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Abstract

The accurate establishment and maintenance of DNA methylation patterns is vital for mam-
malian development and disruption to these processes causes human disease. Our under-
standing of DNA methylation mechanisms has been facilitated by mathematical modelling,
particularly stochastic simulations. Mega-base scale variation in DNA methylation pat-
terns is observed in development, cancer and ageing and the mechanisms generating these
patterns are little understood. However, the computational cost of stochastic simulations
prevents them from modelling such large genomic regions. Here we test the utility of three
different mean-field models to predict large-scale DNA methylation patterns. By compari-
son to stochastic simulations, we show that a cluster mean-field model accurately predicts
the statistical properties of steady-state DNA methylation patterns, including the mean and
variance of methylation levels calculated across a system of CpG sites, as well as the covari-
ance and correlation of methylation levels between neighbouring sites. We also demonstrate
that a cluster mean-field model can be used within an approximate Bayesian computation
framework to accurately infer model parameters from data. As mean-field models can be
solved numerically in a few seconds, our work demonstrates their utility for understanding
the processes underpinning large-scale DNA methylation patterns.

1 Introduction

DNA methylation is a repressive epigenetic mark [1] which is primarily found on the cy-
tosines of CpG dinucleotides in mammals. Double-stranded CpG dyads can be unmethy-
lated or methylated on both strands (u and m respectively) or methylated on only one
strand (hemimethylated, h). DNA methylation is largely erased from the genome during
early mammalian development [2]. It is then re-established by the de novo DNA methyl-
transferases DNMT3A and DNMT3B [3] resulting in a landscape where 70-80% of CpGs are
methylated in most human cells [4]. Regulatory elements such as promoters and enhancers
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often remain methylation free [1]. During DNA replication, the nascent strand is synthe-
sised with unmethylated cytosines and methylation patterns are copied by the maintenance
methyltransferase, DNMT1 [5]. Failure to maintain DNA methylation at a locus results in
passive DNA demethylation. Methylation can also be removed actively through transient
modification by Ten Eleven Translocation (TET) enzymes and subsequent DNA repair [6].

Waves of demethylation and remethylation take place during early development and the
generation of germline cells [2]. Changes in DNA methylation patterns also occur during
development and cellular differentiation, resulting in cell type specific methylation patterns
[7]. The correct establishment of DNA methylation patterns is vital for normal development.
Mutations in DNMTs cause Mendelian disorders in humans [8, 9, 10] and mice knockouts
die before or shortly after birth [3, 5]. Widespread alterations in DNA methylation patterns
occur in cancer and ageing [11, 12], but the significance of these changes is unclear. It has
been observed that globally hypomethylated mice expressing a single hypomorphic DNMT1
allele develop cancer, suggesting that altered DNA methylation can cause cancer [13]. How-
ever, the mechanisms underpinning DNA methylation changes remain unclear preventing the
robust delineation of their role in development and disease.

Mathematical models are powerful tools for understanding complex biological processes, in-
cluding DNA methylation. The importance of interactions between CpGs in maintaining
DNA methylation patterns was first postulated through modelling [14]. Specifically, the
authors modelled collaborative interactions where CpGs within a region of the genome can
influence the state of other CpGs, e.g. through enzyme recruitment. Models including such
collaborativity were subsequently found to explain experimental measurements of methy-
lation maintenance in vitro and in vivo more closely than those that did not include it
[15, 16]. A recent study also suggests that collaborativity mediated by neighbour-guided
error correction through DNMT1 is important for maintaining DNA methylation [17]. De-
terministic models, non-spatial stochastic models and spatial stochastic models have all been
used to describe DNA methylation [18]. Deterministic models are based on rate equations
while stochastic models are based on Fokker-Planck equations or chemical master equations
(CMEs). CMEs are ideal because they take into account the inherent discreteness of molec-
ular fluctuations [19] which is well known to play an important role in cellular dynamics [20].
The CME of simple non-spatial stochastic models can be solved exactly in closed-form [21],
but this is often not possible for spatial stochastic models. Rather in this case, stochastic sim-
ulations are used to model the individual reaction processes described by the CME. Various
types of stochastic models have been used to describe collaborative methylation systems (see
for example [22, 23, 24, 25, 26]). To date, such mathematical models have been applied to
understand methylation patterns on a kilo-base scale. However, mega-base scale alterations
to DNA methylation patterns occur in development, cancer and ageing [27]. Existing models
rely on simulations that are too computationally expensive to run for such large genomic
regions.

Here we test the idea that large-scale steady-state methylation patterns can be modelled
in a tractable manner using mean-field (MF) models. By comparison to synthetic data
generated from stochastic simulations, we demonstrate that a type of cluster mean-field
model can predict the statistical properties of large-scale methylation patterns. In Section 2
we introduce a nearest-neighbour collaborative model for DNA methylation and describe
the process used to simulate data from this model. We describe the three MF models
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we test in Section 3. In Section 4 we compare the ability of each MF model to predict
statistics associated with methylation patterns resulting from the simulations. We find that
a type of cluster mean-field model provides excellent predictions and demonstrate that this
model can be used within an Approximate Bayesian Computation (ABC) framework to infer
parameters underpinning large-scale methylation systems. Finally, in Section 5, we discuss
the implications of our findings.

2 Nearest-neighbour collaborative model

2.1 Model set-up

We consider the reaction system in Fig. 1, where some reactions are non-collaborative (in-
volving only the “target” CpG, whose methylation state changes during the reaction), while
others are collaborative (involving both a target CpG and a “mediator” CpG). The role of
the mediator is to encourage the reaction to occur, e.g. via the recruitment of methylase
or demethylase enzymes. This system, and reduced versions, have previously been used to
examine small-scale methylation patterns [14, 28, 29].

Non-collaborative reactions:

u
k1−→ h, h

k2−→ m, m
k3−→ h, h

k4−→ u.

Collaborative reactions:

u+ h
k5−→ h+ h, u+m

k6−→ h+m, h+ h
k7−→ m+ h, h+m

k8−→ m+m,

m+ h
k9−→ h+ h, m+ u

k10−−→ h+ u, h+ h
k11−−→ u+ h, h+ u

k12−−→ u+ u.

Figure 1: System of reactions under consideration. Here u, h and m represent unmethylated,
hemimethylated and methylated CpGs, respectively. Non-collaborative reactions involve only
one CpG, while collaborative reactions involve two CpGs. For each collaborative reaction, the
second reactant (the mediator—see text) recruits an enzyme that changes the methylation
state of the first reactant (the target). For example, the reaction u + h −→ h + h involves a
hemimethylated CpG at one site recruiting an enzyme which changes the state of a CpG at
another site from unmethylated to hemimethylated. Reaction rates are ki, i = {1, . . . , 12}.

We make the following assumptions:

(i) CpGs can only influence the methylation state of their nearest neighbours; see Fig. 2.
While both experimental and modelling studies have demonstrated the importance of
CpGs being influenced by surrounding CpGs [14, 15], the extent and range of such
influence is unknown. We therefore consider only interactions between nearest neigh-
bours.

(ii) There are no direct transitions between the unmethylated and methylated states. We
justify this with the observation that methylase and demethylase enzymes act on single
DNA strands [6, 30]. This implies that hemimethylation is a necessary transition state
between unmethylated and fully methylated CpGs.
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(iii) The system has reached a steady state. Here, we assume that there are no long-term
effects of DNA replication on methylation patterns. This assumption is supported by
the observation that the DNA methylation patterns of cycling and arrested cells are
similar [31].

We also assume that the rates ki, i = {1, 2, . . . , 12} are of the form given in Table 1,
where x measures the strength of collaborativity between CpGs (x < 1 indicates that non-
collaborative reactions dominate, while x > 1 indicates that collaborative reactions dom-
inate). The parameter y measures the strength of methylation vs. demethylation (y < 1
corresponds to demethylation dominating and y > 1 corresponds to methylation dominat-
ing). The parameter a scales the reaction rates.

Unmethylated; Hemimethylated; Methylated

System of N CpGs

. . .
X

Figure 2: Collaborative interactions that can influence a target X under the nearest-
neighbour collaborative model. Individual CpGs are represented by “lollipops”, with their
colour indicating their methylation status (white: unmethylated, grey: hemimethylated and
black: methylated). Collaborative methylation and demethylation reactions can only occur
between neighbouring CpGs (potential influences on CpG X are indicated by arrows). There
is no upper bound on N ∈ N, allowing large-scale methylation patterns to be considered.

Demethylation Methylation
Non-Collaborative k3 = k4 = a k1 = k2 = ay

Collaborative k9 = k10 = k11 = k12 = ax k5 = k6 = k7 = k8 = axy

Table 1: Reaction rates for the model in Fig. 1.

2.2 Simulations of nearest-neighbour collaborative system

In the simple case of two CpGs, the system can be in six possible states: mm, uu, hh, um, hm
and uh. For such a small system, all possible transitions between states (via reactions in
Fig. 1) can be identified and the evolution of the system can be described exactly by six
mathematical equations, one for each state. However, for large systems, it is infeasible to
identify all possible states and transitions between states meaning that equations describing
the exact evolution of the system can not be formulated. While stochastic simulations are
computationally expensive, they are the ground truth of the nearest-neighbour collaborative
system to which we compare our MF models and so here we describe the process underlying
these simulations.
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We focus on the steady-state case so that u, h and m levels fluctuate around some fixed
steady-state values. For a system ofN CpGs, we simulate the nearest-neighbour collaborative
system using Gillespie’s algorithm [32]—see Fig. 3 for an illustration of how this algorithm
simulates a 4-CpG system. A sample taken at any time point will contain N methylation
states. For each parameter set, we therefore sample the system at a total of T = 106/N time
points after steady state has been reached to obtain a dataset of 106 steady-state methylation
states.

Unmethylated; Hemimethylated; Methylated

t̂1

i = 1 2 3 4

Position: Reaction:
1 m

k3−→ h

1 m+ h
k9−→ h+ h

2 m
k3−→ h

2 m+ u
k10−−→ h+ u

3 u
k1−→ h

3 u+m
k6−→ h+m

3 u+ h
k5−→ h+ h

4 h
k2−→ m

4 h
k4−→ u

4 h+ u
k12−−→ u+ u

4 h+m
k8−→ m+m

t̂2 m̂

i = 1 2 3 4

Position: Reaction:
1 m

k3−→ h

1 m+ u
k10−−→ h+ u

2 m
k3−→ h

2 m+ u
k10−−→ h+ u

3 u
k1−→ h

3 u+m
k6−→ h+m

4 u
k1−→ h

4 u+m
k6−→ h+m

i = 1 2 3 4

Position: Reaction:
1 m

k3−→ h

1 m+ u
k10−−→ h+ u

1 m+ h
k9−→ h+ h

2 h
k2−→ m

2 h
k4−→ u

2 h+m
k8−→ m+m

2 h+ u
k12−−→ u+ u

3 u
k1−→ h

3 u+ h
k5−→ h+ h

4 u
k1−→ h

4 u+m
k6−→ h+m

Figure 3: Stochastic simulations of the nearest-neighbour collaborative system. For simplic-
ity, a 4-CpG system is considered here. We fix a, x and y and impose periodic boundary
conditions so that the first and final CpG can interact. All potential reactions are first iden-
tified, and the Gillespie algorithm is used to choose one of these reactions, and a time for
it to occur. The system is updated to account for the reaction occurring and the process is
repeated to generate dynamical behaviour. In the example shown, we start with the system

on the left. All possible reactions are listed and a h
k4−→ u reaction is chosen to occur at

target position t̂1. The system and the list of potential reactions are then updated (middle).

Subsequently, another reaction, m + u
k10−−→ h + u, is chosen to occur at target position,

t̂2, with CpG m̂ acting as mediator. The system and the list of possible reactions is again
updated (right). This process is repeated until the system reaches steady state.

2.3 Analysis of simulated data

To facilitate our analysis, we define a sequence ut, t ∈ {1, . . . , T}, where

uti =

{
1, if CpG i is in the u state at timepoint t,

0, otherwise.
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We define ht and mt similarly; see Fig.4. We also define zt via

zt = ut + 2ht + 3mt. (1)

The mean u, h and m levels, µus, µhs, µms, are obtained via

µus =
1

NT

T∑
t=1

N∑
i=1

uti, µhs =
1

NT

T∑
t=1

N∑
i=1

hti, µms =
1

NT

T∑
t=1

N∑
i=1

mt
i. (2)

Unmethylated; Hemimethylated; Methylated

ut: { 0 0 1 0 0 1 1 0 0 0 }
ht: { 0 0 0 0 1 0 0 0 1 0 }
mt: { 1 1 0 1 0 0 0 1 0 1 }
zt: { 3 3 1 3 2 1 1 3 2 3 }

Figure 4: Construction of the sequences ut, ht, mt and zt. For simplicity, only ten CpGs are
shown for a single time point, t. A vector ut is created, where uti = 1 if CpG i is unmethylated
at time t and uti = 0 otherwise. Vectors ht and mt are constructed similarly. Finally, a vector
zt is created via zt = ut + 2ht + 3mt.

For each t, we also calculate the mean and variance over zt (µtz, σ
2(zt), respectively) and

average over all t ∈ {1, . . . , T} to obtain an overall mean and variance, µz and σ2(z), which
are given by

µz =
1

T

T∑
t=1

µtz =
1

NT

T∑
t=1

N∑
i=1

zti , (3)

σ2(z) =
1

T

T∑
t=1

σ2(zt) =
1

T

T∑
t=1

N−1∑
i=1

(zti − µtz)2

N − 2
. (4)

We then define sequences vt and wt by

vt = {zt1, zt2, . . . , ztN−1, z
t
N}, wt = {zt2, zt3, . . . , ztN , zt1}, t ∈ {1, . . . , T}. (5)

For each t ∈ {1, . . . , T}, the sequence vt is identical to zt, while wt is a shifted version of zt

(i.e. wti = zti+1 for i = {1, . . . N − 1} and wtN = zt1). For each i = {1, . . . , N}, comparing vti
and wti provides information regarding the methylation state of two neighbouring CpGs at
time t ∈ {1, . . . , T}. We calculate the covariance between vt and wt for each t, Covar(vt, wt),
averaging over t ∈ {1, . . . , T} to obtain an overall covariance between neighbouring sites

Covar(z) := Covar(v, w) =
1

T

T∑
t=1

Covar(vt, wt) =
1

NT

T∑
t=1

N∑
i=1

(vti − µtv)(wti − µtw), (6)

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.03.458837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458837
http://creativecommons.org/licenses/by-nc-nd/4.0/


where µtv = µtw = µtz. Finally, the correlation between neighbouring sites, ρ(z) := ρ(v, w), is
calculated via

ρ(z) := ρ(v, w) =
Covar(v, w)√
σ2(v)σ2(w)

=
Covar(v, w)

σ2(z)
. (7)

3 Mean-field models for DNA methylation maintenance

For large CpG systems, the CME describing the nearest-neighbour collaborative model can-
not be easily solved and stochastic simulations are computationally expensive. In contrast, it
is often the case that models simplified using the MF approximation can be computationally
solved in a time-efficient manner and we aim to test whether they accurately approximate the
nearest-neighbour collaborative model for DNA methylation. To this end, we construct three
MF models (see Sections 3.1, 3.2, 3.3). These models consider an infinite system of CpGs
and so, by design, their ability to accurately describe a genomic region increases with the
size of the region. In these models, nearest-neighbour interactions are approximated by con-
sidering the mean state of the system. In the first model, nearest-neighbour interactions are
entirely approximated by considering the probability that two states are adjacent (one-site
MF model). The second model describes distinct pairs of CpGs (distinct pairs MF model).
Interactions occurring within a pair are directly accounted for and other nearest-neighbour
interactions are approximated by considering the probability that two paired states are ad-
jacent. In the third model we consider overlapping pairs of CpGs (overlapping pairs MF
model). Interactions occurring within a pair are again directly accounted for, but now other
nearest-neighbour interactions are approximated by considering the probability that two
paired states overlap. The remainder of this section is devoted to mathematical descriptions
of these models.

3.1 One-site mean-field model

We define the proportion of sites in the u, h, m states to be the mean u, h, m levels,
µu, µh, µm, respectively. Here we construct a one-site MF model, where changes in the
system are influenced by µu, µh, µm, rather than nearest-neighbour interactions; see Fig. 5.

Unmethylated; Hemimethylated; Methylated

Figure 5: Schematic of the one-site MF model. CpGs are influenced by the mean of the
system rather than nearest-neighbour interactions.

Consider the reaction u + h
k5−→ h + h in Fig. 1. Since the h mediator is unchanged by the

reaction, we can write this as an effective first-order reaction u
2k5µh−−−−→ h, where the h mediator
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is absorbed into the effective reaction rate by making it proportional to µh. The factor of two

accounts for the h mediator being on either side of the u target. Similarly, u+m
k6−→ h+m

can be written as u
2k6µm−−−−→ h. Thus the u

k1−→ h, u + h
k5−→ h + h, u + m

k6−→ h + m
reactions in Fig. 1 can be written as a single effective first-order reaction u

r−→ h, with
r = k1 + 2k5µh + 2k6µm. We thus write the system in Fig. 1 as the effective first-order
system

m
a1−→ h, h

a2−→ m, u
a3−→ h, h

a4−→ u, (8)

where

a1 := a1(µu, µh) = k3 + 2k9µh + 2k10µu,

a2 := a2(µh, µm) = k2 + 4k7µh + 2k8µm,

a3 := a3(µh, µm) = k1 + 2k5µh + 2k6µm,

a4 := a4(µu, µh) = k4 + 4k11µh + 2k12µu,

and µu + µh + µm = 1. The k7 and k11 terms have an additional factor of two since their
associated reactions involve two h reactants, and either of these can change state during the
reaction.

Let Lu, Lh, Lm be the “level” (proportion) of u, h, m at a single CpG, respectively. A
CpG can only be in one state at any time and so

(Lu, Lh, Lm) = (1, 0, 0) or (Lu, Lh, Lm) = (0, 1, 0) or (Lu, Lh, Lm) = (0, 0, 1), (9)

for each CpG. Using (8) we construct a CME describing the probability that a site is in the
u, h or m state and from this we can obtain moment equations (see Appendix C of Ref [33]),
for the statistics of Lu, Lh, Lm. The mean values are µu = 〈Lu〉, µh = 〈Lh〉, µm = 〈Lm〉,
where the angled brackets denote the expected value. Due to the conservation law Lm =
1− Lu − Lh, we need only consider equations for u and h. The means are described by the
equations,

dµu
dt

= −a3µu + a4µh,
dµh
dt

= a1(1− µu − µh)− a2µh + a3µu − a4µh. (10)

Setting
dµu
dt

=
dµh
dt

= 0

leads to implicit equations for the steady-state means,

µus =
a1sa4s

a1sa3s + a2sa3s + a1sa4s
, µhs =

a1sa3s
a1sa3s + a2sa3s + a1sa4s

, (11)

where a1s = a1(µus, µhs), a2s = a2(µhs, 1− µus − µhs), a3s = a3(µhs, 1− µus − µhs), a4s =
a4(µus, µhs). Since Eq. (11) is independent of a, the means depend only on x and y. For
fixed parameters, we can solve Eq. (11) numerically to obtain values for µus and µhs.

The second moment equations are given by
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d〈LuLu〉
dt

= −2a3〈LuLu〉+ 2a4〈LuLh〉+ a4µh + a3µu,

d〈LuLh〉
dt

= −a1
(
〈LuLu〉+ 〈LuLh〉

)
− a2〈LuLh〉+ a3

(
〈LuLu〉 − 〈LuLh〉

)
− a4

(
〈LuLh〉 − 〈LhLh〉

)
+ a1µu − a3µu − a4µh,

d〈LhLh〉
dt

= −2a1

(
〈LuLh〉+ 〈LhLh〉

)
− 2a2〈LhLh〉+ 2a3〈LuLh〉 − 2a4〈LhLh〉

+ a1
(
1− µu + µh

)
+ a2µh + a3µu + a4µh.

(12)

From Eq. (9) we expect LuLu = Lu, LhLh = Lh and LuLh = 0 at any CpG. Solving Eq. (12)
in steady state leads to

〈LuLu〉s = 〈Lu〉s = µus, 〈LuLh〉s = 0, 〈LhLh〉s = 〈Lh〉s = µhs. (13)

Variances, σ2(Lus) and σ2(Lhs), can then be obtained via

σ2(Lus) = 〈LuLu〉s − µ2
us = µus − µ2

us,

σ2(Lhs) = 〈LhLh〉s − µ2
hs = µhs − µ2

hs,
(14)

along with the covariance Covar(Lus, Lhs), which is given by

Covar(Lus, Lhs) = 〈LuLh〉s − µusµhs = −µusµhs. (15)

The mean, variance and covariances associated with the m state can now be obtained using

µms = 1− µus − µhs,
σ2(Lms) = σ2(1− Lus − Lhs) = σ2(Lus) + σ2(Lhs) + 2Covar(Lus, Lhs),

Covar(Lus, Lms) = −σ2(Lus)− Covar(Lus, Lhs),

Covar(Lhs, Lms) = −Covar(Lus, Lhs)− σ2(Lhs).

(16)

We calculate the steady-state mean and variance, µz and σ2(z), associated with the variable
z = Lu + 2Lh + 3Lm via

µz = µus + 2µhs + 3µms,

σ2(z) = σ2(Lus) + 4σ2(Lhs) + 9σ2(Lms)

+ 2
(

2Covar(Lus, Lhs) + 3Covar(Lus, Lms) + 6Covar(Lhs, Lms)
)
.

Note that the superscript t was only used in Section 2.2 to differentiate between samples
at different time points. Here we simply have a single z. Since no spatial information is
obtained from the one-site MF model, the covariance and correlation between neighbouring
sites cannot be extracted.

3.2 Distinct pairs mean-field model

We next construct a two-site MF model, where we consider “clusters” of two adjacent CpGs.
Such cluster MF models have been successfully used to study vehicular traffic and driven-
diffusive gas models [34, 35]. We define the mean level (proportion) of pairs in the six possible
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states,

mm, uu, hh, um (:= mu), hm (:= mh), uh (:= hu), (17)

to be µ1, µ2, µ3, µ4, µ5, µ6, respectively. Here µ4 is the proportion of pairs containing u
and m, irrespective of order. Similarly, µ5 is the proportion of pairs containing h and m,
and µ6 is the proportion of pairs containing u and h, irrespective of order.

Unmethylated; Hemimethylated; Methylated

Figure 6: Schematic of the distinct pairs MF model. The two CpGs within a pair can
interact directly with each other and the pair is also influenced by the mean state of pairs
in the system. In the figure, the uh pair can change state due to interactions between the u
and h within the pair, and due to the mean state of pairs in the system.

In the distinct pairs MF model (DPMF model), CpGs within a pair are allowed to inter-
act directly, preserving some nearest-neighbour interactions. The influence of the nearest-
neighbour CpGs flanking the pair is then approximated by considering the probabilities that
an adjacent pair is in each of the six possible states; see Fig. 6. Here, each CpG belongs
to only one pair and each pair of sites is a single reactant. As with the one-site model, we
consider an effective first-order reaction system, given by

mm
â1−→ hm, uu

â2−→ uh, hh
â3−→ uh, hh

â4−→ hm, um
â5−→ hm, um

â6−→ uh,

hm
â7−→ um, hm

â8−→ mm, hm
â9−→ hh, uh

â10−−→ hh, uh
â11−−→ uu, uh

â12−−→ um,

(18)
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where the effective rates are given by

â1 = 2k3 + k9(2µ3 + µ5 + µ6) + k10(2µ2 + µ4 + µ6),

â2 = 2k1 + k5(2µ3 + µ5 + µ6) + k6(2µ1 + µ4 + µ5),

â3 = 2k4 + 2k11 + k11(4µ3 + µ5 + µ6) + k12(2µ2 + µ4 + µ6),

â4 = 2k2 + 2k7 + k7(4µ3 + µ5 + µ6) + k8(2µ1 + µ4 + µ5),

â5 = k1 + k6 + k5

(
µ3 +

µ5

2
+
µ6

2

)
+ k6

(
µ1 +

µ4

2
+
µ5

2

)
,

â6 = k3 + k10 + k9

(
µ3 +

µ5

2
+
µ6

2
) + k10(µ2 +

µ4

2
+
µ6

2

)
,

â7 = k4 + k11

(
µ3 + 2

µ5

2
+
µ6

2

)
+ k12

(
µ2 +

µ4

2
+
µ6

2

)
,

â8 = k2 + k8 + k7

(
µ3 + 2

µ5

2
+
µ6

2

)
+ k8

(
µ1 +

µ4

2
+
µ5

2

)
,

â9 = k3 + k9 + k9

(
µ3 +

µ5

2
+
µ6

2

)
+ k10

(
µ2 +

µ4

2
+
µ6

2

)
,

â10 = k1 + k5 + k5

(
µ3 +

µ5

2
+
µ6

2

)
+ k6

(
µ1 +

µ4

2
+
µ5

2

)
,

â11 = k4 + k12 + k11

(
µ3 +

µ5

2
+ 2

µ6

2

)
+ k12

(
µ2 +

µ4

2
+
µ6

2

)
,

â12 = k2 + k7

(
µ3 +

µ5

2
+ 2

µ6

2

)
+ k8

(
µ1 +

µ4

2
+
µ5

2

)
,

and
6∑
i=1

µi = 1. We describe the construction of â1 in Appendix A. Essentially, â1—â12 are

constructed by considering all possible ways that each reaction in (18) can occur via a reac-
tion from Fig. 1 taking place. Such reactions can occur within the reactant pair or can take
place between a site within the pair and a site from an adjacent pair. Terms associated with
interactions between two hh, two hm or two uh pairs have an additional factor of two since
either pair can change state during the reaction. While we can, in principle, calculate the
distribution of pairs in (18) [36], we restrict our attention to obtaining moments of the system.

Let L1, L2, L3, L4, L5, L6 be the level (proportion) of each of the paired states at a single
pair of CpGs. At any time, a pair can be in only one state and so at a single pair we have

Li = 1, for one i and Lj = 0 for all j 6= i. (19)

The u, h, m levels within a pair of CpGs, L̂u, L̂h, L̂m, are then given by

L̂u = L2 +
L4

2
+
L6

2
, L̂h = L3 +

L5

2
+
L6

2
, L̂m = L1 +

L4

2
+
L5

2
. (20)

Using the CME for the system (18) we construct first and second moment equations for Li,
i = {1, . . . , 6}; see Appendix C. The first moment equations describe µi = 〈Li〉, the mean
values of Li for i = {1, . . . , 6}. For fixed parameters, solving these equations numerically in
steady state gives the steady-state means, µis, i = {1, . . . , 6}. Note that these means are
independent of a.

From the second moment equations, we obtain the steady-state expected values of LiLj ,
〈LiLj〉s, for i, j ∈ {1, 2, . . . , 6}. As expected from Eq. (19), 〈LiLi〉s = 〈Li〉s = µis, 〈LiLj〉s =
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0 for all i 6= j, i, j ∈ {1, 2, . . . , 6}. Variances and covariances are then obtained using

σ2(Lis) = 〈LiLi〉s − µ2
is = µis − µ2

is, i = 1, 2, . . . , 6,

Covar(Lis, Ljs) = 〈LiLj〉s − µisµjs = −µisµjs, i 6= j, i, j = 1, 2, . . . , 6.

Once again, these are independent of the parameter a.

We now have statistics for the paired states in (17). The steady-state means for the u, h, m
levels in a pair are then given by

µus = µ2s +
µ4s

2
+
µ6s

2
, µhs = µ3s +

µ5s

2
+
µ6s

2
, µms = µ1s +

µ4s

2
+
µ5s

2
. (21)

The pair-to-pair variance in u level is given by

σ2(L̂us) = σ2(L2s) +
1

4
σ2(L4s) +

1

4
σ2(L6s)

+ 2

(
1

2
Covar(L2s, L4s) +

1

2
Covar(L2s, L6s) +

1

4
Covar(L4s, L6s)

)
,

and similarly for the variances associated with h and m, σ2(L̂hs) and σ2(L̂ms). Covariances
are given by

Covar(L̂us, L̂ms) = Covar(L1s, L2s) +
1

2
Covar(L2s, L4s) +

1

2
Covar(L2s, L5s)

+
1

2
Covar(L1s, L4s) +

1

4
σ2(L4s) +

1

4
Covar(L4s, L5s)

+
1

2
Covar(L1s, L6s) +

1

4
Covar(L4s, L6s) +

1

4
Covar(L5s, L6s)

and analogously for Covar(L̂hs, L̂ms), Covar(L̂us, L̂hs).

Note that the statistics obtained so far relate to u, h, m levels within a pair of CpGs. The
mean level of a state within a pair is the same as the mean level of the state at each site.
However, this is not the case for higher moments. For example, σ2(L̂us), σ

2(L̂hs), σ
2(L̂ms)

are pair-to-pair variances, rather than site-to-site variances.

We aim to obtain statistics relating to z = Lu + 2Lh + 3Lm, where Lu, Lh, Lm are the
single-site u, h, m levels. We define ẑ = L̂u+2L̂h+3L̂m, noting that ẑ contains information
regarding pairs of CpGs. Essentially,

ẑ =
v + w

2
, (22)

where v and w are as in Eq. (5) and we again do not require the superscript t.

The means of z, v, w and ẑ coincide and

µz = µẑ = µv = µw = µus + 2µhs + 3µms.

Also, vw = L2 + 2L6 + 3L4 + 4L3 + 6L5 + 9L1 and so

〈vw〉 = µ2s + 2µ6s + 3µ4s + 4µ3s + 6µ5s + 9µ1s.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.03.458837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458837
http://creativecommons.org/licenses/by-nc-nd/4.0/


From this we calculate the covariance between neighbouring sites as

Covar(z) = Covar(v, w) = 〈vw〉 − 〈v〉〈w〉 = 〈vw〉 − µ2
z.

The variance associated with ẑ can be calculated via,

σ2(ẑ) = σ2(L̂us + 2L̂hs + 3L̂ms)

= σ2(L̂us) + 4σ2(L̂hs) + 9σ2(L̂ms)

+ 2
(

2Covar(L̂us, L̂hs) + 3Covar(L̂us, L̂ms) + 6Covar(L̂hs, L̂ms)
)
.

However, σ2(ẑ) is the pair-to-pair variance. Using σ2(z) = σ2(v) = σ2(w) we obtain

σ2(ẑ) = σ2

(
v + w

2

)
=

1

4

(
σ2(v) + σ2(w) + 2Covar(v, w)

)
=

1

2

(
σ2(z) + Covar(v, w)

)
,

leading to the site-to-site variance,

σ2(z) = 2σ2(ẑ)− Covar(v, w).

The correlation between neighbouring pairs is obtained via

ρ(z) = ρ(v, w) =
Covar(v, w)√
σ2(v)σ2(w)

=
Covar(v, w)

σ2(z)
.

To summarise, the statistics of primary interest from our calculations are: the means µus, µhs, µms, µzs,
the variance σ2(z), the covariance Covar(z) and the correlation ρ(z).

3.3 Overlapping pairs mean-field model

Similarly to the DPMF model, there are also six possible states for a pair of CpGs in the
overlappling pairs MF model (OPMF model), see (17). The OPMF model also incorporates
direct interactions within a pair. However, each CpG now belongs to two pairs, one with its
left-hand neighbour and one with its right-hand neighbour, leading to a system of overlap-
ping pairs. The influence of CpGs flanking a pair is now approximated by considering the
conditional probability that the pair overlaps with another pair of a certain state; see Fig. 7.

Unmethylated; Hemimethylated; Methylated

Figure 7: Schematic of the overlapping pairs MF model. A pair of CpGs interact directly
with each other and the effect of CpGs flanking the pair is approximated by considering the
conditional probabilities that a flanking site is in the u, h or m state, given the state of its
neighbour within the pair.

As before, we consider an effective first-order reaction system, given by
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mm
ã1−→ hm, uu

ã2−→ uh, hh
ã3−→ uh, hh

ã4−→ hm, um
ã5−→ hm, um

ã6−→ uh,

hm
ã7−→ um, hm

ã8−→ mm, hm
ã9−→ hh, uh

ã10−−→ hh, uh
ã11−−→ uu, uh

ã12−−→ um,

(23)

where the effective rates are given by

ã1 = 2k3 + 2k9

(
µ5/2

µ1 + µ4/2 + µ5/2

)
+ 2k10

(
µ4/2

µ1 + µ4/2 + µ5/2

)
,

ã2 = 2k1 + 2k5

(
µ6/2

µ2 + µ4/2 + µ6/2

)
+ 2k6

(
µ4/2

µ2 + µ4/2 + µ6/2

)
,

ã3 = 2k4 + 2k11 + 2k11

(
µ3

µ3 + µ5/2 + µ6/2

)
+ 2k12

(
µ6/2

µ3 + µ5/2 + µ6/2

)
,

ã4 = 2k2 + 2k7 + 2k7

(
µ3

µ3 + µ5/2 + µ6/2

)
+ 2k8

(
µ5/2

µ3 + µ5/2 + µ6/2

)
,

ã5 = k1 + k6 + k5

(
µ6/2

µ2 + µ4/2 + µ6/2

)
+ k6

(
µ4/2

µ2 + µ4/2 + µ6/2

)
,

ã6 = k3 + k10 + k9

(
µ5/2

µ1 + µ4/2 + µ5/2

)
+ k10

(
µ4/2

µ1 + µ4/2 + µ5/2

)
,

ã7 = k4 + k11

(
µ3

µ3 + µ5/2 + µ6/2

)
+ k12

(
µ6/2

µ3 + µ5/2 + µ6/2

)
,

ã8 = k2 + k8 + k7

(
µ3

µ3 + µ5/2 + µ6/2

)
+ k8

(
µ5/2

µ3 + µ5/2 + µ6/2

)
,

ã9 = k3 + k9 + k9

(
µ5/2

µ1 + µ4/2 + µ5/2

)
+ k10

(
µ4/2

µ1 + µ4/2 + µ5/2

)
,

ã10 = k1 + k5 + k5

(
µ6/2

µ2 + µ4/2 + µ6/2

)
+ k6

(
µ4/2

µ2 + µ4/2 + µ6/2

)
,

ã11 = k4 + k12 + k11

(
µ3

µ3 + µ5/2 + µ6/2

)
+ k12

(
µ6/2

µ3 + µ5/2 + µ6/2

)
,

ã12 = k2 + k7

(
µ3

µ3 + µ5/2 + µ6/2

)
+ k8

(
µ5/2

µ3 + µ5/2 + µ6/2

)
.

We detail the construction of â1 in Appendix B.

An identical approach as in Section 3.2 leads to first and second moment equations for
the system, see Appendix C, and from these we obtain means, variances and covariances
associated with the paired states and with the pair-to-pair u, h, m levels. Again, these
depend only on x and y. The statistics associated with z are obtained as for the DPMF
model, see Section 3.2.

4 Model comparison and parameter inference

To test whether MF models are capable of modelling large-scale methylation patterns, we
now compare model predictions to synthetic data generated using nearest-neighbour collab-
orative simulations. The statistical properties obtained from our models are independent of
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a and so we fix a = 0.2. Since demethylation dominates when y < 1 and methylation domi-
nates when y > 1, we hypothesise that a sharp change in the behaviour of the system may
occur at y = 1. To capture this potential transition for different collaborativity strengths,
we consider x = {0.1, 1, 5, 50}, y = {0.1, 0.2, . . . , 2}. For every parameter set, we run
n = 10 stochastic simulations, obtaining ten datasets of 106 CpGs, from which we calculate
the statistics of interest. We then calculate the means and standard errors over the ten
datasets to obtain overall summary statistics.

In this study, we approximate the nearest-neighbour collaborative system by MF models
which consider an infinite system of CpGs. As x increases, finite-size effects cause discrepan-
cies between the simulations and models, which can be counteracted by increasing the number
of simulated sites. We therefore simulate systems of N = 200 sites when x = {0.1, 1, 5} and
systems of N = 500 sites when x = 50.

4.1 Mean-field models capture steady-state methylation levels

We first compare the mean u, h, m levels (µus, µhs, µms) from the MF models to those
from the simulations (Fig. 8). Considering the simulated data first, we observe that u and
m dominate when y < 1 or y > 1 respectively. h is an intermediate state between u and m
and peaks at y = 1, where there is also a sharp transition between u and m-dominant states.

While all models capture the qualitative behaviour of the means as x and y are varied, we
observe that predictions of methylation levels from the OPMF model are closest to those
observed in the simulated data (Fig. 8). All three models predict the mean u and m levels
reasonably well, however only the OPMF model accurately predicts the mean h level for
large x and for y close to one. All predictions from the OPMF model are within the error
of the simulated data and it successfully captures the transition observed at y = 1 for all x
considered. Conversely, the predictions of the other models deviate from the simulations at
the transition point when x is large. The one-site MF model deviates to the greatest extent
for 87% of the parameter sets. The poorer performance of the one-site model can be seen
most clearly in the mean h levels when x = 1. This suggests that the one-site model has the
worst predictive power and we exclude it from further analysis.
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One-Site MF Model Overlapping Pairs MF ModelDistinct Pairs MF Model





Figure 8: The OPMF model accurately predicts the average behaviour of large-scale methy-
lation levels. The mean u, h and m levels are plotted against the methylation strength y
for various values of the collaborativity strength x and the different mean-field models (left:
one-site MF model, middle: DPMF model and right: OPMF model). Solid lines denote
model predictions and points show the mean of n = 10 simulations. Error bars indicate
standard error for the simulated data.
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4.2 The OPMF model accurately predicts associations between neigh-
bouring sites

To test whether MF models can predict associations between neighbouring CpGs we consider
z = {z1, z2, . . . , zN}, where zi = {1, 2, 3} if CpG i is in the u, h, m state, respectively.
From z we calculate the mean and variance associated with the methylation state, and the
covariance and correlation in methylation state between neighbouring sites. In the simu-
lated data (Fig. 9), we again observe a transition in these statistics when the methylation
and demethylation strengths are equal (y = 1). Our results counterintuitively suggest that
neighbouring sites are most correlated here (the peak ρ(z) occurs when y = 1).

To gain insight into this observation, we examine the patterns that evolve for x = 50 (Fig. 10).
When y is small, large u clusters form and we intuitively expect neighbouring sites to be
highly correlated. However, these large clusters are interspersed with infrequent, isolated
occurrences of h and m which have low correlations with their neighbours. Moreover, ten
m (or h) sites appearing in isolation will result in smaller u clusters than the ten sites ap-
pearing as a single cluster. The overall effect is to reduce the correlation when y is small. A
similar rationale explains the low correlation when y is large. u and m cluster sizes are most
similar when methylation and demethylation are equally strong, resulting in u and m sites
correlating equally with their neighbours and the overall correlation peaking.

We next consider predictions of these statistics from the MF models. Predictions from the
OPMF model lie within the error observed in the simulated data for all parameters consid-
ered (Fig. 9). Conversely, predicted statistics from the DPMF model show large deviations
from the corresponding simulated statistics when x is large and y is close to one demonstrat-
ing that it has lower predictive power.
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Distinct Pairs MF Model Overlapping Pairs MF Model

Figure 9: The OPMF model accurately predicts associations between neighbouring CpGs.
Predictions of the means (µz), variances (σ2(z)), covariances (Covar(z)) and correlations
(ρ(z)) are plotted against y for different values of x and for the DPMF model (left-hand
panels) and the OPMF model (right-and panels). Solid lines denote model predictions and
points show the mean statistics calculated from the simulated data (n = 10 in each case).
Error bars indicate standard error for the simulated data. Note that, since z is determined
by x and y, the statistics plotted here are implicit functions of x and y.
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Figure 10: Size of unmethylated (u) clusters and methylated (m) clusters are most similar
when y = 1. Simulated methylation patterns are shown for 100 CpGs when x = 50. For each
y, 200 steady-state patterns are displayed, with each row showing the 100 sites at a different
time point.

4.3 Overlapping pairs MF model can infer the parameters under-
pinning large-scale methylation patterns

To test whether the OPMF model could, in principle, be used to infer collaborativity and
methylation strengths from data, we generate synthetic data for selected model parameters,
see Section 2.2. We then infer these parameters back using the OPMF model.

Methylomes are typically assayed by whole genome bisulfite sequencing [37]. A variant of
this, hairpin-bisulfite sequencing, can be used to assay both strands of each DNA molecule
[38]. In both cases, the resulting data is composed of short reads. Each read assays few
CpGs and we do not know if reads originate from the same cell or DNA molecule. Simulated
datasets from previous sections do not provide a good reflection of bisulfite sequencing since
all of the CpGs in the simulated system were sampled at the same time points, the equiva-
lent of the CpGs originating from the same molecule. To obtain short-read data, we instead
simulate data for N = 1000 CpGs. After steady state is reached, we sample the system
at 10, 000 different time points. This is equivalent to sampling 10, 000 molecules in steady
state at a single time point. For each CpG, we take the methylation state at 30 time points,
randomly chosen from the original 10, 000. The time points chosen for each CpG site are
independent of those chosen for other CpGs. This emulates hairpin-bisulfite sequencing data
with coverage of 30 reads per CpG. We combine the sample states for all CpGs into a single
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dataset, X, and consider z = {z1, z2, . . . , z1000} where zi = {1, 2, 3} if Xi corresponds to a
u, h, m state, respectively. The mean and variance of z are calculated and used for inference.

There are numerous well-established methods for conducting inference. For example, in-
ference can be conducted using maximum likelihood estimation [39], which provides point
estimates for model parameters. Here we use a Bayesian inference approach, which has the
advantage of providing us with a distribution of the estimate value from which we can cal-
culate confidence intervals associated with our inferred parameter values [40, 41, 42, 43]. In
particular, we use the Approximate Bayesian Computation Sequential Monte Carlo algorithm
(ABC SMC), a likelihood-free inference method (see [44] for a comprehensive overview). We
use uniform priors, U(0, 100) and U(0, 2), for x and y, respectively. We also define the dis-
tance, d, between the simulations and model prediction to be the sum of the absolute relative
errors of the mean and variance, i.e.

d =

∣∣∣∣µmodel − µdataµdata

∣∣∣∣+

∣∣∣∣σ2
model − σ2

data

σ2
data

∣∣∣∣ ,
where µmodel, µdata are the means of z from the model and data, respectively, and σ2

model, σ
2
data

are the variances associated with the model and data, respectively. To rapidly select appro-
priate tolerances, we calculate the true distances between the simulated data and model
predictions at the parameter values of interest.

As in previous sections, we examine x = {0.1, 1, 5, 50}. For each x, we infer for y =
{0.3, 1, 1.7} using the GpABC Julia package [45]. Accepted x, y values from the final ABC
SMC population make up the posterior distributions for x and y, with the means taken to
be the inferred parameter values. 95% confidence intervals were calculated by removing the
lowest 2.5% and highest 2.5% from the posteriors.

We find that the inferred parameter values are always of the same order of magnitude as the
true values (Table 2), with the most successfully inferred parameters being inferred within
1% of the true values (Fig. 11a, b). There are only two cases where the true parameter values
lie outwith the inferred 95% confidence intervals (e.g. Fig. 11c). However, we obtain wide
posteriors for large x (e.g. Fig 11d), indicating more uncertainty in the inference.

y = 0.3 y = 1 y = 1.7
x = 0.1 (x, y) = (0.197, 0.329) (x, y) = (0.066, 0.997) (x, y) = (0.101, 1.701)
x = 1 (x, y) = (0.676, 0.251) (x, y) = (1.011, 0.990) (x, y) = (0.923, 1.730)
x = 5 (x, y) = (6.302, 0.338) (x, y) = (5.287, 1.000) (x, y) = (6.432, 1.613)
x = 50 (x, y) = (59.571, 0.329) (x, y) = (50.963, 0.999) (x, y) = (65.347, 1.599)

Table 2: Inferred parameters for the nearest-neighbour collaborative model using the OPMF
model and the ABC SMC algorithm.

The accuracy of inference is highly dependent on the model sensitivity to parameters, with
ease of inference increasing as sensitivity to the parameter increases. To test the sensitivity of
our model to model parameters, we calculate the relative sensitivity [46] of the OPMF model
to the parameters x and y, for x = {0.1, 0.2, . . . 99.9, 100} and y = {0.1, 0.2, . . . 1.9, 2}. For
all parameters considered, the x-sensitivity divided by the y-sensitivity is strictly less than
one, indicating that the model shows more sensitivity to y than x. This means that y will
be inferred more accurately than x.
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(a) (b)

(c) (d)

Figure 11: The OPMF model can be used to infer collaborativity and methylation strengths.
Example posteriors from inference are shown, with (a), (b), (c) and (d) each corresponding
to a different parameter set. True parameter values are denoted by dashed lines, inferred
parameter values are shown as dots, with 95% confidence intervals shown as horizontal bars.

5 Discussion

Genomic DNA methylation patterns vary between cell types, across differentiation and in
disease. The mechanisms underpinning this variation remain unclear but can be better un-
derstood using mathematical models. Current approaches are limited by their inability to
feasibly model large systems of CpGs and thus understand known large-scale features of
methylomes. Here we show that a cluster MF model, based around overlapping pairs of
CpGs, can predict DNA methylation patterns generated under a nearest-neighbour collabo-
rative model. This suggests that MF models are a valuable tool for understanding large-scale
DNA methylation features.

Previous studies have used mathematical modelling to gain insight into the mechanisms reg-
ulating the establishment and maintenance of DNA methylation patterns. In particular, the
requirement of collaborativity between CpGs to maintain DNA methylation patterns was
postulated through modelling [14] before being observed experimentally [15, 17]. Previous
models of DNA methylation rely on stochastic simulations. However, their computational
expense limits their use to the study of promoter-scale DNA methylation (regions around
1Kb in size). The stochastic simulations we run here on 200 or 500 sites can take hours
to run. In contrast, the OPMF model can be applied to arbitrarily large systems of CpGs
and solved numerically in seconds to give accurate predictions for statistics of interest. Our
model is based upon the same, or similar, reaction systems used in previous stochastic mod-
elling studies [14, 28, 29], but can be used to study larger systems of CpGs than previously
considered. This makes our MF model far better suited to understanding the mechanisms
underpinning megabase-sized variations in DNA methylation observed in development, age-
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ing and cancer, which occur at a scale three orders of magnitude larger than promoters [27].
To our knowledge, the largest system previously examined mathematically contained 105

CpGs [15]. However, here simulations were conducted for only a single model parameter set.
Running large-scale simulations of this type for many parameter sets will result in computa-
tional bottlenecks, meaning that such simulations cannot be used for inference. A previous
study has proposed a method, based on the generalized method of moments, for rapid in-
ference using DNA methylation patterns [47]. However, the largest system tackled with this
approach contains 10 CpGs. Here we show that our OPMF model can, in principle, be used
for accurate, time-efficient inference when modelling arbitrarily large genomic regions.

When used for inference, the OPMF model has a higher sensitivity to methylation strength
(y) than collaborativity strength (x) explaining why the former is generally better inferred
than the latter. However, some posteriors obtained in Section 4.3 are very wide and/or the
true parameter values lie outside the inferred 95% CIs, indicating that there is scope for
inference to be improved. Since our model shows impressive performance in forward predic-
tion, discrepancies between true and inferred parameters are likely due to insufficient data or
the inference technique used. However, our analysis demonstrates that the OPMF model can
in principle be used for inference on DNA methylation data. It’s accuracy may be improved
in future comprehensive studies by experimenting with different inference techniques and
sample sizes. In addition, we have inferred parameters using only the mean and variance
in methylation state, which can be estimated from standard short-read data. The recent
application of long-read technologies to assay DNA methylation patterns [48] could enable
the computation of higher order statistics from experimental data, such as the correlation in
methylation state between neighbouring sites. Using these additional summary statistics for
inference could improve results.

Here we assume that the processes governing the creation of methylation patterns in vivo
are described well by our nearest-neighbour collaborative model. It is possible that collabo-
rativity in vivo can occur between non-nearest-neighbours, something which is not explicitly
accounted for in our nearest-neighbour collaborative model. Collaborative methylation inter-
actions are likely determined by the properties of the DNA methylation machinery. DNMT1
and DNMT3B both methylate processively along DNA strands whereas DNMT3A methy-
lates in a distributive manner but can form multimers along the DNA fibre [30]. However,
the range and strengths across which these interactions occur is currently unclear so we
focus on nearest-neighbour interactions. We note that our OPMF model does capture inter-
actions beyond nearest neighbours because the mean state of pairs in the system influences
the change in state of CpGs. Previous modelling studies have also considered different forms
of collaborative interactions between CpGs in a system (Fig. 12a,b). In [14] collaboration
between any CpGs in the system and nearest-neighbour collaborative methylation alongside
distance-dependent collaborative demethylation were both demonstrated to produce stable
CpG clusters that were either methylated or unmethylated. Stable clusters were also ob-
served under a distance-dependent collaborative model, where collaborative demethylation
dominates over short ranges and collaborative methylation dominates over long ranges [28].
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Unmethylated; Hemimethylated; Methylated

(a) Cluster of 80 CpGs

. . . . . .
X

(b)

Cluster of 80 CpGs 240-CpG low density region

. . . . . . . . .
X

(c) System of N CpGs

. . . . . .
X

Figure 12: Potential collaborative interactions that can influence a target, X, under the
models in [14] and the model considered here. (a) A cluster of 80 CpGs is first considered in
[14], where a CpG can collaborate with any other CpG in the system with equal probability.
(b) A high-density cluster (of 80 CpGs) adjacent to a highly methylated low-density region
(of 240 CpGs) is then considered in [14], where there is nearest-neighbour collaborative
methylation (red arrows) and the probability of collaborative demethylation occurring due
to interaction between two sites decays as the distance between them increases (blue arrows;
decay in reaction probability shown by narrowing width of arrows). Note that collaborative
demethylation is restricted to the 80-CpG cluster. (c) In this paper collaborative reactions
only occur between neighbouring CpGs and there is no upper bound on the system size,
allowing large-scale patterns to be considered.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.03.458837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458837
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here we have also assumed that the system of CpGs we model reaches a steady state. This
means that we consider either non-dividing cells, or dividing cells which settle down to steady
state between replication events such that DNA replication has no long-term effects on DNA
methylation patterns. Whether or not a cell satisfies the latter case is dependent on the
real magnitudes of ki, i = {1, . . . , 12}, and the time between replication events. Exper-
imental studies show that arrested cells have similar DNA methylation patterns to those
that are cycling, supporting the assumption that DNA replication has no long-term effect
on DNA methylation [31]. Furthermore, an analysis of DNA methylation patterns on newly
synthesised DNA suggests that re-methylation occurs within 20 minutes of replication [49].
However, another analysis of DNA methylation following replication suggests re-methylation
is often delayed [50]. At present, it is unclear whether this delay is sufficient to have an effect
on methylation patterns during the following cell cycle.

Our assumption that ki, i = {1, . . . , 12} take the form in Table 1 could be violated in reality.
For example, DNMT1 shows a strong preference for h sites over u sites [30], meaning that
methylation reactions with an h target may have higher reaction rates than those with a
u target. Future work could relax rate assumptions to account for such factors. Prelim-
inary investigations confirm that the OPMF model provides a good approximation to the
nearest-neighbour collaborative system when ki, i = {1, . . . , 12} are considered as twelve
independent parameters (data not shown). However, the difficulty of parameter inference
increases with the number of parameters, meaning that relaxing parameter assumptions will
likely decrease inference quality. Nonetheless, our model suggests that it is the parameters
x and y that determine steady-state methylation patterns, rather than individual reaction
rates. This is supported by a study where modelling of experimental data suggested that
the ratio between methylation and demethylation rates determines steady-state methylation
levels at single CpGs [51].

Here, we demonstrate that MF models can accurately predict the behaviour of large CpG
systems subjected to nearest-neighbour collaboration. Our study presents the first mathe-
matical modelling approach that can be applied to arbitrarily large systems of CpGs. The
future application of this approach will facilitate the delineation of the methylation dynamics
that underpin the formation of large-scale methylation patterns in developmental and disease
contexts.
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Appendix

A Derivation of effective reaction rates for the DPMF
model

Here we illustrate how â1, the reaction rate associated with mm −→ hm in (18), is constructed.
We first consider all reactions in Fig. 1 that can occur within the mm pair, resulting in con-
version to an hm pair. Clearly, â1 must contain a 2k3 term since mm −→ hm occurs if either

m undergoes m
k3−→ h. Note that mm −→ hm cannot occur due to a collaborative interaction

between the two m sites in mm.

Next, we consider all mm −→ hm reactions that can occur due to an m within the mm
interacting with a site from an adjacent pair. For example, an m could collaborate with a u

from an adjacent pair via m+ u
k10−−→ h+ u, i.e. we can have

mm+ uu −→ hm+ uu, mm+ um −→ hm+ um, mm+ uh −→ hm+ uh. (24)

The first reaction can be written as an effective first-order reaction, mm
2k10µ2−−−−→ hm, where

the uu is absorbed into the reaction rate by making it proportional to µ2, and the factor
of two allows for either m within the mm to undergo this reaction. The second reaction in

(24) can be written as mm
k10µ4−−−−→ hm, where the um is absorbed into the reaction rate and

either m can undergo the reaction, giving us a factor of two. However, this reaction requires
the u within the um to be directly adjacent to the mm. The probability of having um in
this particular order is 1

2 , giving an effective reaction rate of 2k10
1
2µ4 = k10µ4. Similarly, the

third reaction in (24) can be written as mm
k10µ6−−−−→ hm.

Finally, an m within the mm can interact with an h from an adjacent pair, via m+h
k9−→ h+h,

i.e. we can have

mm+ hh −→ hm+ hh, mm+ hm −→ hm+ hm, mm+ uh −→ hm+ uh. (25)

Using similar arguments as above, we can write each of these three reactions as the effective
first-order reaction mm −→ hm, with rates 2k9µ3, k9µ5 and k9µ6, respectively.

Hence,
â1 = 2k3 + k9(2µ3 + µ5 + µ6) + k10(2µ2 + µ4 + µ6). (26)
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B Derivation of effective reaction rates for the OPMF
model

We now construct ã1, the reaction rate associated with mm −→ hm in (23). As with the
DPMF model, reactions occurring within the mm pair contribute a 2k3 term to ã1.

Now, mm −→ hm can occur due to a m + u
k10−−→ h + u reaction if one of the m sites in the

mm pair is also in a pair with a u site, i.e. we can have

mm+ um −→ hm+ um,

where now the um and mm reactants share a common m. This can be written as the effective
first-order reaction mm −→ hm with rate

2k10

(
µ4/2

µ1 + µ4/2 + µ5/2

)
, (27)

where µ4/2
µ1+µ4/2+µ5/2

is the probability that an m within the mm also forms a um with its

other neighbour, i.e. it is the conditional probability that a pair is in the um state given that
we know a particular site in the pair is m. Recall that µ4 gives the proportion of um and mu
pairs, while µ5 gives the proportion of hm and mh pairs. The factors of 1/2 in (27) account
for the fact that the u and h in the um and hm must be on a particular side of the m (since
an m is on its other side). The factor of two at the front of (27) allows for either m in the
mm to undergo the reaction.

Similarly, mm −→ hm can occur due to a m + h
k9−→ h + h reaction if one of the m sites in

the mm is also in a pair with a h site, i.e. we can have

mm+ hm −→ hm+ hm,

where the reactant hm and mm share a common m. This reaction can again be written as
mm −→ hm, where the rate,

2k9

(
µ5/2

µ1 + µ4/2 + µ5/2

)
,

is derived in a similar way as above.

Hence, we have

ã1 = 2k3 + 2k9

(
µ5/2

µ1 + µ4/2 + µ5/2

)
+ 2k10

(
µ4/2

µ1 + µ4/2 + µ5/2

)
. (28)

C Moment equations for the cluster MF models

Following the approach in Ref [33] (see Appendix C) we obtain first moment equations for
the DPMF and OPMF models. Here µ1—µ6 are the mean levels of each paired state. Note
that, for i = 1, . . . , 12, ai = âi in the DPMF model and ai = ãi in the OPMF model,

dµ1

dt
= −a1µ1 + a8µ5,
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dµ2

dt
= −a2µ2 + a11(1− µ1 − µ2 − µ3 − µ4 − µ5),

dµ3

dt
= −(a3 + a4)µ3 + a9µ5 + a10(1− µ1 − µ2 − µ3 − µ4 − µ5),

dµ4

dt
= −(a5 + a6)µ4 + a7µ5 + a12(1− µ1 − µ2 − µ3 − µ4 − µ5),

dµ5

dt
= a1µ1 + a4µ3 + a5µ4 − (a7 + a8 + a9)µ5.

Note again that we can obtain µ6 via µ6 = 1− µ1 − µ2 − µ3 − µ4 − µ5. The second moment
equations, describing the evolution of 〈LiLj〉 for 1 ≤ i, j ≤ 5, are given by

d〈L1L1〉
dt

= a1µ1 + a8µ5 + 2
(
a1〈L1L1〉+ a8〈L1L5〉

)
,

d〈L2L2〉
dt

= a2µ2 + a11(1− µ1 − µ2 − µ3 − µ4 − µ5)

+ 2
(
− a2〈L2L2〉+ a11(µ2 − 〈L1L2〉 − 〈L2L2〉 − 〈L2L3〉 − 〈L2L4〉 − 〈L2L5〉)

)
,

d〈L3L3〉
dt

= (a3 + a4)µ3 + a9µ5 + a10(1− µ1 − µ2 − µ3 − µ4 − µ5)

+ 2
(
− (a3 + a4)〈L3L3〉+ a9〈L3L5〉+ a10

(
µ3 − 〈L1L3〉 − 〈L2L3〉 − 〈L3L3〉 − 〈L3L4〉 − 〈L3L5〉

))
,

d〈L4L4〉
dt

= (a5 + a6)µ4 + a7µ5 + a12(1− µ1 − µ2 − µ3 − µ4 − µ5)

+ 2
(
− (a5 + a6)〈L4L4〉+ a7〈L4L5〉+ a12

(
µ4 − 〈L1L4〉 − 〈L2L4〉 − 〈L3L4〉 − 〈L4L4〉 − 〈L4L5〉

))
,

d〈L5L5〉
dt

= a1µ1 + a4µ3 + a5µ4 + (a7 + a8 + a9)µ5

+ 2
(
a1〈L1L5〉+ a4〈L3L5〉+ a5〈L4L5〉 − (a7 + a8 + a9)〈L5L5〉

)
,

d〈L1L2〉
dt

= −(a1 + a2)〈L1L2〉+ a8〈L2L5〉+ a11
(
µ1 − 〈L1L1〉 − 〈L1L2〉 − 〈L1L3〉 − 〈L1L4〉 − 〈L1L5〉

)
,

d〈L1L3〉
dt

= −(a1 + a3 + a4)〈L1L3〉+ a8〈L3L5〉+ a9〈L1L5〉

+ a10
(
µ1 − 〈L1L1〉 − 〈L1L2〉 − 〈L1L3〉 − 〈L1L4〉 − 〈L1L5〉

)
,

d〈L1L4〉
dt

= −(a1 + a5 + a6)〈L1L4〉+ a7〈L1L5〉+ a8〈L4L5〉

+ a12
(
µ1 − 〈L1L1〉 − 〈L1L2〉 − 〈L1L3〉 − 〈L1L4〉 − 〈L1L5〉

)
,

d〈L1L5〉
dt

= −a1µ1 − a8µ5 + a1〈L1L1〉+ a4〈L1L3〉+ a5〈L1L4〉+ a8〈L5L5〉

− (a1 + a7 + a8 + a9)〈L1L5〉,
d〈L2L3〉

dt
= −(a2 + a3 + a4)〈L2L3〉+ a9〈L2L5〉

+ a10
(
µ2 − 〈L1L2〉 − 〈L2L2〉 − 〈L2L3〉 − 〈L2L4〉 − 〈L2L5〉

)
+ a11

(
µ3 − 〈L1L3〉 − 〈L2L3〉 − 〈L3L3〉 − 〈L3L4〉 − 〈L3L5〉

)
,

d〈L2L4〉
dt

= −(a2 + a5 + a6)〈L2L4〉+ a7〈L2L5〉

+ a11
(
µ4 − 〈L1L4〉 − 〈L2L4〉 − 〈L3L4〉 − 〈L4L4〉 − 〈L4L5〉

)
+ a12

(
µ2 − 〈L1L2〉 − 〈L2L2〉 − 〈L2L3〉 − 〈L2L4〉 − 〈L2L5〉

)
,

d〈L2L5〉
dt

= a1〈L1L2〉 − (a2 + a7 + a8 + a9)〈L2L5〉+ a4〈L2L3〉+ a5〈L2L4〉
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+ a11
(
µ5 − 〈L1L5〉 − 〈L2L5〉 − 〈L3L5〉 − 〈L4L5〉 − 〈L5L5〉

)
,

d〈L3L4〉
dt

= −(a3 + a4 + a5 + a6)〈L3L4〉+ a7〈L3L5〉+ a9〈L4L5〉

+ a10
(
µ4 − 〈L1L4〉 − 〈L2L4〉 − 〈L3L4〉 − 〈L4L4〉 − 〈L4L5〉

)
a12

(
µ3 − 〈L1L3〉 − 〈L2L3〉 − 〈L3L3〉 − 〈L3L4〉 − 〈L3L5〉

)
,

d〈L3L5〉
dt

= −a4µ3 + a9µ5 + a1〈L1L3〉+ a4〈L3L3〉+ a5〈L3L4〉 − (a3 + a4 + a7 + a8 + a9)〈L3L5〉

+ a9〈L5L5〉+ a10
(
µ5 − 〈L1L5〉 − 〈L2L5〉 − 〈L3L5〉 − 〈L4L5〉 − 〈L5L5〉

)
,

d〈L4L5〉
dt

= −a5µ4 − a7µ5 + a1〈L1L4〉+ a4〈L3L4〉+ a5〈L4L4〉 − (a5 + a6 + a7 + a8 + a9)〈L4L5〉

a7〈L5L5〉+ a12
(
µ5 − 〈L1L5〉 − 〈L2L5〉 − 〈L3L5〉 − 〈L4L5〉 − 〈L5L5〉

)
.

Using L6 = 1− L1 − L2 − L3 − L4 − L5, we obtain

〈L1L6〉 = µ1 − 〈L1L1〉 − 〈L1L2〉 − 〈L1L3〉+ 〈L1L4〉+ 〈L1L5〉,
〈L2L6〉 = µ2 − 〈L1L2〉 − 〈L2L2〉 − 〈L2L3〉+ 〈L2L4〉+ 〈L2L5〉,
〈L3L6〉 = µ3 − 〈L1L3〉 − 〈L2L3〉 − 〈L3L3〉+ 〈L3L4〉+ 〈L3L5〉,
〈L4L6〉 = µ4 − 〈L1L4〉 − 〈L2L4〉 − 〈L3L4〉+ 〈L4L4〉+ 〈L4L5〉,
〈L5L6〉 = µ5 − 〈L1L5〉 − 〈L2L5〉 − 〈L3L5〉+ 〈L4L5〉+ 〈L5L5〉,
〈L6L6〉 = 1− 2(µ1 + µ2 + µ3 + µ4 + µ5) + 〈L1L1〉+ 〈L2L2〉+ 〈L3L3〉+ 〈L4L4〉+ 〈L5L5〉

+ 2
(
〈L1L2〉+ 〈L1L3〉+ 〈L1L4〉+ 〈L1L5〉+ 〈L2L3〉

+ 〈L2L4〉+ 〈L2L5〉+ 〈L3L4〉+ 〈L3L5〉+ 〈L4L5〉
)
.
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