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Abstract— Data-driven discovery of image-derived phe-

notypes (IDPs) from large-scale multimodal brain imaging

data has enormous potential for neuroscientific and clin-

ical research by linking IDPs to subjects’ demographic,

behavioural, clinical and cognitive measures (i.e., non-

imaging derived phenotypes or nIDPs). However, cur-

rent approaches are primarily based on unsupervised ap-

proaches, without the use of information in nIDPs. In

this paper, we proposed a semi-supervised, multimodal,

and multi-task fusion approach, termed SuperBigFLICA,

for IDP discovery, which simultaneously integrates infor-

mation from multiple imaging modalities as well as multi-

ple nIDPs. SuperBigFLICA is computationally efficient and

largely avoids the need for parameter tuning. Using the UK

Biobank brain imaging dataset with around 40,000 subjects

and 47 modalities, along with more than 17,000 nIDPs,

we showed that SuperBigFLICA enhances the prediction

power of nIDPs, benchmarked against IDPs derived by

conventional expert-knowledge and unsupervised-learning

approaches (with average nIDP prediction accuracy im-

provements of up to 46%). It also enables the learning

of generic imaging features that can predict new nIDPs.

Further empirical analysis of the SuperBigFLICA algorithm

demonstrates its robustness in different prediction tasks

and the ability to derive biologically meaningful IDPs in

predicting health outcomes and cognitive nIDPs, such as

fluid intelligence and hypertension.

Index Terms— Multimodality, Brain imaging, UK Biobank,

Imaging-derived phenotypes, Non-imaging derived pheno-

types.
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I. INTRODUCTION

Large-scale population neuroimaging datasets, such as
the data from UK Biobank, provide high-quality multimodal
magnetic resonance imaging (MRI) data, with the potential
for generating markers of psychiatric and neurodegenera-
tive diseases and uncovering the neural basis of cognition
through linking across imaging features to behavioural or
genetic data [1]. However, such massive high-dimensional
data make statistical modelling challenging due to their
multimodal nature and cohort size. Therefore, instead of
working directly from voxel-level spatial maps, it is becom-
ing popular to reduce these maps into summary measures,
sometimes referred to as “imaging-derived phenotypes
(IDPs)” [2]–[4]. IDPs can be spatial summary statistics such
as global and regionally averaged tissue volumes, while
other IDPs can be measures of functional and structural
connectivity or tissue biology. Building statistical models
from an informative set of IDPs can significantly reduce
the computational burden and, compared to working from
voxel-wise data, has a similar or even improved signal-
to-noise ratio for use in associations with non-imaging
variables and predictive analysis linking to, e.g., behaviour
and genetics [1], [2], [4].

Methods for deriving IDPs can be divided into two
categories, one expert-knowledge-based and the other data-
driven. The former approaches are typically concerned with
extracting summary signals from pre-defined anatomy or
functional brain atlases [5]. Although simple and efficient,
this approach has a few limitations. First, the atlases may
not be equally valid across different areas of the brain.
For example, existing atlases typically provide fine-grained
delineations across sensory cortices and less detailed across
multimodal association cortices. These differences may re-
sult in increased inter-individual differences across different
brain areas, potentially masking the signal of interest. Sec-
ond, these regional characterisations are often derived from
underlying features that may not appropriately map onto
different data modalities. For example, atlases based on
cytoarchitectonic features may differentially be suitable for
IDPs reflecting regional cortical thickness but may be less
suitable for summarising measures of functional connectiv-
ity. Furthermore, with multimodal data, expert-knowledge-
based approaches typically ignore cross-modal relation-
ships and thus have limited ability to capture continuous
modes of variations shared by different modalities. Data-
driven approaches for identifying IDPs, e.g., variants of
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unsupervised spatial dimensionality reduction techniques,
may overcome the aforementioned limitations of expert-
knowledge-based approaches. For example, independent
component analysis (ICA) and dictionary learning (DicL)
have been widely used to define “soft” brain parcellations
in resting-state functional MRI analysis [6], [7]. They are
based on arguably objective criteria such as maximising
non-Gaussianity or minimising data reconstruction errors
and can, in theory, be applied to a wide variety of different
modalities. In a multimodal setting, FMRIB’s Linked ICA
(FLICA) [8] is one approach for identifying continuous
spatial modes of individual variations that are related to a
range of behavioural phenotypes and diseases (e.g., lifespan
development [9] and attention deficit hyperactivity disorder
[10]). In our previous work, we developed BigFLICA, extend-
ing the original computationally expensive FLICA to handle
much larger datasets such as UK Biobank [2]. These data-
driven approaches have the advantages of being objective
and considering cross-modal relationships, thereby reveal-
ing patterns that are ignored by expert-knowledge-based
approaches [11], [12].

One of the primary applications of extracting imaging
features as IDPs is predicting non-imaging derived pheno-
types (nIDPs), including demographic, behavioural, clinical
and cognitive measures from individuals. While the ap-
proaches listed above are designed to capture spatial modes
of variation from the imaging data faithfully, they are not
explicitly optimised for the latter prediction task. Incorpo-
rating the “target” nIDP information into IDP discovery,
therefore, may benefit IDP extraction. Previous studies have
proposed (semi-)supervised approaches for IDP discovery.
For example, Qi et al. developed a multimodal fusion with
reference (MCCAR) approach [13] and applied it to find
multimodality modes related to schizophrenia [14] and
major depressive disorder [15]. Zhou et al. also proposed
a multi-modal latent space approach for early dementia
diagnosis [16]. Another line of research focused on complex
nonlinear approaches, such as multiple kernel learning
[16]–[18], graph-based transductive learning [19] and neural
networks such as multilayer perceptrons [20], [21], which
proved successful in predicting neurological disorders such
as Alzheimer’s disease. However, two caveats still exist in
the above approaches. First, most of them do not scale well
to big datasets due to expensive computational loads and
high memory requirements. Second, nonlinear approaches
heavily rely on parameter tuning and therefore require
additional (cross-)validation for setting appropriate values.
Furthermore, it is often difficult to make meaningful in-
terpretations of the“black-box” nonlinear approaches, as
explanations for deep neural networks produced by existing
methods largely remain elusive and are yet to be standard-
ised [22], [23]. As a result, it remains difficult to interpret
the neural system that each feature (or spatial summary
statistic) represents.

In this paper, to address these issues, we developed
“Supervised BigFLICA” (SuperBigFLICA), a semi-supervised,
multimodal, and multi-task fusion approach for IDP dis-
covery, which simultaneously integrates information from

multiple imaging modalities as well as from multiple nIDPs.
By incorporating nIDPs in the modelling, one can hope
to achieve better nIDP prediction than by training on the
imaging data alone, as this exploits the covariance structure
inherent in the nIDP space in addition to the predictive
power of the imaging data. In the model, we use one or
more target nIDPs to help the model learn spatial features
that are biologically important in that they are generically
useful in prediction, rather than only taking the route
of classical unsupervised approaches of simply focusing
on learning features for representing/reconstructing the
image data with minimal loss. Further, using multiple nIDPs
in training - a technique known as multi-task learning
[24] - one can hope to refine the learned latent space
better than when using single nIDPs, which are often
noisy descriptions of the phenotype of interest (e.g., fluid
intelligence). Compared with learning to predict each of the
response variables individually, training across a range of
noisy but related tasks simultaneously guides the model to
characterise feature space shared across tasks, potentially
leading to improved predictive power of the derived IDPs
[24]–[26]. Additionally, the multi-task learning frameworks
may still be useful even if one is interested in predicting
unseen nIDPs (new tasks), because the latent space learned
via a multi-task setting generically is more transferable and
thus has higher predictive power.

SuperBigFLICA decomposes the imaging data into com-
mon “subject modes” across modalities, which characterise
the inter-individual variation of a given underlying spa-
tial component, along with modality-specific sparse spatial
loadings and weightings [2], [8]. It minimises a composite
loss function, consisting of both reconstruction errors of the
imaging data (unsupervised learning) and the prediction
errors of nIDPs (supervised learning), while additionally
having constraints pushing for spatially sparse represen-
tations. Further, being built on a Bayesian framework,
SuperBigFLICA can automatically balance the weights of
different modalities and nIDPs, thereby aiming to largely
bypass the need for parameter tuning. Optimised by a mini-
batch stochastic gradient descent algorithm, SuperBigFLICA
is computationally efficient and scalable to large datasets. In
this study, we evaluate the performance of SuperBigFLICA
across 39,770 UKB subjects, using 47 imaging modalities
and 17,485 nIDPs. We provide a comprehensive empirical
analysis of the SuperBigFLICA algorithm and demonstrate
its potential for predicting health outcomes and cognitive
nIDPs, and show that SuperBigFLICA enhances the pre-
dictive power of the derived IDPs and improves compu-
tational efficiency, benchmarked against IDPs created by
conventional expert knowledge, or classical unsupervised
or existing (semi-)supervised learning approaches.

II. METHODS

A. An overview of SuperBigFLICA.
Fig. 1 provides an overview of the SuperBigFLICA ap-

proach. SuperBigFLICA takes multimodal brain images and
nIDPs as inputs, and learns a low-dimensional brain image
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Fig. 1: Overview of the workflow of the proposed SuperBigFLICA approach for (semi-)supervised multimodal fusion and
phenotype discovery. From the left side, the inputs for multimodal analysis are 47 voxel-wise modality maps derived from
5 modalities in the UK Biobank dataset. These maps and nIDPs are then fed into the main SuperBigFLICA algorithm
for multimodal learning. The final outputs are the predicted nIDPs. Abbreviations: GM: grey matter. RSN: resting-state
network. DTI: diffusion tensor imaging. swMRI: Susceptibility weighted MRI.

derived feature set (data-driven IDPs) that is predictive
of non-imaging derived phenotypes (nIDPs). This low-
dimensional reduction is learnt as a linear combination
of multimodal images, where the weights are sparse and
represent the contribution of each voxel of each modal-
ity to each component. The low-dimensional feature set
predicts multiple nIDPs using a sparse linear model. In
other words, SuperBigFLICA uses linear layers for both
image data reduction and nIDP prediction, with specific
regularization designed for multimodal brain imaging data,
to automatically balance the weights among modalities and
nIDPs (tasks).

B. SuperBigFLICA from an optimisation perspective.
We assume our data is being derived from a group of N

subjects with multiple imaging modalities. Each of these
modalities has been processed to produce one or more
voxel-wise maps (or network matrices). For example, a task
fMRI scan may produce several task contrast maps through
statistical parametric mapping [27], and a diffusion MRI
analysis can produce maps such as fractional anisotropy
(FA) and mean diffusivity (MD) per subject. We assume
that we have a total of K modality maps per subject, and
each modality k is represented by a matrix X(k) of size
N £ Pk , where Pk is the number of feature values (e.g.,
voxels, tracts, areas, edges or vertices). We also assume that
there are Q nIDPs per subject, summarised in a matrix Y of
size N £Q. We want to find an L-dimensional latent space
across modalities, optimally predicting multiple nIDPs of

interests in unseen subjects and representing the original
imaging data. This latent space corresponds to the weights
of continuous spatial modes representing inter-individual
variations.

Formalising this in terms of a generative model, we will
assume each modality map is generated as the product of
the shared latent space, modality-specific spatial loadings
and weights plus some Gaussian residual noise:

X(k) = Z H (k)W (k) +E (k), k = 1, . . . ,K (1)

Meanwhile, the nIDPs of interest are generated by the
product of shared latent space and the prediction weights
plus some Gaussian residual noise:

Y = Z B +E (2)

In the above two equations, W (k)
(L£Pk ) are the spatial loadings

of the k-th modality map, which models the importance of
each voxel to each latent dimension; H (k)

(L£L) is a positive and

diagonal modality weighting matrix (with
PK

k=1 H (k)
l l = 1),

which reflects, for each component, the overall contribution
of each modality; and Z(N£L) is the latent features, i.e., the
subject course shared across modalities; B is an L£Q matrix
of prediction weights, which reflects the contribution of
each latent dimension for predicting each nIDP; and finally,
E (k) and E are independent Gaussian random error terms.
Fig. 1 shows an overview of the proposed approach.

We have three assumptions for the model. First, the
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subject loading Z(N£L) is generated by:

Z = 1
K

KX

k=1
Z (k) = 1

K

KX

k=1
X(k)(H (k)W (k))0 (3)

This shared subject loading Z is a weighted average of
subject loadings per modality Z (k), in analogy to the original
FLICA model [8]. This quantity is useful when we want to
estimate the contribution of different modalities to the final
prediction.

Second, the spatial loadings W (k) are approximately row-
wise uncorrelated. We used a reconstruction loss to achieve
this, which has been used in reconstruction independent
component analysis [28]:

min
W,H

KX

k=1
kX(k) °Z (H (k)W (k))k2

2 (4)

where W = (W (1), . . . ,W (K )), and H = (H (1), . . . , H (K )). Note
that the transpose of H (k)W (k) in Eqn. (3) - due the
soft orthogonality constraint for spatial loadings - will
approximate the matrix inverse [28]. For example, when
we have a single modality, the loss becomes minW,H kX °
X W H H 0W 0k2

2, which means W H H 0W 0 will approximate the
identity matrix. A similar property holds when we have K
modalities.

Third, we assume sparsity in both spatial loadings and
prediction weights - this we enforce through L1 regulari-
sation. The orthogonal and sparsity constraints on spatial
loadings will drive the model to find spatial sparse and
non-Gaussian sources, similar to independent component
analysis.

We combine the above model assumptions by means of
the following objective function:

min
W,H ,B

KX

k=1
(∏(k)

1 kX(k) °Z (H (k)W (k))k2
2 +∏

(k)
2 |W (k)|)

| {z }
data reconstruction loss

+
QX

i=1
(∏(i )

3 kYi °Z Bik2
2 +∏

(i )
4 |Bi |)

| {z }
nIDP prediction loss

(5)
where Yi is the i -th column of Y , and Bi is the i -th column
of B .

C. SuperBigFLICA in a Bayesian framework.
Identification of the relative weighting parameters be-

tween the reconstruction loss, the prediction loss and the
sparsity loss (i.e., the ∏ parameters in Eqn. (5)) through
cross-validation is prohibitively expensive. Instead, we take
a Bayesian perspective to tune the parameters. We assume
normally distributed residual errors for the reconstruction
and prediction terms and place Laplacian priors on the
spatial loadings and prediction weights. Consequently, the
∏ parameters above will automatically become parameters
in the distributions that can be jointly optimised with other
model parameters.

For each imaging modality X(k), the probabilistic model
for the data reconstruction part is:

P (X(k)|Z ,W (k), H (k),æ(k)) =N (Z H (k)W (k), (æ(k))2I ) (6)

where æ(k) is the modality-specific noise term (where we
have assumed the noise is shared across voxels as in FLICA

[8]). We place a Laplacian prior on each element of spatial
loadings [29]:

P (W (k)|b(k)) = 1

2b(k)
exp

√
° |W (k)|

b(k)

!
(7)

Further, we place a Gamma prior on each x = (æ(k))2 as

P (x|Æ1,Ø1) = Æ
Ø1
1 xÆ1°1e°Ø1 x

°(Æ1) , and a non-informative scale-
invariant marginal prior on x = (b(k))2 as P (x) = 1/x.

The probabilistic model for the prediction part is:

P (Yi |Z ,Bi ,∞2
i ) =N (Z Bi ,∞2

i I ) (8)

where ∞i is a task-specific noise term. We also place a
Laplacian prior on prediction weights Bi [29]:

P (Bi |ci ) = 1
2ci

exp
µ
° |Bi |

ci

∂
(9)

We place a Gamma prior on each x = (∞(k))2 as

P (x|Æ2,Ø2) = Æ
Ø2
2 xÆ2°1e°Ø2 x

°(Æ2) , together with a non-informative
scale-invariant marginal prior on x = c2

i as P (x) = 1/x.
The posterior distribution of model parameters µ =

(W (k), H (k),Bi ,æ(k),b(k),∞i ,ci ),k = 1, . . . ,K , i = 1, . . . ,Q, given
the data D = (X(1), . . . ,X(K),Y) then becomes:

logP (µ|D) / logP (D|µ)P (µ) = logP (X(1), . . . ,X(K)|µ)P (Y|Z ,µ)P (µ)
(10)

Note that the “auto” weights among imaging and nIDPs are
proportional to the inverse of the residual prediction vari-
ance. In order to tune the model, we introduce a parameter
∏ 2 [0,1] to balance the weights between reconstruction and
prediction losses. Tuning this ∏ is shown to be useful in
different kinds of prediction tasks in our experiments later.
Thus, we get a modified posterior to be maximized:

∏
KX

k=1

≥
logP (X(k)|µ)+ logP (æ(k),W (k),b(k))

¥
+ (1°∏)

QX

i=1

°
logP (Yi|Z ,µ)+ logP (∞i ,Bi ,ci )

¢

=∏
KX

k=1

∑µ
° 1

2(æ(k))2
kX(k) °Z H (k)W (k)k2

2 + (2Æ1 °3)log(æ(k))°Ø1(æ(k))2
∂
+

µ
°2log(b(k))° 1

b(k)
|W (k)|

∂∏

| {z }
data reconstruction loss

+ (1°∏)
QX

i=1

∑µ
° 1

2(∞i )2 kYi °Z Bik2
2 + (2Æ2 °3)log(∞i )°Ø2(∞i )2

∂
+

µ
°2log(ci )° 1

ci
|Bi |

∂∏

| {z }
nIDP prediction loss

+const

(11)

We can appreciate from Eqn. (11) that, the ∏s in Eqn. (5)
have been replaced by learnable parameters in the prior
distribution of spatial weights and prediction weights (e.g.,
Gaussian and Laplacian priors), and these learnable pa-
rameters have their priors (i.e., Gamma or non-informative
priors). The weights among modalities and nIDPs are pro-
portional to the inverse of the residual prediction variance.
This is analogous to a Bayesian linear regression with
unknown residual variance [30]. The motivation is that
the tasks (e.g., prediction or reconstruction) with larger
error/uncertainty will be associated with lower confidence
and therefore will be given lower weights [31]. We can
further replace the Laplacian prior with other sparsity priors
to achieve an equivalent sparsity effect. Such alternative
priors include the automatic relevance determination (ARD)
prior [32], the spike-and-slab prior [33], and the Gaussian
mixture model prior (used in our original FLICA work [8]).

We may later be interested in the contribution of a
modality within a latent component to the prediction of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2021.09.03.458926doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458926
http://creativecommons.org/licenses/by-nc-nd/4.0/


IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022 6

a specific nIDP. This can be estimated by the correlation
between a column of Z (k) in Eqn. (3) and an nIDP. This
is because Z (k) is the subject course generated by the k-th
modality, which has been used to predict an nIDP linearly.

D. Model parameter optimization.
The SuperBigFLICA model is implemented using Pytorch

which can be easily run on a CPU and can be adapted
to GPU usage for a more efficient model training. We
obtain the maximum-a-posterior (MAP) solution of all pa-
rameters using a standard mini-batch stochastic gradient-
descent (SGD) algorithms. Here, we have used the Adam
optimizer [34] for parameters W (k), H (k),Bi , and the RM-
Sprop optimizer [35] for parameters æ(k),b(k),∞i ,ci , owing
to empirical performance. The first order gradient-based
algorithms were used because of their computational effi-
ciency and low memory requirement suitable for optimising
high-dimensional parameter space. Below, we evaluate the
proposed combined optimisers with other standard first-
order methods such as SGD with momentum [36], Adam
or RMSprop, and a quasi-Newton methods L-BFGS [37].
We fixed the mini-batch size to 512 subjects and chose the
optimal learning rate from 0.0001,0.001,0.01, and the tuning
parameters ∏ from 0.99999 to 1E°5, in order to move from
a pure data-driven to a purely supervised model. Dropout
regularization with p = 0.2 is used on input modalities X (k)

and subject loading Z to decrease the chance of overfitting
[38]. Batch normalisation is used on Z in the training stage
[39]. The total number of epochs (number of times the
full data passes through the model) is 50, and the learning
rate decreases by 1/2 every ten epochs. The model weights
are initialised by Gaussian-distributed random numbers of
mean 0 and variance 1.

E. Connection and comparison with existing
(semi-)supervised approaches.

There exist some (semi-)supervised approaches that are
somewhat similar to our SuperBigFLICA. The multi-site
canonical correlation analysis with reference approach
(MCCAR) [13] extends multi-site canonical correlation anal-
ysis to a supervised setting. MCCAR transforms each imag-
ing modality into low-dimensional components, and simul-
taneously maximizes the correlation among components
and the correlation between components and nIDPs. Using
our notations, and re-defining Z (k) as Z (k) = X (k)W (k)

1 ,
MCCAR’s objective function can be written as:

max
W (k)

1

KX

k=1

KX

j=1
||corr(Z (k), Z ( j ))||22 +∏

KX

k=1
||corr(Z (k),Y )||22 (12)

where corr(A,B) is the sum of column-wise correlation
between matrix A and B . While MCCAR and SuperBigFLICA
both aim to obtain subject loadings in a semi-supervised
fashion, there remain three fundamental differences that
may render MCCAR suboptimal for our purposes. First,
MCCAR uses correlation to measure similarity. Therefore,
it necessitates a full-batch iterative optimization approach

for finding the best decomposition. Compared with Super-
BigFLICA, the full-batch algorithm is not scalable to big
datasets like UKB. Second, the number of terms in the
objective functions scales quadratically with the number
of modalities K , which further increases the computa-
tional complexity of optimization. Third, the weights among
different modalities and nIDPs can not be determined
automatically, and complex cross-validation is needed.

A more recent approach [16] (Zhou’s approach) uses a
similar formulation as SuperBigFLICA. Using our notations
above, the objective function of Zhou’s approach is:

minØ
KX

k=1
||Z (k)°Z ||22+∞||W (k)||2,1+||Y °Z B ||22+∏||B ||1,2 (13)

where ||A||2,1 and ||A||1,2 represent l2,1° and l1,2°norm
of matrix A respectively. Zhou’s approach is similar to a
non-Bayesian formulation of SuperBigFLICA, i.e., Eqn. (5),
so that the weights among different modalities and nIDPs
should be determined by cross-validation. In addition,
Zhou’s approach uses the Augmented Lagrange Multiplier
algorithm to optimize the objective function, which again
requires a full-batch algorithm. Therefore, the scalability of
Zhou’s approach to big datasets is limited. Similarly, Zhou
et. al [40] also proposed another approach that uses an
additional Laplacian regularizer to ensure that similar in-
puts have similar latent feature representations, which has
similar disadvantages as the above-mentioned approach.

We compared SuperBigFLICA with two existing ap-
proaches mentioned in the Method section II-E. We com-
pared the prediction correlation of 12 nIDPs using a 25-
dimensional decomposition of different methods. We im-
plemented the MCCAR approach [13] based on the FIT tool-
box (https://github.com/trendscenter/fit). We
implemented Zhou’s approach from scratch because the
original code is not openly accessible [16]. We generated
two variants of Zhou’s approach based on our Super-
BigFLICA code. In the first version, we removed the auto-
weighting parameters in SuperBigFLICA, to mimic the sit-
uation that Zhou’s approach is not able to automatically
determine the weights between different modalities and
tasks. In other words, the æ(k), b(k), ∞i ,ci parameters in Su-
perBigFLICA remain fixed, making the weights equal across
modalities and tasks. In this case, we would assume that
manually determining the optimal weighting parameters by
cross-validation is computationally infeasible for datasets
like UKB. In the second version, we further implemented
the l2,1-norm regularization on spatial weights W (k). Note
that in both implementations, SuperBigFLICA and Zhou’s
approach have the same loss function on the data recon-
struction and nIDP prediction parts.

For comparing the different methods, we choose a 25-
dimensional decomposition because the MCCAR approach
is computationally infeasible for higher dimensions in the
UKB dataset in the authors’ implementation. Similarly,
Zhou’s approach would theoretically suffer from the same
computational issue. In our implementation of Zhou’s ap-
proach, we used SGD to address this problem.
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TABLE I: A description of 47 modalities of UKB dataset
used in this paper.

Abbreviation full description

rest k (k=1-25) Dual regression between IC k of 25 dimensional decomposition of rsfMRI and the whole brain
task z1 Z-statistics of emotion task contrast "shapes"
task z2 Z-statistics of emotion task contrast "face"
task z5 Z-statistics of emotion task contrast "faces>shapes"
task c1 Contrasts of parameter estimate of emotion task contrast "shapes"
task c2 Contrasts of parameter estimate of emotion task contrast "face"
task c5 Contrasts of parameter estimate of emotion task contrast "faces>shapes"
TBSS-FA Tract-Based Spatial Statistics - fractional anisotropy
TBSS-MD Tract-Based Spatial Statistics - mean diffusivity
TBSS-MO Tract-Based Spatial Statistics - tensor mode
TBSS-L1 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 1
TBSS-L2 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 2
TBSS-L3 Tract-Based Spatial Statistics - amount of diffusion along the principal directions 3
TBSS-OD Tract-Based Spatial Statistics - orientation dispersion index
TBSS-ICVF Tract-Based Spatial Statistics - intra-cellular volume fraction
TBSS-ISOVF Tract-Based Spatial Statistics - isotropic or free water volume fraction
tracts summed tractography map of 27 tracts from AutoPtx in FSL
VBM voxel-based morphometry
Area Cortical surface area from Freesurfer
Thickness Cortical surface thickness from Freesurfer
Jacobian Jacobian map of nonlinear registration of T1 image to MNI152 standard space
swMRI T2* image derived from swMRI
T2 lesion White matter hyperintensity map estimated by BIANCA

III. EXPERIMENTS

A. Brain imaging data.
Voxel-wise neuroimaging data of 47 modalities from

39,770 subjects were used in this paper, including: (1) 25
modalities from the resting-state fMRI ICA dual-regression
spatial maps after Z -score normalisation [1] ; (2) 6 modal-
ities from the emotion task fMRI experiment: 3 contrast
(shapes, faces, faces>shapes) of Z -statistics and 3 contrasts
of parameter estimate maps [1] that reflect %BOLD signal
change; (3) 10 diffusion MRI derived modalities (9 TBSS
features, including FA, MD, MO, L1, L2, L3, OD, ICVF,
ISOVF [41], [42] and a summed tractography map of 27
tracts from AutoPtx in FSL [43]); (4) 4 T1-MRI derived
modalities (grey matter volume and Jacobian deformation
map (which shows expansion/contraction generated by the
nonlinear warp to standard space, and hence reflects local
volume) in the volumetric space, and cortical area and
thickness in the Freesurfer’s fsaverage surface space; (5) 1
susceptibility-weighted MRI map (T2-star); (6) 1 T2-FLAIR
MRI derived modality (white matter hyperintensity map
estimated by BIANCA [44]) (Table I). The UK Biobank imag-
ing data were mainly preprocessed by FSL [45], [46] and
FreeSurfer [47] following an optimized processing pipeline
[48] (https://www.fmrib.ox.ac.uk/ukbiobank/).
From the voxel-wise modality maps, our team generates
3,913 "expert-designed" (i.e., not data-driven) IDPs (which
are disseminated by UK Biobank), covering the entire brain
and including multimodal information on regional and
tissue volume, cortical area, cortical thickness, regional and
tissue intensity, cortical grey-white contrast, white matter
hyperintensity volume, regional T2 star, WM tract FA, WM
tract MO, WM tract diffusivity, WM tract ICVF, WM tract OD,
WM tract ISOVF, tfMRI activation, rfMRI node amplitude,
and rfMRI connectivity, from the same six imaging modal-
ities we used in SuperBigFLICA (T1, T2-FLAIR, swMRI, task
fMRI, resting-state fMRI, and diffusion MRI). The details of
the IDP generation are illustrated in our previous work [1],
[4].

B. Non-imaging derived phenotypes.
A total of 17,485 non-imaging derived phenotypes

(nIDPs) were used in this paper. In the prediction tasks,

TABLE II: Non-imaging derived phenotypes used in this
study.

Non-imaging derived phenotypes

Fluid intelligence
Hypertension
Handedness
Treatment/medication code (1140884600 - metformin)
Diabetes diagnosed by doctor
Non-cancer illness code, self-reported (1261 - multiple sclerosis)
Overall health rating
Age started wearing glasses or contact lenses
Number of treatments/medications taken
Mean time to correctly identify matches
Maximum digits remembered correctly
Number of self-reported non-cancer illnesses

we mainly analyzed 12 of them in the “physical”, “cog-
nition”, and “health outcome” domains, summarised in
Table II. These 12 nIDPs were selected to allow for a
direct comparison to our previous work, as they were the
best predicted nIDPs in cognition and health outcome
domains by our baseline approach BigFLICA [2]. The direct
comparison of performance between SuperBigFLICA and
BigFLICA approaches enables us to study the benefits of
including the supervised loss terms.

C. Confounding variables and missing values.

Before carrying out nIDP prediction, a total of 597 con-
founding variables were regressed out from both voxel-
wise imaging data and nIDPs, using linear regression [49].
Missing modality data for a subject were imputed by the
mean map of all other subjects. We did not impute missing
nIDPs, and therefore, in the SuperBigFLICA model, only
data-reconstruction-related losses play a role for subjects
with missing nIDP data.

D. Imaging data pre-reduction using dictionary learning.

There are tens of thousands of voxels per modality, so
a direct fitting of SuperBigFLICA using voxel-level data
is computationally expensive and memory-consuming. Al-
though we can perform mini-batch optimisation on the
subjects, we need to keep K big voxel-by-component spatial
maps as learnable parameters in memory. One possible
solution is to use sparse dictionary learning for voxel
space dimension reduction before running SuperBigFLICA.
As shown in our previous work [2], for BigFLICA, sparse
dictionary learning will reduce the computation load of the
optimisation and may increase the modality-specific signal-
to-noise ratio. This is because the overall model is linear,
so a pre-dimension reduction using a (linear) dictionary
learning should not interfere with important information
that can be captured by BigFLICA, but will potentially have
the de-noising effect. Owing to the similar property of
the models employed in BigFLICA and SuperBigFLICA, we
expect sparse dictionary learning to perform similarly well.
Here, we evaluate the effect of data reduction on the final
prediction across the voxel-domain between 100 and 2,000
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dictionary features per modality before running any sub-
sequent algorithm, e.g., BigFLICA or SuperBigFLICA. Note
that this pre-reduction can also be performed with nIDP
information included. We therefore also tested applying a
“single-modality” SuperBigFLICA to each single modality
map (which is just a special case with K = 1) with all
17,485 nIDPs as supervision before using SuperBigFLICA
for multimodal analysis.

E. Baseline: nIDP prediciton using hand-curated IDPs
and modes of BigFLICA.

In real data, we rely on the performance of predicting
nIDPs as a surrogate criterion to evaluate different methods,
given that “ground-truth” IDPs do not in general exist. As
a baseline approach, we compare hand-curated IDPs and
modes of BigFLICA. The pipeline for prediction follows our
previous work [2]. In brief, 3,913 IDPs and 1,000 modes
of BigFLICA are extracted from UK Biobank imaging data.
BigFLICA used a 3,500-dimensional MIGP approach [2] and
a 2,000-dimensional dictionary learning approach as data
preprocessing [2] before running the core FLICA variational
Bayesian optimization.

Here, a high dimensional decomposition was chosen as
in our previous work on BigFLICA, which achieved the best
prediction accuracy for most nIDPs [2]. Further, elastic-
net regression, from the glmnet package [50], was used
to predict each of the 12 nIDPs separately (known as
single-task learning) using IDPs or FLICA subject modes as
model regressors (features). This approach is widely used
and has been shown to achieve robust and state-of-the-art
performance in many neuroimaging studies [51], [52].

We randomly selected a subset of 25,000 subjects for
model training, while the validation set contains 5,000
different subjects, and the test set was formed from the
remaining 9,770 subjects. All methods’ comparisons are
using the same train-test split. For single-task learning,
the prediction accuracy was quantified as the Pearson
correlation coefficient r between the predicted and the
true values of each nIDP in the test sets. For multi-task
learning, the prediction accuracy was quantified as the sum
of correlations with nIDPs larger than 0.1. For comparing
different methods, we used a bootstrap approach [53] to
estimate the statistical significance of the difference of r
between the two methods. In this approach, we resample
the predicted nIDPs of the first approach in the test set with
replacement, and recalculate the r -value of this approach
10,000 times, getting a bootstrap distribution of r . Then
we estimate the proportion of observed r of the second
approach that is larger than the bootstrap r -values. If it is
larger than 95% of the bootstrap r -values, we will conclude
that the second approach works significantly better than
the first approach.

F. Predicting nIDPs using single-task and multi-task
SuperBigFLICA.

To demonstrate how SuperBigFLICA with one or more
target nIDPs in training can boost the performance com-
pared to hand-curated IDPs and unsupervised BigFLICA,

first, we trained single-task SuperBigFLICA with each of the
12 nIDPs as a supervision target. We then trained multi-task
SuperBigFLICA by including each target and the top 24 or
99 most highly correlated (with the target) nIDPs from all
17,485 available nIDPs from the UK Biobank dataset, in the
training stage. In previous work, it was already established
that the inclusion of correlated tasks as targets could boost
the performance of single-task learning [24], [25]. Therefore,
we performed 25- or 100-dimensional multi-task learning
(separately) for each of the 12 nIDPs and evaluated the
prediction performance. Note that while an additional 24
(or 99) nIDPs (that are correlated to the target nIDP)
are used to help in the training, they are not used in
test data to help the prediction - only the imaging data
from test subjects is used in predictions of nIDPs in test
subjects. Finally, we trained SuperBigFLICA with all 17,485
nIDPs as supervision targets. For the tuning parameters,
the number of latent components was chosen to be 25,
100, 250, 500, or 1,000, and the ∏ parameter is chosen
from 1E ° 5 to 0.99999. We evaluated the influence of ∏,
and different random model parameter initialisations on
the final prediction performance.

Furthermore, we performed a more comprehensive com-
parison of prediction performance using IDPs, BigFLICA
and single-task SuperBigFLICA on each of the 17,485 nIDPs.
Owing to computational limitations, we fix some parame-
ters of SuperBigFLICA to reduce the overall computation
time, with a 25-dimensional decomposition and learning
rate of 0.001, and the ∏= 0.5 based on their empirical good
performance in the 12 cognitive and health outcome nIDPs.

G. Evaluation of the generalisability of SuperBigFLICA
modes on unseen nIDPs.

One of the fundamental goals of phenotype discovery is
to learn a low-dimensional latent space that is generalisable
in that it can predict “unseen” nIDPs. In the above analyses,
the nIDP to be predicted was always included in the
training stage. Here, we evaluated whether SuperBigFLICA
can generate a good representation for entirely new tasks,
wherein in the training stage, we only use nIDPs that are
not our targets. To do this, for a given nIDP that we want
to predict (e.g., fluid intelligence), we first compute the
correlations between this target nIDP and all other 17,485
nIDPs. We selectively include the 16,485 least correlated
nIDPs for training SuperBigFLICA, ignoring the 1,000 most
strongly covarying nIDPs in training. This means that,
for example, the mean correlation of 16,485 nIDPs with
the target variable fluid intelligence is 0.007, and nIDPs
with correlation r > 0.032 (p < 2 £ 10°7,n = 25,000) with
fluid intelligence are removed in training. This experiment
simulates a “bad” situation where almost no nIDPs are
related to our target when generating the latent space.
We then used elastic-net regression to predict our target
nIDP using the resulting latent space, to evaluate the degree
to which the inclusion of unrelated nIDPs constraints the
learning towards IDP features that are more generally useful
for prediction across a wide range of nIDPs, and thereby
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TABLE III: The p-values for comparing different methods.

Non-imaging derived phenotypes BigFLICA > IDP Single > BigFLICA Multi25 > Single Multi100 > Single

Fluid intelligence 0.00 0.00 0.04 0.03
Hypertension 0.00 0.00 0.26 0.41
Handedness 0.00 1.00 0.00 0.00
Treatment/medication code (1140884600 - metformin) 0.00 0.00 0.35 0.15
Diabetes diagnosed by doctor 0.00 0.00 0.16 0.15
Non-cancer illness code, self-reported (1261 - multiple sclerosis) 0.00 0.00 0.39 0.70
Overall health rating 0.00 0.00 0.02 0.01
Age started wearing glasses or contact lenses 0.00 0.00 0.31 0.07
Number of treatments/medications taken 0.00 0.00 0.24 0.10
Mean time to correctly identify matches 0.00 0.00 0.04 0.04
Maximum digits remembered correctly 0.00 0.00 0.58 0.18
Number of self-reported non-cancer illnesse 0.00 0.10 0.04 0.00

ultimately also improves prediction for specific nIDPs of
interest. This may also relate to the concept of transfer
learning, where we can use multiple nIDPs to learn a space
that generically has high predictive power.

IV. RESULTS

A. Comparing SuperBigFLICA with hand-curated IDPs
and modes of unsupervised BigFLICA.

We first compared SuperBigFLICA with hand-curated
IDPs and BigFLICA, and then compared different variants
of SuperBigFLICA, in terms of prediction accuracy of nIDPs
(Experiments sections III-E, III-F and III-G). Each subfigure
of Fig.2 shows the overall prediction accuracy of different
experimental approaches for 12 nIDPs. We report the results
that use the dictionary dimension of 250 for each modality
(detailed in the next section). The test accuracy is obtained
using the best tuning parameters (∏ and number of latent
components ) selected in the validation set.

The first two columns are the accuracy of elastic-net
regression with hand-curated IDPs and modes of unsuper-
vised BigFLICA as input features, while the third column is
the accuracy of single-task SuperBigFLICA trained end-to-
end. We can see that in almost all cases, the accuracy of
(semi-)supervised training outperforms hand-curated IDPs
and unsupervised BigFLICA. The average percent improve-
ment of single-task SuperBigFLICA compared with hand-
curated IDPs and BigFLICA are 46% and 25%. We further
report the statistical difference of improvements. As shown
in the first two columns of Table. III, the BigFLICA ap-
proach performs better than the IDP approach significantly,
and the SuperBigFLICA approach also performs better than
the BigFLICA approach significantly.

The fourth and fifth columns of each subfigure of Fig.2
show prediction accuracy of multi-task SuperBigFLICA, with
24 and 99 most correlated nIDPs as auxiliary tasks for
supporting the training of the main nIDP of interests. We
can see that multi-task learning usually further improves
the prediction accuracy compared with single-task Super-
BigFLICA. The average per cent improvement of two multi-
task BigFLICA compared with single-task SuperBigFLICA
are 9% and 7%. We further report the statistical difference
of improvements. As shown in the last two columns of
Table. III, multi-task SuperBigFLICA outperforms single-
task SuperBigFLICA approach significantly in 5 of the 12
nIDPs (p < 0.05). As most health outcomes and cognitive
nIDPs in our experiments are noisy, adding more noisy
nIDPs to the joint multi-task training will only have a small
benefit, thus, the improvement may not be statistically
significant.

The sixth column of each subfigure of Fig.2 shows the
generalisability of SuperBigFLICA modes on unseen nIDPs,
where the main nIDP of interests is not included in learning
the latent space (only nIDPs that are at best weakly corre-
lated with the main nIDP of interests are involved). We then
used elastic-net regression to predict the main nIDP based
on the learned latent space as regressors (We are still using
the imaging data to perform nIDP predictions). Overall, this
is expected to perform worse than single-task and multi-
task SuperBigFLICA because the target nIDP is not involved
in the training. However, it still outperforms unsupervised
BigFLICA plus elastic-net by 21%, and is slightly worse than
single-task SuperBigFLICA. This experiment demonstrated
that the inclusion of even irrelevant tasks in the “super-
vised” training could boost the predictive performance of
the generated latent space.

The seventh column of each subfigure of Fig.2 shows
the prediction accuracy when we fuse all 47 modalities and
17,485 nIDPs to train one multi-task SuperBigFLICA model.
We can see that the prediction accuracy is similar to single-
task SuperBigFLICA for most of the nIDPs.

We tested the robustness of the above results. First, we
tested the influence of adding uncorrelated nIDPs into
multitask learning. We added the 25 most uncorrelated
auxiliary nIDPs together with the 24 most correlated nIDPs
for supporting the training of the main nIDP of interests.
Fig. 3 shows that prediction correlations remain virtually
identical, except for the handedness nIDPs, suggesting the
robustness of the model in accounting for noise in nIDPs.
Second, we run the dictionary learning preprocessing only
using the training set data (instead of on the whole imaging
dataset), and to replace the fix train-test split with a three-
fold cross validation approach. Fig. 4 shows the prediction
correlation of 12 nIDPs using single-task and multi-task
SuperBigFLICA, with and without the new settings. Here,
the new correlations are computed as a mean of 3 folds. We
can see that, except for one nIDPs, Non-cancer illness code,
there are no statistical differences between the original set-
tings and the new settings. We believe the results are robust
owing to the large sample size we used; dictionary learning
is not over-fitting, even if derived from test data. Third,
we calculated the prediction performance of 12 nIDPs with
missing values directly removed from the training process.
In the original setting, we kept missing values in nIDPs
or imaging data in the model fitting process, because the
loss function has both reconstruction and prediction terms,
we would expect, e.g., a subject with miss nIDP data still
can contribute to the minimization of image reconstruction
term. In the current setting, we just remove all subjects
with either nIDP or imaging data missing. Fig. 5 shows that
compared with including the missing values in the training,
removing them directly in the training has a very similar
performance.

B. Comparing with existing (semi-)supervised
approaches.

We compared SuperBigFLICA with two existing (semi-
)supervised approaches [13], [16]. Fig.6 shows the boxplots
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Fig. 2: Comparison of SuperBigFLICA with hand-curated IDPs and modes of unsupervised BigFLICA for the 12 health
outcome and cognitive nIDPs listed in Table II. Each figure shows - for a different nIDP - the predictive correlation
of different approaches and different parameter settings. The first and second column shows the ’baseline’ prediction
accuracy of IDPs and BigFLICA. The third column shows the accuracy of single-task SuperBigFLICA trained end-to-end.
The fourth and fifth columns show prediction accuracy of multi-task SuperBigFLICA, with 24 and 99 most correlated nIDPs
as auxiliary tasks for supporting the training of the main nIDP of interest. The sixth column shows the generalisability
accuracy of SuperBigFLICA modes on unseen nIDPs, where the main nIDP of interest is not included in the learning of
latent space but only 16485 nIDPs that are least correlated with it. The seventh column shows the prediction accuracy
when we fuse all 47 modalities and use all 17,485 nIDPs to train a single model.

for the mean correlation of predicting 12 health outcomes
and cognitive nIDPs. SuperBigFLICA performs better than
MCCAR significantly [13], and almost the same as our
implemented versions of Zhou’s approach [16]. Note that
our implementation improves the computation efficiency of
Zhou’s approach by the mini-batch optimization algorithm.
Therefore, we would expect different behaviours from the
original implementation.

Fig.7 futher shows the comparison of prediction corre-
lations of IDPs, BigFLICA, SuperBigFLICA and its variants
for all 17,485 nIDPs in UK Biobank (Fig.7A and Fig.7B).
Clearly, BigFLICA outperforms IDPs, and SuperBigFLICA
outperforms BigFLICA in many of the nIDP predictions.
Our implementation of Zhou’s method [16] based on Su-
perBigFLICA shows a similar prediction performance as the
original SuperBigFLICA, albeit at much increased compu-
tational cost (Fig.7C and Fig.7D).

C. Analysis of SuperBigFLICA algorithm.
1) Relationship between prediction accuracy and hyper-

parameters: We evaluated the influence of the relative
weighting between reconstruction loss and prediction loss,
i.e., ∏, and the number of latent components, on the final

prediction performance. The top subfigure of Fig.8 shows
the mean prediction correlation of 12 health outcome and
cognitive nIDPs listed in Table II across different ∏ and
latent components using single-task SuperBigFLICA. When
the latent dimension is small, we need to choose a small
∏ (i.e., ∏ < 0.5, which means that the prediction loss has
a higher weight than the reconstruction loss) to achieve
optimal prediction. When the latent dimension is large,
although a smaller ∏ also achieves the best prediction
accuracy, the influence of ∏ becomes much smaller than
using a smaller latent dimension. We can draw a similar
conclusion from the results shown in the middle subfigure
of Fig.8, which is the case of multi-task SuperBigFLICA
with 24 most correlated nIDPs as auxiliary tasks. Conversely,
for the generalisability test, the bottom subfigure of Fig.8
shows that the prediction accuracy is low when the latent
dimension is small. When the latent dimension is large,
the prediction accuracy is highest when ∏ > 0.5, i.e., the
reconstruction loss has a higher weight than the prediction
loss. This analysis guides how to select hyper-parameters in
different circumstances and demonstrates the usefulness of
including both data reconstruction and prediction losses in
the objective function.
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Fig. 3: Comparing the prediction performance of multitask
SuperBigFLICA with and without uncorrelated nIDPs added
in. In the comparison group, we added 25 most uncor-
related auxiliary nIDPs together with 24 most correlated
nIDPs for supporting the training of the main nIDP of
interests. Results are shown for 12 health outcome and
cognitive nIDPs listed in Table 1.

2) Influence of imaging space dimension reduction on predic-
tion accuracy: We first tested whether the imaging space pre-
dimension reduction with dictionary learning influenced
the final prediction accuracy of nIDPs (Method section
III-D). Fig.9A shows that, for different nIDPs, the average
accuracy of single-task SuperBigFLICA is similar (0.18 <
r < 0.22) across different dictionary dimensions. The 250-
dimensional dictionary learning achieves slightly better
performance.

We further evaluated the use of SuperBigFLICA to
perform imaging space dimension “pre-reduction” (250-
dimension for each modality, the same with dictionary
learning), with all 17,485 nIDPs as supervised targets. We
did not see an improvement relative to using dictionary
learning, e.g., for fluid intelligence, the best prediction
correlation is only around r = 0.20, much lower than the
result achieved by dictionary learning r = 0.32. A lower
prediction correlation was also observed for other nIDPs
and other SuperBigFLICA dimensions. A possible reason is
that using all nIDPs in the pre-dimension reduction stage
discards information in the imaging data related to the
target nIDP. Also, we find that using SuperBigFLICA in this
situation is more memory intensive because we need to
keep a huge voxel-by-component spatial weight matrix in
memory. In contrast, in dictionary learning, we only need
to keep a smaller subject-by-component matrix in memory
because it performs a mini-batch optimisation on the voxel
dimension. Finally, another disadvantage of the two-stage
supervised learning strategy is the need for two nested
cross-validation loops for parameter selection, significantly
increasing the computation cost.

3) Influence of parameter initialisation on the prediction accu-
racy: We evaluated the influence of random model parame-

Fig. 4: For the 12 health outcome and cognitive nIDPs,
comparing the prediction performance of single-task (Top)
and multi-task (Bottom) SuperBigFLICA using original fixed
train-test split with the combined new settings(1. the dic-
tionary learning preprocessing is performed on the training
set; 2. the three-fold cross validation is used.

ter initialisations on the final prediction accuracy. We tested
whether two different random initialisations will result in
different accuracy. Therefore, we performed two multi-task
SuperBigFLICA experiments with all 17,485 nIDPs as targets.
The only difference between these two experiments is the
different seeds for parameter initialisation. Fig.9B shows the
scatter plots of prediction correlations of the different nIDPs
from two different initialisations. We can see those nIDP
correlations < 0.1 result in a roughly spherical point cloud,
while correlations > 0.1 are highly correlated, i.e., different
initialisations lead to similar nIDP predictions.

4) Influence of nIDP task covariance structure on the predic-
tion accuracy: We further evaluated whether the increases in
prediction accuracy of multi-task learning compared with
single-task learning result from incorporating information
about the task covariance structure into the estimation. We
tested this hypothesis by predicting uncorrelated (orthogo-
nal) nIDPs either using separate single-task SuperBigFLICA
or jointly using multi-task SuperBigFLICA. To obtain these
orthogonal nIDPs, we extracted the top 10 principal compo-
nents from the subject-by-nIDP data matrix. We compared
the accuracy when the model predicted them separately as
single-task learning and jointly as multi-task learning. The
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Fig. 5: For the 12 health outcome and cognitive nIDPs,
comparing the prediction performance of with and without
including missing values in the training.

Fig. 6: Comparing the mean prediction accuracy of single-
task SuperBigFLICA with existing methods on 12 health
outcome and cognitive nIDPs listed in Table II. Boxplot
1: the prediction accuracy of MCCAR [13]. Boxplot 2: the
prediction accuracy of SuperBigFLICA. Boxplot 3: The pre-
diction accuracy of a variant of SuperBigFLICA, with auto-
weighting between different modalities and tasks switched
off, i.e., the æ(k), b(k), ∞i ,ci parameters are fixed, making the
weights equal across modalities and tasks. Boxplot 4: The
prediction accuracy of another variant of SuperBigFLICA,
with both auto-weighting switched off (as box 3) and using
an l2,1-norm regularizer on spatial weights W (k) [16].

result shows that the performance is almost the same for
each of the 10 “orthogonal“ tasks (Fig.9C). This experiment
shows that the covariance structure between the different
nIDPs enables the multi-task model to improve over and
above the single-task model. Note that the single-task’s per-
formance is better than the multi-task in some orthogonal
principal components. However, the difference is small and
not statistically significant, so we believe this is owing to

Fig. 7: Comparing the prediction correlations using IDPs,
BigFLICA, SuperBigFLICA and its variants for all 17,485
nIDPs in the UK Biobank. Comparing the prediction
performance of A: IDPs vs. BigFLICA; B: BigFLICA vs. Su-
perBigFLICA; C: SuperBigFLICA vs. its variants 1 (with auto-
weighting between different modalities and tasks switched
off); D: SuperBigFLICA vs. its variants 2 (with both auto-
weighting switched off (as variants 1) and using an l2,1-
norm regularizer on spatial weights W (k)).

the issue of randomness in the optimizer and parameter
initialization.

5) Influence of optimisation algorithms on the prediction
accuracy: We finally evaluated the choice of numerical
optimisation algorithms on the prediction accuracy. We
took an example where we used SuperBigFLICA to fuse
all 47 modalities and 17,485 nIDPs to discover a 1,000-
dimensional latent space. The Adam, SGD, and RMSprop
optimisers all perform worse than the combined optimisa-
tion algorithm in terms of the overall prediction accuracy of
the 17,485 IDPs (Fig.9D). The overall accuracy is estimated
by the sum of correlation of nIDPs larger than 0.1. We
also tested a full-batch, quasi-newton algorithm L-BFGS but
found it always overfits the data, so for briefty, results are
not shown here.

6) The execution time of SuperBigFLICA.: The time for
one iteration of SuperBigFLICA model fitting (training) is
between 10s to 30s, depending on whether we predict one
nIDP or all nIDPs, using one Intel Skylake 2.6GHZ CPU.
SuperBigFLICA usually converges within 50 iterations, so
the total running time for analysing the 40k-subject UKB
dataset is between 8 mins to 25 mins. Note that we need
to use dictionary learning to preprocess the imaging data,
which is fast and parallelizable across modalities, taking less
than 10 mins per modality for the 40k subjects.

D. Real data further qualitative analysis.
1) Fluid intelligence prediction using a low-dimensional Su-

perBigFLICA: We first applied a 25-dimensional Super-
BigFLICA to predict fluid intelligence scores using data
from 47 modalities. Fig.10A shows the weights of each of
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Fig. 8: The influence of SuperBigFLICA parameters on
the mean prediction accuracy of 12 health outcome and
cognitive nIDPs. The relationship between the number
of latent dimensions (different line colors) and weights
between reconstruction and prediction losses (x-axis) with
the mean prediction accuracy across 12 nIDPs listed in
Table II. Top. Single-task learning setting. Mid. Multi-task
learning setting with 24 auxiliary tasks. Bot. generalisability
test.

the 25 latent components on predicting fluid intelligence
scores (B in Eqn. (2)). Components 2, 4, 9, 11, 15, 17, 18,
20, and 23 are selected to contribute to the prediction of
fluid intelligence, while the remaining components were
switched off by the Laplacian prior to only contributing to
the reconstruction of imaging data. The overall prediction
correlation is 0.30.

Fig.10B shows the contribution of each component
and each modality to the prediction of fluid intelligence
(Method section II-C)). The components selected for fluid
intelligence prediction have higher overall contributions,
which demonstrated the validity of the proposed way to
estimate modality contribution. Across the different modal-
ities, the components from task contrast maps have the
highest contribution to the prediction of fluid intelligence,
while the resting-state dual-regression spatial maps have
a slightly lower contribution. The dMRI and sMRI derived
modalities contribute the least to the prediction.

Fig. 10C shows the z-score spatial maps of component
2 for each modality, which was generated by regressing
latent components back onto the original voxel-wise data.
This component contributes most to the prediction of fluid
intelligence scores. The task contrast maps and resting-
state map 5 have the highest voxel-wise activations. The
regions that show the highest contribution to the prediction

A B

C D

Fig. 9: Evaluations of SuperBigFLICA model. A. The aver-
age prediction accuracy of 12 health outcome and cognitive
nIDPs using different dictionary learning dimensions in the
image data pre-reduction stage. B. The prediction accuracy
of 17,485 nIDPs as a result of different random parameter
initializations. C. Comparing the prediction accuracy of
single-task SuperBigFLICA vs. multi-task SuperBigFLICA for
predicting top 10 orthogonal principal components derived
from all nIDPs. D. Comparing the prediction accuracy of
all 17,485 nIDPs of SuperBigFLICA optimized by different
numerical optimizers.

of fluid intelligence are mainly located in the precuneus
cortex, posterior cingulate gyrus, lateral occipital cortex,
insular cortex, inferior frontal gyrus, and frontal pole [54].
Among them, the insular cortex, inferior frontal gyrus, and
frontal pole were found significant in task modalities in
our previous BigFLICA approach [2], but with a much
higher 750-dimensional decomposition. This reflects the
fact that adding supervision to the model can help the
model learn task-specific patterns easier. In addition, here,
with the SuperBigFLICA approach, we can observe a more
comprehensive ‘multimodal’ effect, such as the changes in
cortical surface area and thickness in these regions, and
changes in tracts and white matter microstructures that
connect these regions, which are also reported in literature
[55], [56]. Moreover, we also observe the precuneus cortex
and posterior cingulate gyrus in several resting-state maps,
as part of the default mode network, involved in fluid
intelligence prediction [57].

2) Phenotype discovery using a high-dimensional Super-
BigFLICA: We finally applied SuperBigFLICA to perform a
1,000-dimensional decomposition with all 17,485 nIDPs as
supervision targets. This 1,000-dimensional latent space can
serve as a set of new data-driven IDPs.

Fig. 11 shows the Z -score normalised spatial maps of the
component that most strongly contributes to the prediction
of hypertension scores. The prediction correlation is 0.24.
The regions that show the highest contribution to the pre-
diction of hypertension are mainly located in the precuneus
cortex, visual cortex, middle temporal gyrus, central opercu-
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A B
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Fig. 10: Example results of predicting fluid intelligence with a 25-dimentional SuperBigFLICA. A. The prediction
weights of fluid intelligence in a 25-dimensional SuperBigFLICA analysis. B. The contribution of different modalities
within each of 25 SuperBigFLICA components for predicting fluid intelligence. C. The Z -score normalized 47 spatial
maps of modes with strongest contribution to the prediction of fluid intelligence in a 25-dimensional SuperBigFLICA
decomposition, with fluid intelligence as the supervision target (component 2, MNI152 coordinate z=10).

lar cortex, Heschel’s gyrus, inferior frontal gyrus and insular
cortex, and also external capsule tracts. Again, the modes
are more ’multimodal’, and several consistent findings have
been reported in the literature [58]–[60].

Likewise, Fig. 12 shows the Z -score normalised spatial
maps of the mode that contributes most strongly to the
prediction of age started wearing glasses or contact lenses.
The prediction correlation is 0.19. The regions that show the
highest contribution to the prediction of hypertension are
mainly located in visual areas, especially for resting-state
dual regression spatial maps 5, which represents the visual
network.

V. DISCUSSION

In this paper, we propose SuperBigFLICA, a semi-
supervised multimodal data fusion approach that simulta-
neously reconstructs the original voxel-wise imaging data
and best predicts non-imaging derived phenotypes. The
approach is scalable to extreme high-dimensional data
sets, e.g., UK Biobank scale neuroimaging datasets. Su-
perBigFLICA inherits the Bayesian framework from the
previous FLICA model [2], [8]. Additionally, it incorporates
an additional prediction term to enable supervised learning
of the target variable of interests (i.e., multiple nIDPs).
SuperBigFLICA can discover spatially sparse and orthogonal
modes that can serve as generic data-driven IDPs for
future prediction of new nIDPs. The weighting of different

Fig. 11: The Z -score normalized spatial maps of the
strongest modes that contributing to the prediction of
hypertension in a 1,000-dimensional SuperBigFLICA, with
all 17,485 nIDPs as supervision targets (MNI152 coordinate
z=10).

modalities and nIDPs can be automatically inferred from
the data, avoiding manual specification.

Compared to previous linear approaches (e.g., [13]), the
scalability of our approach to huge data sets is improved
through the use of advanced stochastic optimisation al-
gorithms. Our model can use multiple nIDPs as supervi-
sion targets and can predict unseen nIDPs. Compared to
nonlinear approaches (e.g., [16]–[18]), our approach can
explicitly discover a low-dimensional linear latent space
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Fig. 12: The Z -score normalized spatial maps of the
strongest modes that contributing to the prediction of
age started wearing glasses or contact lenses in a 1,000-
dimensional SuperBigFLICA, with all 17,485 nIDPs as su-
pervision targets (MNI152 coordinate z=10).

as new image-derived phenotypes. We performed a com-
prehensive comparison of SuperBigFLICA with the hand-
curated IDPs currently being created by our group on behalf
of UK Biobank, and modes of unsupervised BigFLICA, and
found a significantly improved performance on predicting
nIDPs. We also showed that by using the multi-task learn-
ing paradigm, SuperBigFLICA showed a further improve-
ment than its single-task setting. We demonstrated Super-
BigFLICA’s performance in learning a generalisable latent
space by applying it to predict unseen nIDPs. These tests
were performed using the largest neuroimaging dataset to
date (UK Biobank), with 47 different modalities, 39,770
subjects, and 17,485 nIDPs, which illustrates the ability of
SuperBigFLICA for analysing large-scale datasets. In real
data examples, we demonstrated that SuperBigFLICA finds
interpretable modes predictive of health outcomes and
cognitive nIDPs.

There are multiple future directions for improving the
current approach. First, we could further explore the possi-
bility of improving the prediction of unseen nIDPs by using
advanced techniques in transfer learning [61]. Second, a
deeper understanding of the latent space, including the
interpretation of spatial maps and the influence of dimen-
sionality of latent space with prediction power, could be in-
teresting. Third, another straightforward extension would be
adding nonlinearity to SuperBigFLICA, which enables it to
extract more complex nonlinear patterns from brain imag-
ing data, with or without the supervision of nIDPs. Many
options exist to achieve this by using either deep neural
networks [62] or traditional machine learning approaches
such as Gaussian process latent variable model [63] and
multiple kernel learning [64]. Nonlinear approaches such as
deep convolutional neural networks have shown excellent
age and sex prediction accuracy using structural MRI data
[53] and in Alzheimer’s disease progression [65], but the
usefulness of nonlinear models for neuroimaging data is
still under debate [66]–[68] due to the increased complexity
of evaluating and interpreting their performance. Therefore,
besides developing a nonlinear model for improving predic-
tive performance, deriving interpretable nonlinear features

is also an important task.
In summary, all of the above will be explored in future

improvements to our analysis approach. An easy-to-use
version of this software will be integrated into an upcoming
version of the FSL software package [45], [46]. Results
from applying SuperBigFLICA on UK Biobank will also be
released via the UKB database as new data-driven IDPs
(image features), further contributing to the richness of the
sample and enabling neuroscientific research.
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