 2017).
63	Many studies indicate that AQPs show multiple modes of activation and regulation, enabling
64	them to respond to diverse cellular events such as neutral signal transduction, brain swelling,
65	and cellular migration (Balzegar et al., 2014; Moshtaghi et al. 2016). To date, understanding
66	the physiological role of piscine AQPs has been facilitated by studying the expression of
67	AQPs in response to changes in salinity (Cutler and Cramb, 2002; Watanabe et al., 2005;
68	Giffard-Mena et al., 2011; Kim et al., 2010; Choi et al., 2013; Madsen et al., 2015).
69	Mud loaches (Misgurnus mizolepis; Teleostei; Cypriniformes) are currently the most popular
70	freshwater species with growing importance of domestic market in Korea. In addition to its
71	commercial importance, the mud loach has attractive merits as an experimental organism,
72	including small adult size, high fecundity, year-round spawning under controlled conditions,
73	and relatively well-established techniques for genetic manipulation (Nam et al., 2011; Cho et

al., 2012). Given these advantages, mud loaches could be particularly relevant for studying

75	the involvement	of aquap	orins in	physiolog	ical processes.

76	Most studies investigating piscine aquaporin genes focus on the effects of salinity-induced
77	adaptation in piscine AQP genes in response to biological challenges. However, investigating
78	the interaction among genes using molecular genetic approaches has elucidated the molecular
79	mechanisms underlying biological function and regulatory gene expression. Identifying
80	interaction among diverse genes and autonomous adaptation effects are essential for
81	systematically unraveling the cellular or molecular mechanisms of AQP action. Recent
82	reports indicate that AQPs could be involved in inflammasome activation-induced cell
83	volume regulation (Compan et al., 2011; Meli et al., 2018). Previously, we identified a novel
84	AQP1a in mud loaches (mmAQP1a) which is differentially modulated in vivo (Lee et al.,
85	2017). In fact, the existence of AQP1a and its duplicate in teleost species is well established,
86	showing specialized expression (Zapater et al., 2011). We found a AQP1a paralog from our
87	next-generation sequencing database for the mud loach (unpublished data). The genetic
88	determinants for the stenohaline freshwater species mud loach AQP1a paralog, called AQP1b
89	have not been extensively explored. In present study, we identified the AQP1a paralog in
90	mud loaches. The AQP1a paralog, AQP1b is a teleost-specific water-selective channel that
91	mediates oocyte hydration, which is based on the coordinated action between osmolyte flux
92	and aquaporin activity (Fabra et al., 2005; Sun et al., 2010). We found three variant AQP1b

93	paralogs that are structurally similar to mmAQP1a. In line with our long-term goal to more
94	deeply understand the involvement of aquaporin molecules in osmoregulation and
95	physiological processes of mud loaches, we aimed to identify the mRNA splice variants of
96	AQP1 in mud loach. We characterized the structural and features of the AQP1 promoter and
97	examined gene expression patterns in response to environmental challenges.
98	

```
99 Materials and methods
```

- 100 Isolation of AQP1b cDNA from mud loaches
- 101 To isolate the aquaporin cDNA sequence, a mud loach expressed sequence tag (EST)
- 102 database generated from whole body RNAs was surveyed. Based on the EST survey and a
- 103 homology search of NCBI GenBank (http://blast.ncbi.nlm.nih.gov/), the partial mud loach
- 104 AQP sequences were identified. The full-length of mmAQP sequence was obtained from
- 105 mud loach total RNAs by RT-PCR and/or Vectorette PCR isolation using specific primer
- 106 pairs (Table 1). At least six clones for each AQP isoform were sequenced to obtain the
- 107 representative sequence.

109 *Cloning the mud loach AQP1b gene and promoter*

110	Based on the full-length cDNA sequences of the mud loach AQP, the gene sequence was
111	isolated using PCR with AQP1-specific primers that bound the untranslated region (UTR) of
112	gene. The oligonucleotide primer pairs and PCR conditions used are shown in Table 1. The
113	amplified PCR products were cloned into pGEM-T easy vector (Promega, Madison, WI,
114	USA). Sequencing for recombinant clones ($n = 6$) that contained the correct insert size were
115	done by primer walking with gene-specific primers. To isolate the 5'-flanking region, genome
116	walking was performed using a Universal Genome Walker Kit (Clontech Laboratories Inc.,
117	USA). The DNA fragments obtained from genome walking were subcloned, sequenced, and
118	assembled into a contig as described. Finally, the AQP genomic DNA spanning the isolated
119	region was PCR amplified. The PCR products were sequenced to obtain the representative
120	genomic sequence of the mud loach AQP gene.
120 121	genomic sequence of the mud loach AQP gene.
	genomic sequence of the mud loach AQP gene. Bioinformatic sequence analysis
121	
121 122	Bioinformatic sequence analysis
121 122 123	Bioinformatic sequence analysis The cDNA sequence was analyzed using the Open Reading Frame (ORF) Finder tool
121 122 123 124	Bioinformatic sequence analysis The cDNA sequence was analyzed using the Open Reading Frame (ORF) Finder tool (https://www.ncbi.nlm.nih.gov/orffinder/). Using the deduced amino acid sequence, the
121 122 123 124 125	Bioinformatic sequence analysis The cDNA sequence was analyzed using the Open Reading Frame (ORF) Finder tool (https://www.ncbi.nlm.nih.gov/orffinder/). Using the deduced amino acid sequence, the theoretical molecular weight and isoelectric point (pI) were evaluated with the ExPASy

130 acid sequence to representative teleostean and human orthologs (Table 2) was performed	
131 using CLUSTAL W (Thompson et al., 1994). Transmembrane domain prediction was	
132 performed using the TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0	/).
133 To gain insight into the transcriptional regulation of AQP, putative transcription factor	
134 binding sites (TFBSs) in the proximal promoter region were identified using MatInspecter	
135 software (http://www.genomatix.de) This prediction was performed using the default	
136 parameters [General Core Promoter Elements (0.9 core / Optimized matrix sim) and	
137 Vertebrates (0.9 core / Optimized matrix sim)] based on Matrix Family Library Version 11	.0
138 (September 2017). We then characterized the regulatory regions of AQP1a.2 gene promote	r
139 by sequencing 3405 bp from the 5'-flanking region and analyzed this region for <i>cis</i> -regulat	ory
140 elements using MatInspector software.	
141	

142 *Tissue sampling for basal expression assays*

143	To investigate the constitutive expression of AQP in various adult mud loach tissues, we
144	collected samples from 13 different tissues (brain, eye, fin, gill, heart, intestine, kidney, liver,
145	muscle, skin, spleen, ovary, and testis) w from six-month-old healthy females (mean body
146	mass = 19 ± 4 g; $n = 8$ for each group) and males (mean body mass = 12 ± 3 g; $n = 8$ for each
147	group). The tissues from the sampled individuals were pooled prior to total RNA extraction.

149 Sampling for embryos and early larvae

- 151 (Nam et al., 2004). The fertilized eggs [referred to as zero hours post-fertilization (HPF);
- hour 0] were incubated and kept at 25 ± 0.5 °C and under an ambient photoperiod until
- 153 hatching. The embryonic developmental stages were determined according to Nam et al.
- 154 (2004). The embryos were pooled at the 32 cell (2 HPF), early blastula (4 HPF), early
- 155 gastrula (6 HPF), late gastrula (8 HPF), 3-4 myotome (12 HPF), 16-17 myotome (16 HPF),
- and 23-24 myotome (20 HPF) stages. Hatching stared at 24 HPF and 100% of the embryos
- 157 hatched by 28 HPF. After hatching, the larvae were transferred to a 50-L tank held at $24 \pm$
- 158 0.5°C. 100 to 150 larvae were collected at 1, 2, 3, 4, 5, 6, 7, and 14 days post-hatching (DPH).

Larva rearing was performed as previously described (Nam et al., 2004).

160

161 In vivo stimulatory treatments

162 We examined AQP1b mRNA expression following acute exposure to cadmium (Cd),

163 chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), or zinc (Zn). Fish (n =

164 12, average body mass = 15.2 ± 4.1 g) were separated into seven experimental groups (one

- 165 per metal) and one control group and kept in 60 L tanks with the respective treatment. The
- tanks were filled with tap water and held at $25 \pm 0.5^{\circ}$ C. Each group was acclimated to the

167	tanks for one week. The dose for each metal was 5 μ M (Cho et al., 2009), and the exposure
168	time was 48 h. All chemicals were of analytical or reagent grade and were obtained from
169	Sigma-Aldrich. No feed was supplied during the exposure period. The tank water was
170	changed every day to maintain the desired metal concentration. The control group was kept in
171	the same condition as the other groups without the addition of any metals. After 48 h of
172	exposure, four tissues (liver, intestine, kidney, and spleen) were collected.
173	To examine potential immune responses, fish (15.2 \pm 4.1 g; $n = 3$ for each group) were
174	intraperitoneally injected with lipopolysaccharide (LPS; Escherichia coli 0111:B4, Sigma-
175	Aldrich, St Louis, MO, USA), polyinosinic:polycytidylic acid [poly(I:C); Sigma-Aldrich], or
176	phosphate buffer saline (PBS, pH 6.8; non-stimulated control). For LPS or poly(I:C)
177	challenge, two doses (5 or 25 μ g g ⁻¹ body weight) were tested. After being injected, each
178	group was transferred to a 60 L tank at 25°C. No feed was supplied during this period. At 24
179	h post-injection, immune-relevant tissues were surgically removed from each fish and stored
180	at -80°C until analyzed by RT-PCR.
181	

182 RT-PCR analysis

183 Total RNA was extracted using TriPure Reagent (Roche Applied Science, Mannheim,

184 Germany) and purified using an RNeasy Mini Plus Kit (Qiagen, Hilden, Germany), including

185 DNase I treatment. For individual experiments, 2 µg total RNA was used for cDNA synthesis

186	using an Omniscript Reverse Transcription Kit (Qiagen). For the quantitative real-time PCR,
187	the cDNA was diluted 4-fold with sterile distilled water and 2 μL was used as the template
188	for each qPCR reaction. The qRT-PCR analysis was conducted using a LightCycler 480
189	Real-Time PCR System and LightCycler 480 SYBR Green I Master mix (Roche Applied
190	Science, Germany). 18S RNA (adult tissue and embryonic-early larval samples) and
191	ribosomal protein 7 (RPL7 experimental stimulation analysis) were chosen as the internal
192	control genes. The plasmid DNAs containing the amplified target mRNAs were prepared as
193	standard samples. The qRT-PCR analysis for each experiment included three technical
194	replicates for each biological specimen.
195	To compare AQP1a.2 transcript levels across tissue types and developmental samples, qPCR
196	data were analyzed using the Δ Ct method (Ct of the AQP1b gene subtracted from the Ct of
197	the internal control genes). The relative AQP1a.2 gene expression in the stimulated or
198	challenged groups was analyzed as the fold difference compared to the control group using
199	the $2^{-\Delta\Delta Ct}$ method (Schmittgen and Livak, 2008).
200	

201 Statistical analysis

All data are expressed as means \pm standard error. The data were analyzed using one-way

203 ANOVA followed by Duncan's multiple range tests included in SPSS version 10.0 software

204 (SAS Inc., Cary, NC, USA). *P*<0.05 was considered statistically significant.

207

208 Characteristics of the AQP1b isoform

209 The AQP1b gene from the mud loach (named mmAQP1b) is 857 bp long with an open 210 reading frame (ORF) encoding 269 amino acids. The calculated molecular mass of this 211 isoform is 28.86 kDa, with a theoretical pI value of 9.35. The nucleotide sequence of the 212 AQP1b cDNA sequence was submitted to GenBank under the accession numbers 213 MT184376-MT184378 (genomic DNA MT184375). The deduced amino acid sequence of 214 mmAQP1b shares the same core architecture as the vertebrate AQPs, including six 215 transmembrane domains and cytoplasmic amino and carboxy termini (Fig. 1). The two 216 hydrophobic loops contain asparagine-proline-alanine (NPA) motifs that regulate selective 217 water conduction and maintain proton gradients across the biological membrane (Gonen and 218 Walz, 2006). The alignment of the putative amino acid sequence of mmAQP1b and 219 orthologous sequences from other teleosts revealed considerable similarity (51-84%) (Table 220 2). In addition, the cysteine residue near the second NPA motif, which is involved in 221 sensitivity to mercury, was identified in mmAQP1b (Preston et al., 1993).

223 Identification of novel splice variants, genomic structure, and organization of mud loach

- 224 aquaporin 1b
- 225 While confirming the full-length mmAQP1b cDNA, we identified three different AQP1b
- transcript variants, which we designated mmAQP1b_tv1, mmAQP1b_tv2, and
- 227 mmAQP1b_tv3. These variants were 944, 932, and 819 bp long, respectively. Alignment of
- the AQP transcripts sequences with other teleosts revealed that the variants arose from
- alternative splicing between exon 4 and exon 5 for AQP1b_tv2 and AQP1b_tv3. All
- transcript variants had ATG as the start codon and encoded a 269-amino acids peptide with a
- 231 molecular mass of 28.9 kDa.
- At the genomic level, the mmAQP1b gene contains five exons (366, 165, 81, 178, and 20 bp
- in length for exon-I to exon-V, respectively) interrupted by four introns (1367, 185, 454,
- 4036 bp in length for intron-I to intron-IV, respectively). The splice sites contained conserved
- 235 GT-AG dinucleotides at each junction, and the sequence of each coding exon was clearly
- and matched with its corresponding cDNA sequence.
- 237

238 In silico analysis of transcription factor binding sites in the mmAQP1b promoter region

- 239 To identify the transcription factor regulating mmAQP1b expression, we sequenced a 3405
- bp upstream region and analyzed this region for cis-regulatory elements using MatInspector
- software. The transcription start site of AQP1b mRNA was located at -9 bp upstream of the

242	translational ATG initiation codon. We also detected the presence of consensus sequences for
243	core promoter elements important for basal transcription, such as a TATA box (Table 2). In
244	addition, various elements involved with immune modulation or stress responses were
245	observed, including CCAAT-enhancer binding protein (CEBP) sites, cAMP-responsive
246	element binding protein (CREB) sites, nuclear factor of activated T-cells (NFAT) sites, and
247	signal transducer and activator of transcription (STAT) sites. Interestingly, we identified
248	binding sites for three Sry-related high mobility group [HMG]-box (Sox) family members
249	known to be expressed in teleost oocytes. The binding sites for Sox5, Sox6, and Sox3 were
250	located at -2575 bp, -268 bp, and -1048 bp from the transcription initiation site, respectively.
251	In addition, fork head domain factor (Fox), which are involved in development of lung, brain,
252	thymus, and cardiac tissue, had a predicted binding site at -2572 bp based on the consensus
253	sequence. Binding sites for hepatic nuclear factor 1 (HNF1), a transcription factor that
254	regulates ubiquitous expression in many tissues and cells, were also observed at various
255	locations within the AQP1b promoter.
256	

257 Tissue distribution and developmental expression of mmAQP1b

258 mmAQP1b transcript was detected in all examined tissues, although the basal expression
259 level was largely different among these tissues. High AQP1b mRNA expression was detected

260 in the gill, kidney, and spleen, whereas lower expression was observed in the liver, muscle,

262	The mRNA expression le	evel of mmAQP1b was	s regulated durin	ng embryonic a	nd larval
-----	------------------------	---------------------	-------------------	----------------	-----------

- development (Fig. 3). mmAQP1b expression was low at fertilization (0 hpt) and further
- decreased until 6 hpt (early gastrula stage). Expression gradually begun to increase with

265 developmental stage until 28 hpt. Afterward, mmAQP1b expression in embryos was

- remarkably increased until hatching, and dynamically increased even more until 2 dph. Then,
- 267 mmAQP1b mRNA decreased to the level observed at 28 hpt, although the rate of decrease
- slowed 4 to 7 dph.

269

270 *Modulation of mmAQP1b in response to heavy metal exposure*

271	The response of mmAQP1b to acute waterborne metal exposure was variable according to
272	the metal and tissue type. In the intestine, AQP1b transcription was upregulated by most
273	heavy metals. Cu and Fe caused 3.6- and 2.0-fold decreases of AQP1b transcription,
274	respectively. Ni exposure did not significantly alter mRNA transcription. In the kidney,
275	transcriptional suppression occurred in the groups exposed to Cu (7.3-fold decrease), Fe (3.2-
276	fold), and Mn (2.0-fold). The maximum induction of AQP1b transcript in the kidney was
277	observed with Cr (2.12-fold) treatment. Meanwhile, hepatic AQP1b transcription was
278	induced by all tested metals. Three metals, Cd (25.2-fold increase relative the non-exposed

279	control), Cr (15.1-fold), and Ni (9.18-fold) induced more AQP1b transcription in the liver
280	than the other heavy metals: Cu (5.1-fold) and Zn (2.59-fold). In the spleen, four metal-
281	treated groups did not show increased AQP1b mRNA. Of the four groups, one group (Cu)
282	displayed significantly reduced AQP1b mRNA after challenge. Maximum inducibility in the
283	spleen was 2-fold (the Cu-exposed group), while the other treatments induced only
284	moderately increased AQP1b transcription from 1.19-1.28 folds.

286	AQP	expression	after	immune	challenge
-----	-----	------------	-------	--------	-----------

288	Experimental challenge with LPS and poly(I:C) altered AQP1b gene expression in many
289	groups, and the patterns were variable among tissues types (Fig. 5). In the intestine,
290	mmAQP1b mRNA was reduced by LPS or poly(I:C) challenge (each 1.27-fold lower than the
291	relative PBS-injected group). In contrast, renal AQP1b expression was significantly
292	upregulated in all challenge groups, with 2.21-fold or 3.34-fold increases relative to PBS-
293	injected controls. A similar pattern was observed in the spleen. AQP1b mRNA expression in
294	the spleen was induced by LPS (2.1-fold) and poly(I:C) (1.93-fold). In the liver, LPS
295	downregulated AQP1b mRNA by 2.32-fold. Other challenges did not show significant
296	differences.

299 Discussion

- 300 We determined that mmAQP1b is similar in sequence and predicted topology to previously
- 301 identified AQPs. The mud loach AQP1b has traditional structural features of aquaporins,
- 302 such as six transmembrane domains. These are vital characteristics that appear in the major
- 303 intrinsic protein (MIP) family and in aquaporins (Borgnia et al., 1999). The tandem repeat
- 304 structures with two NPA sequences have been proposed to form tight turn structures that
- 305 interact in the membrane to form the pathway for water to move through the protein (Nielsen
- et al., 1999). At the genome level, the mmAQP1b gene has a somewhat different
- 307 organizational structure (*i.e.* 5 exons interrupted by 4 introns) compared to most other
- teleostean AQP1 orthologues, which have 4 exons (Tingaud-Sequeira et al. 2008, 2010; Kim
- 309 et al., 2014). We also isolated the complete mRNA of two AQP1b transcript variants.
- 310 Analysis of mmAQP1b cDNA using available information on the genome organization of the
- 311 AQP gene in teleost suggest that each isoform is generated by alternative splicing. This leads
- to a splicing event where the 5' splice site of the intron is different, which leads to mRNAs
- 313 with different C-termini. However, the rest of the AQP gene sequence is highly conserved
- 314 between the two variants.
- 315 In silico analysis of mmAQP1b promotor identified various putative cis-regulatory elements
- that may serve targets for sequence-specific transcription factors. We found numerous

317	consensus sequences that may be bound by transcription factors involved in stress and/or
318	innate immunity in teleosts such as STAT, CEBP, CREB, and NFAT5. In particular, NFAT5,
319	a member of the nuclear factor of activated T cell family, plays crucial roles in detecting
320	environmental salinity and immune responses under pathophysiological conditions associated
321	with hyperosmotic stress in teleosts and mammals (Küper et al., 2015; Lorgn et al., 2017). In
322	addition, the canonical motifs for STAT, a key factor in the JAK/STAT pathway were
323	identified, suggesting that AQP1b is involved in inflammation-mediated modulation upon
324	pathogen infection. This observation is consistent with the expression profiles of AQP1a and
325	3a in kidney, intestine, liver, and spleen of mud loaches after immune challenge (Lee et al.,
326	2017). The mmAQP1b promoter possesses potential CREB sites responsive to cAMP, similar
327	to those found in mammalian and teleost AQP genes (Zapater et al., 2013; Wang and Zheng,
328	2011). We also observed a potentially conserved site for glucocorticoid-responsive and
329	related elements, which are induced by glucocorticoid or progesterone receptors in mammals
330	and teleosts (Zapater et al., 2013; Lieberman et al., 1993; Moon et al., 1997). Additionally,
331	HNF-1 is a major regulator of glucose homeostasis in the liver, kidney, and pancreas in
332	mammals (Pontoglio, 2000). This evidence indicates that AQP-mediated cellular pathways
333	could be directly or indirectly associated with carbohydrate metabolism in the teleost liver for
334	energy supply during saline challenge.
005	

335 Interestingly, the *in silico* analysis showed putative binding sites for SOX transcription

336 factors in the mmAQP1b promoter region, similar to several fish species (Cerdà et al., 2013; 337 Zapater, et al., 2013; Wei et al., 2016). Recently, SOX transcription factors were reported to 338 be involved in diverse physiological processes such as the formation of the nervous system 339 (Overton et al., 2002), gonadogenesis (Weiss et al., 2003), or sex determining factor. 340 During embryonic development, mmAQP1b expression was weakly expressed during early 341 embryogenesis, followed by a considerable increase until 2 dph and a subsequent decline. 342 Additionally, AQP1b expression is firstly detected from the onset of fertilization to the 32-343 cell stage, indicating that AQP1b is maternally inherited, as reported for the common 344 mummicho (Fundulus heteroclitus) and zebrafish (Tingaud-Sequeira et al., 2009; Chen et al., 345 2010). Maternal molecules such as transcripts and protein are provided as a source as of 346 cellular energy, structural components, and defense responses during embryonic and larval 347 development in fish. In addition, there was a decrease in mmAQP1b transcript levels from 4-348 6 HPF (early blastula-gastrula stage). 349 In the present study, the expression of mmAQP1b mRNA was detectable in various tissues, 350 including the gill, kidney, and spleen. Some tissues also showed difference in transcript levels. 351 The freshwater teleost kidney is unable to produce hyperosmotic urine, in contrast to 352 seawater-adapted piscine kidneys, which switch to water saving function via expression of 353 divalent ions. Therefore, the function of piscine renal AQP is regulated by environmental 354 salinity (Tipsmark et al., 2010). The expression of AQP1a.2 transcript is not limited to

355	osmoregulatory tissues, but may also occur in non-osmoregulatory tissues (eye, spleen, and
356	testis), as suggested in several teleost species (An et al., 2008; Tingaud-Sequeira, 2010; Kim
357	et al., 2010, 2014; Madsen et al., 2014).

358	AQP1b transcription showed the significant responses to the immunostimulants LPS and	
-----	--	--

359 poly(I:C). In particular, renal and splenic AQP1b transcripts were significantly higher than in

other tissues. As evidenced by Lehmann et al. (2008), intraperitoneal LPS injection allows

361 LPS immediate access to the circulation. Therefore, LPS induces systemic immune responses.

362 The kidney is the primary excretory organ critical for the maintenance of homeostasis in fish.

- 363 A recent study suggested that intraperitoneal LPS injection decreases blood flow in the spleen
- and kidney via vasoconstriction, thereby increasing the volume of interstitial fluid and
- redistributing blood flow (Wang et al., 2018). Thus, LPS challenge may ultimately impair the

transient osmotic gradient, indicating an improper balance of the stable internal water

- 367 environment and dissolved ion concentrations in the kidney. A previous study reported that
- 368 upregulated AQP1 transcripts serves a protective role by reversing LPS-induced damage in
- human renal proximal tubule epithelial cells (Wang et al., 2018). Thus, altered AQP1a
- 370 protein expression is associated with altered renal physiology.
- AQPs have been proposed as molecular osmosensors that maintain water homeostasis.
 Further, AQPs are a possible regulator of innate host defenses at the level of the plasma
- 373 membrane (Meli et al., 2018). In the present investigation, we characterized AQP variant

374	transcript levels and investigated AQP1b modulation in response to heavy metal exposure
375	and immune challenge. This study provides a comprehensive basis and strengthens the
376	knowledge of the underlying mechanisms of AQP in physiological and pathological
377	processes. Further studies to deepen the knowledge of fish AQP-mediated mechanisms
378	potentially relevant to molecular pathogenesis are required.
379	
380	Competing interests
381	The authors declare that they have no conflict of interest.
382	
383	Funding
384	This research was supported by the grant from the Korea Institute of Marine Science &
385	Technology (KIMST) funded by the Ministry of Oceans and Fisheries (Project #20170327).
386	
387	Authors' contributions
388	Sang Yoon Lee contributed to the management of mu loach, gene-cloning, gene-
389	expression analyses and data analysis and; Yi Kyung Kim and Yoon Kwon Nam
390	developed and supervised the experiment, and preparation of the manuscript draft, and
391	modified the manuscript.

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

394 References

395	An, K. W., Kim, N. N. and Choi, C. Y. (2008). Cloning and expression of aquaporin 1 and
396	arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegli: effect
397	of freshwater acclimation. Fish Physiol. Biochem. 34, 185-194.
398	Baltzegar, D. A., Reading, B. J., Douros, J. D. and Borski, R. J. (2013). Role for leptin in
399	promoting glucose mobilization during acute hyperosmotic stress in teleost fishes. J.
400	Endocrinol. doi: 10.1530/JOE-13-0292.
401	Borgnia, M., Nielsen, S., Engel, A. and Agre, P. (1999). Cellular and molecular biology of
402	the aquaporin. Annu. Rev. Biochem. 68, 425-458.
403	Compan, V., Baroja-Mazo, A., López-Castejón, G., Gomez, A. I., Martínez, C. M.,
404	Angosto, D., Montero, M. T., Herranz, A. S., Bazán, E., Reimers, D., Mulero, V. and
405	Pelegrín, P. (2012). Cell volume regulation modulates NLRP3 inflammasome activation.
406	Immunity 37, 487–500.
407	Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. and
408	Thompson, T. D. (2003). Multiple sequence alignment with the clustal series of
409	programs. Nucleic Acids Res. 31, 3497-3500.

410	Chen, L. M., Zhao, J., Musa-Aziz, R., Pelletier, M. F., Drummond, I. A., and Boron, W.
411	F. (2010). Cloning and characterization of a zebrafish homologue of human AQP1: a
412	bifunctional water and gas channel. Am. J. Physiol. 299, R1163-R1174.
413	Cho, Y. S., Lee, S. Y., Kim, K. Y. and Nam, Y. K. (2009). Two metallothionein genes from
414	mud loach Misgurnus mizolepis (Teleostei; Cypriniformes): Gene structure, genomic
415	organization, and mRNA expression analysis. Comp. Biochem. Physiol. 153B, 317-326.
416	Cho, Y. S., Kim, B. S., Kim, D. S. and Nam, Y. K. (2012). Modulation of warm-
417	temperature-acclimation-associated 65-kDa protein genes (Wap65-1 and Wap65-2) in
418	mud loach (Misgurnus mizolepis, Cypriniformes) liver in response to different
419	stimulatory treatments. Fish Shellfish Immunol. 32, 662-669.
420	Cerdà, J., Zapater, C., Chauvigné, F. and Finn, R. N. (2013). Water homeostasis in the
421	fish oocyte: new insights into the role and molecular regulation of a teleost-specific
422	aquaporin. Fish Physiol. Biochem. 39, 19-27.
423	Cutler, C. P. and Cramb, G. (2000). Water transport and aquaporin expression in fish. In
424	Molecular biology and physiology of water and solute transport, pp. 433-441. Springer,
425	Boston, MA.
426	Fabra, M., Raldúa, D., Power, D. M., Deen, P. M. and Cerda, J. (2005). Marine fish egg
427	hydration is aquaporin-mediated. Science, 307, 545-545.

428 Fiol D. F. and Kültz D. (2007). Osmotic stress sensing and signaling in fishes. FEBS J. 274,

429 5790-5798.

- 430 Finn, R. N. and Cerdà, J. (2011). Aquaporin evolution in fishes. *Front. Physiol.* 26, 2:44.
- doi: 10.3389/fphys.2011.00044.
- 432 Finn, R. N., Chauvigné, F., Hlidberg, J. B., Cutler, C. P. and Cerdà, J. (2014). The
- 433 lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial
- 434 adaptation. *PloS one*, 9, e113686.
- 435 Giffard-Mena, I., Boulo, V., Abed, C., Cramb, G. and Charmantier, G. (2011).
- 436 Expression and localization of Aquaporin 1a in the sea-bass (*Dicentrarchus labrax*)
- 437 during ontogeny. *Front. Physiol.* 2, 34.
- 438 Ishibashi, K., Kondo, S., Hara, S. and Morishita, Y. (2011). The evolutionary aspects of
- 439 aquaporin family. Am. J. Physiol. 300, R566-576.
- 440 Kim, Y. K., Watanabe, S., Kaneko, T., Huh, M. D. and Park, S. l. (2010). Expression of
- 441 aquaporins 3, 8 and 10 in the intestines of freshwater- and seawater-acclimated Japanese
- eels *Anguilla japonica*. Fish. Sci. 76, 695-702.
- 443 Kim, Y. K., Lee, S. Y., Kim, B. S., Kim, D. S. and Nam, Y. K. (2014). Isolation and
- 444 mRNA expression analysis of aquaporin isoforms in marine medaka Oryzias dancena, a
- 445 euryhaline teleost. *Comp. Biochem. Physiol.* 171, A1-8.

446	King, L.S., Kozono, E	D., Agre, P.,	2004. From	structure to	disease:	the evolving	tale of
-----	-----------------------	---------------	------------	--------------	----------	--------------	---------

- 447 aquaporin biology. Nat. Rev. Mol. Cell Biol. 24, 224-234.
- 448 Kozono, D., Ding, X., Iwasaki, I., Meng, X., Kamagata, Y., Agre, P., Kitagawa, Y., 2003.
- 449 Functional expression and characterization of an archaeal aquaporin AqpM from
- 450 *Methanothermobacter marburgenesis.* J. Biol. Chem. 278, 10649-10656.
- 451 Küper, C., Beck, F. X., & Neuhofer, W. (2015). Generation of a conditional knockout allele
- 452 for the NFAT5 gene in mice. *Frontiers in physiology*, *5*, 507.
- 453 Lee, S. Y., Nam, Y. K., & Kim, Y. K. (2017). Characterization and expression profiles of
- 454 aquaporins (AQPs) 1a and 3a in mud loach *Misgurnus mizolepis* after experimental
- 455 challenges. Fisheries and Aquatic Sciences, 20(1), 23.
- 456 Lieberman, B. A., Bona, B. J., Edwards, D. P., & Nordeen, S. K. (1993). The constitution of
- 457 a progesterone response element. *Molecular Endocrinology*, 7(4), 515-527.
- 458 Lehmann, G.L., Carreras, F.I., Soria, L.R., Gradilone, S.A., Marinelli, R.A., 2008. LPS
- 459 induces the TNF- α -mediated downregulation of rat liver aquaporin-8: role in sepsis-
- 460 associated cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G567-G575.
- 461 Lind, U., Järvå, M., Rosenblad, M. A., Pingitore, P., Karlsson, E., Wrange, A. L., Kamdal E,
- 462 Sundell K, André C, Jonsson PR, Havenhand, J., Eriksson LA, Hedfalk K, Blomberg A.

463	(2017). Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals
464	differential expression in response to changes in salinity. PloS one, 12(7), e0181192.
465	Lorgen, M., Jorgensen, E. H., Jordan, W. C., Martin, S. A., Hazlerigg, D. G. (2017). NFAT5
466	genes are part of the osmotic regulatory system in Atlantic salmon (Salmo salar). Marine
467	genomics, 31, 25-31.
468	Madsen, S.S., Bujak, J., Tipsmark, C.K., 2014. Aquaporin expression in the Japanese medaka
469	(Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water
470	transport? J. Exp. Biol. 217, 3108-3121.
471	Madsen, S. S., Engelund, M. B., & Cutler, C. P. (2015). Water transport and functional
472	dynamics of aquaporins in osmoregulatory organs of fishes. The Biological

- 473 *Bulletin*, 229(1), 70-92.
- 474 Meli, R., Pirozzi, C., & Pelagalli, A. (2018). New perspectives on the potential role of
- aquaporins (AQPs) in the physiology of inflammation. *Frontiers in physiology*, *9*, 101.
- 476 Moon, C., King, L. S., & Agre, P. (1997). Aqp1 expression in erythroleukemia cells: genetic
- 477 regulation of glucocorticoid and chemical induction. *American Journal of Physiology*-
- 478 *Cell Physiology*, 273(5), C1562-C1570.

479	Moshtaghi, A., Rahi, M. L., Nguyen, V. T., Mather, P. B., & Hurwood, D. A. (2016). A
480	transcriptomic scan for potential candidate genes involved in osmoregulation in an
481	obligate freshwater palaemonid prawn (Macrobrachium australiense). PeerJ, 4, e2520.
482	Nam, Y. K., Choi, G. C., Kim, D. S. (2004). An efficient method for blocking the 1st mitotic
483	cleavage of fish zygote using combined thermal treatment, exemplified by mud loach
484	(Misgurnus mizolepis). Theriogenology, 61(5), 933-945.
485	Nam, Y.K., Cho, Y.S., Lee, S.Y., Kim, B.S., Kim, D.S., 2011. Molecular characterization of
486	hepcidin gene from mud loach (Misgurnus mizolepis; Cypriniformes). Fish Shellfish
487	Immunol. 31, 1251-1258.
488	Nielsen, S., Kwon, T.H., Christensen, B.M., Promeneur, D., Frøkiaer, J., Marples, D., 1999.
489	Physiology and pathophysiology of renal aquaporins. J. Am. Soc. Nephrol. 10, 647-663.
490	Overton PM, Meadows LA, Urban J, Russell S (2002) Evidence for differential and
491	redundant function of the Sox genes Dichaete and Sox N during CNS development in
492	Drosophila. Development 129: 4219–4228
493	Pontoglio M (2000). Hepatocyte nuclear factor 1, a transcription factor at the crossroads of
494	glucose homeostasis. J Am Soc Nephrol, 11(suppl 2), S140-S143.
495	Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C(T)
496	method. Nat. Protoc. 3, 1101-1108.

497	Sun, Y., Zhang, Q., Qi, J., Chen, Y., Zhong, Q., Li, C., & Wang, Z. (2010). Identification
498	of differential genes in the ovary relative to the testis and their expression patterns in half-
499	smooth tongue sole (Cynoglossus semilaevis). Journal of Genetics and Genomics, 37(2),
500	137-145.
501	Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. Clustal W: improving the sensitivity of
502	progressive multiple sequence alignment through sequence weighting, position specific
503	gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
504	Tingaud-Sequeira, A., Chauvigné, F., Fabra, M., Lozano, J., Raldúa, D., & Cerdà, J. (2008).
505	Structural and functional divergence of two fish aquaporin-1 water channels following
506	teleost-specific gene duplication. BMC evolutionary biology, 8(1), 259.
507	Tingaud-Sequeira, A., Zapater, C., Chauvigné, F., Otero, D., and Cerdà, J. (2009). Adaptive plas-
508	ticity of killifish (Fundulushet- eroclitus) embryos: dehydration- stimulated development
509	and differential aquaporin-3 expression. Am. J. Physiol. Regul. Integr. Comp. Phys- iol. 296,
510	R1041–R1052.
511	Tingaud-Sequeira, A., Calusinska, M., Finn, R.N., Chauvigné, F., Lozano, J., Cerdà, J., 2010.
512	The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins
513	with dual paralogy and substrate specificities similar to mammals. BMC Evol. Biol. 10, 38.

Tipsmark, C.K., Sørensen, K.J., and Madsen, S.S. (2010). Aquaporin expression dynamics in

515	osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation.
516	J. Exp.Biol. 213, 368–379.
517	Wang, Y., Cui, H., Niu, F., Liu, S. L., Li, Y., Zhang, L. M., Du HB, Zhao ZG, Niu, C. Y.
518	(2018). Effect of resveratrol on blood rheological properties in LPS-challenged
519	rats. Frontiers in physiology, 9, 1202.
520	Wang, W., Zheng, M., 2011. Role of cAMP-PKA/CREB pathway in regulation of AQP 5
521	production in rat nasal epithelium. Rhinology49,464–469.

- 522 Wei, L., Yang, C., Tao, W., Wang, D. 2016. Genome-wide identification and transcriptome-
- based expression profiling of the sox gene family in the nile tilapia (*Oreochromis*
- *niloticus*). *International journal of molecular sciences*, *17*(3), 270.
- 525 Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, et al. (2003) Sox3 is required for
- 526 gonadal function, but not sex determination, in males and females. Molecular and
- 527 Cellular Biology 23: 8084–8091

- 528 Wong, K.F., Luk, J.M., Cheng, R.H., Klickstein, L.B., Fan, S.T., 2007. Characterization of
- 529 two novel LPS-binding sites in leukocyte integrin β A domain. FASEB J. 21, 3231-3239.

530	Wong, M.K., Ozaki, H., Suzuki, Y., Iwasaki, W., Takei, Y. 2014. Discovery of osmotic
531	sensitive transcription factors in fish intestine via a transcriptomic approach. BMC
532	Genomics 15:1134. doi: 10.1186/1471-2164-15-1134.
533	Wu, X.M., Wang, H.Y., Li, G.F., Zang, B., Chen, W.M., 2009. Dobutamine enhances
534	alveolar fluid clearance in a rat model of acute lung injury. Lung 187, 225–231.
535	Yokoi, H., Kobayashi, T., Tanaka, M., Nagahama, Y., Wakamatsu, Y., Takeda, H., &
536	Ozato, K. 2002. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified
537	function of Sox9 in gonad differentiation. Molecular Reproduction and Development:
538	Incorporating Gamete Research, 63(1), 5-16
539	Zapater, C., Chauvigné, F., Norberg, B., Finn, R. N., Cerdà, J. 2011. Dual
540	neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained
541	and relaxed traits controlling channel function during meiosis resumption in teleosts.
542	Molecular biology and evolution, 28(11), 3151-3169.
543	Zapater, C., Chauvigné, F., Tingaud-Sequeira, A., Finn, R. N., Cerdà, J. 2013. Primary
544	oocyte transcriptional activation of aqp1ab by the nuclear progestin receptor determines
545	the pelagic egg phenotype of marine teleosts. Developmental biology, 377(2), 345-362.
546	Zardoya, R., 2005. Phylogeny and evolution of the major intrinsic protein family. Biol. Cell
547	97, 397-414.

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

549 Figure legends

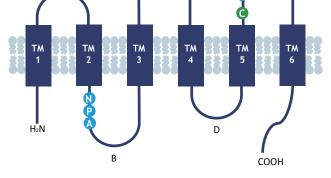
550

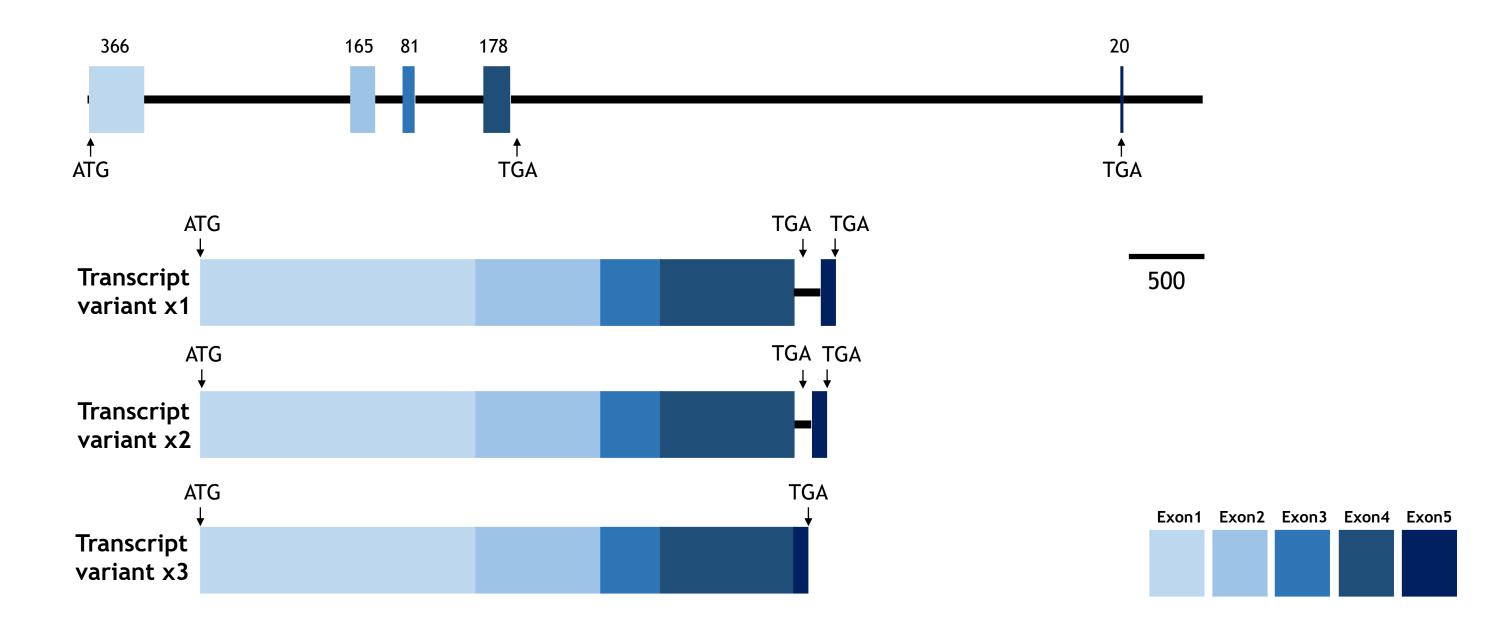
- 551 Figure 1. Nucleotide alignment of AQP1b variant tv1, tv2, and tv3 cDNA sequences.
- 552 Nucleotide gaps are represented by dashes (-).

554	Figure 2. M	ultiple amino a	acid sequence	alignments and	transmembrane	topology prediction
	0	··· • • • • • • • • • • • • • • • • • •				

- of AQP1b transcript variants. Asterisks and hyphens indicate identical residues and gaps
- 556 introduced for optimum alignments, respectively. Two NPA motifs are shown in bold light
- 557 blue. The locations of 6 putative membrane–spanning domains are shown by navy boxes
- by above the alignment. A. japonica: Japanese eel Anguilla japonica; A. anguilla: European eel
- 559 Anguilla anguilla; M. mizolepis tv1, tv2, tv3: mud loach Misgurnus mizolepis; D. rerio:
- 560 zebrafish Danio rerio; S. salar: Atlantic salmon Salmo salar; S. aurata: gilt-head sea bream
- 561 Sparus aurata; S. senegalensis: Senegalese sole Solea senegalensis; I. punctatus: channel
- 562 catfish Ictalurus punctatus; H. fossilis: stinging catfish Heteropneustes fossilis; O. mordax:
- 563 rainbow smelt Osmerus mordax; A. schlegelii: blackhead seabream Acanthopagrus schlegelii;
- 564 D. labrax: European bass Dicentrarchus labrax; T. nigroviridis: green pufferfish Tetraodon
- 565 nigroviridis; F. heteroclitus: mummichog Fundulus heteroclitus; H. hippoglossus: Atlantic
- 566 halibut *Hippoglossus hippoglossus*; O. dancena: marine medaka Oryzias dancena; E. Lucius:
- 567 northern pike *Esox Lucius*.

568	Figure 3. Gene organization and mRNA variants of the aquaporin 1ab gene in mud loaches.
569	mmAQP1b genes contain 5 exons. Each exon is represented by a different color and by
570	Roman numerals. The mRNA transcript length is listed on each exon.
571	
572	Figure 4. Tissue distribution of mmAQP1b in adult tissues. Abbreviations: brain (Br), eye
573	(Ey), fin (Fi), gill (Gi), heart (He), intestine (In), kidney (Ki), liver (Li), muscle (Mu), spleen
574	(Sp), ovary (Ov), and testis (Te).
575	
576	Figure 5. Expression of mmAQP1b mRNA during embryogenesis and larval development.
577	Variant transcripts in different tissues under abiotic stress. Data are represented as means \pm
578	SDs. Letters indicate significant difference (one-way ANOVA).
579	
580	Figure 6. Transcriptional responses of mmAQP1b to acute metal exposure in different tissues.
581	AQP1b expression in metal-exposed groups are expressed as fold changes relative to the non-
582	exposed control group. Data represent means \pm SDs. Different letters indicate significant
583	differences, as analyzed by ANOVA followed by Duncan's multiple range tests.
584	

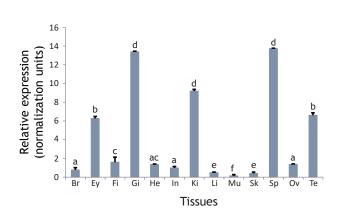

- 585 Figure 7. Differential modulation of mmAQP isoforms by immunostimulant exposure. Data
- represent means \pm SDs, with letters indicating significant differences, as analyzed by
- 587 ANOVA followed by Duncan's multiple range tests.


MM_AQP1b_x1 TTCAGGGCCATCATGTATATTGTTGCTCAGATGTTAGGGGGCTGTTGTGGCAAGTGGCATCATGTTCAAAGTTAGCCCGGACCCTGAATCAACACTGGGGCTTAATATGCTGAGTCGCGGTGTAAAAAACA MM_AQP1b_x2 TTCAGGGCCATCATGTATATTGTTGCTCAGATGTTAGGGGGCTGTTGTGGCAAGTGGCATCATGTTCAAAGTTAGCCCGGACCCTGAATCAACACTGGGGCTTAATATGCTGAGTCGCGGTGTAAAAAACA MM_AQP1b_x3 TTCAGGGCCATCATGTATATTGTTGCTCAGATGTTAGGGGGCTGTTGTGGCAAGTGGCATCATGTTCAAAGTTAGCCCGGACCCTGAATCAACACTGGGGCTTAATATGCTGAGTCGCGGTGTAAAAAACA

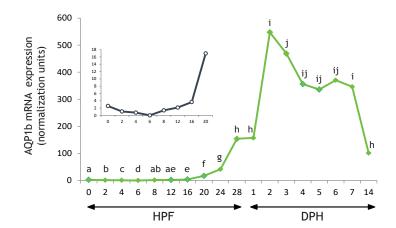
MM_AQP1ab_x1 GGACACCTGGTAGCTATCAGTTACACCGGGTGCGGTATCAATCCTGCTCGATCTTTCGGACCAGCTGTTGTTCTTGAAGCATTCAAAAACCAGTGGATATACTGGATTGCGCCCTTGACCGGAGGGGTG MM_AQP1ab_x2 GGACACCTGGTAGCTATCAGTTACACCGGGTGCGGTATCAATCCTGCTCGATCTTTCGGACCAGCTGTTGTTCTTGAAGCATTCAAAAACCAGTGGATATACTGGATTGCGCCCTTGACCGGAGGGGTG MM_AQP1ab_x3 GGACACCTGGTAGCTATCAGTTACACCGGGTGCGGTATCAATCCTGCTCGATCTTTCGGACCAGCTGTTGTTCTTGAAGCATTCAAAAACCAGTGGATATACTGGATTGCGCCCTTGACCGGAGGGGTG

Lee et al., Fig.1

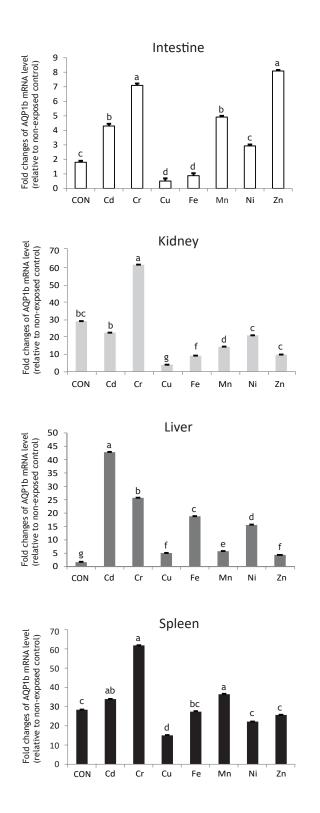
		TM1		TM2	TM3		TM4		
Α.	japonica	MTRELKTWAFWRAVLAELLGMTLFIFIG	GISAAVGD-KDTGPQQEVKVA	LSFGLAIATLAQSLCHVSGAHL <mark>NPA</mark> I	TLATLISCQISVFRAVFYILAQMLGAVF.	ASGIMYGVRPNTTDSLGVNKLN-0	GVAVAQGFGIEFLATFQLVLCFIATTDKRR		
А.	anguilla	MTRELKTWAFWRAVLAELLGMTLFIFVG	GISAAVGD-KDTGPQQEVKVA	LSFGLAIATLAQSLCHVSGAHL NPA I	TLATLISCQISVFRAVFYILAQMLGAVF.	ASGIVYGVRPNTTDSLGVNKLN-	GVAVAQGFGIEFLATFQLVLCFIATTDKRR		
М.	. mizolepis x1	MAREFKSWSFWRAVLAEFVGMTLFIFIG	GIASAIGNKHNKFPDQEVKVA	LAFGLAIATLAQSLGHISGAHL <mark>NPA</mark> V	TVGVLVSCQISFFRAIMYIVAQMLGAVV.	ASGIMFKVSPDPESTLGLNMLSR	GVKTGQAFAIELFATFQLVLCVLATTDKRR		
_	mizolepis x2						GVKTGQAFAIELFATFQLVLCVLATTDKRR		
М.	. mizolepis x3	MAREFKSWSFWRAVLAEFVGMTLFIFIG	JIASAIGNKHNKFPDOEVKVA	LAFGLAIATLAOSLGHISGAHLNPAV	TVGVLVSCOISFFRAIMYIVAOMLGAVV.	ASGIMFKVSPDPESTLGLNMLSR	GVKTGQAFAIELFATFQLVLCVLATTDKRR		
	rerio						GVKVGOGFAIELFTTFOLVLCALATTDKNR		
	salar		-	~			KISVGOGFVIELLTTFOLVLCVIAVTDKRR		
	aurata			~			RVTKAQGFIIEFLATLQLVLCVIAVTDKRR		
	senegalensis						GVSPSOGFAIEFLLTFOLVLCVLAVTDKRR		
	ounctatus		-	~			GVSLGOGFGIEFLLTLOLVLCFLATTDKRR		
	fossilis	~	-	~			~ ~		
	,	-MKELQTLVFWRAVFAELIGTTMFVFYGVCAAVGNGNSSYPDHEVKVALAFGLAVAILSQSLCHVSGAHLNPAVALAMLVSCQVSVCRALWYVVAQVTGAVIASGIVLGVRPSVVESLGPNKLN-GVSPGQGFGIEFLLTLQLVLCFLATMDKRR -MKELKSKAFWRAVLAELVGMTLFIFLSITAAVGNSNNDKPDOEVKVALAFGLSIATLAOSLGHISGAHLNPAVTLGLLASCOISLLKAVMYIVAOMLGAAVASGIVYGCTKGDSLGLNTINSDISAGOGVGIELLATFOLVLCVIAVTDKRR							
	. mizolepis		-	~			~ ~		
	rerio						DISAGQGVGIELLATFQLVLCVLATTDKRR		
	mordax		-	~			GVTPGQGVGIELLATFQLVLCVIAVTDKRR		
	schlegelii		-	~	~ ~ ~		GVTPSQGVGIELLATFQLVLCVIAVTDKRR		
	labrax		-	-			NVTPSQGVGIELLATFQLVLCVIAVTDKRR		
	nigroviridis		-	~			NVTPSQGVGIELLATFQLVLCVIAVTDKRR		
	heteroclitus						GVSPSQGVGIELLATFQLVLCVIAVTDKRR		
Н.	hippoglossus	-MKEIKSKDFWRAVLAELVGMTLFIFLS	SIASAIGNKNNTSPDQEVKVS	LAFGLAIATLAQSLGHISGAHL <mark>NPA</mark> V	TLGMLASCQISVFKAVMYIVAQLLGSSL	ACGIVFGARPSDTAALGLNTLN-	GVTPSQGVGIELLATFQLVLCVIAVTDKRR		
О.	dancena	-MREFKSKDFWRAVLAELVGMTFFIFLS	SISAAIGNPNNANPDQEVKVS	LTFGLAIATLAQSLGHISGAHL NPA V	TLGMLASCQISVFKAVMYIVAQMLGSAL	ASGIVYGTRPSNSSALGLNSLN-	GITPSQGVGIELLATFQLVLCVIAVTDKRR		
Ε.Ι	lucius	-MRELKSKAFWRAILAEFVGMTMFIFLS	SISAAIGNSNNSNPDQEVKVS	LTFGLAIATLAQSLGHISGAHL NPA V	TLGMLASCQISVFKGVMYIVAQMLGSAL	ASGIVYGTRQEGNDALGLNSLN-	GITASQGVGIELLATFQLVLCVIAVTDKRR		
	japonica anguilla				GDLTERLKVLCYGSEDAPAQEPLLEGCS. GDLTERLKVLCYGSEDAPAQEPLLEGCS.	-			
		SDVTGSAPLAIGLSVGLGHLAAMRYTG	GTNPARSFGPAVVMRAFENH	WVYWIGPISGGLVAALVYDYLLHPKL	GDLTERLKVLCYGSEDAPAOEPLLEGCS	AAOWTKG 262			
М.	. mizolepis x1	TDVMGSAPLAIGLSVGLGHLVAISYTG	GINPARSFGPAVVLEAFKNQ	WIYWIAPLTGGVAAALVYDFLLYPKK	EGFGRRMNVLKSGEEPESSATEPLIEPR	TPRSGSGQWPRP 269			
М.	. mizolepis x2	TDVMGSAPLAIGLSVGLGHLVAISYTG	GINPARSFGPAVVLEAFKNQ	WIYWIAPLTGGVAAALVYDFLLYPKK	EGFGRRMNVLKSGEEPESSATEPLIEPR	TPRSGSGQWPRP 269			
М.	mizolepis x3	TDVMGSAPLAIGLSVGLGHLVAISYTG	GI NPA RSFGPAVVLEAFKNQ	WIYWIAPLTGGVAAALVYDFLLYPKK	EGFGRRMNVLKSGEEPESSATEPLIEPR'	TPRSGSGGLGDE 269			
D.	rerio	TDVSGSAPLAIGLSVGLGHLVAISYTG	GINPARSFGPAVVLESFKNH	WIYWIAPMCGGVAAALIYDFLLFPKR	EALRKRMNVLKGTADPDPSATEALIEPR	SARSGSGQWPRP 269			
S. 5	salar	GDVTGSAPLAIGLSVGLGHLAAISFTG	GINPARSFGPAVIYKQFGDH	WVYWLGPMCGGVAAALIYDFLLYPRS	DDFSKRRNVLVSGPDKENDAPEEGS	SSPGTSQWPR 262			
S. (aurata	SDVKGSAPLAIGLSVGLGHFAAISFTG	GINPARSFGPALIRSKMENH	WVYWLGPMCGGIAAALIYDFLLCPRA	QNFRTRRNVLLNGSEDEDAGFDAPREGN	SSPGPSQGPSQWPKH 267			
S. 5	senegalensis	-DVAGFAPLAIGLSVGLGHLAGIRYTG	GINPARSFGPAIILQSFDDH	WVYWAGPMSASVVAALLYNYVLTSSH	ESFREKTRALFCGGSSPESENREPLLEH	VEDVKWSKEPGV 266			
I. p	ounctatus	ENITVSAPFALGLSVVVGHLAGFSYTG	GMNPARSFGPALVSVEFEHH	WVFWAGPLCGGIVAALLYDFVLFPRG	PDPIGRFKVLCHGVEAAAAELEPLLGAA	GGAEGDAPVTEDAKP 271			
H.	fossilis	D-MAGAAPFAIGLSVVMGHLAGISYTG	GINPARSFGPALVSMEFEHH	WVYWAGPLCGGVIAALLYDFILFPRG	SDFLARLKVLCHGAEALDAETEPLLEGG	APEAQWEKA 263			
-	mizolepis				DDFPDRMRVLVSGPPTDYDVNGTDDPPA				
	rerio	RDVSGSAPLAIGLSVCLGHLTAISFTG	GINPARTFGPAMIRLDFANH	WVYWVGPMCGGVAAALIYDFLLYPKM	DDFPERVRVLVSGPATDYEVNGTDDPPA	VEMSSK 260			
	mordax				DDFPERIKILVSGPVGDYDVNGADDTTA				
	schlegelii				DDFPERMKVLVSGPVGDYDVNGGNDATA				
	labrax				DDFPERMKVLVSGPVGDYDVNGGNDATT				
	nigroviridis				DDLSERVKVLVSGPVGDYDVNGGNDTTT				
	heteroclitus				DDFPERMKVLVSGPVGDYDVNGGNDATT				
	hippoglossus				DDFPERMKVLVSGPVGDYDVNGGNETTN		C		
	dancena				DDFPDRMKVLVSGPVGDYDVNGGNESAT		Č		
	lucius				DDFPERMKVLVSGPVGDYDVNG-EETAA				
E. 1	iucius	** * **** ** ***	* **** ****	* * * * ** * *	*	A 200 A	() 🕑		
						\frown			
							1 I (9		



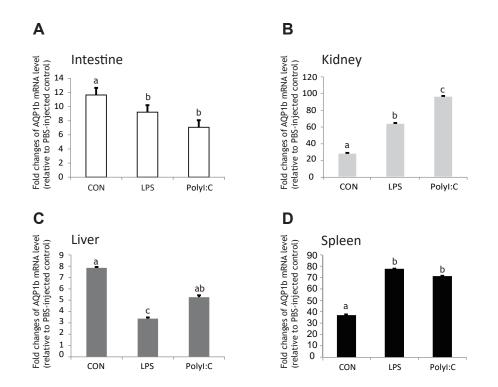
Lee et al., Fig.3


bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Lee et al., Fig. 2



bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Lee et a l., Fig. 5

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Lee et al., Fig. 6

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459705; this version posted September 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Lee et al., Fig. 7

