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Summary 

In human lupus nephritis (LN), tubulointerstitial inflammation (TII) on biopsy predicts progression to end 

stage renal disease (ESRD). However, while approximately half of patients with moderate or severe TII 

develop ESRD, half do not. Therefore, we hypothesized that TII is heterogeneous with distinct 

inflammatory states each associated with different renal outcomes. We interrogated renal biopsies from 

LN longitudinal and cross-sectional cohorts using both conventional and highly multiplexed confocal 

microscopy. To accurately segment cells across whole biopsies, and to understand their spatial 

relationships, we developed unique computational pipelines by training and implementing several deep 

learning models and other computer vision techniques. Surprisingly, across biopsies, high B cell 

densities were strongly associated with protection from ESRD. In contrast, CD4- T cell population 

densities, which included CD8,  and double negative (CD4-CD8--, DN) T cells, were associated with 

both acute refractory renal failure and progression to ESRD. Interestingly, inflammation was organized 

into different discrete clusters or neighborhoods each with unique characteristics including enrichment 

for specific cell populations. B cells were often organized into large neighborhoods with CD4+ T cells 

including T follicular helper-like cells. In contrast, the CD4- T cell populations formed small cellular 

neighborhoods whose frequency predicted subsequent progression to ESRD. These data reveal that 

in LN, specific in situ inflammatory states are associated with refractory disease and progression to 

ESRD. 
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Introduction 
 

For over 50 years systemic lupus erythematosus (SLE) has been thought to result from a break 

in systemic tolerance and production of pathogenic autoreactive antibodies1,2. This canonical model is 

based on extensive studies of patient blood and spontaneous SLE-like animal models. In the kidney, 

the manifestation of systemic autoimmunity is glomerulonephritis (GN). Indeed, LN is usually equated 

with GN3. However, tubulointerstitial inflammation (TII)—and not GN—predicts progression to end 

stage renal disease (ESRD)4-7.  

Lupus TII is associated with a local immune response very different than inflammation that is 

observed in glomeruli. Indeed, while TII is associated with infiltrating B cells, plasma cells, T follicular 

helper (Tfh) cells, plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells (mDCs), all of these 

cells are rare in LN glomeruli8-13. The immune cells found in TII are often organized into lymphoid-like 

architectures associated with local antigen-driven B cell clonal selection12,13. Therefore, in TII there are 

complex, intrinsic immune landscapes associated with progressive renal injury. Many of these features 

are not replicated in mice14-17.  There is therefore a compelling need to understand in situ immunity in 

human lupus nephritis. 

An initial roadmap to the lupus kidney was provided by the Accelerating Medicines Partnership 

(AMP)-funded single cell RNA-Sequencing (scRNA-Seq) of cells sorted from LN biopsies18,19. In one 

analysis18, a total of 21 immune cell clusters were observed. While these AMP investigations are 

informative, there are several limitations. The patient sample was small, and the frequency of each 

immune cell population has not been related to relevant histological features or clinical states. A larger 

deficiency of scRNA-Seq is that all spatial information is lost; we do not know how populations spatially 

relate to each other in the kidney. In addition to losing regional behaviors, this lack of spatial information 

prevents potential functional relationships from being identified. 

Previously, in lupus TII we have used conventional immunofluorescence microscopy coupled to 

evolving computational and machine learning approaches (Cell Distance Mapping) to characterize the 

frequency of specific cell populations and identify cell:cell behaviors indicative of cognate 
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immunity10,11,20. However, a systemic analysis of TII and identification of prognostic features has been 

historically impeded by the complexities of analyzing immunofluorescence data from chronically-

inflamed kidneys, including tissue autofluorescence due to scarring and patient heterogeneity. Artificial 

intelligence algorithms have led to significant progress in automated detection and analysis of cells in 

confocal images21-24. These approaches are beginning to be successfully used in cancer biopsy image 

analysis25. However, conventional methods for cell detection and segmentation are not necessarily 

generalizable to chronically inflamed, complex organs.   

Herein, we describe multiple computational pipelines employing several deep learning 

algorithms that provide high-throughput assessments of cell phenotypes and cellular architectures. 

These methods have been developed and validated in LN image datasets consisting of both discrete 

fields of view and entire biopsy sections imaged with a high channel dimension. Integration of these 

data reveal that CD4- T cell populations, comprised of CD8+,  and double negative (CD4-CD8--, 

DN) T cells, often organized into small cellular neighborhoods, are both associated with acute refractory 

disease and predict progression to renal failure.  These and other findings indicate that in LN, systemic 

and in situ autoimmune pathogenic mechanisms are very different and that each might require specific 

targeted therapies.  
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Results 
 
Accurate segmentation of immune cells in lupus nephritis kidney biopsies 

To probe the relationship between TII and clinical outcome we used a well-characterized cohort 

of 55 biopsy-proven lupus nephritis patients with at least two years of follow up (Supplementary Table 

1). Within this cohort, 19 patients progressed to end stage renal disease (ESRD+) while 36 did not 

(ESRD-).  The ESRD+ and ESRD- groups did not differ in length of follow-up (Supplementary Fig 1A), 

duration of disease (Supplementary Fig 1B), or patient age (Supplementary Fig 1C). Forty-seven 

patients had moderate or severe TII distributed across both outcome groups. Based on previous 

studies4, we hypothesized that differences in renal outcome would be related to differences in in situ 

adaptive immunity including both the frequencies and organization of principal cellular effectors.  

Therefore, we stained each biopsy for six markers, CD3, CD4, CD20, CD11c, BDCA2, and DAPI 

(nuclear marker) to characterize five classes of immune cells: CD3+CD4+ T cells, CD3+CD4- T cells, 

CD20+ B cells, BDCA2+ pDCs, and CD11c+ mDCs. Across the 55 biopsies, we captured all regions of 

interest (ROIs) with detectable CD3+ T cells, resulting in 865 ROIs. Image ROIs were 1024 x 1024 

pixels, with a pixel size of 0.1058 μm. These data are referred to as the high resolution (HR) dataset.  

Lupus nephritis is often characterized by chronic and intense inflammation in which it is difficult 

to accurately identify and segment specific cells using standard approaches due to the density of cells 

and the high levels of structured background signal10,23. Therefore, we trained deep convolutional 

neural networks (CNNs) to perform automatic cell detection, classification, and segmentation 

(collectively known as instance segmentation) on the HR dataset. To achieve optimal performance 

across all imaged cell classes, we split the five-class cell detection into two tasks: instance 

segmentation of lymphocytes and instance segmentation of DCs (Fig 1A). For each task, a separate 

instance of a region-based CNN architecture, Mask R-CNN, was independently trained (Fig 1B). Each 

Mask R-CNN was trained on 246 manually segmented images with a validation set of 65 manually 

segmented images used for hyperparameter tuning. On a test set of 30 images from patients unique to 

the training and validation data, the lymphocyte detection network had an F1-score of 0.75 and the DC 
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detection network of 0.57 while the overall F1-score for detection of all 5 cell classes was 0.74. Visual 

comparison of manual truth and predictions in individual ROIs revealed excellent concordance (Fig. 

1C). By implementing deep CNNs, we achieve rapid and accurate whole-cell segmentation and 

classification.    

  

Specific in situ immune cell densities associated with progression to renal failure.  

Automatic cell segmentations were first used to describe and quantify the spatial distribution all 

five cell classes in the image dataset. Comparison of overall cell densities (total cells/ROI) in ESRD- 

patients and ESRD+ patients revealed no significant differences (Fig 2A). However, the total cell count 

per sample was higher in the ESRD+ cohort, reflecting larger overall areas of inflammation (Fig 2B). In 

contrast to overall cell density, there were apparent differences in the cellular constituents of 

inflammation between the two patient cohorts (Fig 2C-G). Surprisingly, ROIs from ESRD- patients had 

higher densities of B cells relative to ROIs from ESRD+ patients (p=1.23x10-7, Fig 2C). In contrast, 

ROIs from ESRD+ patients had increased densities of CD4- T cells (p=3.40x10-15, Fig 2D). There were 

no significant differences in the densities of CD4+ T cells, pDCs, or mDCs between patient cohorts (Fig 

2E-G).  

Although there were fewer ESRD+ patients, they had more ROIs captured per biopsy.  To 

mitigate any effect from these cohort and individual class imbalances, we performed a bootstrapping 

analysis. The pools of ESRD+ and ESRD- ROIs were iteratively sampled with replacement 1000 times 

to produce samples of 200 ROIs from each group (ESRD+ and ESRD-).  The distribution of mean cell 

densities between ESRD+ and ESRD+ patients revealed distinct, non-overlapping peaks for both B 

cells and CD4- T cells (Fig. 2H-I). In contrast, there was substantial overlap in the cell densities between 

ESRD+ and ESRD- patients for CD4+ T cells, pDCs and mDCs (Fig. 2J-L). The 95% confidence 

intervals of the difference in means between ESRD+ and ESRD- patients revealed for both B cells and 

CD4- T cells did not cross zero (Supplementary Fig. 2A-B).  In contrast, the difference in means for 

the other cell types did cross zero (Supplementary Fig. 2C-E).  These data indicate that the observed 
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differences in B cell and CD4- T cell densities between ESRD+ and ESRD- patients are robust. From 

these data we conclude that high B cell densities are associated with a good prognosis while high 

densities of CD4- T cells are associated with progression to renal failure.  

When we examine these densities on the patient level, we observe that patients with high CD4- 

T cell densities, B cell densities tend to be low (Fig 2M). As indicated by point size, these tended to be 

ESRD+ patients with higher TI chronicity scores. The converse appeared true, as patients with higher 

B cell densities tended to have low TI chronicity scores and be ESRD-.  These data suggest that lupus 

TII is associated with two or more distinct inflammatory states, each associated with a different 

prognosis.  

 

Patients who present in renal failure have a skewed in situ inflammatory state 

Within the ESRD+ group of patients was a small yet distinct cohort of five patients that either 

were in renal failure at the time of biopsy or progressed to renal failure within two weeks of biopsy 

collection. If these patients are treated as their own unique outcome group (ESRD current), differences 

in the density of specific cell classes becomes even more apparent (Fig 3). There are progressively 

fewer B cells/ROI between ESRD-, ESRD+ and ESRD current groups respectively (Fig. 3A). The 

opposite trend is observed for CD4- T cell densities (Fig 3B). In contrast, there were no apparent 

differences in CD4+ T cells or pDCs in the ESRD current patients (Fig. 3C-D). Remarkably, there was 

a profound depletion of mDCs in the ESRD current cohort (Fig. 3E).     

A three-group bootstrapping analysis was performed to assess any effect of class imbalance. 

This confirmed that ESRD current patients have the lowest mean density of B cells, followed by ESRD+, 

with ESRD- having the highest density of B cells (Fig 3F). Confidence intervals for the pairwise 

differences between these populations did not overlap with zero (Supplementary Fig 3A). An inverse, 

stepwise relationship was observed for CD4- T cells with progressively higher densities found in the 

ESRD+ and ESRD current relative to ESRD- cohorts (Fig 3G, Supplementary Fig 3B). ESRD-current 

patients were also well separated from the other two cohorts with respect to local mDC abundance (Fig 
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3J, Supplementary Figure 3E). As expected, there were no differences between the three groups with 

respect to CD4+ T cells or pDCs (Fig 3H-I, Supplementary Fig 3C-D). These findings indicate that 

patients presenting in renal failure have a skewed inflammatory state with abundant CD4- T cells, 

relatively few B cells and a depletion of mDCs.  

It is possible that the inflammatory phenotype observed in ESRD current patients was not a 

primary state but arose as a secondary consequence of renal damage and scarring. However, two 

patients in the ESRD current cohort (Supplementary Table 1, patients 51 and 55) presented with very 

high activity indices and relatively low TI chronicity scores (2 out of a possible 6 points)26. These 

observations suggest that the skewed inflammatory phenotype observed in ESRD current patients can 

precede severe renal injury.   

 

Specific cellular neighborhoods associated with progressive and refractory renal disease. 

We next explored the relative in situ spatial relationships between the different immune cell 

classes. First, for every cell in the dataset, we identified the nearest neighbor using centroid to centroid 

distances. CD4+ and CD4- T cells were significantly more likely to have a B cell as their nearest 

neighbor in ESRD- biopsies (p=1.00x10-36 and p=6.23x10-19, respectively) (Fig 4A). In contrast, CD4+ 

T cells and B cells were significantly more likely to have a CD4- T cell nearest neighbor in ESRD+ 

biopsies (p=7.53x10-29 and p=6.35x10-9, respectively) (Fig 4B). Additionally, both B cells and CD4- T 

cells showed a strong propensity for co-localization with cells of the same type (p=1.09x10-8 and 

p=1.75x10-9, respectively). 

Higher order local cellular organization was then probed by grouping cells into spatially discrete 

neighborhoods. DBSCAN, a density-based clustering algorithm27, was implemented to group cells into 

discrete neighborhoods defined by a maximum intercellular centroid-centroid distance. Variation in this 

maximum distance between 50 and 150 pixels resulted in a range of neighborhood sizes varying 

between those that contained just a few cells (50 pixels) to those that encompassed large areas of 

inflammation (150 pixels) (Fig 4C, Supplementary Fig 4A).  A maximum distance of 100 pixels (~10.6 
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µm) was selected, as this distance approximates a cell body and appeared to resolve observable 

regional behavior across the dataset.  

Using this 100-pixel cutoff and a minimum neighborhood size of two, DBSCAN detected 4022 

cell neighborhoods in the dataset. Each neighborhood was quantitatively characterized by a set of 24 

features including cell type frequency, cell type proportion, ratios of cell types, average cell shape 

features, and the overall area of the neighborhood (Supplementary Fig 4B). K-means clustering was 

then applied to define classes of neighborhoods. The neighborhoods were split into six classes, as 

determined ideal by bootstrapping cluster descriptors including the within cluster sum of squares 

(WCSS) and the delta WCSS (Supplementary Fig 4C-D). The test score from a leave-one-out t-test 

approach was used to determine which features or combination of features best distinguished the six 

neighborhood groups (Fig 4D). The most distinctive feature(s) for each group was used to describe the 

cell neighborhoods as follows: 1) B cell enriched cluster, 2) CD4- T cell enriched cluster, 3) Large, 

lymphocyte enriched cluster, 4) CD4+ T cell enriched cluster, 5) mDC enriched cluster, and 6) pDC 

enriched cluster (Fig 4E).  

Tertiary lymphoid structures (TLSs) have been previously identified in the context of lupus 

nephritis13. Although we cannot explicitly define TLSs in this dataset, we hypothesized that the large, 

lymphocyte enriched neighborhoods might approximate TLSs. For example, we noted that within this 

group, 28.6% of the cells were B cells and 48.3% were CD4+ T cells. Furthermore, 96.1% of these 

neighborhoods met the following criteria: 1) contained at least 20 cells, 2) both B cells and CD4+ T cells 

were represented in the neighborhood and 3) at least 50% of all cells were B cells and/or CD4+ T cells. 

Therefore, the vast majority of large, lymphocyte enriched neighborhoods, have features consistent 

with TLSs.  

We then examined how these six classes of neighborhoods were distributed between the ESRD- 

and ESRD+ patients. After normalizing for the number of ROIs captured for each patient, ESRD- and 

ESRD+ patients had no difference in their total neighborhood count per ROI (Fig 4F). However, ESRD+ 

patients had significantly higher prevalence of CD4- T cell enriched neighborhoods relative to the 
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ESRD- patients (p = 0.043) (Fig 4G). The per ROI prevalence of the other classes of neighborhoods 

did not correlate with renal outcome (Supplementary Fig 5A-E). We next examined if the CD4- 

neighborhoods differed between the ESRD-, ESRD+ and ESRD current patient groups (Fig 4H). 

ESRD+ and ESRD current patients had a statistically higher prevalence of neighborhoods from the 

CD4- cluster than ESRD- patients (p=0.03, p=0.009, respectively).  These data demonstrate that, on a 

per patient basis, the prevalence of small, CD4- T cell enriched neighborhoods demonstrates the 

strongest association with progressive renal disease.  

 

Cell detection and segmentation in highly multiplexed, full-biopsy images 

To better characterize in situ lymphocyte populations, we performed highly multiplexed confocal 

microscopy on a separate dataset of 18 lupus nephritis biopsies. In this highly multiplexed (HMP) 

dataset, we interrogated a set of nine markers (CD3, CD4, CD8, ICOS, PD1, FoxP3, CD20, CD138, 

and DAPI). This highly multiplexed panel was obtained using four color confocal microscopy and 

iterative stripping and reprobing28. In addition, we imaged full biopsy sections rather than capturing 

isolated ROIs thereby facilitating a more complete and unbiased spatial analysis.  

Full biopsy images for all stains were aligned with the DAPI channel (Fig 5A). Two new instances 

of Mask R-CNN were trained to perform single-marker and dual-marker instance segmentation (Fig 

5B). Briefly, ROIs from the HR dataset (pixel size = 0.1058 μm) were broken up into 512 x 512 pixel 

tiles to pre-train each Mask R-CNN. Each network was then fine-tuned using small sets of manually 

segmented 512 x 512 pixel tiles from the HMP dataset (pixel size = 0.221 μm). The single-marker Mask 

R-CNN was used to predict B cells (CD20+) and plasma cells (CD138+), while the dual-marker Mask 

R-CNN was used to predict single positive and double positive T cells. The three main classes of T 

cells (CD4, CD8, and DN) were determined by combining predictions from a CD3/CD4/DAPI image 

stack with predictions from a CD3/CD8/DAPI image stack at the same location in the tissue (Fig 5C). 

The dual-marker Mask R-CNN was used to generate cell predictions on CD3/ICOS/DAPI and 

CD3/PD1/DAPI images. The resulting single-positive (CD3+ICOS- or CD3+PD1-) and double-positive 
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(CD3+ICOS+ or CD3+PD1+) predictions were to define ICOS and PD1 expression for every putative 

T cell in the dataset.  As FoxP3 is nuclear, these images were binarized by thresholding individual 

image tiles. T cell predictions with > 25% overlap with this binary mask were determined to be FoxP3+. 

 

CD4- T cells contain CD8,  and other DN T cell populations 

T cells comprised over 65% of all predicted lymphocytes in the HMP dataset (Fig 5D). Plasma 

cells were the second most abundant class in the dataset, comprising ~28% of all detected 

lymphocytes. B cells were least prevalent at only ~6% of detected lymphocytes. CD4+ T cells were the 

most abundant cell class across all five main classes, making up 35% of all lymphocytes, and over 50% 

of all detected cells (Fig 5E). Surprisingly, CD8 T cells were only slightly more abundant than double 

negative (CD4-CD8-, DN) T cells, comprising ~17% of all lymphocytes and ~26% of all T cells.  

To further characterize these DN T cells, we interrogated public scRNA-Seq data of immune 

cells infiltrating the kidney of lupus nephritis patients18. We identified naïve T and CTL clusters in 

intrarenal immune cells by unsupervised clustering and canonical marker expression (Fig 6A). Within 

these T cell clusters, 21% were DN, as measured by the UMI of CD4, CD8A, and CD8B 

(Supplementary Fig 6A).  Several T cell subtypes do not express CD4 nor CD8 including natural killer 

(NK) T cells and γδ T cells. Indeed, there was a small increase in CD3D in cells assigned to the NK cell 

class, suggesting a NKT phenotype. However, there was not a substantial enrichment for NKT cell 

markers in the DN subset (Supplementary Fig 6B).    

Next, we compared TCR and  chain expression (TRAC and TRDC). Some cells were 

apparently positive for both TRAC and TRDC, likely due to sequence homology between these genes 

(Fig 6B). However, TRAC- cells and TRDC+ cells were both enriched in DN population (Fig 6C). These 

results suggest that a portion of the DN T cells observed in lupus nephritis are γδ T cells. To examine 

this possibility further, we stained eight lupus nephritis biopsies with antibodies specific for CD3, CD4, 

CD8, TCRẟ, and imaged 281 ROIs (Fig 6D). In a given biopsy, 51.4% ± 21.3% of DN T cells were 
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positive for TCRδ. These findings indicate a substantial fraction of T cells in lupus nephritis do not 

detectably express CD4 nor CD8, and approximately half of these DN T cells are γδ T cells. 

 

In situ distributions of exhausted, regulatory and helper T cell populations  

We then examined the distributions of ICOS, PD-1 and FoxP3 in the T cell subsets. Roughly 

30% of CD8+ T cells in the HMP dataset are PD1 positive (Supplementary Fig 7A) suggesting an 

exhausted phenotype. Approximately 25% of CD8+ T cells were “exhausted” by the definition of 

PD1+ICOS-FoxP3-29. This is coherent with observations from murine lupus models in which exhausted 

tissue-infiltrating CD8+ T cells are relatively common30. In contrast, human lupus renal scRNA-Seq 

data suggests that CD8+ T cell exhaustion is infrequent2. 

 A surprisingly small percentage (5.41%) of CD4+ T cells were FoxP3 positive, while fewer still 

were also PD1-ICOS-, suggesting that Tregs comprise only about 2.5% of CD4+ T cells 

(Supplementary Fig 7B). In contrast, even fewer CD8+ T cells (1.3%) or DN T cells (0.88%) expressed 

FoxP3 (Supplementary Fig 7A,C). Therefore, very few of the tissue-infiltrating CD4+ T cells in lupus 

nephritis are potentially Tregs.   

We additionally identified T follicular helper-like (Tfh) cells based on the combination of PD1 

and ICOS expression by CD4+ T cells31,32. 5.05% of the CD4+ T cell compartment were 

PD1+ICOS+FoxP3-. However, given that previous investigations have consistently associated PD1 

expression with Tfh-like cells, but not necessarily ICOS, we decided to use a less stringent definition of 

PD1+ICOS+/-FoxP3- to identify this cell subset in our data. This phenotype was associated with roughly 

30% of the CD4+ T cells (Supplementary Fig 7B). Though it should be noted that PD1+ICOS-FoxP3- 

CD4+ T cells could alternatively be interpreted as exhausted, we chose to use the more expansive 

definition in our subsequent analysis.   
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Organization of inflammation across whole biopsies 

We next probed the potential interacting partners of Tfh, Treg, and Tex cells by identifying the 

class of their nearest neighbors. Most Tregs are closest to other Tregs and other non-specific CD4+ T 

cells (Supplementary Fig 7D). In contrast to the expectation that Tfh would primarily be in close 

proximity with CD20+ B cells, Tfh had other CD4+ T cells as their most frequent neighbor, followed by 

other Tfh (Supplementary Fig 7E). Exhausted CD8+ T cells were most frequently found near other 

exhausted CD8+ T cells, followed by CD4+ T cells and CD8+ T cells (Supplementary Fig 7F). Overall, 

these data demonstrate that across biopsies there is a tendency for the clustering of similar cells 

together.    

Cell neighborhoods in the HMP dataset were then defined using DBSCAN with a distance cutoff 

of 50 pixels, or roughly 10 µm. Most of the neighborhoods detected in the dataset were small (Fig 7A). 

However, without the constraint of discrete fields of view, we were able to capture neighborhoods of up 

to 273 cells. In contrast, the largest neighborhood captured in the HR dataset (which was restricted to 

a to ~1.2x104 µm2 of tissue), contained only 147 cells. Given the association of CD4- T cell enriched 

neighborhoods with ESRD+ patients in the HR data, we investigated similar CD4- neighborhoods in 

the HMP data. We classified CD4- neighborhoods as those that had 1) less than 20 cells and 2) 25% 

of their cells as either CD8 T cells or DN T cells, as these criteria captured the CD4- neighborhoods 

observed in the HR data (Fig 7B). A strong majority of the cells in these neighborhoods are CD4- T 

cells, including 26% DN T cells and 34.2% CD8+ T cells (Fig 7C). There was a weak negative 

correlation (R=-0.35) between the number of DN T cells and CD8+ T cells in these neighborhoods, 

suggesting that DN and CD8+ T cells are not proportionally represented in a given neighborhood.  

Large B-T neighborhoods were defined by the set of criteria (described above) that captured 

most of the large, lymphocyte-rich neighborhoods in the HR data. Of nearly 14,000 neighborhoods in 

the HMP dataset, 111 met these criteria (representative clusters in Fig 7D). Within these B-T 

neighborhoods, a vast majority of the lymphocytes were T cells, followed by similar proportions of B 

cells and plasma cells (Fig 7E). Tfh cells made up 36% of CD4+ T cells in B-T neighborhoods (Fig 7F) 
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which was a significant enrichment compared to non-B-T neighborhoods (p = 1.9x10-6, Mann-Whitney) 

(Fig 7G). As observed across whole biopsies, within these B-T neighborhoods, homotypic proximity 

predominated. B cells were located near other B cells, followed by plasma cells and CD4+ T cells (Fig 

7H). Tfh cells in these neighborhoods were most often near other Tfh cells, while overall Tfh were near 

unspecified CD4+ T cells (Fig 7I, Supplementary Fig 7E). Putative exhausted T cells tended to be 

close to each other, followed by unassigned CD4+ T cells (Supplementary Fig 7F). Unassigned CD4+ 

T cells in B-T neighborhoods were also most likely to be found near other CD4+ T cells, followed by 

Tfh cells (Fig 7J).  

Cellular neighborhoods in both datasets were defined by the approximate size of a cell body and 

excluded longer-range interactions. A simple visual inspection reveals that neighborhoods are rarely 

isolated from each other (Fig 8A). To investigate potential higher order organization, we calculated 

inter-neighborhood distances. The average nearest-neighborhood distance was 158.5 pixels, roughly 

35 μm. The distribution of minimum distances to the nearest neighborhood is heavily skewed towards 

short distances (Fig 8B), suggesting that most cell neighborhoods exist within large inflammatory 

structures which we refer to as “cities”. Interestingly, the largest neighborhoods were typically near 

other cellular neighborhoods, while small cellular neighborhoods had much more variability in their 

nearest-neighborhood distances (Fig 8C).  
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Discussion 

Canonically, lupus nephritis is thought of as arising from a systemic break in B cell tolerance 

leading to glomerular antibody deposition and inflammation. This model, supported by large bodies of 

evidence in both humans and mice8,33, has led to clinical trials targeting B cells and Tfh cells34-40. 

However, these efforts have yielded either incremental or negative improvement over the standard of 

care. By quantifying cellular organization within conventional and highly multiplexed confocal 

microscopy images using deep learning algorithms, we demonstrate that high regional B cell density is 

associated with a good prognosis. Rather, it is CD4- T cell populations, including CD8+, γδ, and other 

DN T cells, that are associated with refractory disease and progression to renal failure.  

The CD4- population was surprisingly heterogeneous. As expected, CD8 expressing cells were 

common. However, over 40% of the CD4- cells did not express CD8. Of these approximately 50% 

expressed the γδ TCR. Re-examination of the AMP data confirmed the presence of intrarenal γδ T cells 

within the DN T cells. The DN T cells described in LN have been theorized to arise from CD8+ T cells 

that downregulate CD8 expression41,42. To our knowledge, this is the first study to quantify DN T cell 

prevalence in LN and to differentiate true DN from  T cells.  

It remains to be determined whether one of these populations is clearly associated with 

progression to renal failure or if these populations share pathogenic roles. Certainly, both CD8 and γδ 

T cells can be cytolytic and might provide complementary recognition of different classes of 

autoantigens43-46. The function of DN T cells is not known. However, if they are derived from CD8 T 

cells they might also retain cytolytic activity41. It is clear that the heterogeneity in the DN T cell or CD8+ 

populations must be resolved before accurately assigning pathogenicity and identifying the populations 

most closely linked with ESRD.   

In addition to yielding information on cell frequencies in tissue, our analytic pipelines provided 

the precise positions of all cells assayed in the biopsy. This allowed us to define cellular neighborhoods 

and extract quantitative features including neighborhood size, shape and cell constituency. 

Unsupervised clustering revealed that small neighborhoods of CD4- T cells were associated with 
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progression to ESRD. Even within our small cohort, CD4- T cell neighborhoods were associated with 

renal failure in individual patients.    

Our data identify CD4- T cells, including CD8+, γδ, and DN T cells as potentially important 

therapeutic targets. This association was particularly striking in patients that presented in renal failure. 

Two patients who initially presented with renal failure had high densities of CD4- T cells and relatively 

low chronicity scores, suggesting that infiltrating CD4- T cells can precede substantial renal damage. 

These data suggest that patients exhibit distinct, prognostically meaningful, intra-renal inflammatory 

trajectories. 

Unfortunately, in contrast to the B cell:Tfh axis, we have limited therapeutic options that 

specifically target these T cell populations. One of the few classes available are calcineurin inhibitors 

(CNIs). The recent success of the CNI voclosporin in treating some patients with lupus nephritis is 

promising47.  We propose that stratifying patients by the constituency and organization of their renal 

inflammation might identify those most likely to benefit from the addition of T cell targeting therapies 

such as voclosporin.   

Collections of B cells were surprisingly associated with a good renal outcome. It is possible that 

B cells and subsequent local antibody secretion are somewhat benign compared to other pathological 

processes. Alternatively, conventional therapies might be relatively effective against B cells and plasma 

cells. Therefore, B cell density in a diagnostic biopsy could indicate patient response to these therapies. 

Indeed, most of our patients were treated with high-dose steroids and induced with cytotoxic therapies, 

most often mycophenolate. These therapies have been demonstrated to deplete B cells and plasma 

cells48,49.  

Large neighborhoods of cells were enriched in both B cells and CD4 T cells, which were found 

to include a higher prevalence of Tfh cells than other neighborhoods. These neighborhoods have 

similar features to the T:B aggregates described previously13 . However, our HMP image analysis 

indicated that these structures are more complex containing other cell types including other CD4+ T 

cell and PC populations. These findings cohere with previous studies that suggest an underlying 
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architecture to these large neighborhoods11. In addition, we found that large neighborhoods tended to 

aggregate together into cities. Further work will be needed to understand the rules by which these cities 

organize, and the underlying biological processes governing their organization.   

Interestingly, pDC prevalence was not associated with renal outcome in our HR dataset. As 

sources of IFNα, they have been postulated to play a central role in disease pathogenesis50-53. 

However, the outcomes of clinical trials of anti-IFNα antibodies in lupus have been modest54,55. In 

contrast to pDCs, mDCs were depleted in those patients that presented in renal failure.  While 

seemingly counterintuitive, tubulointerstitial DCs can retain an immature phenotype in lupus nephritis56. 

Therefore, they might have a role in organ tolerance even in the context of severe inflammation. It 

should be noted that the interstitial mDCs we quantified appeared different than the periglomerular 

inflammatory mDCs that have been recently described in lupus nephritis 57. 

With deep learning and other artificial intelligence algorithms, we achieved robust and accurate 

cell detection across multiple lupus nephritis image datasets, thereby facilitating a detailed, accurate 

spatial analysis of in situ immunity in lupus nephritis samples. Several computer vision methods were 

implemented to establish an analytical pipeline that addressed experimental, biological, and technical 

limitations. CNNs trained for instance segmentation detected and classified several immune cell 

classes with high fidelity not only in sparsely populated images, but also in densely packed images. We 

also trained and implemented CNNs for rapid and robust image and object filtering to optimize immune 

cell calling in full-biopsy sections. This included a network trained to discriminate between image tiles 

containing positive cell signal and erroneous tissue autofluorescence. We also trained a network to 

segment tubules in order to reject false-positive plasma cell predictions. By combining these CNNs with 

conventional thresholding and image registration techniques, we automatically mapped several 

immune cell classes to full-biopsy sections enabling a robust spatial analysis of in situ autoimmunity. 

Using artificial intelligence to quantify immune cell populations in human tissue, we extracted 

rich, non-biased, spatio-cellular data that allowed identification of unexpected pathogenic mechanisms. 

Even in a relatively small longitudinal cohort, we were able to resolve patient heterogeneity to identify 
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putative pathogenic processes. Remarkably, specific cell densities provided powerful insights into 

disease pathogenesis. Understanding how these populations were organized into neighborhoods 

provided predictive power in individual patients.  Furthermore, this work revealed fundamental insights 

to the structural organization of inflammation that began to identify organizing principles. Further studies 

of the complexity, heterogeneity and organization of in situ inflammation will yield a better, more 

quantitative understanding of human autoimmunity. Such knowledge is critical for interpreting and 

applying the wealth of knowledge we have gained from animal models.  It is also likely to identify both 

new therapeutic targets and those patients in which specific strategies are likely to be beneficial. 
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Materials and Methods 

Sample staining and image acquisition: High-resolution dataset 

Formalin-fixed paraffin-embedded (FFPE) kidney biopsies from 55 lupus nephritis patients with 

at least two years of clinical follow-up were obtained from the University of Chicago Human Tissue 

Resource Center. FFPE sections were de-paraffinized and treated with a citric acid buffer (pH 6.0) for 

antigen retrieval and blocked with serum prior to antibody staining. Samples were stained with indicated 

specific antibodies (Supplementary Table 2). Stained samples were imaged on a Leica SP8 laser 

scanning confocal microscope at 63x magnification. Images were collected wherever CD3 signal was 

present in a biopsy. Collected images were 1024 x 1024 pixels x 6 channels with a 0.1058 µm pixel 

size.  

 

Staining and image acquisition: Highly multiplexed dataset 

Samples were stained using a strip and reprobe procedure in which 5 µm thick sections of FFPE 

biopsy sections were iteratively stained according to a procedure outlined by28. Sections were 

deparaffinized and stained with a combination of primary antibodies and secondary antibodies 

conjugated with AlexaFluor 488, 546, and 647 fluorophores (Supplementary Table 2). DAPI was also 

included in every iteration of staining. For each round of staining, samples were imaged using a Caliber 

ID RS-G4 large-format confocal microscope at a magnification of 63x, resulting in a pixel size of 221 

nm. After each round of imaging, samples were stripped as described28. Samples were then re-probed 

with a new set of primary and secondary antibodies and re-imaged until the full marker panel had been 

imaged. 

 

Staining and image acquisition: γδ T cells 

Eight lupus nephritis kidney biopsies were stained for CD3, CD4, CD8, TCRδ, and DAPI. Inflamed 

regions were imaged on the Leica Stellaris 8 confocal microscope, with 40x magnification and a pixel 

size of 0.225 um. 281 ROIs (35±19 per sample) 1024x1024 ROIs were obtained, and then post 
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processed with background subtraction, de-speckling and contrast adjustment using ImageJ. Cells in 

these images were quantified by manual count.  

 

Automatic cell detection and segmentation: High resolution dataset 

Two instances of a Mask R-CNN architecture58 were trained to detect and segment cells in this 

dataset. One instance was trained to explicitly detect three classes of lymphocytes (B cells, CD3+CD4- 

T cells, and CD3+CD4+ T cells). A second instance was trained to detect two classes of DCs (pDCs 

and mDCs). Mask R-CNN is a region-based convolutional neural network (CNN) composed of a feature 

pyramid network (FPN), region proposal network (RPN), then simultaneous object classification, 

bounding box regression, and object segmentation. For this work, a ResNet-101 was used as a 

backbone for the FPN. Networks were trained with a learning rate of 0.01. Training, validation, and 

testing data were generated by a single expert manually segmenting all five cell classes in an image. 

All manually segmented images from a given patient were relegated to either the training set (273 

images, 80%), validation set (34 images, 10%), or test set (35 images, 10%). Training progress was 

monitored using Tensorboard and training was stopped after cell recall stopped improving for all 

classes. Precision (Eq.1), recall (Eq. 2), and F1-score (Eq. 3) were used to evaluate network 

performance. All computation for the HR dataset was performed using resources at the University of 

Chicago Research Computing Center. Each instance of Mask R-CNN was trained on a single GPU 

compute node containing four Nvidia GPUs with 12GB memory per card, 28 Intel E5-2680v4 CPUs at 

2.4 GHz, and 64 GB of system memory. A batch size of 4 images was used for training, distributed 

across the four GPU cards. Networks were trained to the point at which the recall for all cell classes 

stopped increasing. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
, (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, (2) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, (3) 
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Automatic cell detection and segmentation: Highly multiplexed dataset 

First, the Caliber ID microscope output images in the form of image strips were stitched together 

using cross-correlation of image patches at the strip boundaries. These single-channel composites 

were then aligned with the DAPI channel from the first round of imaging, again through cross-correlation 

of image windows. Composites were then broken into 512 x 512 pixel image tiles. All DAPI tiles were 

passed through a simple image intensity filter to determine if tissue was present at a given location. All 

tiles at a given location were filtered out of proceeding analyses if the DAPI filter revealed no tissue at 

that location. This resulted in over unique 18,000 tile locations, with each location containing nine 

unique stains.  

Some of the resulting tissue-containing tiles did not contain immune cells. Furthermore, the 

tissue autofluorescence generates false positive cell proposals. Therefore, all locations with tissue 

present were again filtered for lymphocyte presence based on positive CD3 and/or positive CD20 

signal. This was accomplished by training an 18-layer CNN, similar to a VGG19 architecture59, to 

classify CD3 and CD20 image tiles as inflamed or uninflamed. 536 CD3 and CD20 tiles from 18 patients 

were manually classified as either inflamed or uninflamed by a single expert for training (354 images, 

66%), validation (91 images, 17%), and testing (91 images, 17%) sets. All images from a given patient 

sample were constrained to a single set to avoid data leakage. The network was trained with a learning 

rate of 9e-5, using dropout and data augmentation of random image flips and rotations. Training was 

stopped once the validation accuracy had not improved in 10 epochs. The trained network had a 

receiver operator characteristic (ROC) area under the curve (AUC) of 0.991. Only image tiles at 

locations corresponding to CD3 and/or CD20 positive signal (inflamed) proceeded to cell segmentation. 

Instance segmentation of cells was split into two tasks: instance segmentation of T cells (also referred 

to as dual-marker detection) and instance segmentation of B cells (also referred to as single-marker 

detection). Instance segmentation performance was evaluated using precision (Eq. 1), recall (Eq. 2), 

and F1-score (Eq. 3). 
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T cell segmentation: An instance of Mask R-CNN was trained to segment single positive (CD3+ 

CD4-) and double positive (CD3+CD4+) T cells in the high-resolution T cell image stacks described 

above. This trained network was fine-tuned with a small set of 211 T cell image stacks from the highly 

multiplexed dataset. The highly multiplexed fine-tuning image sets contained DAPI in combination with 

CD3/CD4, CD3/CD8, or CD3/ICOS channels. This fine-tuning set was split into training (169 images, 

80%), validation (21 images, 10%), and testing (21 images, 10%) sets, with all images from a given 

patient confined to a specific set. For fine-tuning, the weights were permitted to adjust for all 

convolutional, max-pooling, and fully connected layers of the Mask R-CNN instance pre-trained on 

high-resolution T cell images. The fine-tuned T cell network was used to make predictions for CD3/CD4, 

CD3/CD8, CD3/ICOS, and CD3/PD1 images. The trained dual-marker network had an average F1-

score of 0.85 on all single-positive cell predictions (i.e. CD3+CD4- and CD3+CD8-) and an average F1-

score of 0.92 on all double-positive cell predictions (i.e. CD3+CD4+ and CD3+CD8+). 

B cell segmentation: An instance of Mask R-CNN was trained to segment B cells in the high-

resolution B cell image stacks described above. This trained network was fine-tuned with a set of 79 B 

cell image stacks from the HMP dataset. This fine-tuning set was split into training (63 images, 80%), 

validation (8 images, 10%), and testing (8 images, 10%) sets, with all images from a given patient 

confined to a specific set. For fine-tuning, the weights were permitted to be adjusted for all 

convolutional, max-pooling, and fully connected layers of the Mask R-CNN instance pre-trained on HR 

B cell images. The fine-tuned B cell network was used to make predictions for B cell (CD20) and plasma 

cell images (CD138). The trained single-marker network had and average F1-score of 0.87.  

 

Tubule segmentation 

An instance of Mask R-CNN was trained to segment tubular structures in the HMP dataset, 

encompassing both renal tubules and blood vessels. 300 DAPI tiles from 18 patients (512 x 512 pixels) 

were manually annotated by a single expert. Manually segmented images were separated into training, 

validation, and testing sets as follows: 240 images in the training set (80%), 30 images in the validation 
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set (10%), and 30 images in the test set (10%). Data augmentation consisted of random horizontal and 

vertical flips and rotations. Performance of the tubule segmentation network was assessed at the pixel 

level, with the trained network yielding a recall (Eq. 2) of 0.74 and an average precision (Eq. 1) of 0.79 

on the test set of tubule images. 

All pre-processing and computation associated with instance segmentation in the HMP dataset 

was performed on the MEL computational server in the Radiomics and Machine Learning Facility at the 

University of Chicago. MEL contains 256 Xeon Gold 6130 CPU cores, 3TB of DDR4 ECC RAM 

memory, 24TB of NVMe SSD storage, and 16 nVidia Tesla V100 32GB GPU accelerators. 

 

Defining cell neighborhoods through density-based clustering  

Cells in both datasets were assigned to clusters using the sklearn (version 0.23.2) 

implementation of Density Based Spatial Clustering of Applications with Noise (DBSCAN)27, using an 

epsilon of roughly 10 µm, corresponding to 100 pixels in the HR dataset and 50 pixels in the HMP 

dataset. Minimum cluster size was defined as two points (cells). Neighborhoods were generated based 

on coordinates of the cellular centroids within the full composite. Twenty-four features that capture 

cellular constituency as well as cell and neighborhood shape, were extracted for each cluster, and K-

means clustering was then applied to define classes of neighborhoods. The neighborhoods were split 

into six classes as determined ideal by bootstrapping cluster descriptors including the within cluster 

sum of squares (WCSS) and the delta WCSS. The types were characterized using a leave-one-out t 

test to identify which features of each type of neighborhood distinguished it from the other 

neighborhoods. In this procedure, the current cluster of reference was treated as the alternative group, 

all the remaining clusters were then binned together as the reference group, then a t-test for was applied 

for all features used to describe the neighborhoods. 

 

Area calculation 
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The total area of tissue in each sample was calculated by analyzing the DAPI composite in the 

following way: 1) a threshold pixel intensity of 5 was applied to binarize the image; 2) the 

skimage.morphology (version 0.17.2) functions “area_closing” (area_threshold=5000), 

“remove_small_holes” (area_threshold=5000), “remove_small_objects” (min_size=100), and “binary 

dilation” were applied to the image in that order to fill in small areas of tissue that did not contain nuclei; 

3) the number of positive pixels was then calculated and converted to units of um2 using 0.0488 

um2/pixel2 as the conversion factor. The number of cells per unit area were calculated by dividing the 

cellular content of the full composite by this calculated area.   

 

Spatial Analyses 

All other spatial analyses were performed in the programming language Python (3.7.9). The 

following packages were utilized for analysis: pandas (1.2.2), numpy (1.19.2), sklearn (0.23.2), scipy 

(1.6.1), and tifffile (2021.1.14). Plotting was performed with matplotlib (3.3.2) and seaborn (0.11.1). The 

nearest neighbors calculation was performed by iterating through every cell in the dataset and 

identifying the class of the segmented cell that was closest to it based on centroid to centroid distance 

In the HMP dataset, coordinates of the cells in the tiles were adjusted to a composite-level 

coordinate system by shifting the tile-level coordinates based on the location of the tile in the composite. 

All subsequent calculations around the distribution of cells in tissue were based on these composite-

level locations. In order to evaluate the distances between neighborhoods, a bounding box was drawn 

around each cellular neighborhood, and the coordinates of the center of the box was used as an 

approximate neighborhood centroid. The centroid-centroid distance between each neighborhood and 

the neighborhood closest to it was identified.  

 

RNA sequencing analysis 

Single-cell RNA-seq data for human lupus nephritis tissue were obtained from the ImmPort 

repository (accession code SDY997,  “SDY997_EXP15176_celseq_matrix_ru10_molecules.tsv” raw 
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data file). Quality control was performed according to the original paper18, such that cells were removed 

from the analysis if they expressed <1,000 or >5,000 genes, or if more than 25% of the total unique 

molecular identifiers (UMI) mapped to mitochondrial genes. Gene expression values were normalized 

to library size (UMI count per million) and scaled by log2. Clustering implemented in Seurat 3.2.2 and 

canonical marker expression were used to identify cellular subsets. T cells were analyzed if they were 

assigned to the “Naïve T” or “CTL” clusters. T cells were categorized based on CD4, CD8A, and CD8B 

expression. Cells were categorized as “CD4” when they had detectable expression of CD4 transcripts 

but no CD8A or CD8B. They were instead categorized as “CD8”, when they had detectable CD8A 

and/or CD8B with no CD4 transcripts. Cells were categorized as DP (double-positive) or DN (double-

negative) when they had both/neither CD4 and/nor CD8A/B. t-SNE was performed by Rtsne (0.15). 

Plots were generated by ggplot2 (3.3.2) and ggridges (0.5.2).  
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Figure 1. Instance segmentation of immune cells in high-resolution fluorescence microscopy 
images of LN kidney biopsies. A) Automatic instance segmentation of five immune cell classes was 
performed by combining predictions from two instances of Mask R-CNN: one trained to segment 
CD20+, CD3+CD4-, and CD3+CD4+ lymphocytes and one trained to segment pDCs and mDCs. Cell 
location, class, and morphological features were calculated from joint predictions. B) The Mask R-CNN 
architecture is comprised of a ResNet Feature Pyramid Network (FPN) backbone used for feature 
extraction, a region proposal network (RPN) used to generate cell proposals, and two parallel branches 
used for 1) semantic segmentation (mask branch), and 2) classification (softmax layer) and localization 
(bounding box (Bbox) regression) of cell proposals. C) Representative segmentations produced by the 
multi-network pipeline showed strong agreement with the expert-defined manual segmentations. 
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Figure 2. Higher CD4- T cell density and lower B cell density associated with progression to 
ESRD. Difference in the number of indicated cell classes per ROI between patients who progressed to 
ESRD (ESRD+, n=428 ROIs) and those who do not (ESRD-, n=437 ROIs) for A) Total cells per ROI 
across the HR dataset (p=0.318), B) Total cells per patient sample, C) CD20+ cells per ROI, D) 
CD3+CD4- cells per ROI, E) CD3+CD4+ cells per ROI, F) BDCA2+ cells per ROI, G) CD11c+ cells per 
ROI. All cell density comparisons were done with a Mann-Whitney U Test with a Bonferroni correction 
for multiple comparisons. Significant p values noted in the plots. Bootstrapped sample means of ESRD+ 
(red) and ESRD-(blue) for H) CD20+ cells per ROI, I) CD3+CD4- cells per ROI, J) CD3+CD4+ cells per 
ROI, K) BDCA2+ cells per ROI, and L) CD11c+ cells per ROI. Average B cell and CD4- T cell count 
per ROI for each patient biopsy is shown in (M). Point size is weighted by the TI chronicity score for 
each patient. († 95% confidence interval does not overlap with 0) 
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Figure 3. Local cell densities are associated with progressively worse renal outcomes. 
Difference in the number of cells of each class per ROI from patients who did not progress to ESRD 
(ESRD-, n=437 ROIs), people who progressed to ESRD > 2 weeks post-biopsy (ESRD+, n=266), and 
people who progressed to ESRD within 2 weeks of the biopsy date (ESRD current, n=162).  A) CD20+ 
cells/ROI, B) CD3+CD4- cells/ROI, C) CD3+CD4+ cells/ROI, D) BDCA2+ cells/ROI, E) CD11c+ 
cells/ROI. All cell density comparisons were done with a Mann-Whitney U Test with a Bonferroni 
correction for multiple comparisons. Significant p values noted in the plots. Bootstrapped means of 
samples of ESRD- (blue), ESRD+ (orange), and ESRD current (green) ROIs for F) CD20+ cells/ROI, 
G) CD3+CD4- cells/ROI, H) CD3+CD4+ cells/ROI, I) BDCA2+ cells/ROI, J) CD11c+ cells/ROI. († 95% 
confidence interval does not overlap with 0) 
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Figure 4. Specific cellular neighborhoods associated with renal failure. Proportions of cells that 
have A) CD3+CD4- T cells and B) CD20+ B cells as  nearest neighbors in ESRD+ and ESRD- patients 
(chi-squared test for independence with Bonferroni correction for multiple comparisons, significant p 
values noted in the plots). C) Representative neighborhoods detected by the DBSCAN with a distance 

metric of   100 pixels. D) Heatmap showing test statistics for each features from leave-one-out t-tests 
used to define six types of cell neighborhoods. E) Representative neighborhoods of each cluster. The 
abundance of neighborhoods between the patient cohorts, normalized by the number of ROIs per 
patient, is compared by Mann-Whitney U Test, with a Bonferroni correction for F) all cell neighborhoods, 
G) CD4- T cell neighborhoods; A 3-group comparison for CD4- neighborhoods, splitting the ESRD+ 
population into ESRD+ and ESRD current patients is shown in (H). Significant p values noted in the 
plots. 
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Figure 5. Cell detection, segmentation, and phenotyping in highly multiplexed fluorescence 
microscopy images. A) Representative composite of a full biopsy section, shown with merged and 
with isolated panels of CD3, CD4, CD8, ICOS, PD1, and FoxP3. B) Schematic of procedure for training 
and fine-tuning a Mask R-CNN for instance segmentation of cells in highly multiplexed microscopy 
images. C) Cell predictions from Mask R-CNNs trained for dual-marker and single-marker cell detection 
are used to establish base lymphocyte classes. All T cell predictions are further described by ICOS, 
PD1, and FoxP3 expression. D) Breakdown of frequencies of the five base classes in the HMP dataset. 
E) Frequencies of CD4, DN and CD8 T cells within the T cell compartment. 
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Figure 6. Identifying 𝜸𝜹  T cells in LN. A) distribution of CD3D in cell clusters identified in scRNA-
Sequencing data from LN kidney samples, B) expression of TRAC and TRDC in T cells identified in 
scRNA-Seq data, C) comparison of TRAC and TRDC expression in identified DN, CD8+, CD4+ and 
DP T cells, D) representative image of double negative (CD4-CD8-) 𝛾𝛿 (TCRd+) T cells in LN biopsy, 

marked by white arrows. 
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Figure 7. Identification of distinct CD4- and B-T neighborhoods; A) Distribution of sizes of all cell 
neighborhoods in the HMP dataset. B) Representative composite of CD4-clusters, red=CD4+ T cells, 
blue=CD8+ T cells, green=DN T cells. C) Distribution of the five main lymphocyte classes in the CD4- 
T cell neighborhoods. D) Representative composite showing identified B-T aggregates (outlined by 
white boxes), green=DN, red =non-Tfh CD4+, yellow=Tfh; blue=CD8+, magenta =CD20+,cyan = 
CD138+ cells. E) Distribution of frequencies of the five base classes of lymphocytes in B-T 
neighborhoods. F) Distribution of CD4+ T cell phenotypes in B-T neighborhoods. G) Comparison of 
proportion of CD4+ T cells that are Tfh in identified B-T aggregates and non B-T aggregates (Mann-
Whitney U Test, p =1.9x10-6). The nearest neighbors of H) CD20+ B cells, I) Tfh, and J) CD4+ T cells 
within B-T aggregates. 
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Figure 8. Large cell neighborhoods congregate to form cell “cities”. A) Representative image of 
neighborhood detection in a full-biopsy section from highly multiplexed microscopy data, inset: 
segmented cells are color-coded based on neighborhood assignment. B) Distribution of minimum 
distance of a given neighborhood to another neighborhood. C) Relationship between cells per 
neighborhood and distance to another neighborhood. 
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