1 2 3	The genome of the endangered <i>Macadamia jansenii</i> displays little diversity but represents an important genetic resource for plant breeding.
4	
5 6 7	Priyanka Sharma ¹ , Valentine Murigneux ² , Jasmine Haimovitz ³ , Catherine J. Nock ⁴ , Wei Tian ^{5,6} , Ardashir Kharabian Masouleh ¹ , Bruce Topp ¹ , Mobashwer Alam ¹ , Agnelo Furtado ¹ and Robert J. Henry ^{1,7}
8	
9	
10 11	¹ Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072 Australia
12	² Genome Innovation Hub, University of Queensland, Brisbane 4072 Australia
13	³ Dovetail Genomics, 100 Enterprise Way, Scotts Valley, CA 95066
14 15 16	⁴ Southern Cross Plant Science, Southern Cross University, Military Road, NSW, Lismore, 2480, Australia
17	⁵ BGI-Shenzhen, Shenzhen 518083, China
18	⁶ BGI-Australia, 300 Herston Road, Herston QLD 4006, Australia
19 20	⁷ ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072 Australia

21 Summary

Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions 22 23 of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most 24 recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as 25 26 a model for testing sequencing methods using a wide range of long read sequencing techniques. Here we report a chromosome level genome assembly, generated using a combination of 27 Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 58 28 29 Mb and a total 758 Mb genome assembly size of which 56% is repetitive. Completeness assessment revealed that the assembly covered 96.9% of the conserved single copy genes. 30 Annotation predicted 31,591 protein coding genes and allowed the characterization of genes 31 encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism and anti-microbial 32 proteins. Re-sequencing of seven other genotypes confirmed low diversity and low 33 heterozygosity within this endangered species. Important morphological characteristics of this 34 species such as small tree size and high kernel recovery suggest that *M. jansenii* is an important 35 source of these commercial traits for breeding. As a member of a small group of families that 36 are sister to the core eudicots, this high-quality genome also provides a key resource for 37 evolutionary and comparative genomics studies. 38

39

Key words: Proteaceae, endangered species, genome sequencing, genome assembly, genome
diversity, wild species.

42 Introduction:

Macadamia is a recent domesticate with a complex domestication history (Peace, 2005). The 43 four currently recognised *Macadamia* species are endemic to the central coast of eastern 44 Australia (Mast et al., 2008). However, macadamia was first domesticated in Hawaii around 45 100 years ago, with most of the global production based upon the Hawaiian domesticated 46 47 germplasm (Hardner, 2016). Macadamia is a member of the Proteaceae family, one of a group of families that are a sister to the core eudicots (Gross and Weston, 1992; Christenhusz and 48 Byng, 2016). Macadamia is the first Australian native plant that has been widely grown as a 49 food plant (Peace et al., 2013). All of the Hawaiian macadamia cultivars has been reported to 50 be based upon only a few or possibly even a single tree from Australia (Nock et al., 2019). This 51 resulting narrow gene pool makes it susceptible to disease and climate change, whereas the 52 unexploited wild macadamia germplasm of Australia provides an opportunity for great 53 improvement of this newly domesticated crop. Despite a rapid international increase in 54 macadamia production, breeding is restricted because of lack of genomic information (Topp et 55 al., 2019). 56

Macadamia is the most widely grown Australian native food crop (Peace et al., 2013). 57 Macadamia production was valued at USD 1.17 billion in 2019 and production is expected to 58 59 grow at a rate of 9.2% from 2020 to 2027 (https://www.grandviewresearch.com/industry-60 analysis/macadamia-nut-market). Among the macadamia species, M. integrifolia, the species from which most of the domesticated gene pool is derived (Hardner, 2016), was the first 61 genome to be sequenced (Nock et al., 2016). This genome, of cultivar HAES 741, has 62 63 supported initial efforts at genome based breeding (O'Connor et al., 2018) and has recently been upgraded to chromosome level with a contig N50 of 413 Kb. The other species that has 64 been a contributor to domesticated germplasm, M. tetraphylla, has been sequenced with an 65 N50 of 1.18 Mb (Niu et al., 2020). 66

67 All species are rare in the wild but *M. jansenii* is endangered and is only found in a limited area to the north-west of Bundaberg, Queensland (Shapcott and Powell, 2011; Hayward et al., 68 2021). Macadamia jansenii is endangered under the Australian (EPBC) Act and critically 69 70 endangered under the Queensland (Qld Nature Conservation Act) legislation (Gross and Weston, 1992). Due to the expected low heterozygosity associated with the extremely small 71 population size, this species has been used as a model to compare available genome sequencing 72 73 technologies (Murigneux et al., 2020; Sharma et al., 2021). Macadamia jansenii has been sequenced (Murigneux et al., 2020), using three long read sequencing technologies, Oxford 74 75 Nanopore (PromethION), PacBio (Sequel I) and BGI (Single-tube Long Fragment Read). The genome was recently updated by sequencing using the PacBio HiFi sequencing (Sharma et al., 76 2021). Here, we report chromosome level assembly of the same genotype using Hi-C and 77 annotation of the genome. This provides a platform that allows analysis of key genes of 78 importance in macadamia breeding, a reference genome in this group of angiosperms and 79 insights into the impact of rarity on plant genomes. 80

This high quality reference genome also provides a platform for analysis of three unique 81 attributes of macadamia, the high levels of unusual fatty acids (Hu et al., 2019b), high 82 cyanogenic glucoside content, (Nock et al., 2016) and the presence of a novel anti-microbial 83 84 peptide (Marcus et al., 1999). The fatty acid, palmitoleic acid (16:1) is found in large amounts 85 in macadamia and has been considered to have potential human health benefits (Solà Marsiñach 86 and Cuenca, 2019; Song et al., 2018). Cyanogenic glycosides in plants are part of their defence against herbivores. However, the highly bitter nuts of *M. jansenii* are not edible and use of this 87 species in macadamia breeding will require selection to ensure high levels of cyanogenic 88 89 glycosides are avoided. Identification of the associated genes could assist by providing molecular tools for use in breeding selection. A novel antimicrobial protein was reported in 90 the kernals of *M. integrifolia* (Marcus et al., 1999). These small antimicrobial proteins were 91

92 found to be produced by processing of a larger pre-cursor protein. As fungal infection and 93 insect herbivores are major hurdles in macadamia production (Dahler et al., 1995; Nock et al., 94 2016; Marcus et al., 1999), retention of the antimicrobial protein and cyanogenesis in some 95 parts of the plant may be important. Analysis of candidate genes for these traits may assist in 96 understanding and manipulating in macadamia breeding.

97 **Results**

98 Genome sequencing and assembly

99 A pseudo-molecule level genome assembly of Pac Bio contigs (Murigneux et al., 2020) was 100 produced using Hi-C. The estimated genome size of *M. jansenii* was 780 Mb (Murigneux et al., 2020) and the size of the final Hi-C assembly is 758 Mb comprised of 219 scaffolds with 101 102 an N50 of 52Mb (Table 1). Of this 97% was anchored to the 14 largest scaffolds representing the 14 chromosomes (Figure S1, Table S1). Comparison of the PacBio assembly with the Hi-103 C chromosome assembly shows the number of scaffolds decreased from 762 to 219 and the 104 length of the longest scaffold increased 6-fold (Table 1). The L50 reduced from 135 to 7 105 scaffolds and the N50 was improved from 1.58 Mb to 52 Mb. 106

107 Assembly completeness and repeat element analysis

The completeness of the *M. jansenii* assembly was assessed by Benchmarking Universal
Single-Copy orthologs (BUSCO) (Simão et al., 2015). This analysis revealed 96.9% complete
genes (single and duplicated) in the Hi-C assembly (Table 1). A total of 423.6 Mb, representing
55.9% of the Hi-C assembly was identified as repetitive (Table 2). Class I TE (Transposable
Elements) repeats were the most abundant repetitive elements representing 30% of the genome,
including LTRs (24%), LINE (5.67%) and SINE (0%) and Class II TE repeats were 1.56%.

115 Structural and functional annotation

116 A total of 31,591 genes were identified in the repeat-masked Hi-C M. jansenii genome using 117 an homology-based and RNA assisted approach. The average length of the genes was 1,368 bp (Table 3). Of a total of 31,591 transcripts, only 22,500 sequences (71%) were annotated by 118 BLAST2GO (Figure S2). The transcripts were functionally annotated using Gene Ontology 119 120 (GO) terms to assess the potential role of the genes in the *M. jansenii* genome. The most abundant M. jansenii specific gene families were organic cyclic and heterocyclic compound 121 among the molecular function; organic and cellular metabolic among the biological process; 122 and protein-containing binding membrane and intracellular organelle among the cellular 123 component (Figure S3). The comparison of the three Macadamia genomes, assembled so far, 124 showed *M. jansenii* has the highly continuous assembly with highest number of BUSCO genes 125 (Table 4). 126

127 Anti-microbial genes

Antimicrobial proteins have been reported in *M. integrifolia* (Marcus et al., 1999). In addition 128 to antimicrobial properties these seed storage proteins are homologous to vicilin 7S globulins 129 130 and have been identified as putative allergens (Rost et al., 2020; Rost et al., 2016). A cDNA sequence, from *M. integrifolia*, encoding these proteins, MiAMP-2, has been reported to 131 contain four repeat segments, with each segment comprised of cysteine rich motifs (C-X-X-X-132 133 C-(10 to12) X-C-X-X-C), where X is any other amino acid residue (Marcus et al., 1999). Blast analysis identified homologues in the *M. jansenii* genome (Figure S4). The ANN01396 134 transcript from *M jansenii*, also showed four repeat segments of cysteine motifs with the same 135 136 structure as found in MiAMP-2 (Figure 1A). Comparison of the translated protein sequences 137 indicated a high level of homology with only 28 differences in the 665 aa sequence (Figure **1B**). The *M. jansenii* sequence provides the first genomic sequence for this novel anti-microbial
gene and reveals the presence of an intron in the 5' UTR (Figure S5).

140 Cyanogenic glycoside genes

M. jansenii has bitter nuts, presumably because of the presence of cyanogenic glycosides (Nock
et al., 2016; Castada et al., 2020). Analysis of genes of cyanogenic glycoside metabolism
detected a total of 76 putative genes in the *M. jansenii* genome. These genes were distributed
throughout the genome (Figure 2(A)). The largest number of these genes (22) are encoded by
UGT85 which is responsible for conversion of Hydronitrile to cyanogenic glucoside. In
contrast only 14 genes for Cyp 79, the first gene in the pathway, was found (Figure 2(B) &
Table S8).

148 Fatty acid metabolism genes

This study identified the key enzymes involved in fatty acid biosynthesis: elongases (e.g., KAS,
FATA, FATB) and desaturases (e.g., SAD). A total of 44 of these genes were found in the *M*. *jansenii* genome. Stearoyl-ACP desaturases (SAD) which convert 18:0 to 18:1 was found to
be abundant with 17 genes present (Figure 2(A) & Table S7).

153

154 Heterozygosity and genetic diversity

To study the genetic diversity within the species, re-sequencing of seven other individuals was performed. A total of 166 M to 167 M reads of 150 bp in length were obtained. This represents a coverage of around 32 X of the *M. jansenii* genome. The seven accessions analysed had between 5.4 and 7.0 million variants relative to the reference genome (Table 5). Most of these were SNPs with less than 600,000 indels in all genotypes. Most SNPs were heterozygous with approximately 1 million or less homozygous SNP variants in each individual. The level of SNP heterozygosity for the 8 genotypes (including the reference) was found to be in the range of
0.26% to 0.34% with an average of 0.31 % (Table 5). The genotypes varied in their divergence
from the reference with most unique variants being heterozygous and only 85,000 to 165,00
unique homozygous SNPs being found in an individual and not present in the other seven
genotypes.

166

167 Discussion

168 A major constraint to the use of *M. jansenii* for commercial breeding is the risk of an inedible kernel due to high levels of toxic cyanogenic glycosides. Cyanogenic glycosides have been 169 observed in all the four species of Macadamia. However, the concentration varies at different 170 171 developmental stages (Castada et al., 2020). Even the edible cultivars derived from M. *integrifolia* have genes involved in the cyanogenic glycoside pathway (Nock et al., 2016). 172 However, cyanogenic glycosides levels are extremely low in the kernel of the commercially 173 important species *M. integrifolia* and *M. tetraphylla* (Dahler et al., 1995). The high level of 174 bitterness in the seeds of *M. jansenii* may be associated with high concentrations of cyanogenic 175 176 glycosides and large numbers of genes for their biosynthesis found in this study. Knowledge 177 of these genes will support efforts to avoid their transfer to domesticated Macadamia when using *M. jansenii* as a source of other desirable genes. 178

Plants may produce antimicrobial proteins as part of their defence against microbial attack. Macadamia seed might have antimicrobial proteins that protect them against attack when germinating in the warm and moist rainforest environment. A new family of antimicrobial peptides, MiAMP-2, was discovered in the seeds of *M. integrifolia* (Marcus et al., 1999). Although only a single gene was found in the *M. jansenii* genome, it encoded a protein with four domains that correspond to the previously reported antimicrobial peptides suggesting that

four copies of the peptide could be derived from each translation of this gene. This is the first report of a gene structure for the macadamia anti-microbial peptide with a single intron. This gene has potential for wide use as an antimicrobial protein in plant defence.

Macadamia oil has a unique composition being 75% fat, 80% of which is monounsaturated 188 e.g., oleic oil (C18:1) 55-67%, followed by palmitoleic acid (C16:1) 15-22% (Hu et al., 2019a; 189 Curb et al., 2000; Aquino-Bolaños et al., 2016). The results of analysis of the genes of lipid 190 metabolism in the *M. jansenii* genome are consistent with this fatty acid profile. The number 191 of SAD genes which are responsible for conversion of stearoyl-ACP (18:0) to oleate (18:1) 192 was found to be higher in number than the other genes in these pathways and may explain the 193 desirable high oleic content of macadamias. Retention of these genes will be important in 194 breeding. This species may provide a source of genes for manipulation of lipids in other food 195 crops. 196

This rare species has a very small population size explaining the low heterozygosity (Ceballos 197 198 et al., 2018). The heterozygosity was less than one third that of the more widespread, M. integrifolia, reported to have a heterozygosity of 0.98% (Topp et al., 2019; Nock et al., 2020). 199 This analysis indicates the importance of conserving the diversity of this endangered species 200 and retaining the unique alleles that may be useful in breeding. *M. jansenii* is a small tree with 201 a high kernel recovery and both of these traits are key for macadamia improvement. Sustainable 202 203 intensification of production will be facilitated by the breeding of smaller trees and improved kernel recovery is central to kernel yield. Genome level analysis will support field studies for 204 the conservation of this species (Shapcott and Powell, 2011) and molecular analysis of diversity 205 206 in support of breeding (Mai et al., 2020).

207 The use of *M. jansenii* as a model in testing genome sequencing and assembly methods
208 (Murigneux et al., 2020; Sharma et al., 2021) is further enhanced by the chromosome level

209 assembly presented here. This is currently the most complete genome sequence available for a macadamia and any member of the more than 1,660 Proteaceae species (Christenhusz and 210 Byng, 2016) making a useful contribution to the goal of sequencing plant biodiversity (Lewin 211 et al., 2018). The Proteaceae belongs to the basal eudicot order Proteales, a sister group to 212 most eudicots (Chanderbali et al., 2016: Drinnan et al., 1994). Among the basal eudicots there 213 Available genomes include; Aquilegia coerulea 214 are few well characterized genomes. 215 (Ranuncules) (Filiault et al., 2018), Papaver somniferum (Ranuncules) (Pei et al., 2021), (Proteales) (Ming et al., 2013), 216 Nelumbo nucifera Trochodendron aralioides 217 (Trochodendrales) (Strijk et al., 2019), Tetracentron sinense (Trochodendrales) (Liu et al., 2020). The *M. jansenii* genome provides a valuable contribution to comparative genomics in 218 this group of flowering plants. The chromosome level assembly with an N50 scaffold length 219 220 of 58 Mb and 96.9% of BUSCO genes compares favourably with those available for other endangered species e.g Acer vangbiense with N50 45 Mb and 90.5% BUSCO genes (Giordano 221 et al., 2017), Ostrya rehderiana N50 2.31 Mb (Yang et al., 2018) and Nyssa yunnanensis with 222 N50 of 985 Kb and BUSCO score of 90.5% (Weixue et al., 2020). 223

224

225 Experimental procedures

226 **Plant material**

Fresh leaf tissue of *M. jansenii* was collected from *ex-situ* collections of trees at Nambour and
Tiaro (three accessions were from the Maroochy Research Facility, Department of Agriculture
& Fisheries, Nambour, Queensland, Australia, accessions 1005, 1003 and 1002 and five from
Tiaro, Queensland, Australia, Accession #: 1161003, 1161005, 1161001a & 1161001b,
1161004). Fresh leaf tissue (fully expanded young flush) was collected and immediately frozen

by placing under dry ice and stored at -80°C until further processed for DNA and RNA
extraction.

234

235 DNA and RNA isolation

Leaf tissue was coarsely ground under liquid nitrogen using a mortar and pestle and further ground under cryogenic conditions into a fine powder using a Tissue Lyser (MM400, Retsch, Germany). All accessions were used for DNA isolation. DNA was extracted as per an established method (Furtado, 2014) with minor modification where phenol was excluded from the extraction method. DNA was extracted from 2-3 gm of leaf tissue and dissolved in up to 400 µl of TE buffer.

Accession no. 10051 was used for RNA isolation. RNA was extracted as per established methods (Rubio-Piña and Zapata-Pérez, 2011; Furtado, 2014). RNA was extracted from 2-3 gm of tissue, and treated with extraction buffer, chloroform and phenol/chloropform (1:1) in different steps, followed by further purification using DNase treatment from the Qiagen's RNeasy Mini kit). RNA quality and quantity were determined using A260/280 and A260/230 absorbance ratio (Nanodrop, Invitrogen USA) and RNA integrity measurements (Bioanalyser, Agilent technology, USA).

249

250 Chromosome level assembly

251 Chicago library sequencing and Sequencing

DNA was isolated as per an established method (Furtado, 2014). Then the library was prepared as described in Putnam et al., (2016). Briefly, ~500ng of HMW gDNA was reconstituted into chromatin *in vitro* and fixed with formaldehyde. Fixed chromatin was digested with DpnII, the 5' overhangs filled in with biotinylated nucleotides, and then free blunt ends were ligated. After ligation, crosslinks were reversed, and the DNA was purified from protein. Purified DNA was treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared to ~350 bp mean fragment size and sequencing libraries were generated using NEBNext Ultra enzymes and Illumina-compatible adapters. Biotin-containing fragments were isolated using streptavidin beads before PCR enrichment of each library. The libraries were sequenced on an Illumina HiSeqX platform to produce 213 million 2x150bp paired end reads, which provided 88.11 x physical coverage of the genome (1-100 kb pairs).

263

264 Dovetail Hi-C library preparation and sequencing

A Dovetail Hi-C library was prepared in a similar manner as described previously (Lieberman-265 266 Aiden et al., 2009). Briefly, for each library, chromatin was fixed in place with formaldehyde in the nucleus and then extracted. Fixed chromatin was digested with DpnII, the 5' overhangs 267 filled in with biotinylated nucleotides, and then free blunt ends were ligated. After ligation, 268 269 crosslinks were reversed, and the DNA purified from protein. Purified DNA was treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared to ~350 270 bp mean fragment size and sequencing libraries were generated using NEBNext Ultra enzymes 271 and Illumina-compatible adapters. Biotin-containing fragments were isolated using 272 streptavidin beads before PCR enrichment of each library. The libraries were sequenced on an 273 274 Illumina HiSeqX platform to produce 156 million 2x150bp paired end reads, which provided 3,601.74 x physical coverage of the genome (10-10,000 kb pairs). 275

276 Scaffolding the assembly with HiRise

The input *de novo* assembly, shotgun reads, Chicago library reads, and Dovetail Hi-C library reads were used as input data for HiRise, a software pipeline designed specifically for using proximity ligation data to scaffold genome assemblies (Putnam et al, 2016). An iterative analysis was conducted. First, Shotgun and Chicago library sequences were aligned to the draft input assembly using a modified SNAP read mapper (<u>http://snap.cs.berkeley.edu</u>). The separations of Chicago read pairs mapped within draft scaffolds were analyzed by HiRise to produce a likelihood model for genomic distance between read pairs, and the model was used to identify and break putative misjoins, to score prospective joins, and make joins above a threshold. After aligning and scaffolding Chicago data, Dovetail HiC library sequences were aligned and scaffolded following the same method. After scaffolding, shotgun sequences were used to close gaps between contigs.

288 **Re-sequencing**

To study the genetic diversity within the species, re-sequencing of the seven different 289 genotypes was performed on the DNBseq platform (Drmanac et al., 2010). The seven 290 291 Macadamia jansenii samples were selected randomly to represent diversity in the population. 292 A DNBseq library was prepared as follows. Briefly, genomic DNA (1µg) was randomly fragmented using a Covaris, magnetic beads were used to select fragments with an average size 293 294 of 300-400bp and DNA was quantified using a Qubit fluorometer. The Fragments were subjected to end-repair and 3' adenylated, adaptors were ligated to the ends of these 3' 295 adenylated fragments. Then the double stranded products were heat denatured and circularized 296 by the splint oligo sequence, the single strand circle DNA (ssCir DNA) was formatted as the 297 final library. the final library was then amplified to make DNA nanoball (DNB) which had 298 299 more than 300 copies of each molecule and the DNBs were loaded into the patterned nanoarray. Finally, pair-end 150 bases reads were generated by combinatorial Probe-Anchor Synthesis 300 (cPAS) (MGISEQ-2000). 301

302

303 RNA-sequencing

RNA sequencing was undertaken by Macrogen, South Korea. Total RNA was subjected to
ribosomal RNA depletion (Ribo zero plant) and then sequenced using Illumina Novaseq 600.
Data.

307

308 Genome assembly quality evaluation & Repetitive element evaluation

The completeness of the genome assembly was evaluated by checking the integrity of the protein coding genes in the Hi-C assembly using Benchmarking Universal Single-Copy Orthologs (BUSCO) (version v5.0.0) analysis with eudicot odb10 dataset with 2326 genes.

Repetitive elements in the Hi-C assembly were identified *de novo* and classified using RepeatModeler (version 2.0.1). The repeat library obtained from RepeatModeler was used to identify and mask the repeats in the Hi-C assembly file using RepeatMasker (Version 4.1.0).

315

316 Structural annotation and functional annotation

317 The prediction of the protein coding genes in the repeat masked genome was carried out using ab-initio and evidence-based approach. For ab-initio prediction, Dovetail staff used Augustus 318 (version 2.5.5) (Stanke et al., 2006) and SNAP (version 2006-07-28) (Johnson et al., 2008). 319 For evidence based approach, MAKER (Cantarel et al., 2008) was used. For training the ab-320 initio model for *M. jansenii*, coding sequences from *Malus domestica*, *Prunus persica* and 321 Arabidopsis thaliana were used using AUGUSTUS and SNAP. Six rounds of prediction 322 323 optimization were done with the package provided by AUGUSTUS. To generate the peptide evidence in Maker pipeline, Swiss-Prot peptide sequences from the UniProt database were 324 325 downloaded and used in combination with the protein sequences from *Malus domestica*, Prunus persica and Arabidopsis thaliana. To assess the quality of the gene prediction AED 326 scores were generated for each of the predicted genes as part of MAKER pipeline. Only those 327 genes which were predicted by both SNAP and AUGUSTUS were retained in the final gene 328

set. To generate the intron hints, a bam file was generated by aligning the RNAseq reads to the
genome using the STAR aligner software (version 2.7) and then bam2hints tool was used
within the AUGUSTUS. The predicted genes were further characterized for their putative
function by performing a BLASTx search against nr protein database (All non-redundant
GenBank CDS translations + PDB + SwissProt + PIR+ PRF), as part of annotations undertaken
by Dovetail and also by using OmicsBox Ver 1.3.11 (BioBam Bioinformatics, Spain).

335

336 Gene families

To identify the anti-microbial genes in the genome BLAST homology search was performed 337 to identity transcripts similar to the *M. integrifolia* antimicrobial cDNA (MiAMP2, GenBank: 338 AF161884.1) (Marcus et al., 1999). Then sequence alignment was undertaken using Clone 339 Manager ver 9.0 (SciEd, USA). Multiple Alignment was undertaken using a reference sequence 340 341 as indicated in the results and alignment parameter scoring matrix of Mismatch (2) Open Gap (4) and Extension-Gap (1). Genes involved in the metabolism of cyanogenic glycosides were 342 343 identified in the assembly by following a previously described approach (Nock et al., 2016), 344 using BLASTp (1E-5) and sequence homology. Similarly, genes of fatty acid metabolism were 345 identified following the same method.

346

347 Heterozygosity and genetic diversity analysis

The basic variant analysis (BVA) was performed using Qiagen CLC Genomics Workbench 21.0.4 (CLC bio, Aarhus, Denmark). BGI short read sequences of six genotypes (1003, 1002, 1161003, 1161005, 1161001a, 1161001b) and Illumina reads of one genotype (1005) of *M*. *jansenii* were mapped to the reference genome of Dovetail Hi-C assembly of *M. jansenii* (1005). Before mapping, the low-quality reads were removed from all the seven genotypes

using different CLC trimming parameters (0.05 and 0.01) and the best trimmed reads were
selected based upon the Phred score. Then the trimmed reads were mapped against the
reference sequence using three different settings: (1.0 LF, 0.95 SF; 1.0 LF, 0.90 SF and 1.0 LF,
0.85 SF), out of which the best mapping was selected and then it was passed through the BVA
workflow.

358

359 Accession numbers

360 The genome sequence reads, transcriptome sequences and genome assembly of *M. jansenii*

361 have been deposited under NCBI bioproject PRJNA694456.

362

363 Acknowledgements

This project was funded by the Hort Frontiers Advanced Production Systems Fund as part of the Hort Frontiers strategic partnership initiative developed by Hort Innovation, with coinvestment from The University of Queensland, and contributions from the Australian Government. We thank the Research Computing Centre (RCC), University of Queensland for support and providing high performance computing resources.

369

370 Author contributions

371 Contributions of authors were as follows: Designed the study and supervised the project: RJH,

AF, BT and MA. Collected sample: MA, BT, AF and PS. Management of germplasm: MA and

BT. DNA and RNA isolation: PS and AF. Data analysis and prepared the figures: PS and AF.

Bioinformatics analysis: PS, AF, VM, JH and AM. Drafted the manuscript: PS, AF, JH and

WT. Data deposition: PS. All authors edited and approved the final manuscript.

376 Short legends for Supporting Information

377	Table S1: Size of each scaffold and number of genes per scaffold
378	Table S2: SNP heterozygosity statistics in eight Macadamia jansenii accessions
379	Table S3: Genetic diversity statistics in eight Macadamia jansenii accessions
380	Table S4: Genotype-specific polymorphic SNP positions
381	Table S5: Topologically Associated Domains (TADs) analysis summary
382	Table S6: TAD statistics at different resolutions
383	Table S7: Location of fatty acid genes on pseudo-molecules
384	Table S8: Location of cyanogenic genes on pseudo-molecules
385	Figure S1: Linkage density histogram of Hi-C assembly of <i>M. jansenii</i> genome
386	Figure S2: BLAST2GO sequence similarity search
387	Figure S3: Gene ontology (GO) analysis by BLAST2GO
388	Figure S4: Alignment of the vicilin-like antimicrobial-peptide transcript from <i>M</i> .
389	integrifolia and M. jansenii
390	Figure S5: Alignment of anti-microbial CDS sequence of <i>M. integrifolia</i> against the <i>M</i> .
391	jansenii transcript sequence
392	Figure S6: Frequency graph of AED scores.

393 **References**

- Aquino-Bolaños, E. N., Mapel-Velazco, L., Martín-del-Campo, S. T., Chávez-Servia, J. L., Martínez, A. J.
 & Verdalet-Guzmán, I. 2016. Fatty acids profile of oil from nine varieties of Macadamia nut.
 International Journal of Food Properties, 20(6), pp 1262-1269.
- 397
- Cantarel, B. L., Korf, I., Robb, S. M., Parra, G., Ross, E., Moore, B., Holt, C., Sanchez Alvarado, A. &
 Yandell, M. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model
 organism genomes. Genome Res, 18(1), pp 188-96.
- 401
- Castada, H. Z., Liu, J., Ann Barringer, S. & Huang, X. 2020. Cyanogenesis in Macadamia and Direct
 Analysis of Hydrogen Cyanide in Macadamia Flowers, Leaves, Husks, and Nuts Using Selected
 Ion Flow Tube-Mass Spectrometry. Foods, 2020, 9, 174.
- 405
- Christenhusz, M. J. M. & Byng, J. W. 2016. The number of known plants species in the world and its
 annual increase. Phytotaxa, 261(3), pp 201-217.
- 408
- Curb, J. D., Wergowske, G., Dobbs, J. C., Abbott, R. D. & Huang, B. 2000. Serum Lipid Effects of a
 High–Monounsaturated Fat Diet Based on Macadamia Nuts. Archives of Internal Medicine,
 160(8), pp 1154-1158.
- 412
- Dahler, J. M., McConchie, C. & Turnbull, C. G. N. 1995. Quantification of Cyanogenic Glycosides in
 Seedlings of Three Macadamia (Proteaceae) Species. Australian Journal of Botany, 43(6), pp
 619-628.
- 416
- 417 Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., 418 Nazarenko, I., Nilsen, G. B., Yeung, G., Dahl, F., Fernandez, A., Staker, B., Pant, K. P., Baccash, 419 J., Borcherding, A. P., Brownley, A., Cedeno, R., Chen, L., Chernikoff, D., Cheung, A., Chirita, 420 R., Curson, B., Ebert, J. C., Hacker, C. R., Hartlage, R., Hauser, B., Huang, S., Jiang, Y., 421 Karpinchyk, V., Koenig, M., Kong, C., Landers, T., Le, C., Liu, J., McBride, C. E., Morenzoni, M., 422 Morey, R. E., Mutch, K., Perazich, H., Perry, K., Peters, B. A., Peterson, J., Pethiyagoda, C. L., 423 Pothuraju, K., Richter, C., Rosenbaum, A. M., Roy, S., Shafto, J., Sharanhovich, U., Shannon, 424 K. W., Sheppy, C. G., Sun, M., Thakuria, J. V., Tran, A., Vu, D., Zaranek, A. W., Wu, X., 425 Drmanac, S., Oliphant, A. R., Banyai, W. C., Martin, B., Ballinger, D. G., Church, G. M. & Reid, 426 C. A. 2010. Human genome sequencing using unchained base reads on self-assembling DNA 427 nanoarrays. Science, 327(5961), pp 78-81.

428

Filiault, D. L., Ballerini, E. S., Mandáková, T., Aköz, G., Derieg, N. J., Schmutz, J., Jenkins, J., Grimwood,
J., Shu, S., Hayes, R. D., Hellsten, U., Barry, K., Yan, J., Mihaltcheva, S., Karafiátová, M.,
Nizhynska, V., Kramer, E. M., Lysak, M. A., Hodges, S. A. & Nordborg, M. 2018. The Aquilegia
genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic
chromosome with a unique history. eLife, 7(e36426).

435 436	Furtado, A. 2014. DNA extraction from vegetative tissue for next-generation sequencing. Cereal Genomics. Springer, pp 1-5.
437	
438 439 440	Giordano, F., Aigrain, L., Quail, M. A., Coupland, P., Bonfield, J. K., Davies, R. M., Tischler, G., Jackson, D. K., Keane, T. M. & Li, J. J. S. r. 2017. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. 7(1), pp 1-10.
441	
442 443	Gross, C. & Weston, P. H. J. A. S. B. 1992. Macadamia jansenii (Proteaceae), a new species from central Queensland. 5(6), pp 725-728.
444	
445 446	Hardner, C. 2016. Macadamia domestication in Hawai'i. Genetic Resources and Crop Evolution, 63(8), pp 1411-1430.
447	
448 449 450	Hayward, G., Nock, C., Shimizu, Y. & Shapcott, A. 2021. A Comprehensive approach to assessing the future persistence of the endangered rainforest tree, Macadamia jansenii (Proteaceae) and the impact of fire. Australian Journal of Botany 69, 285-300.
451	
452 453 454	Hu, W., Fitzgerald, M., Topp, B., Alam, M. & O'Hare, T. J. 2019a. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts. Journal of Functional Foods, 62(103520).
455	
456	
457 458 459	Johnson, A. D., Handsaker, R. E., Pulit, S. L., Nizzari, M. M., O'Donnell, C. J. & de Bakker, P. I. 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics, 24(24), pp 2938-9.
460	
461 462 463	Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J. & Dorschner, M. O. J. s. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. 326(5950), pp 289-293.
464	
465 466 467 468 469 470	 Liu, PL., Zhang, X., Mao, JF., Hong, YM., Zhang, RG., E, Y., Nie, S., Jia, K., Jiang, CK., He, J., Shen, W., He, Q., Zheng, W., Abbas, S., Jewaria, P. K., Tian, X., Liu, Cj., Jiang, X., Yin, Y., Liu, B., Wang, L., Jin, B., Ma, Y., Qiu, Z., Baluška, F., Šamaj, J., He, X., Niu, S., Xie, J., Xie, L., Xu, H., Kong, H., Ge, S., Dixon, R. A., Jiao, Y. & Lin, J. 2020. The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 21(1), pp 291.
471	
472 473 474	Mai, T., Alam, M., Hardner, C., Henry, R. & Topp, B. J. P. 2020. Genetic Structure of Wild Germplasm of Macadamia: Species Assignment, Diversity and Phylogeographic Relationships. 9(6), pp 714.

475	
476 477 478	Marcus, J. P., Green, J. L., Goulter, K. C. & Manners, J. M. 1999. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in Macadamia integrifolia kernels. Plant J. 1999, Plant J. 1999 Sep;19(6)), pp 699-710.
479	
480 481 482 483	Mast, A. R., Willis, C. L., Jones, E. H., Downs, K. M. & Weston, P. H. 2008. A smaller Macadamia from a more vagile tribe: inference of phylogenetic relationships, divergence times, and diaspore evolution in Macadamia and relatives (tribe Macadamieae; Proteaceae). Am J Bot, 95(7), pp 843-70.
484	
485 486 487 488 489 490 491 492 493 494 495	 Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, LT., Zhang, Q., Kim, MJ., Schatz, M. C., Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E., Ferguson, A. A., Narzisi, G., Nelson, D. R., Blaby-Haas, C. E., Gschwend, A. R., Jiao, Y., Der, J. P., Zeng, F., Han, J., Min, X. J., Hudson, K. A., Singh, R., Grennan, A. K., Karpowicz, S. J., Watling, J. R., Ito, K., Robinson, S. A., Hudson, M. E., Yu, Q., Mockler, T. C., Carroll, A., Zheng, Y., Sunkar, R., Jia, R., Chen, N., Arro, J., Wai, C. M., Wafula, E., Spence, A., Han, Y., Xu, L., Zhang, J., Peery, R., Haus, M. J., Xiong, W., Walsh, J. A., Wu, J., Wang, ML., Zhu, Y. J., Paull, R. E., Britt, A. B., Du, C., Downie, S. R., Schuler, M. A., Michael, T. P., Long, S. P., Ort, D. R., William Schopf, J., Gang, D. R., Jiang, N., Yandell, M., dePamphilis, C. W., Merchant, S. S., Paterson, A. H., Buchanan, B. B., Li, S. & Shen-Miller, J. 2013. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14(5), pp R41.
496	
497 498 499 500	Murigneux, V., Rai, S. K., Furtado, A., Bruxner, T. J. C., Tian, W., Ye, Q., Wei, H., Yang, B., Harliwong, I., Anderson, E., Mao, Q., Drmanac, R., Wang, O., Peters, B. A., Xu, M., Wu, P., Topp, B., Coin, L. J. M. & Henry, R. J. 2020. Comparison of long read methods for sequencing and assembly of a plant genome. 2020.03.16.992933.
501	
502 503	Niu, YF., Li, GH., Ni, SB., He, XY., Zheng, C., Liu, ZY., Gong, LD., Kong, GH. & Liu, J. 2020. Genome assembly and annotation of Macadamia tetraphylla. bioRxiv, 2020.03.11.987057.
504	
505 506 507	Nock, C. J., Baten, A., Barkla, B. J., Furtado, A., Henry, R. J. & King, G. J. 2016. Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae). BMC Genomics, 17(1), pp 937.
508	
509 510 511	Nock, C. J., Baten, A., Mauleon, R., Langdon, K. S., Topp, B., Hardner, C., Furtado, A., Henry, R. J. & King, G. J. 2020. Chromosome-Scale Assembly and Annotation of the Macadamia Genome G3: Genes Genomes Genetics, 10(10), pp 3497.
512	
513 514 515	Nock, C. J., Hardner, C. M., Montenegro, J. D., Ahmad Termizi, A. A., Hayashi, S., Playford, J., Edwards, D. & Batley, J. 2019. Wild Origins of Macadamia Domestication Identified Through Intraspecific Chloroplast Genome Sequencing. Frontiers in plant science, 10(334).
516	

517 518	O'Connor, K., Hayes, B. & Topp, B. 2018. Prospects for increasing yield in macadamia using component traits and genomics. Tree Genetics & Genomes, 14(1), pp 7.
519	
520 521	Peace, C. P. 2005. Genetic characterisation of Macadamia with DNA markers. PhD thesis, The University of Queensland, Brisbane.
522	
523 524 525	Peace, C. P., Allan, P., Vithanage, V., Turnbull, C. N. & Carroll, B. J. 2013. Genetic relationships amongst macadamia varieties grown in South Africa as assessed by RAF markers. South African Journal of Plant and Soil, 22(2), pp 71-75.
526	
527 528 529 530 531	 Pei, L., Wang, B., Ye, J., Hu, X., Fu, L., Li, K., Ni, Z., Wang, Z., Wei, Y., Shi, L., Zhang, Y., Bai, X., Jiang, M., Wang, S., Ma, C., Li, S., Liu, K., Li, W. & Cong, B. 2021. Genome and transcriptome of Papaver somniferum Chinese landrace CHM indicates that massive genome expansion contributes to high benzylisoquinoline alkaloid biosynthesis. Horticulture Research, 8(1), pp 5.
532	
533 534 535	Rost, J., Muralidharan, S., Campbell, D., Mehr, S., CatherineNock & Alice Lee, N. 2016. ASCIA-P19: Discovery of 7s and 11s globulins as putative allergens in macadamia nut by combining allergenomics and patient serum ige binding. Internal Medicine Journal, 46(S4), pp 10-10.
536	
537 538	Rost, J., Muralidharan, S. & Lee, N. A. 2020. A label-free shotgun proteomics analysis of macadamia nut. Food Research International, 129(108838).
539	
540 541	Rubio-Piña, J. A. & Zapata-Pérez, O. J. E. j. o. B. 2011. Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. 14(5), pp 11-11.
542	
543 544 545	Shapcott, A. & Powell, M. J. A. J. o. B. 2011. Demographic structure, genetic diversity and habitat distribution of the endangered, Australian rainforest tree Macadamia jansenii help facilitate an introduction program. 59(3), pp 215-225.
546	
547 548 549	Sharma, P., Aldossary, O., Alsubaie, B., Al-Mssallem, I., Nath, O., Mitter, N., Alves Margarido, G. R., Topp, B., Murigneux, V., Masouleh, A. K., Furtado, A. & Henry, R. J. 2021. Improvements in the Sequencing and Assembly of Plant Genomes. Gigabyte, 1, 2021.
550	
551 552 553	Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), pp 3210-3212.
554	
555 556	Solà Marsiñach, M. & Cuenca, A. P. 2019. The impact of sea buckthorn oil fatty acids on human health. Lipids in Health and Disease, 18(1), pp 145.

557	
558 559 560	Song, IB., Gu, H., Han, HJ., Lee, NY., Cha, JY., Son, YK. & Kwon, J. 2018. Omega-7 inhibits inflammation and promotes collagen synthesis through SIRT1 activation. Applied Biological Chemistry, 61(4), pp 433-439.
561	
562 563	Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S. & Morgenstern, B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34(suppl_2), pp W435-W439.
564	
565 566 567	Strijk, J. S., Hinsinger, D. D., Zhang, F. & Cao, K. 2019. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. GigaScience, 8(11).
568	
569 570 571	 Topp, B. L., Nock, C. J., Hardner, C. M., Alam, M. & O'Connor, K. M. 2019. Macadamia (Macadamia spp.) Breeding. In: Advances in Plant Breeding Strategies: Nut and Beverage Crops: Volume 4. Cham: Springer International Publishing, pp. 221–251.
572	
573 574 575 576	Weixue, M., Jinpu, W., Ting, Y., Yannan, F., Le, C., Jinlong, Y., Ranchang, M., Jie, L., Jianming, Z., Weibang, S., Xun, X., Xin, L., Radoje, D. & Huan, L. 2020. The draft genome assembly of the critically endangered Nyssa yunnanensis , a plant species with extremely small populations endemic to Yunnan Province, China. Gigabyte.
577	
578 579 580	Yang, Y., Ma, T., Wang, Z., Lu, Z., Li, Y., Fu, C., Chen, X., Zhao, M., Olson, M. S. & Liu, J. 2018. Genomic effects of population collapse in a critically endangered ironwood tree Ostrya rehderiana. Nature Communications, 9(1), pp 5449.

	PacBio	Dovetail Chicago	Dovetail Hi-C assembly	
Library Statistics	3,170,206 reads	213M read pairs; 2x150 bp	156M read pairs; 2x 150 bp	
Coverage	84 X	88 X	3,601 X	
	Genor	ne assembly		
Total Length	758.28 Mb	758.30 Mb	758.43 Mb	
L50/N50*	135 scaffolds; 1.58 Mb	199 scaffolds; 1.0 Mb	7 scaffolds; 52.1Mb	
L90/N90* 457 scaffolds; 0.51 Mb		767 scaffolds; 0.23 Mb	13 scaffolds; 45.61 M	
Longest Scaffold	10,537,631 bp	8,434,305 bp	67,682,215 bp	
Number of 762		1,529	219	
	BUSC	CO results*		
Single genes	79.10%	80.10%	80.80%	
Duplicated genes	17.60%	17.10%	16.30%	
Fragmented genes	0.90%	1.00%	1.00%	
Missing genes	2.00%	2.00%	2.10%	

581 **Table 1** *Macadamia jansenii* genome sequencing and assembly statistics.

582 * Eudicots_odb10 dataset, Number of BUSCOs= 2326.

Table 2 Annotation of repeat sequences in the *M. jansenii* genome.

	Hi-C Assembly	
Total Repetitive content	55.9%	
Class I TEs repeats	29.9%	
LTRs	24%	
LINE	5.67%	
SINE	0%	
Class II TEs repeats	1.56%	
Low complexity repeats	0.33%	
Simple repeats	1.35%	

Table 3 Genes predicted in the *M. jansenii* genome

Gene prediction	
Total number of genes	31,591
Total coding region	43,235,907 bp
Average length of genes	1,368 bp
Number of single-exon genes	2,458
Number of genes with annotation	22,500
Cyanogenic genes	82
Fatty acid genes	47
Anti-microbial genes	1

Table 4 Comparison of genome assemblies of three *Macadamia* species.

	M. integrifolia (V1)	M. integrifolia (V2)	M. tetraphylla	M. jansenii
Assembly length (Mb)	518.49	744.64	750.53	758.43
N50 (kb)	4.7	413.4	1.2	52.1
No. of contigs/scaffolds	193,493	4094	4,335	219
Repeats	37.00%	55.00%	61.42%	55.90%
BUSCO	77.40%	90.20%	89.72%	96.90%
No. of coding genes	35,337	34,274	31,571	31,591

Table 5 Heterozygosity and genetic variation in *M. jansenii*

594

Accession ID	Number of polymorp hic sites	Number of Indels	Number of SNP	Variant ¹ Positions: Homozyg ous SNPs	Variant ¹ Positions: Heterozygous SNPs	SNP Heterozy gosity	Unique ² Heterozygo us variants	Unique ² Homozygous variants	Total unique ² polymorphi c positions
1005*	5,418,086	486,846	4,764,835	4,019	2,428,956	0.31	2,249,732	3,070	2,252,802
1161004	5,415,612	377,580	4,901,611	784,323	2,038,553	0.26	1,902,705	111,100	2,013,805
1161003	6,785,189	555,641	6,034,679	1,047,938	2,465,089	0.32	2,306,771	162,541	2,469,312
1161005	6,204,994	531,550	5,488,354	780,593	2,347,362	0.30	2,190,169	85,258	2,275,427
1161001a	6,977,842	574,625	6,196,254	875,565	2,649,035	0.34	2,484,209	109,875	2,594,084
1003	7,050,861	586,001	6,254,227	891,669	2,672,103	0.34	2,505,726	113,837	2,619,563
1002	6,759,260	586,334	5,973,425	1,044,208	2,447,418	0.31	2,286,675	165,048	2,451,723
1161001b	6,704,384	548,292	5,962,434	824,632	2,556,695	0.33	2,394,003	97,027	2,491,030

595

596 ¹ Relative to reference genome

597 2 Only found in this individual and not in any of the other 7 genotypes.

598* Reference genome

	RS-1 RS-2 RS-3 RS-4	AA 1
	ORF MIAMP-2 (2007 bp)	
	RS-1 RS-2RS-3 RS-4	AA 1
	ORF-1 ANN01396 TRANSCRIPT (1998 bp)	
в		
MIAMP-2 ANN01396	l mkmaintsnlcslifilslfilstvslaesefdrqeyee <mark>dkrdcn</mark> qletsgqmridvsddkr 1maiktsnlcglifilslfilsttislaesefdrqdyee <mark>ckrdcnqletsgqmridvsdd</mark> kr	
MIAMP-2 ANN01396	241 qtecqq <mark>oqriorqqesqprqqqycqrio</mark> keiceeeeynrqrdpqqqyeq <mark>oqkXoqrieteprh</mark> 235 qtecqq <mark>oqriorqqeseprqqqycprio</mark> keiceeeeynrqrdpqqqyeq <mark>oqerqqrgeteprh</mark>	
MIAMP-2 ANN01396	401 rkqqkryeeqqredeekyeermkeednkrdpqqreyed <mark>orrroeqqeprqqhdq1rd</mark> reqqrq 472 rkqqkryeeqqredeekyeermkeednkrdpqqreyed <mark>orrroeqqeprlqydqrrd</mark> reqqrq	
MIAMP-2 ANN01396	721 ryeegeeeqsdnpyyfderslstrfrteeghisvlenfygrskliralknyrlvlleanpnafv 712 ryeegee <mark>k</mark> qsdnpyyfderslstrfrteeghisvlenfygrskliralknyrlvlleanpnafv	
MIAMP-2 ANN01396	961 rgalkmihhdnresynlecgdviripagttfylinrdnnerlhiakflqtistpgqykeffpag 952 rgalkmihhgnresynleggdviripagttfylinrdnnerlhiakflqtistpgqykeffpag	
	1201 eaalntqteklrgvfgqqregviirasqeqireltrddsesrhwhirrggessrgpynlfnkrp 1192 eaalntqte <mark>r</mark> lrgv <mark>f</mark> gqqr <mark>d</mark> gviirasqeqireltrddsesrhwhirrggessrgpynlfnkrp	
	1441 yrqlqdmdlsvfianvtqgsmmgpfntrstkvvvvasgeadvemacphlsgrhggrgggkrhe 1432 yrqlqdmdvsvfmanitqgsmmgpfntrstkvvvvasgeadvemacphlsgrhggrgggkrhe	
	$\label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	
	1921 gprqhqqqsprstkqqqplvsildfvgf. 1912 gprqhqqqsprstkqqqplvsildfvgf.	

Figure 1 Anti-microbial peptide structure

Figure 1(A) is the cDNA sequence of anti-microbial gene of *M. integrifolia* with four repeat
segments (RS), shown in red open boxes and cysteine residues in green filled boxes aligned
with *M. jansenii* transcript sequence ANN01396, showing same pattern. Figure 1(B) shows
the alignment of the anti-microbial peptide sequence from the *M. integrifolia* and *M. jansenii*.
The first half of the sequence shows the repeat segments within red boxes with green
highlighted cysteine residues. Differences in amino acid sequence throughout the alignment
as shown in blue highlighted text.

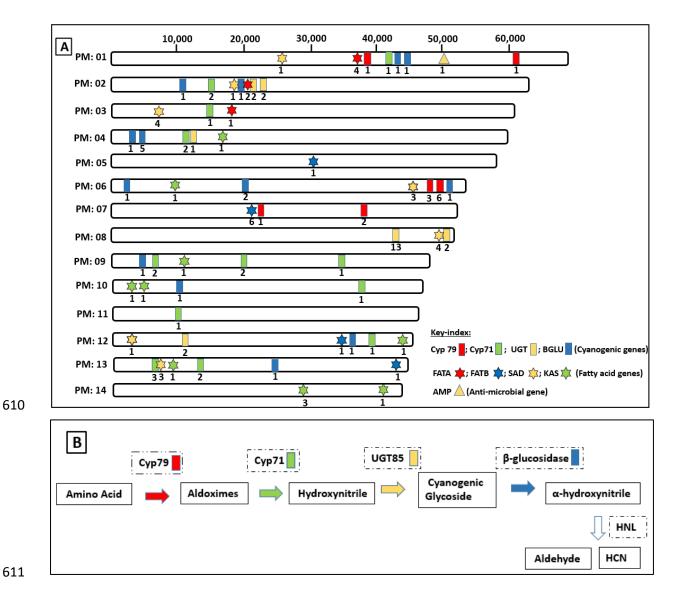


Figure 2 Pseudo-chromosomes of *M. jansenii* with location of cyanogenic, fatty acid andanti-microbial genes.

Figure 2(A) putative cyanogenic, fatty acid and anti-microbial gene locations are shown on 14 pseudo molecules of *M. jansenii*. The bars show the cyanogenic genes, the stars show the genes involved in fatty acid pathway and the triangle shows the antimicrobial gene location on the pseudo-chromosome, the color key-index is given along with the figure. Pseudochromosomes are not to scale. **Figure 2(B)** illustrates the cyanogenic pathway and the main enzymes involved.