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Abstract 13 

 During prolonged resource limitation, bacterial cells can persist in metabolically 14 

active states of non-growth. These maintenance periods, such as those experienced by 15 

cells in stationary phase cultures, can, perhaps counterintuitively, include upregulation 16 

of cellular secondary metabolism and release of exometabolites into the local 17 

environment, at the cost of an energetic commitment to growth. As resource limitation is 18 

a characteristic feature of many habitats that harbor environmental microbial 19 

communities, we hypothesized that neighboring bacterial populations employ 20 

exometabolites to compete or cooperate during maintenance, and that these 21 
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exometabolite-facilitated interactions can drive community outcomes. Here, we 22 

evaluated the consequences of exometabolite interactions over stationary phase among 23 

three well-known environmental bacterial strains: Burkholderia thailandensis E264 24 

(ATCC 700388), Chromobacterium violaceum ATCC 31532, and Pseudomonas 25 

syringae pv.tomato DC3000 (ATCC BAA-871). We assembled these stains into 26 

laboratory-scale synthetic communities that only permitted chemical interactions among 27 

them. We compared the responses (transcripts) and behaviors (exometabolites) of each 28 

member with and without neighbors. We found that transcriptional dynamics were 29 

altered in the presence of different neighbors, and that these changes could be 30 

attributed to the production of or response to bioactive exometabolites employed for 31 

competition during maintenance. B. thailandensis was especially influential and 32 

competitive within its communities, as it consistently upregulated additional biosynthetic 33 

gene clusters involved in the production of bioactive exometabolites for both exploitative 34 

and interference competition. Additionally, some of these bioactive exometabolites were 35 

upregulated and produced in a non-additive manner in the 3-member community. These 36 

results demonstrate that the active investment in competition during maintenance can 37 

contribute to both bacterial population fitness and community-level outcomes. It also 38 

suggests that the traditional concept of defining competitiveness by growth outcomes 39 

may be too narrow, and that maintenance competition could be an alternative measure.  40 

  41 

Introduction  42 
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 Bacteria interact with other bacteria and their environment within complex, multi-43 

species communities. Bacterial interactions rely on the ability to sense and respond to 44 

both biotic and abiotic stimuli (Stock et al., 2000; Browning and Busby, 2004). These 45 

stimuli include physical, chemical or molecular cues, and can alter bacterial behaviors 46 

(Pietschke et al., 2017; Garren et al., 2016), and ultimately, can also alter community 47 

functioning (Kato et al., 2005; Steinweg et al., 2013). It is expected that interspecies 48 

interactions play an important role in shaping microbial community dynamics (Aziz et al., 49 

2015). However, multiple stimuli in the environment make it difficult to disentangle the 50 

separate influences of abiotic versus biotic stimuli on microbial community dynamics 51 

(Orr et al., 2020). Therefore, efforts to characterize and distinguish community 52 

responses to biotic stimuli, such as those that facilitate interspecies interactions, will 53 

provide insights into the specific roles that microbial interactions play in shaping their 54 

communities (Little et al., 2008).  55 

Interspecies interactions can be facilitated through small molecules (Phelan et 56 

al., 2011). Extracellular small molecules are collectively referred to as exometabolites 57 

(Kell et al., 2005; Pinu; Silva and Northen, 2015; Villas-Boas, 2017). Depending on the 58 

exometabolite produced, these molecules can mediate interspecies interactions that 59 

range from competitive to cooperative (Großkopf and Soyer, 2014). Of these interaction 60 

types, competition has been shown to have a major influence in structuring microbial 61 

communities (e.g., Foster and Bell, 2012; Coyte et al., 2015; Hibbing et al. 2010). Thus, 62 

competitive interactions that are mediated by exometabolites are also expected to 63 

influence to microbial community dynamics. In addition, different types of 64 
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exometabolites can be employed by bacteria to gain advantage in both exploitative (e.g. 65 

nutrient scavenging) and interference (direct cell damage) categories of competition.  66 

 Traditionally, competition has been viewed through the lens of resource 67 

acquisition (Tilman, 1986). In these studies, competitiveness is modeled with respect to 68 

yield given resource consumption and growth (Stewart and Levin, 1973; Smith, 2011). 69 

However, competition for survival or maintenance may be just as important as 70 

competition for yield, especially during periods of resource limitation (Pekkonen et al., 71 

2011; Holt, 2008). Competition during maintenance is likely common in some free-living 72 

environments, such as soils, sequencing batch reactors, and the human gut that 73 

experience long periods of nutrient famine punctuated by short periods of nutrient influx 74 

(Schimel, 2018; Chiesa et al., 1985; Fetissov, 2017; Hiltunen et al., 2008). The 75 

stationary phase of a bacterial growth curve falls within this context of growth cessation, 76 

and pulses of nutrients may be transiently available as cells die and lyse (necromass), 77 

while the total population size remains stagnant. Stationary phase is often coordinated 78 

with a metabolic shift to secondary metabolism (Navarro Llorens et al., 2010; Čihák et 79 

al., 2017). Therefore, an effective “maintenance” competitor may produce bioactive 80 

exometabolites, like antibiotics, which are often produced as a result of secondary 81 

metabolism. In particular, bacteria can activate biosynthetic gene clusters (BSGCs) to 82 

produce bioactive exometabolites (Medema et al., 2015). The activation of BSGCs is 83 

closely tied to stress responses, suggesting that bacteria can sense the stress of 84 

competition (Cornforth and Foster, 2013; Okada and Seyedsayamdost, 2017). While it 85 

is known that certain exometabolites can trigger BSGC upregulation and, more 86 

generally alter transcription (Goh et al., 2002), there is much to understand about the 87 
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outcomes of interspecies interactions for BSGCs in multi-member microbial 88 

communities.  89 

Here, we build on our previous research to understand how exometabolite-90 

mediated interactions among bacterial neighbors contribute to community outcomes in a 91 

simple, three-member community (Table 1). These three members are commonly 92 

associated with terrestrial environments (soils or plants) and were chosen because of 93 

reported (Chandler et al., 2012) and observed interspecies exometabolite interactions in 94 

the laboratory. We used a synthetic community (“SynCom”) approach (De Roy et al., 95 

2014) by applying our previously described transwell system (Chodkowski and Shade, 96 

2017), which allowed for evaluation of “community goods” within a media reservoir that 97 

was shared among members. The members’ populations were physically isolated by 98 

membrane filters at the bottom of each transwell, but could interact chemically via the 99 

reservoir. In our prior work, we investigated each member’s exometabolites and 100 

transcription over stationary phase, and the objective was to understand monoculture 101 

responses (in minimal glucose media) before assembling the more complex 2- and 3- 102 

member communities. We found that each member in monoculture produced a variety 103 

of exometabolites in stationary phase, including bioactive molecules involved in 104 

competition (Chodkowski and Shade, 2020). In this work, we build to 2- and 3- member 105 

arrangements to ask: How do members interact via exometabolites in simple 106 

communities during maintenance (stationary phase), and what are the competitive 107 

strategies and outcomes of those interactions? What genetic pathways, molecules, and 108 

members drive the responses? Which outcomes in 3-member community are predicted 109 

by the 2-member communities, and which are “greater than the sum of its parts”?  110 
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We found that B. thailandensis had a major influence on the transcriptional 111 

responses of both C. violaceum and P. syringae, and that this influence could be 112 

attributed to an increase in both interference and exploitative competition strategies. 113 

Furthermore, we observed non-additive transcriptional responses and exometabolite 114 

production, particularly for B. thailandensis with respect to BSGCs. These findings show 115 

that diverse competitive strategies can be deployed even when bacterial neighbors are 116 

surviving rather than exponentially growing. Therefore, we suggest that contact-117 

independent, exometabolite-mediated interference and exploitation are important 118 

competitive strategies in resource-limited environments and support the non-yield 119 

outcome of maintenance.  120 

 121 

Table 1. Bacterial members used in the synthetic community (SynCom) system. 122 

Member  Burkholderia 
thailandensis E264 

Chromobacterium 
violaceum ATCC 

31532 

Pseudomonas 
syringae pv. tomato 

DC3000  
Genome size (Mb) 6.72 4.76 6.54 

Family Burkholderiaceae Neisseriaceae Pseudomonadaceae 

No. of CDSsa 
5639 4393 5576 

Chromosomes 2 1 1 

Plasmids 0 0 2 

Reference Brett et al., 1998 Wells et al., 1982 Buell et al. 2003 
aCDSs, Coding sequences. 123 

 124 

Results 125 
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Stationary phase dynamics of microbial communities: transcriptional responses 126 

 We had four replicate, independent timeseries of each of seven community 127 

arrangements (three monocultures plus four cocultures of every pair and the 3-member 128 

arrangement), and here focus on the coculture analyses to gain insights into community 129 

outcomes. A range of 518 to 1204 genes were differentially expressed by each member 130 

in coculture, irrespective of the identity of neighbors (Fig. S1.1, false discovery rate 131 

adjusted p-value (FDR)≤ 0.01). In addition, each member also had differential gene 132 

expression that was unique to a particular neighbor(s). Summarizing across all 133 

coculture arrangements, 2,712/5639 (48.1%), coding sequences (CDSs), 3267/4393 134 

CDSs (74.4%), and 4974/5576 CDSs (89.2%) genes in B. thailandensis, C. violaceum, 135 

and P. syringae were differentially expressed, respectively (FDR≤0.01). Both community 136 

membership and time contributed to the transcriptional response of each member (Fig. 137 

1, Table S1.1). Together, these data suggest that there are both general and specific 138 

consequences of neighbors for the transcriptional responses of these bacterial 139 

community members.  140 
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 141 

Figure 1. Transcriptional responses are driven by community membership and time. Shown are 142 
principal coordinates analysis (PCoA) plots for B. thailandensis (Bt, A), C. violaceum (Cv, B), and P. 143 
syringae (Ps, C). Each point represents a mean transcript profile for a community member given a 144 
particular community arrangement (neighbor(s) included, indicated by symbol color) and sampled at a 145 
given time point over exponential and stationary growth phases (in hours since inoculation, h, indicated 146 
by symbol size, n=3 to 4 replicates per timepoint/community arrangement). The Bray-Curtis distance 147 
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metric was used to calculate dissimilarities between transcript profiles. Error bars are 1 standard deviation 148 
around the mean axis scores.  149 

 150 

 Temporal trajectories in transcript profiles were generally reproducible across 151 

replicates for each member given a particular community arrangement (PROTEST 152 

analyses, Table S1.2). Each member had a distinct transcript profile (0.480 ≤ r2 ≤ 0.778 153 

by Adonis; P value, 0.001; all pairwise false discovery rate [FDR]-adjusted P values, 154 

≤0.068 except for the C. violaceum coculture with B. thailandensis vs 3-member 155 

comparison, Table S1.3). For all ordinations, community membership had the most 156 

explanatory value (Axis 1), followed by time (Axis 2), with the most variation explained 157 

by the interaction between time and membership (Table S1.1). Membership alone 158 

accounted for 60.6% and 77.0% of the variation explained in C. violaceum and P. 159 

syringae analyses, respectively and 46.3% in the B. thailandensis analysis (Table S1.3). 160 

When included in the community, B. thailandensis strongly determined the 161 

transcript profiles of the other two members. For example, the inclusion of B. 162 

thailandensis in a coculture differentiated transcript profiles for both C. violaceum and P. 163 

syringae (Fig. 1B & 1C). Thus, B. thailandensis appears to have had a dominating 164 

influence on the transcriptional response of neighbors, and these responses were 165 

dynamic with respect to time. 166 

 We analyzed clusters of orthologous groups of proteins (COGs) to infer the 167 

responses of members to their neighbors. Differentially expressed genes were 168 

categorized as upregulated or downregulated based on temporal patterns and 169 

representation in COG groups (Fig. S1.2). We focused on the largest discrepancies 170 
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between upregulated and downregulated within COG groups, which provide insights 171 

into broad biological processes affected by exometabolite interactions. COG groups 172 

trending towards upregulation in B. thailandensis included secondary metabolites 173 

biosynthesis, transport, and catabolism [Q], signal transduction mechanisms [T], and 174 

cell motility [N] while COG categories trending towards downregulation included cell 175 

cycle control, cell division, chromosome partitioning [D], translation, ribosomal structure 176 

and biogenesis [J], and defense mechanisms [V]. These results suggest that B. 177 

thailandensis responds to neighbors via downregulation of growth and reproduction and 178 

upregulation of secondary metabolism. We therefore hypothesized that B. thailandensis 179 

was producing bioactive exometabolites against C. violaceum and P. syringae to 180 

competitively inhibit their growth. 181 

Because of the strong transcript response of C. violaceum and P. syringae when 182 

neighbored with B. thailandensis (Fig. 1B & 1C), we first focused on COG group trends 183 

within community arrangements with B. thailandensis (Fig. S1.2B & S1.2C, rows 2 & 3). 184 

COG groups tending towards upregulation in C. violaceum and P. syringae were 185 

translation, ribosomal structure and biogenesis [J] and replication, recombination, and 186 

repair [L], respectively. COG groups tending towards downregulation in C. violaceum 187 

and P. syringae were signal transduction mechanisms [T] and secondary metabolites 188 

biosynthesis, transport, and catabolism [Q], respectively. These results suggest that the 189 

presence of B. thailandensis alters its neighbor’s ability to respond to the environment 190 

and inhibits secondary metabolism.  191 

We were interested in understanding patterns of differential gene regulation and 192 

how individual genes contribute to the observed dynamics in Figure 1. The top ~500 193 
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differentially expressed genes (see methods: Circos plots) were visualized by genomic 194 

location and temporal dynamics (Figs. S1.3-S1.5). These results show that the gene 195 

dynamics for C. violaceum and P. syringae when grown in the 3-member community 196 

are consistent with each neighbor’s gene dynamics when grown only with B. 197 

thailandensis (Figs. S1.4 & S1.5, heatmap, outer two tracks vs. inner two tracks). 198 

Interestingly, 68.4% (340 genes) of the top differentially regulated genes in B. 199 

thailandensis were located on chromosome II despite chromosome II only accounting 200 

for 44.0% of all coding sequences (2365 coding sequences). In addition, nearly all P. 201 

syringae plasmid genes were upregulated when P. syringae was neighbored with B. 202 

thailandensis. These plasmids were significantly enriched for processes related to DNA 203 

recombination, recombinase activity, and DNA binding/integration (GO enrichment, 204 

Table S1.4).  205 

  206 

Stationary phase dynamics of microbial communities: exometabolomic responses 207 

 Because member populations are physically separated in the SynCom transwell 208 

system but allowed to interact chemically, observed transcript responses in different 209 

community arrangements are inferred to result from exometabolite interactions. Spent 210 

medium from the shared medium reservoir was collected from each transwell plate and 211 

analyzed using mass spectrometry to detect exometabolites. We focused our analysis 212 

on those exometabolites that had maximum accumulation in a coculture community 213 

arrangement (either in pairs or in 3-member community). Consistent with the transcript 214 

analysis, we found that both community membership and time explained the 215 
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exometabolite dynamics, and that the explanatory value of membership and time was 216 

maintained across all polarities and ionization modes (Fig. 2, Table S2.1).  217 

 218 

Figure 2. Bacterial community exometabolite profiles differ by community membership and time. 219 
Shown are PCoA plots for exometabolite profiles from the following mass spectrometry modes: polar 220 
positive (A), polar negative (B), nonpolar positive (C), and nonpolar negative (D). Each point represents 221 
the mean exometabolite profile (relative contributions by peak area) given a particular community 222 
membership (indicated by symbol color) at a particular time point (indicated by symbol shape). The Bray-223 
Curtis distance metric was used to calculate dissimilarities between exometabolite profiles. Error bars are 224 
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1 standard deviation around the mean axis scores (n= 2 to 4 replicates). Bt is B. thailandensis, Cv is C. 225 
violaceum, and Ps is P. syringae. 226 

 227 

Temporal trajectories in exometabolite profiles were generally reproducible across 228 

replicates with some exceptions (PROTEST analyses, Table S2.2, Supplementary File 229 

2.1). Exometabolite profiles were distinct by community membership (0.475 ≤ r2 ≤ 0.662 230 

by Adonis; P value, 0.001; all pairwise false discovery rate [FDR]-adjusted P values, 231 

≤0.025, Table S2.3), and also dynamic over time. As observed for the member 232 

transcript profiles, and the interaction between membership and time had the highest 233 

explanatory value for the exometabolite data (Table S2.1).  234 

 We found that the C. violaceum-P. syringae coculture exometabolite profiles 235 

were consistently the most distinct from the other coculture memberships (Fig. 2), 236 

supporting, again, that the inclusion of B. thailandensis was a major driver of 237 

exometabolite dynamics, possibly because it provided the largest or most distinctive 238 

contributions to the community exometabolite pool. Indeed, we observed that a majority 239 

of the most abundant exometabolites were either detected uniquely in the B. 240 

thailandensis monoculture or accumulated substantially in its included community 241 

arrangements (Fig. S2.1). Some exometabolites detected in B. thailandensis-inclusive 242 

communities were not detected in its monocultures (Fig. S2.1D), suggesting that the 243 

inclusion of neighbors contributed to the accumulation of these particular 244 

exometabolites (e.g. upregulation of biosynthetic gene clusters or lysis products). C. 245 

violaceum and P. syringae contributed less to the 3-member community exometabolite 246 

profile, as exometabolites detected in the C. violaceum-P. syringae coculture 247 

arrangement were less abundant and had lower accumulation over time in the 3-248 
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member community arrangement (Fig. S2.1A). Together, these results suggest that B. 249 

thailandensis can suppress or overwhelm expected outputs from neighbors. 250 

In summary, we observed both increased accumulation and unique production of 251 

exometabolites in pairwise cocultures and in the 3-member community arrangements, 252 

with B. thailandensis contributing the most to the shared exometabolite pool as 253 

determined by comparisons with its monoculture exometabolite profile. Related, the 254 

transcriptional responses of C. violaceum and P. syringae in the 3-member community 255 

arrangement is most similar to their respective transcriptional response when 256 

neighbored with B. thailandensis alone, despite the presence of the third neighbor.  257 

 258 

B. thailandensis increases competition strategies in the presence of neighbors 259 

 We observed relatively unchanged viability in B. thailandensis (Fig. S3.1). On the 260 

contrary, we observed a slight reduction (~2.1 log2 fold change) in C. violaceum live cell 261 

counts, and a drastic reduction (~4.7 log2 fold change) in P. syringae live cell counts, 262 

when either was cocultured with B. thailandensis (Figs. S3.2 & S3.3). Given this 263 

reduction in viability and that there have been competitive interactions between B. 264 

thailandensis and C. violaceum previously reported (Chandler et al., 2012), we 265 

hypothesized that B thailandensis was using competition strategies to influence its 266 

neighbors via production of bioactive exometabolites. If true, we would expect an 267 

upregulation in B. thailandensis biosynthetic gene clusters (BSGC) that encode 268 

bioactive exometabolites. Indeed, we found evidence of this when B. thailandensis had 269 

neighbors (Fig. 3, Table S3.1).  270 
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 271 

Figure 3. B. thailandensis upregulates biosynthetic gene clusters (BSGC) in cocultures. Columns 272 
represent community membership where Bt: B. thailandensis, Cv: C. violaceum, and Ps: P. syringae and 273 
rows represent BSCC in B. thailandensis. Genes part of a BSGC were curated from antiSMASH 274 
predictions and literature-based evidence. Within each BSGC, log2 fold-changes (LFC) were calculated 275 
by comparing gene counts from a coculture to the monoculture control at each time point. LFC were then 276 
averaged from all biosynthetic genes in the BSGC at each time point. We defined an upregulated BSGC 277 
as a BSGC that had at least two consecutive stationary phase time points with a LFC > 1 (indicated by 278 
the horizontal line). Note that plots for each BSGC have separate scales for the Y-axis. 279 

 280 
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 This suggests that B. thailandensis responded to neighbors by upregulating 281 

genes involved in the production of bioactive compounds, likely to gain a competitive 282 

advantage. However, not all BSGCs in B. thailandensis were upregulated. Some 283 

BSGCs were unaltered or downregulated (Fig. S3.4). C. violaceum upregulated only 1 284 

BSGC in coculture with B. thailandensis, while P. syringae did not upregulate any 285 

BSGC in any coculture (Figs. S3.5 & S3.6). Interestingly, coculturing with C. violaceum 286 

and P. syringae resulted in the upregulation of an unidentified beta-lactone and an 287 

unidentified non-ribosomal peptide synthetase (NRPS) in B. thailandensis, respectively. 288 

Similarly, coculturing with B. thailandensis resulted in the upregulation on an 289 

unidentified NRPS- Type I polyketide synthase in C. violaceum. We also note that two 290 

additional unidentified NRPS passed the LFC threshold of 1 in C. violaceum. However, 291 

these were only upregulated at the exponential phase time point and subsequently 292 

downregulated or below the LFC threshold in all stationary phase time points. 293 

Interspecies interactions led to the upregulation of BSGC in both B. thailandensis and 294 

C. violaceum and three of these BSGC encode potentially novel bioactive 295 

exometabolites.  296 

 We were able to identify 6 of the 11 products from the upregulated B. 297 

thailandensis BSGC and quantify their abundances from mass spectrometry data (Fig. 298 

S3.7, Table S3.2). For any given identified exometabolite, it differentially accumulated 299 

between community arrangements containing B. thailandensis (Table S3.3), particularly 300 

when comparing the B. thailandensis monoculture compared to each coculture 301 

arrangement (Table S3.4). As expected, these identified exometabolites were not 302 

detected in community arrangements that did not include B. thailandensis. Bactobolin 303 
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was the only identified exometabolite that accumulated in monoculture to equivalent 304 

levels of accumulation in all coculture conditions. Thus, B. thailandensis increased 305 

competition strategies with neighbors through the upregulation and production of many 306 

bioactive exometabolites. Of these bioactive exometabolites, three are documented 307 

antimicrobials (Amunts et al., 2015; Kuznedelov et al., 2011; Wozniak et al., 2018), two 308 

are siderophores (Biggins et al., 2012; Butt and Thomas, 2017), and one is a 309 

biosurfactant (Dubeau et al., 2009). We conclude that B. thailandensis produced 310 

bioactive exometabolites to competitively interact using both interference and 311 

exploitative competition strategies (Ghoul and Mitri, 2016). Given that B. thailandensis 312 

upregulated competition strategies, and responded more broadly in producing 313 

competition-supportive exometabolites when grown with neighbors, we hypothesized 314 

that these bioactive exometabolites are responsible for the altered transcriptional 315 

responses in C. violaceum and P. syringae. 316 

 317 

Interspecies co-transcriptional networks reveal coordinated gene expression related to 318 

competition 319 

We performed interspecies coexpression network analysis to infer interspecies 320 

interactions. We used temporal profiles to generate 23 and 24 coexpression networks 321 

for B. thailandensis-C. violaceum and B. thailandensis-P. syringae cocultures, 322 

respectively (Table S4.1). As expected, the majority of nodes network had intraspecies 323 

edges only, with interspecies edges comprising 1.85% and 1.90% of the total edges in 324 

the B. thailandensis-C. violaceum and B. thailandensis-P. syringae networks, 325 
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respectively. We explored interspecies edges for evidence of interspecies 326 

transcriptional co-regulation.  327 

We performed two analyses (module analysis and GO enrichment) to validate 328 

networks and infer interspecies interactions (Fig. S4.1). Module analysis validated 329 

networks as intraspecies modules enriched for biological processes (Supplementary 330 

File 4.1). To infer interspecies interactions, we filtered genes with interspecies edges 331 

and performed enrichment analysis (Supplementary File 4.2). The top enriched Gene 332 

Ontology (GO) term for B. thailandensis when paired with C. violaceum was antibiotic 333 

synthesis of thailandamide, supporting interference competition. Though the top 334 

enriched GO term in B. thailandensis when paired with P. syringae was bacterial-type 335 

flagellum-dependent cell motility, antibiotic synthesis of malleilactone was also enriched. 336 

Both thailandamide genes from the B. thailandensis-C. violaceum network (Fig. 4) and 337 

malleilactone genes from the B. thailandensis-P. syringae network (Fig. S4.2) formed 338 

near-complete modules within their respective BSGCs.  339 
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 340 

 B. thailandensis-C. violaceum 
interspecies network 

B. thailandensis-P. syringae interspecies 
network 

Bactobolin ü ü 
Beta-lactone ü × 
Capistruin ü ü 

Malleilactone ü ü 
Malleobactin ü ü 

NRPS-1 × ü 
Pyochelin ü ü 

Rhamnolipid × × 
Thailandamide ü ü 

 341 
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Figure 4. B. thailandensis genes involved in thailandamide production are detected as 342 
interspecies edges in the B. thailandensis-C. violaceum coexpression network and biosynthetic 343 
genes organize into network modules. A network module containing the thailandamide BSGC is 344 
shown. The network module nodes are color coded by B. thailandensis gene type (BSGC or not) and type 345 
of connections (interspecies or not): thailandamide biosynthetic genes that had interspecies edges 346 
(magenta), thailandamide biosynthetic genes that did not have interspecies edges (orange), or other 347 
genes that were not part of the BSGC (yellow); as well as genes that were from C. violaceum (blue). The 348 
chromosomal organization of the thailandamide BSGC is shown below the network module. The same 349 
colors are applied to the BSGC operon. The operons also depict genes that were not detected within the 350 
interspecies network, shown in gray. Asterisks indicate core biosynthetic genes in the BSGCs, as 351 
predicted from antiSMASH. The table shows upregulated B. thailandensis BSGCs (Fig. 3) and whether 352 
there were interspecies edges detected (check is yes, x is no). 353 

 354 

At least one gene from each of B. thailandensis’s upregulated BSGCs (Fig. 3, Table) 355 

had an interspecies edge, except for rhamnolipid. The top GO term for both C. 356 

violaceum and P. syringae genes that had edges shared B. thailandensis was bacterial-357 

type flagellum-dependent motility. Other notable enriched GO processes were efflux 358 

activity for C. violaceum and signal transduction for P. syringae. Specifically, a DNA 359 

starvation/stationary phase gene (CLV04_2968, Fig. 4), dspA, was connected within the 360 

thailandamide module of the B. thailandensis-C. violaceum network and a TonB-361 

dependent siderophore receptor gene (PSPTO_1206, Fig. S4.2) was connected within 362 

the malleilactone module of the B. thailandensis-P. syringae network (Supplementary 363 

File 4.3). Interestingly, both CLV04_2968 and PSPTO_1206 were differentially 364 

downregulated when cocultured with B. thailandensis (Figs. S4.3A & S4.4A, 365 

respectively). Additionally, the closest homolog for dspA in B. thailandensis was 366 

unaltered (BTH_I1284, Supplementary File 4.4) when cocultured with C. violaceum (Fig. 367 

S4.3B) and the closest homolog to the TonB-dependent receptor in B. thailandensis 368 

(BTH_I2415, Supplementary File 4.5) was differentially upregulated when cocultured 369 

with P. syrinage (Fig. S4.4B). Taken together, these interspecies networks revealed that 370 

B. thailandensis BSGC have coordinated expression patterns to biological process in 371 
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both C. violaceum and P. syringae, suggesting that bioactive exometabolites were 372 

driving their transcriptional responses.  373 

 374 

Distinctive member responses when assembled together 375 

Within a complex community, there can be outcomes that are not expected 376 

based on interactions that are observed in simpler situations of member pairs (Sanchez-377 

Gorostiaga et al., 2019; Mickalide et al., 2019; D’hoe et al., 2018). A typical predictive 378 

approach uses the additivity assumption, where the null expectation is that a members’ 379 

outcome in more complex communities is a summation of its outcomes in simpler 380 

communities (Momeni et al., 2017). Patterns that deviate from the assumption arise 381 

from biological phenomena that are deemed non-additive. Much emphasis has been 382 

placed on predictions on the additive (or non-additive deviation) nature of growth 383 

outcomes in more complex environments (Foster and Bell, 2012; Pacheco et al., 2021; 384 

Estrela et al., 2021). Here, we evaluated non-additive responses (e.g. transcriptomics) 385 

and behaviors (e.g. exometabolite production). We identified genes with non-additive 386 

upregulation in the 3-member community (Fig. S5.1, Supplementary File 5.1, see 387 

methods: Non-additive gene expression). For B. thailandensis, most of these genes 388 

consistently had nonadditive upregulation throughout stationary phase. Both P. syringae 389 

and C. violaceum trended towards transient dynamics of non-additive upregulation, 390 

which tended to occur at a specific timepoint. For each member, there was a stark 391 

contrast in genes with non-additivity between the exponential phase timepoint and all 392 

stationary phase time points. Notably, the top GO enrichments included antibiotic 393 

biosynthesis for B. thailandensis and structural constituents of the ribosome for both C. 394 
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violaceum and P. syringae (Supplementary File 5.2). Of the BSGC in B. thailandensis, 395 

multiple genes involved in the production of thailandamide, pyochelin, capistruin, and 396 

malleobactin had non-additive upregulation. Since we were able to identify some of 397 

these compounds as features within the mass spectral data, we asked if non-additive 398 

transcriptional activity corresponded to non-additive exometabolite production.  399 
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Figure 5. Thailandamide accumulates in a non-additive manner. The accumulation of thailandamide 401 
was quantified through time (n = 3-4 integrated peak areas per time point). The bottom and top of the box 402 
are the first and third quartiles, respectively, and the line inside the box is the median. The whiskers 403 
extend from their respective hinges to the largest value (top), and smallest value (bottom) was no further 404 
away than 1.5× the interquartile range. Colors correspond to the community membership for the 405 
B.thailandensis-P. syringae coculture (yellow, BtPs), the B. thailandensis-C, violaceum coculture 406 
(magenta, BtCv), the “expected” exometabolite abundance in the 3-member community obtained from 407 
additive peak areas from the B.thailandensis-P. syringae and B.thailandensis-C, violaceum cocultures 408 
(orange, BtCv+BtPs), and the 3-member community (black, BtCvPs).  409 

 410 

 411 

Most exometabolite features did not exceed expectations of additivity, as the average 412 

fold change across all time points was ~0.6 (Fig. S5.2). However, we did find that 858 413 

exometabolomic features accumulated in the 3-member community in a non-additive 414 

manner (Fig. S5.3), including thailandamide (Fig. 5) and pyochelin (Fig. S5.4), but not 415 

capistruin (Fig. S5.5). At the final stationary phase time point (45 h), thailandamide 416 

accumulated ~4-fold more and pyochelin accumulated ~3-fold more than the additive 417 

expectation. Thailandamide and pyochelin were consistently above 1σ of the average 418 

additive fold change for all coculture filtered exometabolites throughout stationary phase 419 

(Fig. S5.2, ablines). We combined peak areas from pairwise cocultures to create an 420 

“expected” exometabolite abundance over the time course for thailandamide, pyochelin, 421 

and capistruin (Figs. 5, S5.4, S5.5, orange). The experimental exometabolite 422 

abundance over the time course was significantly different from the “expected” 423 

exometabolite abundance for thailandamide, but not for pyochelin and capistruin 424 

(repeated measures ANOVA, Table S5.1). When comparing each time point separately 425 

for thailandamide, significance was obtained only for the initial time point, and later time 426 

points were trending toward significance (Table S5.2).  427 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.05.459016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.05.459016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria 

 
 

24 

 428 

Discussion 429 

 Here, we used a synthetic community system to understand how 430 

exometabolomic interactions determine members responses and behaviors. Our 431 

experiment used a bottom-up approach to compare the seven possible community 432 

arrangements of three members, and their dynamics in member transcripts and 433 

community exometabolites over stationary phase. Differential gene expression across 434 

community arrangements and over time show that the exometabolites released by a 435 

member were sensed and responded to by its neighbors. Furthermore, members’ 436 

behaviors in monocultures changed because of coculturing, as evidenced by differential 437 

exometabolite production. B. thailandensis evoked the largest transcriptional changes in 438 

C. violaceum and P. syringae, and these changes were driven largely by several 439 

increases in B. thailandensis competitive strategies. Numerous transcripts and 440 

exometabolite were non-additive in the 3-member community, suggesting that 441 

predictions of members outcomes in more complex communities will not always be a 442 

simple summation of pairwise outcomes. That interactions within a relatively simple 443 

community altered the behavior of each member is important because these kinds of 444 

behavioral changes could, in turn, drive changes in community structure and/or function 445 

in an environmental setting. For example, it was shown that interspecies interactions 446 

more strongly influenced the assembly of C. elegans gut communities than host-447 

associated factors (Ortiz et al., 2021). Therefore, mechanistic and ecological 448 

characterization of interspecies interactions will inform as to the principles that govern 449 

emergent properties of microbial communities.  450 
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 Overall, competitive interactions predominated in this synthetic community. Our 451 

previous study found that, over stationary phase in monocultures, each member 452 

released and accumulated at least one exometabolite documented to be involved in 453 

either interference or exploitative competition (Chodkowski and Shade, 2020). This 454 

suggests that entry into stationary phase primed members for competitive interactions, 455 

whether there were heterospecific neighbors present. We interpret this strategy of 456 

preemptive aggression to be especially advantageous to B. thailandensis, as it 457 

successfully used competitive strategies against both C. violaceum and P. syringae. B. 458 

thailandensis’s success was supported by decreased viable P. syringae cells when 459 

cocultured with B. thailandensis. Though C. violaceum viable cell counts were not as 460 

affected directly by the coculture with B. thailandensis, B. thailandensis-produced 461 

bactobolin (Duerkop et al., 2009) was detected in the shared medium reservoir. 462 

Bactobolin is a bacteriostatic antibiotic previously shown to be bioactive against C. 463 

violaceum (Chandler et al., 2012). But, C. violaceum can resist bactobolin through 464 

upregulation of an RND-type efflux pump (Evans et al., 2018). This finding also is 465 

supported by our data, as all genes coding for the CdeAB-OprM RND-type efflux 466 

system and the TetR-family transcriptional regulator were upregulated in C. violaceum 467 

cocultures with B. thailandensis (CLV04_2412-CLV04_2415).  468 

 Coculturing can induce secondary metabolism (Pettit, 2009; Netzker et al., 2015; 469 

Zhu et al., 2014) because an exometabolite produced by one microbe can prompt 470 

secondary metabolism in a neighbor (Okada and Seyedsayamdost, 2017). We found 471 

that coculturing led to the upregulation of numerous BSGCs in B. thailandensis. These 472 

exometabolites included bactobolin, malleilactone (Biggins et al., 2012; Truong et al., 473 
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2015; siderophore and cytotoxin), malleobactin (Alice et al., 2006; Gupta et al., 2017; 474 

siderophore), capistruin (Knappe et al., 2008; lasso peptide), thailandamide (Ishida et 475 

al., 2010; polyketide), pyochelin (Butt and Thomas, 2017; siderophore), rhamnolipids 476 

(Dubeau et al., 2009; biosurfactants), and two uncharacterized BSGCs encoding 477 

nonribosomal peptide synthetases. Of these exometabolites, bactobolin, capistruin, and 478 

thailandamide have documented antimicrobial activities through translation inhibition 479 

(Amunts et al., 2015), transcription inhibition (Kuznedelov et al., 2011), and inhibition of 480 

fatty acid synthesis (Wozniak et al., 2018), respectively. For those exometabolites we 481 

were able to identify with mass spectrometry, their accumulation in cocultures was 482 

correlated with the upregulation of their BSGCs. Furthermore, up/downregulated 483 

patterns across all B. thailandensis BSGCs is consistent with ScmR global regulatory 484 

patterns of secondary metabolism (Mao et al., 2017). Though we were not able to 485 

pinpoint the exact inducers of BSGCs, exometabolites such as antibiotics (Okada et al., 486 

2016) and primary metabolites (Li et al., 2020) have been documented to induce 487 

secondary metabolism in B. thailandensis. C. violaceum can inhibit B. thailandensis 488 

(Chandler et al., 2012) but we did not observe B. thailandensis inhibition based on cell 489 

counts. However, we did find that in stationary phase C. violaceum-B. thailandensis 490 

cocultures, C. violaceum upregulated an uncharacterized hybrid nonribosomal peptide 491 

synthetase-type I polyketide synthase. P. syringae was the least competitive of the 492 

three neighbors, as evidenced by a reduction in live cell counts when cocultured with B. 493 

thailandensis. Also, P. syringae did not increase competitive strategies when 494 

cocultured, as no BSGCs were consistently upregulated across all coculture conditions. 495 

In summary, though all three neighbors used competitive strategies, B. thailandensis 496 
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was most successful and displayed continued aggression in cocultures over stationary 497 

phase through increased production of exometabolites involved in interference and 498 

exploitative competition strategies.  499 

 Given the upregulation of BSGCs in B. thailandensis and the strong 500 

transcriptional responses of C. violaceum and P. syringae to the presence of B. 501 

thailandensis, we hypothesized that competitive exometabolites were contributing to 502 

their community dynamics. Thus, we used a coexpression network analysis with our 503 

longitudinal transcriptome series to infer interspecies interactions (McClure, 2019). This 504 

use of this approach was first demonstrated to infer coregulation between a phototroph-505 

heterotroph commensal pair (McClure et al., 2018). Our network confirmed that B. 506 

thailandensis BSGCs had coordinated gene expression patterns with both C. violaceum 507 

and P. syringae. Interspecies nodes in both networks contained various genes involved 508 

in the aforementioned upregulated B. thailandensis BSGCs. In particular, we focused on 509 

interspecies edges within thailandamide nodes for the B. thailandensis-C. violaceum 510 

network and interspecies edges within malleilactone nodes for the B. thailandensis-P. 511 

syringae network because these were significantly enriched as interspecies nodes. A C. 512 

violaceum gene of interest, CLV04_2968, was contained within the thailandamide 513 

cluster of interspecies nodes. This gene codes for a DNA starvation/stationary phase 514 

protection protein and had the highest homology to the Dps protein in Escherichia coli 515 

across all C. violaceum protein coding genes. Dps mediates tolerance to multiple 516 

stressors and dps knockouts are more susceptible to thermal, oxidative, antibiotic, iron 517 

toxicity, osmotic, and starvation stressors (Karas et al., 2015). Interestingly, 518 

CLV04_2968 was downregulated when cocultured with B. thailandensis, suggesting 519 
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that B. thailandensis attenuates C. violaceum stress tolerance over stationary phase. 520 

While we observed a slight decrease in viable C. violaceum cells when cocultured with 521 

B. thailandensis, one may expect C. violaceum to have increased sensitivity to a 522 

subsequent stress (e.g. pH stress; Nair and Finkel, 2004) resulting from CLV04_2968 523 

downregulation in the presence of B. thailandensis. 524 

 In the B. thailandensis-P. syringae coexpression network, a P. syringae gene of 525 

interest, PSPTO_1206, was contained within the malleilactone cluster of interspecies 526 

nodes. PSPTO_1206 is annotated as a TonB-dependent siderophore receptor. A P. 527 

syringae iron-acquistion receptor had coordinated expression with a malleilactone, 528 

which has been characterized as a siderophore with antimicrobial properties (Biggins et 529 

al., 2012). Interestingly, this gene was downregulated when in coculture with B. 530 

thailandensis. In contrast, the closest TonB-dependent siderophore receptor homolog to 531 

PSPTO_1206 in B. thailandensis, BTH_I2415, was upregulated in coculture conditions 532 

with P. syringae. To summarize, coexpression network analysis reveal coordinated 533 

gene expression patterns that helped to infer that BSGC upregulation likely explains the 534 

influence of B. thailandensis on both C. violaceum and P. syringae. B. thailandensis-535 

increased competition strategies were coordinated with a potential decrease in 536 

competition strategies in C. violaceum via reduced stress tolerance and in P. syringae 537 

with reduced iron acquisition ability.  538 

 A major goal in microbial ecology is to predict community dynamics for purposes 539 

of modulating and/or maintaining ecosystem function (Antwis et al., 2017, Konopka, 540 

2009). At its core, microbial functional properties emerge, in part, from the concerted 541 

interactions of multi-species assemblages. Predictions can be complicated by non-542 
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additive phenomena that arise in more complex communities. For example, non-543 

additive phenomena have been documented in gene expression (Cornforth et al., 2014; 544 

Bundy et al., 2002), growth (Pacheco et al., 2021), and fitness (Morin et al., 2018). 545 

Here, we also have documented non-additive responses and behaviors in our system 546 

when combinatorial stimuli were present in the 3-member community. B. thailandensis 547 

BSGCs displayed non-additive phenomena, as we are able show that the transcriptional 548 

response of certain BSGCs in the 3-member community was greater than the naive 549 

summation of transcriptional response in pairwise arrangements. Furthermore, non-550 

additive transcriptional responses resulted in non-additive exometabolite accumulation 551 

(e.g. thailandamide & pyochelin) with exceptions (e.g. capistruin). However, we only 552 

quantified exometabolite accumulation in the shared medium reservoir. Differential 553 

release and uptake of bioactive molecules within the community can complicate tracking 554 

metabolite dynamics in the system. Thus, analyses that incorporate both intracellular 555 

and extracellular metabolomics can provide a more complete understanding of altered 556 

microbial metabolism under different conditions. Regardless, we documented non-557 

additive accumulation of secondary metabolites involved in both competition strategies. 558 

This finding may have implications for high-order interactions, meaning, the nature of 559 

the interaction between two members may be altered by the addition of a third member 560 

(Billick and Case, 1994). For example, one member could produce sublethal antibiotics 561 

in the presence of an antibiotic-sensitive member. The addition of a third member could 562 

stimulate the antibiotic producer to increase antibiotic production, altering the nature of 563 

the initial interaction from sublethal to lethal for antibiotic-sensitive member (Bernier et 564 

al., 2013). In other words, the nature of interactions may be altered depending on 565 
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surrounding stimuli that can exacerbate bacterial behaviors not expected by studying 566 

the system as simpler parts (Mickalide et al., 2019). Therefore, characterizing 567 

transcriptome and metabolome dynamics in microbial communities is expected to 568 

inform how non-additive phenomena arise and how they contribute to deviations in 569 

predictive models of community outcomes.  570 

 Our results indicated that each member continued to maintain competitive 571 

strategies despite stagnant population growth. In particular, B. thailandensis 572 

upregulated various bioactive exometabolites involved in both interference and 573 

exploitative competition when with neighbors. An effective competitor is often defined as 574 

by its ability to outcompete neighbors via growth advantage that stems from efficient 575 

nutrient uptake and/or biomass conversion rates (Miller et al., 2005; De Jong et al., 576 

2017). We add to this that a competitor can also have a fitness advantage through 577 

effective maintenance, which can similarly employ interference or exploitative 578 

competitive strategies despite no net growth. Maintenance may ensure survival in some 579 

environments that impose a stationary phase lifestyle, where long periods of nutrient 580 

depletion are punctuated with short periods of nutrient flux. In these scenarios, it 581 

warrants to understand how competitive strategies are deployed in the interim of growth 582 

and the extent to which these interactions contribute to long-term community outcomes. 583 

Though population levels remain constant, sub-populations of growing cells have been 584 

observed in stationary phase (Jõers et al., 2020), and continued production of 585 

competitive exometabolites may serve as an advantageous strategy to hinder growth of 586 

competitors. In addition, some antibiotics remain effective in non-replicating bacteria 587 

(McCall et al., 2019). The ability for continued maintenance via effective competition 588 
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strategies during stationary phase may provide spatiotemporal maintenance of 589 

population levels before growth resumption (Chesson, 1983). Thus, we expect that 590 

insights into the long-term consequences of competition for microbial community 591 

outcomes will be gained by considering competition in both active growth and 592 

maintenance scenarios.  593 

 594 

Material and Methods 595 

Bacterial strains and culture conditions  596 

 597 

 Freezer stocks of B. thailandensis, C. violaceum, and P. syringae were plated on 598 

half-concentration Trypticase soy agar (TSA50) at 27°C for at least 24 h. Strains were 599 

inoculated in 7 ml of M9–0.2% glucose medium and grown for 16 h at 27°C, 200 rpm. 600 

Cultures were then back-diluted into 50 ml M9-0.2% glucose medium such that 601 

exponential growth phase was achieved after 10 h of incubation at 27°C, 200 rpm. 602 

Strains were back-diluted in 50 ml M9 glucose medium to target ODs (B. thailandensis 603 

0.3 OD, C. violaceum: 0.035 OD, P. syringae 0.035 OD) such that stationary phase 604 

growth would be achieved by all members within a 2 h time frame after 24 h incubation 605 

in the transwell plate. The glucose concentration in the final back-dilution varied upon 606 

community arrangement- 0.067% for monocultures, 0.13% for pairwise cocultures, and 607 

0.2% for the 3-member community. For each strain, 48 ml of back-diluted culture was 608 

transferred as 4 mL aliquots in 12, 5 mL Falcon tubes prior to transferring them into the 609 

transwell plate.  610 
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 611 

Synthetic community experiments 612 

 613 

 Transwell plate preparation was performed as previously described (Chodkowski 614 

and Shade, 2017). Briefly, we used sterile filter plates with 0.22-μm-pore polyvinylidene 615 

difluoride (PVDF) filter bottoms (Millipore MAGVS2210). Prior to use, filter plates were 616 

washed three times with sterile water using a vacuum apparatus (NucleoVac 96 617 

vacuum manifold; Clontech Laboratories). The filter of well H12 was removed with a 618 

sterile pipette tip and tweezer, and 31 ml of M9 glucose medium was added to the 619 

reservoir through well H12. The glucose concentration in the reservoir varied upon 620 

community arrangement- 0.067% for monocultures, 0.13% for pairwise cocultures, and 621 

0.2% for the 3-member community. Each well was then filled with 130 μL of culture or 622 

medium. For each plate, a custom R script (RandomArray.R [see script at 623 

https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_an624 

alysis/RandomArray.R]) was used to randomize community member placement in the 625 

wells so that each member occupied a total of 31 wells per plate. In total, there were 7 626 

community conditions- 3 monocultures, 3 pairwise cocultures, and the 3-member 627 

community. A time course was performed for each replicate. The time course included 628 

an exponential phase time point (12.5 h) and 5 time points assessed every 5 h over 629 

stationary phase (25 h – 45 h). Four biological replicates were performed for each 630 

community condition for a total of 28 experiments. For each experiment, 6 replicate filter 631 

plates were prepared for destructive sampling for a total of 168 transwell plates.  632 

 633 
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 Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). For each 634 

plate, a custom R script (RandomArray.R [see script at 635 

https://github.com/ShadeLab/PAPER_Chodkowski_mSystems_2017/blob/master/R_an636 

alysis/RandomArray.R]) was used to randomize wells for each organism assigned to 637 

RNA extraction (16 wells) and flow cytometry (5 wells). The following procedure was 638 

performed for each organism when a transwell plate was destructively sampled: i) wells 639 

containing spent culture assigned to RNA extraction were pooled into a 1.5 mL 640 

microcentrifuge tube and flash frozen in liquid nitrogen and stored at -80 until further 641 

processing. ii) 20 μL from wells assigned for flow cytometry were diluted into 180 μL 642 

Tris-buffered saline (TBS; 20 mM Tris, 0.8% NaCl [pH 7.4]). In plate arrangements 643 

where P. syringae was arrayed with B. thailandensis, P. syringae had a final dilution of 644 

70-fold in TBS. In plate arrangements where P. syringae was arrayed in monoculture or 645 

in coculture with C. violaceum, P. syringae had a final dilution of 900-fold in TBS. Final 646 

dilutions for B. thailandensis and C. violaceum were 1,300-fold and 1,540-fold, 647 

respectively. iii) Spent medium (~31 ml) from the shared reservoir was transferred to 50 648 

mL conical tubes, flash-frozen in liquid nitrogen and stored at −80 °C prior to metabolite 649 

extraction.  650 

 651 

Flow cytometry 652 

 653 

 Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight 654 

bacterial viability kit at final concentrations of 1.5 μM Syto9 (live stain) and 2.5 μM 655 

propidium iodide (dead stain). Two hundred microliters of stained cultures were 656 
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transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty 657 

microliters of sample were analyzed on a BD Accuri C6 flow cytometer (BD 658 

Biosciences) at a fluidics rate of 66 μl/min and a threshold of 500 on an FL2 gate. The 659 

instrument contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and 660 

FL3, 670-nm longpass. Data were analyzed using BD Accuri C6 software version 661 

1.0.264.21 (BD Biosciences). 662 

 663 

RNA-seq 664 

RNA extraction  665 

 RNA was extracted using the E.Z.N.A. Bacterial RNA kit (Omega Bio-tek, Inc.). An in-666 

tube DNase I (Ambion, Inc AM2222, 2U) digestion was performed to remove DNA from RNA 667 

samples. RNA samples were purified and concentrated using the Qiagen RNAeasy MinElute 668 

Clean up Kit (Qiagen, Inc). Ten random samples were chosen to assess RNA integrity on an 669 

Agilent 2100 Bioanalyzer. 670 

 671 

RNA sample prep, sequencing, QC, read preprocessing, and filtering  672 

 Standard operating protocols were performed at the Department of Energy Joint 673 

Genome Institute as previously described (Chodkowski and Shade, 2020).  674 

 675 

Pseudoalignment and counting 676 

 Reads from each library with pseudoaligned to the transcriptome of each strain 677 

with kallisto (Bray et al., 2016). Raw counts from each library were combined into a 678 

gene count matrix for each strain. The gene count matrix was used for downstream 679 

analyses. 680 
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 681 

Transcriptomics 682 

Quality filtering and differential gene expression analysis 683 

 Count matrices for each member were quality filtered in two steps: genes 684 

containing 0 counts in all samples were removed, and genes with a transcript count of 685 

≤10 in more than 90% of samples were removed. DESeq2 (Love et al., 2014) was used to 686 

extract size factor and dispersion estimates. These estimates were used as external 687 

input into ImpulseDE2 for the analysis of differentially regulated genes (Fischer et al., 688 

2018). Case-control (Cocultures-monoculture control) analyses were analyzed to 689 

identify both permanent and transient regulated genes at an FDR-corrected threshold of 690 

0.01. For each member, differences in gene regulation between the three coculture 691 

conditions was visualized with venn diagrams using the VennDiagram package.  692 

The initial differential gene expression analysis compared each coculture to the 693 

monoculture control, separately. It was revealed that were was a subset of genes that 694 

were only differentially expressed in the 3-member community. These genes were 695 

parsed from the dataset and used to perform two additional analyses in ImpulseDE2. 696 

Case-control analyses were performed to analyze differential expression between the 3-697 

member community to each of the pairwise cocultures as controls. Functional 698 

enrichment analysis was performed on the collection of genes determined to have 699 

unique differential expression in the 3-member community using the BiNGO package in 700 

Cytoscape (Maere et al., 2005). 701 

 702 

COG analysis 703 
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 Protein fasta files were downloaded from NCBI and uploaded to eggNOG-704 

mapper v2 (http://eggnog-mapper.embl.de/) to obtain Clusters of Orthologous Groups 705 

(COG) categories. Genes corresponding to COGs were categorized as upregulated or 706 

downregulated based on their temporal expression patterns and plotted using ggplot2. 707 

 708 

Principal coordinates analysis and statistics 709 

 We extracted genes that were differentially expressed with an FDR-corrected 710 

threshold of < 0.01 and a log2 fold-change >1 or < -1. A variance-stabilizing 711 

transformation was performed on normalized gene matrices using the rlog function in 712 

DESeq2. A distance matrix based on the Bray-Curtis dissimilarity metric was then 713 

calculated on the variance-stabilized gene matrices and principal coordinates analysis 714 

was performed using the R package vegan. Principal coordinates were plotted using 715 

ggplot2. Coordinates of the first two PCoA axes were used to perform Protest analysis 716 

using the protest function in vegan. Dissimilarity matrices were used to perform 717 

PERMANOVA and variation partitioning and using the adonis and varpart functions in 718 

vegan, respectively. The RVAideMemoire package was used to perform a post-hoc 719 

pairwise PERMANOVAs.  720 

 721 

Circos plots 722 

 A subset of the top ~500 of differentially regulated genes was determined for 723 

each member by assessing differential expression in the 3-member community. A log2 724 

fold-change (LFC) cutoff of at least > 1.5 or < -1.5 was used to capture both upregulated 725 

and downregulated genes. The LFC threshold needed to be met in at least one 726 
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timepoint. We then filtered these genes by those that had differential expression with a 727 

significance cutoff of < 0.01 (FDR corrected). P. syringae genes encoded on plasmids 728 

were an exception. We extracted all coding sequence genes from both plasmids 729 

because the entirety of each plasmid could be visualized on a Circos plot with high 730 

resolution. From these genes of interest, a variance-stabilizing transformation was 731 

performed on normalized gene matrices using the rlog function in DESeq2 and Z-scored 732 

on a per gene basis. Circular genome plots were generated in Circos version 0.69-5. 733 

Pseudo-genes composed of the minimum and maximum Z-scores were added to each 734 

of four tracks to make the Z-score color scale comparable across all community 735 

arrangements. Functional enrichment analysis was performed on the collection of genes 736 

within each P. syringae plasmid using the BiNGO package in Cytoscape. 737 

 738 

Biosynthetic gene cluster (BSGC) analysis 739 

 NCBI accession numbers were uploaded to antiSMASH 6 beta bacterial version 740 

(Blin et al., 2021) to identify genes involved in BSGCs using default parameters. Where 741 

possible, literature-based evidence and BSGCs uploaded to MIBiG (Kautsar et al., 742 

2020) were used to better inform antiSMASH predictions. Log2 fold-changes (LFCs) 743 

were calculated for all predicted biosynthetic genes within each predicted cluster by 744 

comparing coculture expression to monoculture expression at each time point. Average 745 

LFCs were calculated from all predicted biosynthetic genes within a predicted BSGC at 746 

each time point. Temporal LFC trends were plotted using ggplot2. An upregulated 747 

BSGC was defined as a BSGC that had at least two consecutive time points in 748 

stationary phase with a LFC > 1.  749 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.05.459016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.05.459016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria 

 
 

38 

 750 

Network analysis 751 

 Unweighted co-expression networks were created from quality filtered and 752 

normalized expression data. Networks were generated for pairwise cocultures 753 

containing B. thailandensis. First, data were quality filtered as previously described 754 

(See section: Quality filtering and differential gene expression analysis). Then, 755 

normalized expression data was extracted from DESeq2. Biological replicates for 756 

each member within each timepoint were averaged by mean. Interspecies networks 757 

were then inferred from the expression data using the context likelihood of relatedness 758 

(Faith et al., 2007) algorithm within the R package Minet (Meyer et al., 2008). Gene 759 

matrices for each coculture pair were concatenated to perform the following analysis. 760 

Briefly, the mutual information coefficient was determined for each gene-pair. To ensure 761 

robust detection of co-expressed genes, a resampling approach was used as previously 762 

described (McClure et al., 2016). Then, a Z-score was computed on the mutual 763 

information matrix. A Z-score threshold of 4.5 was used to determine an edge in the 764 

interspecies network. Interspecies networks were uploaded into Cytoscape version 765 

3.7.1. for visualization, topological analysis, and enrichment analysis (Shannon et al., 766 

2003).  767 

 768 

 Gene annotation and gene ontology files were obtained for B. thailandensis, P. 769 

syringae, and C. violaceum for enrichment analyses. For B. thailandensis, annotation 770 

and ontology files were downloaded from the Burkholderia Genome Database 771 

(https://www.burkholderia.com). For P. syringae, annotation and ontology files were 772 
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downloaded from the Pseudomonas Genome Database 773 

(http://www.pseudomonas.com/strain/download). Annotation and ontology files for C. 774 

violaceum were generated using Blast2GO version 5.2.5 (Götz et al., 2008). 775 

InterProScan (Zbobnov and Apweiler, 2001) with default parameters were used to 776 

complement gene annotations from C. violaceum. GO terms were assigned using 777 

Blast2GO with default parameters. In addition, genes involved in secondary metabolism 778 

were manually curated and added to these files as individual GO terms. These genes 779 

were also used to update the GO term GO:0017000 (antibiotic biosynthetic process), 780 

composed of a collection of all the biosynthetic genes. (See section: Biosynthetic gene 781 

cluster analysis).  782 

 Topological analysis was performed as follows: Nodes were filtered from each 783 

coculture network to only select genes from one member. The GLay community cluster 784 

function in Cytoscape was used to determine intra-member modules. Functional 785 

enrichment analysis was then performed on the modules using the BiNGO package in 786 

Cytoscape.   787 

 788 

 To determine interspecies co-regulation patterns, we filtered network nodes that 789 

contained an interspecies edge. Functional enrichment analysis was performed on the 790 

collection of genes containing interspecies edges for each member using the BiNGO 791 

package in Cytoscape. Modules of interest (e.g. thailandamide and malleilactone) were 792 

filtered in Cytoscape for visualization. The biosynthetic gene cluster organization of 793 

thailandamide and malleilactone were obtained from MIbig and drawn in InkScape.  794 

 795 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.05.459016doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.05.459016
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chodkowski & Shade: Exometabolite-driven maintenance competition in bacteria 

 
 

40 

 Protein sequences from an interspecies gene of interest from the thailandamide 796 

module cluster (CLV_2968) and an interspecies gene of interest from the malleilactone 797 

module cluster (PSPTO_1206) were obtained. A protein blast for each protein was run 798 

against B. thailandensis protein sequences. B. thailandensis locus tags were extracted 799 

from the top blast hit from each run. Normalized transcript counts for these 4 genes of 800 

interest were plotted in R. Time course gene trajectories were determined using a loess 801 

smoothing function.  802 

 803 

Non-additive gene expression 804 

 The quality filtered and normalized expression matrix from each community 805 

member was used to extract log2 fold-change (LFC) values within DESeq2. LFCs were 806 

calculated by comparing transcript counts from each time point to its respective time 807 

point in the monoculture condition. LFCs were converted to fold-changes (FC). Non-808 

additive outcomes were determined based on the null expectation that FCs in the 3-809 

member community should reflect a summation of FCs from the pairwise cocultures. 810 

The thresholds for assigning a gene as non-additive upregulation was as follows:  811 

 812 

(TM/MC)/(PWC1/MC+PWC2/MC) >1.2 813 

 814 

Where TM are the gene counts in the 3-member community, MC are the gene counts in 815 

the monoculture condition, and PWC1/PWC2 are the gene counts in the pairwise 816 

coculture conditions 1 & 2, respectively. Non-additive gene expression patterns were 817 

determined at each time point and plotted using ggplot2. Venn diagrams were also 818 
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created to analyze the patterns of non-additivity across the time series and between the 819 

exponential phase time point and stationary phase times points. Functional enrichment 820 

analysis was performed on the collection of genes determined to have non-additive 821 

upregulation using the BiNGO package in Cytoscape.  822 

 823 

Metabolomics  824 

 825 

LCMS sample preparation and data acquisition 826 

 Standard operating protocols were performed at the Department of Energy Joint 827 

Genome Institute as previously described (Chodkowski and Shade, 2020).  828 

 829 

Feature detection 830 

 MZmine2 (Pluskal et al., 2010) was used for feature detection and peak area 831 

integration as previously described (Chodkowski and Shade, 2017). Select 832 

exometabolites were identified in MZmine2 by manual observation of both MS and 833 

MS/MS data. We extracted quantities of these identified exometabolites for ANOVA and 834 

Tukey HSD post-hoc analysis in R.  835 

 836 

Feature filtering and HM visualization 837 

 We filtered features in three steps to identify coculture-accumulated 838 

exometabolites. The feature-filtering steps were performed as follows on a per-member 839 

basis: (i) retain features where the maximum peak area abundance occurred in a 840 

coculture community arrangement ; (ii) a noise filter, the minimum peak area of a 841 
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feature from a replicate at any time point needed to be 3 times the maximum peak area 842 

of the same feature in one of the external control replicates, was applied; (iii) coefficient 843 

of variation (CV) values for each feature calculated between replicates at each time 844 

point needed to be less than 20% across the time series.  845 

Four final feature data sets from polar and nonpolar analyses in both ionization modes 846 

were analyzed in MetaboAnalyst 5.0 (Pang et al., 2021). Features were normalized by 847 

an ITSD reference feature (see Dataset 5 848 

at https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t849 

ree/master/Datasets) and cube root transformed. Reference features for polar analyses 850 

in positive ([13C,15N]proline) and negative ([13C,15N]alanine) modes were determined by 851 

the ITSD with the lowest CV value across all samples. The reference feature for 852 

nonpolar data sets was the ITSD ABMBA. Heat maps were generated in MetaboAnalyst 853 

using Ward’s clustering algorithm with Euclidean distances from Z-scored data. Data for 854 

each sample are the averages from independent time point replicates (n = 2 to 4). 855 

Normalized and transformed data sets were exported from MetaboAnalyst to generate 856 

principal-coordinate analysis (PCoA) plots in R. 857 

 858 

Principal coordinates analysis and statistics 859 

 A distance matrix based on the Bray-Curtis dissimilarity metric was used to 860 

calculate dissimilarities between exometabolite profiles. Principal coordinates analysis 861 

was performed using the R package vegan. Principal coordinates were plotted using 862 

ggplot2. Coordinates of the first two PCoA axes were used to perform Protest analysis 863 

using the protest function in vegan. Dissimilarity matrices were used to perform 864 
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PERMANOVA and variation partitioning and using the adonis and varpart functions in 865 

vegan, respectively. The RVAideMemoire package was used to perform a post-hoc 866 

pairwise PERMANOVAs. Monoculture community arrangements were removed to focus 867 

on coculture trends. 868 

 869 

Non-additive metabolomics production 870 

 All reference standard normalized, filtered features (across both polarities and 871 

ionization modes) were combined. Non-additive outcomes were determined based on 872 

the null expectation that fold-changes (FC) in the 3-member community should reflect a 873 

summation of FCs from the pairwise cocultures. The thresholds for assigning a 874 

metabolomic feature as non-additive production was as follows:  875 

 876 

(TM)/(PWC1 + PWC2 + PWC3) > 1.5 877 

 878 

Where TM is the peak area abundance in the 3-member community, and 879 

PWC1/PWC2/PWC2 are the peak area abundance in the pairwise coculture conditions 880 

1,2, and 3, respectively. FCs were determined at each time point. A feature was 881 

determined to be produced in the 3-member community in a non-additive manner if it 882 

was above the FC threshold at least 3 times during stationary phase. At each time point, 883 

a Z-scored distribution of FCs was plotted in R. Z-scores were extracted from 884 

exometabolite of interest (thailandamide, pyochelin, and capistruin) to plot as vertical 885 

ablines on the Z-scored distributions. In addition, the non-additive features were 886 

extracted from the dataset to generate a heat map in MetaboAnalyst. Ward’s clustering 887 
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algorithm was used with Euclidean distances from Z-scored data. Data for each sample 888 

are the averages from independent time point replicates (n = 2 to 4).  889 

 890 

 To find statistical support for non-additive exometabolite production in the 3-891 

member community, we created an “expected” time course abundance for identified 892 

exometabolites that had non-additive upregulation (thailandamide, pyochelin, and 893 

capistruin). The “expected” time course abundance was determined by calculating the 894 

summation of peak abundances across pairwise cocultures with B. thailandensis. Due 895 

to the issue of replicate independence for each time course, the standard deviation 896 

would vary depending on what replicates were combined. As a conservative approach, 897 

we permuted all possible pairwise coculture combinations and used the replicate 898 

combination that resulted in the highest standard deviation. The time course peak 899 

abundance of thailandamide, pyochelin, and capistruin from pairwise cocultures with B. 900 

thailandensis, from the 3-member community, and from the “expected” 3-member 901 

community were plotted in ggplot2. We then ran a repeated measures permutation 902 

ANOVA to compare the time course peak abundance of thailandamide, pyochelin, and 903 

capistruin observed in the 3-member community to the “expected” 3-member 904 

community. A post-hoc pairwise t-test was performed to observe which time points were 905 

statistically significant. We note each iteration of repeated measures ANOVA would 906 

result in different statistical result. This was because the replicate identifiers for the 907 

“expected” time course were arbitrarily assigned. For this reason, we only considered a 908 

test significant if it was consistently below a P threshold of 0.05 across 10 iterations of 909 

the code.  910 
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 911 

Code availability 912 

Computing code, workflows, and data sets are available at 913 

[https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021]. R 914 

packages used during computing analyses included DEseq2 (Love et al., 2014), 915 

ImpulseDE2 (Fischer et al., 2018), Minet (Meyer et al., 2008), vegan 2.5-4 (Oksanen et 916 

al., 2019), ggplot2 (Wickham, 2016), VennDiagram (Chen, 2018), RVAideMemoire 917 

(Herve, 2020), rtracklayer (Lawrence et al., 2009), viridis (Garnier et al., 2021), and 918 

helper functions (Wickham, 2007, Wickham, 2019; Wickham et al., 2019A; Wickham et 919 

al., 2019B). 920 

 921 

Data availability 922 

Genomes for B. thailandensis, C. violaceum, and P. syringae are available at the 923 

National Center for Biotechnology Information (NCBI) under accession 924 

numbers NC_007651 (Chromosome I)/NC_007650 (Chromosome 925 

II), NZ_PKBZ01000001, and NC_004578 (Chromosome)/NC_004633 (Plasmid 926 

A)/NC_004632 (Plasmid B), respectively. An improved annotated draft genome of C. 927 

violaceum is available under NCBI BioProject accession 928 

number PRJNA402426 (GenBank accession number PKBZ00000000). Data for 929 

resequencing efforts for B. thailandensis and P. syringae are under NCBI BioProject 930 

accession numbers PRJNA402425 and PRJNA402424, respectively. Metabolomics 931 

data and transcriptomics data are also available at the JGI Genome Portal (Nordberg et 932 

al., 2014) under JGI proposal identifier 502921. MZmine XML parameter files for all 933 
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analyses can be viewed at and downloaded from GitHub (see Dataset 7 934 

at https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020/t935 

ree/master/Datasets). Large data files (e.g., MZmine project files) are available upon 936 

request. Supplementary files are also available on GitHub 937 

(https://github.com/ShadeLab/Paper_Chodkowski_3member_SynCom_2021/tree/maste938 

r/Supplemental_Files). 939 
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