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Abstract  37 

Despite significant therapeutic advances in improving lives of Multiple Myeloma (MM) patients, it 38 

remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a 39 

genetically heterogeneous disease and therapeutic resistance is driven by a complex interplay 40 

of disease pathobiology and mechanisms of drug resistance. We applied a multi-omics strategy 41 

using tumor-derived gene expression, single nucleotide variant, copy number variant, and 42 

structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM 43 

(NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with 44 

distinct genomic and transcriptomic features. 45 

Our integrative approach let us identify ndMM subgroups with transversal profiles to previously 46 

described ones, based on single data types, which shows the impact of this approach for 47 

disease stratification. One key novel subgroup is our MDMS8, associated with poor clinical 48 

outcome [median overall survival, 38 months (global log-rank pval<1x10-6)], which uniquely 49 

presents a broad genomic loss (>9% of entire genome, t.test pval<1e-5) driving dysregulation of 50 

various transcriptional programs affecting DNA repair and cell cycle/mitotic processes. This 51 

subgroup  was validated on multiple independent datasets, and a master regulator analyses 52 

identified transcription factors controlling MDMS8 transcriptomic profile, including CKS1B and 53 

PRKDC among others, which are regulators of the DNA repair and cell cycle pathways. 54 

Statement of Significance: Using multi-omics unsupervised clustering we discovered a new high-55 

risk multiple myeloma patient segment. We linked its diverse genetic markers (previously known, 56 

and new including genomic loss) to transcriptional dysregulation (cell cycle, DNA repair and DNA 57 

damage) and identified master regulators that control these key biological pathways. 58 
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Introduction 59 

Multiple Myeloma (MM) patients have complex genetic heterogeneity in the tumor that 60 

includes structural variants (SVs) such as immunoglobulin heavy chain (IgH) translocations, 61 

single nucleotide variants (SNVs) in oncogenes and tumor suppressor genes, and 62 

genomic/chromosomal copy number variants (CNVs), as well as transcriptomic changes (1, 2). 63 

A comprehensive molecular classification of the disease based on all these types of data may 64 

shed light into how the combinations of these genetic and transcriptomic features define or 65 

contribute to intra-tumoral heterogeneity, therapeutic response and/or resistance and eventual 66 

relapse. 67 

The MM community has devoted significant effort toward identifying molecular genetic 68 

features to diagnose MM patients, especially focused on patients with poor prognosis. For this 69 

reason, they have relied upon supervised analyses to identify molecular features associated 70 

with poor clinical outcome that may not necessarily identify biological sub-types of disease, nor 71 

be the features driving aggressive biology of the tumor. Various signatures have been 72 

previously proposed to identify high-risk patients, including UAMS70/80/17 (3), EMC92 (4), 73 

IFM15 (5), chromosome instability signature (6), centrosome index signature (7) and 74 

proliferation index (8). Some of these signatures were combined with disease stages (9) or 75 

expression of long intergenic non-coding RNAs (10) to improve their prognostic utility. Recently, 76 

we identified high-risk disease subgroups based on DNA features combining amp1q (CNV=4 or 77 

more) plus International Staging System 3 (ISS) or biallelic inactivation of TP53 (deletion and 78 

mutation) (11); and clonal status of del17p (high-risk del17p) (12). To date, some genomic 79 

biomarkers including del17p, gain1q, t(4;14) or t(14;16), and mutations in TP53, in combination 80 

with clinical characteristics have been used in the clinic or clinical trials  for prognosis (13, 14).  81 
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Previous efforts to stratify MM based on gene expression (GE) data identified 7 82 

molecular subgroups with distinct transcriptomic profiles (15-17). Some of these subgroups 83 

were linked to genomic abnormalities (including translocations (SVs) or hyperdiploidy (HY)), 84 

while others such as the proliferative group (PR) apparently was driven mainly by transcriptional 85 

pathways (15). More recently, Laganà et al identified gene modules, which were subsequently 86 

associated with genomic and clinical features (17). Mutational signatures that are independent 87 

of previously defined prognostic markers have also been used to stratify MM patients (18) and 88 

stratification of MM patients based on CNVs has demonstrated some association with outcome 89 

(19).  90 

Integrative clustering analyses across multiple data types from large, well annotated 91 

datasets, have identified novel biological subgroups in solid tumors and acute myeloid leukemia 92 

(20-23); showing the impact of data integration in disease stratification. Such an analysis, 93 

however, is yet to be reported in MM. As part of the Myeloma Genome Project (MGP) (19), here 94 

we present a large-scale multi-omics analysis of newly diagnosed MM (NDMM).  95 

Our work identified 12 disease subgroups using an integrative multi-omics approach 96 

combining GE, SV, CNV, and SNV features (Figure 1A), where clinical covariates, such as 97 

outcome data, were not included to define genomic subgroups independently from known 98 

clinical features. We further explored the molecular features and clinical associations of the 12 99 

biological subsets and focused on a subgroup (MDMS8) which showed the worst prognosis 100 

across the entire patient cohort (Figure 1B). MDMS8 main characteristic is a significant (>8%) 101 

genomic loss associated with dysregulated DNA repair and cell cycle/mitotic related 102 

transcriptional programs. The integrative nature of MDMS8 comes up on its transversal profile 103 

to specific known biomarkers of high risk (including 1q amplification, del17p and t(4;14) (Figure 104 

2 and Supplementary Figure S4A-E), and to patient subgroups previously defined based only on 105 

gene expression (such as the proliferative, the MMSET and the MAF subgroups (15-17)) 106 
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(Figure 6). Master regulator analysis (24, 25) identified 7 genes controlling MDMS8 107 

transcriptional program, including E2F2, CKS1B and PRKDC, which seem to control 108 

dysregulation of DNA repair and cell cycle pathways putatively for sustaining the genome loss. 109 

We further validated MDMS8 in independent NDMM and relapsed/refractory MM (RRMM) 110 

datasets demonstrating the reproducible persistence and prevalence of this segment across 111 

patient cohorts. 112 

Results 113 

Integrative Clustering Analysis Identifies Twelve Molecularly Defined Disease Subgroups 114 

in Myeloma  115 

We analyzed genomic and transcriptomic data from 514 NDMM patients enrolled in the 116 

Multiple Myeloma Research Foundation (MMRF) CoMMpass study (NCT0145429, version 117 

IA17). The subset of the samples selected was based on the intersection of the various datasets 118 

(GE, CNVs, SNVs, SVs and clinical information), and patient characteristics are presented in 119 

Supplementary Table S1. Demographics, clinical data, treatment information and data 120 

processing steps have been published previously (11, 19). 121 

Two alternative multi-omics integrative analysis methods were applied to the complete 122 

dataset: iCluster+ (26) and Cluster of Clusters Analysis (COCA) (27). Each clustering method 123 

was run one thousand times with re-sampling of features and samples to ensure robustness 124 

(Supplementary Figure S1). While iCluster+ defines clusters based on integrated, simultaneous 125 

analysis across the data types; COCA uses a two-step analysis, first clustering on each single 126 

data type and then grouping the results into a final set of clusters. Results of the two clustering 127 

methods overlapped but were not identical (Supplementary Table S2). In our dataset, iCluster+ 128 

identified 12 subgroups (in >40% of the iterations, followed by 11 clusters selected <30%) 129 

compared to 14 subgroups (>30% of the iterations, followed by 12 clusters selected <20%) 130 
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identified by COCA. Consensus across iterations, defined by prevalence of same samples being 131 

clustered together, was higher in iCluster+ (>70% iCluster+ vs <65% COCA) thus, the iCluster+ 132 

output was selected for further analysis. 133 

Twelve molecularly defined MM subgroups (MDMS) were identified by iCluster+ 134 

(Supplementary File 1), with sizes ranging from 5% to 12% of the total cohort of 514 (Figure 1B 135 

and Supplementary Figure S2). These included six HY subgroups (MDMS1-6), characterized by 136 

gains (CNV=3 or more) of chromosomes 3, 5, 9, 15 and 19, and six non-HY subgroups 137 

(MDMS7-12) (Figures 1B and 2; Supplementary Table S3). Within the HY group, MDMS1-2-3 138 

share several molecular characteristics, including gain of Chr11 (gain11) and over-expression of 139 

PAPD7. MDMS1 is differentiated from MDMS3 and MDMS5 by deletion of 8p22.1 (del8p22.1), 140 

mutation of RB1, over-expression of NSDHL and up-regulated cell cycle and checkpoints 141 

signaling pathways. MDMS2 shows a deep down-regulation of cell cycle related pathways, and 142 

this characteristic is shared with MDMS6. MDMS3 is enriched in FAM46C and NRAS mutation 143 

and up-regulation of the interferon pathway. MDMS4 and MDMS5 have no gain of Chr11, but 144 

MDMS5 only is enriched in gain of Chr3 and has significant del13q and mutations in ARID2, 145 

EGR1 and NF1 genes. MDMS6 is defined by gain20q11, gain11q23.3, down-regulation of 146 

MED11, and down-regulation of DNA repair, cell cycle and checkpoints pathways (Figures 1B 147 

and 2; Supplementary Table S3).  148 

Among the non-HY subgroups, MDMS7, MDMS11 and MDMS12 are significantly 149 

associated with t(11;14) (Figures 1B and 2; Supplementary Table S3). MDMS7 is also enriched 150 

in gain19q13 and up-regulated interferon pathways. Both MDMS8 and MDMS9 have t(14;16) 151 

and t(4;14) patients, however, due to the low prevalence of t(14;16) patients in the study it does 152 

not appear to be the driver of any of these groups (Supplementary Figure S3). MDMS8 is also 153 

significantly enriched in gain1q; del1p, del16q, del17p. In addition to t(14;16), MDMS9 shows a 154 

significant enrichment of gain1q, del13q14.3, del16q24.1, and mutations in ATM, DIS3, TP53 155 
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and TRAF3. MDMS10 is defined by del13q14.3 and mutations in DIS3 and PRKD2; while also 156 

presenting the highest significant enrichment for t(4;14) and FGFR3 mutations compared to the 157 

other disease subgroups. The pattern of mutations in MDMS10 aligns with the activation of 158 

MEK/ERK signaling pathway (28). MDMS11 presents down-regulation of interferon related 159 

pathways (in contrast to MDMS7) and reduced expression of FBXW2 and KIF4B. MDMS12, 160 

mainly driven by t(11;14), is also enriched in CCND1, IRF4 and NRAS mutations, over-161 

expression of CCND1 and low expression of CCND2 (Figures 1B and 2; Supplementary Table 162 

S3). 163 

Identification and Validation of MDMS8  164 

Survival analyses were performed to understand how the molecular disease subgroups 165 

relate to clinical outcome. Eleven of the disease subgroups share a progression-free survival 166 

(PFS) and overall survival (OS) similar to standard risk patients (Figure 3) (29). In contrast, 167 

patients in MDMS8 display significantly poorer outcomes (median PFS, 19 months, log-rank 168 

p<0.001; median OS, 38 months, log-rank p<1x10-6) (Figure 3). MDMS8 has enrichment for ISS 169 

III patients (Fisher exact test p <0.05) and biallelic TP53 (Fisher exact test p <0.05) (Figure 2, 170 

Supplementary Table S3). Moreover, among patients in MDMS8 carrying previously described 171 

high-risk markers in MM, including t(4;14), t(14;16), gain1q, del13q and del17p, both PFS and 172 

OS are significantly worse than among patients with similar genomic characteristics in non-173 

MDMS8 clusters (Figure 4). Separate analyses for each of these high-risk markers, showed 174 

similar results, suggesting the presence of a common biology across these different genomic 175 

groups in addition to their high-risk features contribute to overall clinical outcome 176 

(Supplementary Figure S4A-E). 177 

In MDMS8 patients, DNA repair/damage related genes, such as ARID2, apoptosis 178 

related BIRC2, TRAF1, TRAF2 (30, 31), and genes associated with CDK function, including 179 
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MAX, RB1, and TP53 (32, 33), are significantly mutated. Differential GE analysis identified 180 

significant activation of genes controlling mitotic and DNA damage/repair processes (CENPI, 181 

SKA1, NUF2, PLK1, AURKB, BIRC5 and BUB1), DNA synthesis (POLA1, PRIM1 and PRIM2), 182 

and checkpoints (MCM/CDC/RFC gene families and CDK1/2)-all generally involved in cell cycle 183 

related pathways (Figure 5A). A differential gene expression analysis comparing patients with 184 

shared genomic characteristics (including t(4;14) or gain1q) in MDMS8 versus non-MDMS8 185 

patients shows DNA repair, mitotic, checkpoint and MYC pathways significantly up regulated in 186 

MDMS8 (Supplementary Figures S4A-B). 187 

The genomes of MDMS8 samples present an increased loss of genes on various 188 

chromosomes, including 1, 13, 14, 16 and 17 on the p arm (Figure 1 and top panel of Figure 5B) 189 

compared to the other molecular subgroups. We calculated the number of genomic cytobands 190 

containing a deletion and the total amount of genomic deletion in all samples (measured by the 191 

extent of deletion as percentage of the whole genome), which showed a significantly increased 192 

number of genomic regions having a loss in MDMS8 (median > 8% of genomic loss (Methods)) 193 

compared to the rest of the patients (median < 4% of genomic loss) (t.test p.val < 1e-6, bottom 194 

panel Figure 5B). A gene set variant analysis (GSVA, see methods) on DNA damage/repair 195 

pathways (including REACTOME and DNA Damage Response (DDR) pathways (55)) showed a 196 

significant up-regulation of REACTOME DNA damage and repair pathways, as well as the DDR 197 

Homology-dependent recombination (HDR), Translesion Synthesis (TLS) and Base Excision 198 

Repair pathways in MDMS8 compared to the other NDMM patients (Figure 5C, Supplementary 199 

Figure S5). 200 

To explore the prevalence of MDMS8 in other MM datasets, we built a GE classifier on 201 

the discovery data, applied it to independent cohorts (including IFM (5) and APEX (15, 35) 202 

(Supplementary Figure 6A), and UAMS (17) (Figure 6)),  and explored prevalence and genomic 203 

properties (when available) of patients classified as ‘MDMS8-like’ (Supplementary Figure 6B). 204 
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We generated a multiclass linear model classifier with lasso regression for feature selection 205 

based on gene expression, since it was the common datatype available across the datasets. 206 

The trained classifier comprised a linear model on the expression of 35 genes (Supplementary 207 

Table S4). The training performance of the classifier for MDMS8 has a recall ~80% and 208 

precision of 75% (where false positives were mostly patients from MDMS9 and MDMS10) 209 

(Supplementary Table S5). Information on the training performance of the classifier for all 210 

clusters is shown in Supplementary Table S5, with a median recall of 60% and precision of 211 

64%; where most of the mis-classified calls happened between HY groups. Application of the 212 

classifier to the IFM dataset (Supplementary Table S3) identified a MDMS8-like group with 213 

similar prevalence (~12%) and significantly poorer OS (median OS not reached, long rank p < 214 

1e-4) (left panel of Supplementary Figure S6A). Importantly, the MDMS8-like group in IFM also 215 

presented the high rate of genomic loss (median genomic loss MDMS8-like >8% and rest < 4%, 216 

Supplementary Figure S6B), validating not only the gene expression profile but also the 217 

genomic features. We applied the classifier to the APEX trial Affymetrix-based GEP dataset 218 

(RRMM) (15, 35), where, again, there was a significant difference in OS observed between 219 

MDMS8-like versus other RRMM patients (right panel of Supplementary Figure S6A). 220 

Prevalence of the MDMS8-like segment in the APEX trial was <15%. This analysis 221 

demonstrates that MDMS8-like segment is reproducible across multiple datasets and that its 222 

poor OS is independent of treatment regimen. 223 

MDMS8 Comparison to Previously Reported MM Subgroups and High-risk Signatures 224 

and Biomarkers 225 

To place our analysis in the context of previous efforts, we explored similarities and 226 

differences between MDMS8 and other MM subgroups identified using GE datasets by Zhan et 227 

al (15) and Broyl et al (16). In Figure 6 (and Supplementary Figure S7) MDMS8 shows a 228 

significant enrichment in the signature scores of the publicly described PR (proliferative), MS 229 
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(MMSET) and MF (MAF) groups, which is coherent with MDMS8 since it contains t(4;14) 230 

patients (MS group), t(14;16) patients (MF group) and it shows dysregulation of cell cycle (PR 231 

group). Conversely, Zhan et al groups are associated with multiple MDMS clusters, suggesting 232 

no 1:1 association between the two clustering approaches. We also applied our classifier to the 233 

Zhan et al GEP discovery dataset and compared our cluster calls to theirs. This comparison, 234 

again, shows commonalities among some of the groups, such as the HY (hiperdiploid) from 235 

Zhan et al which contains most of our MDMS3 and MDMS5, while CD2 maps uniquely to 236 

MDMS12; but it also shows clear differences, including MDMS4 (which from our genomics data 237 

is HY) which doesn’t associate to the previously defined HY group. Also, MF and MS groups are 238 

subdivided into various MDMSs. Finally, MDMS8, presents a transversal profile to the 239 

previously defined GEP subgroups (containing patients from MF, MS, MY and PR) suggesting 240 

the biology of this group is more heterogeneous than what was previously described 241 

(Supplementary Table S6). While both attempts (Zhan et al and ours) are unsupervised in 242 

nature, results show key differences between using GE only vs multi-omics integrative approach. 243 

Comparison of MDMS8 with the CNV clusters defined by Walker et al (19) identifies significant 244 

enrichment of CN7 (characterized by gain1q and del13q); however, the CN7 cluster does not 245 

include all of the MDMS8 patients, notably excluding those with t(4;14). 246 

UAMS70 (3) and EMC92 (4) high-risk MM classifiers were applied to the discovery 247 

dataset to explore the overlap between patients deemed high-risk by these outcome-based 248 

classifiers and MDMS8 patients. MDMS8 captures a significant number of high-risk patients 249 

identified by both EMC92 (34%) and UAMS70 (40%). A third of MDMS8 patients, however, 250 

were not captured by these high-risk GE-classifiers (Supplementary Figure S8). Discordance 251 

among these groups is not unexpected, given that the number of shared genes between 252 

UAMS70 and EMC92 signatures is <5%. Moreover, unlike the GE-classifiers, the unsupervised 253 

approach used to identify MDMS8 was not based on clinical outcome. 254 
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Master Regulators Drive Transcriptional Phenotype in MDMS8 255 

Finally, a master regulator (MR) analysis using msVIPER (36) was performed to 256 

elucidate the mechanisms linking genomic alterations to the transcriptional profiles of MDMS8. 257 

The master regulator genes were selected on the basis of impact on transcriptional changes of 258 

their inferred downstream targets (regulons) using a context-specific gene regulatory model 259 

(37). Ten MRs were identified (Figure 7 and Supplementary Figure S9), with seven of them 260 

showing positive activation in MDMS8: E2F2, a transcription factor member of the e2f family; 261 

CKS1B, a protein kinase regulator located in 1q21; RBL1, which encodes a gene that is similar 262 

in sequence and possibly function to retinoblastoma 1 (RB1), significantly mutated in MDMS8; 263 

PRKDC, a protein kinase sensor for DNA damage incurred in DNA repair/recombination; 264 

RUSC1, related to the Trk receptor signaling mediated by the MAPK pathway; NUP93, 265 

described as tumor growth modulator via cell proliferation and actin cytoskeleton remodeling 266 

(38) and migration and invasion capacity of cancer cells (39), and MSN, Moesin, described as 267 

an unfavorable prognostic biomarker in various cancers (40-42). Genes encoding the two zinc 268 

finger proteins (ZBTB40 and ZNF837) and the histone deacetylase 3 (HDAC3) were down-269 

regulated MRs (Supplementary Figure S9). 270 

An enrichment analysis based on the regulons of MDMS8 MR was performed to 271 

understand MDMS8 biology and signaling functions controlled by these MRs. Most of the 272 

activated MRs control diverse biological processes (Figure 7) including ones related to mitosis, 273 

such as the E2F2 regulon, which contains the KIF family, and the CKS1B regulon with RAD21 274 

and the MCM family; or the MSN regulon, associated with Rho GTPases (switches that regulate 275 

the actin cytoskeleton, influence cell polarity, microtubule dynamics, membrane transport 276 

pathways and transcription factor activity (43)). Cell cycle and DNA repair pathways in MDMS8 277 

appear to be controlled by RBL1, NUP93 and PRKDC, although genes in the PRKDC regulon 278 

are involved also in spliceosome and RNA transport pathways, consistent with MDMS8 biology. 279 
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Regulons downstream of the negatively activated MRs were not significantly associated with 280 

any specific signaling pathways, although they contained previously defined tumor suppressor 281 

genes, such as KDM4A (44) and E2F4 (45). Of the MRs, the specific roles of PRKDC and 282 

RBL1 and their regulons in DNA damage/repair would be consistent with supporting the 283 

maintenance of MDMS8 myeloma cell’s loss of genetic material. 284 

Discussion  285 

In this study, we describe molecular segmentation of NDMM by a joint modeling of 286 

multiple omics data types to identify common latent variables to group patient samples into 287 

biologically distinct disease subtypes. Our unsupervised analysis identifies twelve biological 288 

subgroups of MM, confirming hyperdiploidy-dependent and SV-dependent as the two 289 

predominant molecular subtypes of MM. Notably, we identified and replicated a new disease 290 

segment (MDMS8) that is enriched in diverse known high-risk genomic features, accompanied 291 

by various MM driver mutations and dysregulation of DNA damage and repair pathways and cell 292 

cycle/mitotic processes, alongside a genome loss, that had not been previously described in 293 

MM. Master regulator analyses identified potential drivers of the transcriptional program pointing 294 

to key pathways in DNA repair, cell proliferation, cell cycle progression and chromosomal 295 

stability and maintenance. PFS and OS are significantly inferior for patients in MDMS8 296 

compared with patients in non-MDMS8 subgroups, even when patients in both cohorts carry the 297 

same high-risk genomic biomarkers, including 1q gain, del17p, t(4;14) and/or t(14;16). Our 298 

analysis shows for the first time that along with the different high risk markers (del17p, t(4;14), 299 

amp1q) in ndMM there is a common transcriptional program linked to the accumulation of 300 

genome loss in a subset of those tumors. In our estimation, the identification of MDMS8 by the 301 

integration of multiple data-types enabled a transversal and improved molecular description of 302 

high risk MM biology over previous GE-based or CN-based approaches. Not surprisingly, due to 303 
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its association with poor clinical outcome, MDMS8 contains a significant number of patients 304 

picked up by gene expression based high-risk classifiers, EMC92 (4) and UAMS70 (3). Besides, 305 

our integrated clustering analyses separate t(4;14) MM samples into multiple disease 306 

subgroups, including MDMS10 and MDMS8, all with high MMSET/NSD2 expression 307 

independent of the disease segment. The outcome and transcriptomic profile of MDMS8, 308 

however, are distinctly different from patients with t(4;14) in other disease subgroups, 309 

suggesting that overexpression of MMSET/NSD2 per se does not play a direct role in high-risk 310 

biology as had been previously discussed in the literature. While additional work is needed to 311 

tease out the implications of such observations, taken together, our results suggest that an 312 

integrated analysis of multiple data types could effectively sort out the heterogeneity of t(4;14) 313 

myeloma. 314 

Identification of MDMS8, and its genomic loss linked with the dysregulated 315 

transcriptional phenotype prompted our exploration of functional drivers. The mechanism of the 316 

genome loss or its association with high-risk genetic loci is not clear at this time. Gene set 317 

enrichment analysis however revealed the relationship between MDMS8 transcription profiles 318 

with DNA repair/damage and cell cycle pathways, especially those directing the mitotic 319 

machinery and steps required for functional cell division. We envision that MDMS8 cells have 320 

adaptive mechanisms to tolerate excess DNA damage. It is likely that these transcriptional 321 

pathways are critical for repairing DNA damage as a consequence of DNA replication or 322 

induced to relieve the stress of multiple steps of proper chromosomal segregation during 323 

mitosis. All 7 MRs whose activities are up-regulated in MDMS8 are essential genes in MM, 324 

controlling key biological functions required for DNA repair/damage, cell cycle check points for 325 

G1/S and G2/M, MYC-driven growth and survival pathways and mitotic processes. This analysis 326 

provides a pool of proteins to potentially target the underlying biological basis of the aggressive 327 

nature of the disease. Similar approaches in other cancers (24) have suggested possible 328 
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synthetic lethal relationships between MRs which could provide novel combination approaches 329 

for therapeutics development in high-risk MM. These efforts could be combined or 330 

complemented with targeting the dysregulated DNA damage repair pathways. 331 

In conclusion, this work presents an integrative clustering-derived molecular classification of 332 

Multiple Myeloma using key genetic features with the transcriptome. We find a molecular 333 

segment enriched in extensive DNA loss, accompanied by upregulated DNA damage repair and 334 

cell cycle/mitotic pathways. This integrative analysis also illustrates that this type of approach 335 

could improve our understanding of the disease heterogeneity of Multiple Myeloma by studying 336 

the individual molecular segment such as MDMS8. 337 

 338 

Methods  339 

Data processing  340 

Gene expression: RNA extraction, library preparation and sequencing for both MMRF 341 

CoMMpass and IFM/DFCI were previously described by Walker et al (19) and 342 

https://research.themmrf.org.  343 

BAM to FastQ file conversion for MMRF CoMMpass cohort: Previously aligned BAM files 344 

were collected from database of Genotypes and Phenotypes (dbGaP) and converted to FASTQ 345 

using Picard tools v2.1.1 to extract read sequences and base quality scores. 346 

Quantification: FASTQ files from both cohorts were quantified using Salmon. Isoform level 347 

expressions were quantified with Quasi-mapping using GRCh38 cDNA reference genome from 348 

Gencode v24. Gene level abundances were calculated using tximport and isoform level TPM 349 

(transcript per million) estimates for each sample. 350 
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Affymetrix gene expression: GE data coming from Affymetrix HG-U133 Plus 2 were 351 

normalized using EdgeR (46) package available in CRAN. 352 

Scaling gene level expressions and selecting high variable genes:  GE was normalized for 353 

each sample against three housekeeping genes. 11 housekeeping genes (47) were originally 354 

tested and the top 3 genes with lowest standard deviation were selected. Geometric mean of 355 

these 3 housekeeping genes (NONO, PGK1 and VPS29) was used to scale gene level 356 

expressions.  357 

Calling copy number variants: preprocessing for copy number analysis has been described 358 

previously Walker et al (19). Genomic loss was calculated in each sample adding all the length 359 

of all the subgroups with a “loss” call from control-freec output (including both homozygous and 360 

heterozygous deletions). The final proportion of genomic loss is calculated per patient using size 361 

of genomic loss previously calculated over the genome size. 362 

SNV data: SNVs were called and preprocessed as previously described (19). After 363 

preprocessing, only missense mutations that were observed in ≥ 3% of the patients were kept 364 

for further analysis. 365 

SV data: SVs were called and preprocessed as previously described (19). Lowly prevalent SVs 366 

might be under-represented in our dataset due to size limitations. 367 

Clustering 368 

Two different clustering algorithms iCluster+ (26) and the Cluster of Clusters Algorithm (COCA) 369 

by the Cancer Genome Atlas Research Network (27) that integrate multiple OMICs data types 370 

with different approaches were run with a range of parameters to identify the combination which 371 

produced the most robust and stable clusters across our dataset. The number of clusters 372 

ranged between 2 and 20, and the optimal solution was selected based on Bayesian 373 
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Information Criteria (BIC). Membership consistency across iterations was used to select 374 

iCluster+ as the final clustering approach. More information can be found in the Supplementary 375 

Methods File.  376 

Biomarker Analysis  377 

Differential Gene Expression: Voom-LIMMA was run for GE analysis, using linear models to 378 

assess differential expression in the context of multifactor designed experiments (49). It was 379 

implemented in the limma package for Bioconductor (http://www.bioconductor.org) and applied 380 

to test differential relative abundance between conditions for each cluster independently. 381 

Significance p-values were corrected for multiple testing by the false-discovery method and 382 

deemed significant at an FDR threshold of 0.05 (5%) (50). 383 

Pathway Analysis: Gene-set enrichment analysis (GSEA (51)) was applied to rank relative 384 

abundance ratios obtained during differential analysis for each comparison. Weighted 385 

enrichment statistic calculations were used instead of the classic unweighted ranking to account 386 

for fold change differences in addition to protein ranking. Gene categories assessed for 387 

enrichment corresponded to the canonical pathway collection (e.g. Reactome, Biocarta, KEGG) 388 

obtained from the MSigDB database (file: c2.cp.v5.2.symbols (52)). Enrichment p-values were 389 

corrected for multiple testing by FDR.  390 

Signature Enrichment Analysis: GSVA r package was used to calculate enrichment analysis 391 

of the various signatures. For UAMS70 (3) and EMC92 analysis, thresholds were refined to 392 

RNAseq data to select respectively 15% and 20% of the population with the highest scores. 393 

Identification of master regulators: Master regulator analysis was performed using the 394 

msVIPER algorithm in the VIPER R package. More information can be found in the 395 

Supplementary Methods File.  396 
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Classifier: we utilized the glmnet package in CRAN (https://cran.r-397 

project.org/web/packages/glmnet/index.html) to estimate a multinomial elastic net 398 

modelregression model with cross validation. The features were selected by estimating models 399 

with 100 nfolds on the top 3813 genes by coefficient of variance across all datasets. 42 genes 400 

identified across the cross-validation iterations were included in the final model. In order to 401 

make all the MM datasets comparable, they were normalized together with voom/limma and 402 

dataset bias was removed with Combat R function (53). Finally, all datasets were scaled 403 

independently by genes to median=0 and standard variation = 1. 404 

Statistical analyses: various statistical tests from the stats v3.5.3 R (54) CRAN package were 405 

used to check significance of the association of the subgroups to different variables. Fisher’s 406 

exact test for binary data (mutations/CNVs), t-test for continuous variables (GE pathway 407 

scores), and global log-rank test for outcome (PFS/OS).  408 

Data Availability 409 

Sequencing data were deposited in the European Genome Archive under accession 410 

EGA00001001147 and EGA00001000036 or at database of Genotypes and Phenotypes 411 

(dbGAP) under accession phs000748.v5.p4. 412 

Code Availability 413 

Our genomic pipeline code is provided under https://github.com/celgene-research/mgp_ngs. 414 

 Methods used for analysis are publicly available. 415 
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Figure Legends 597 

Figure 1: Twelve multiple myeloma subgroups identified by integrative clustering. A)598 

Figure representing a visual summary of the work presented in the paper. From NDMM599 

molecular profiles to identification of HR patient segment by multi-omics unsupervised clustering600 

and its main characteristics including genomic loss, master regulators and DNA repair and cell601 

cycle dysregulation. B) Heatmap showing molecular characteristics of the molecularly defined602 

myeloma subgroups (MDMS 1-12): Left panel shows copy number variants with structural603 

variants added as tracks above; middle panel shows gene expression (top 30 over-expressed604 

genes per MDMS without replication); and right panel shows single nucleotide variants (black605 

band denotes mutation, white band denotes wild-type sequence). 606 
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610 

 611 

Figure 2: Significant genomic, transcriptomic and clinical characteristics across disease612 

subgroups. Enrichment scores [-log10 (fdr), Fisher exact t test (binary values) or t test613 

(continuous values) p-values]. Red and blue colors represent positive and negative614 

associations, respectively. Values were trimmed between (-3, 3). Dot size corresponds with615 

level of significance. 616 
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617 

Figure 3: Kaplan-Meier (KM) survival analysis of outcome among the disease subgroups618 

MDMS 1-12. Progression-free survival (left) and overall survival (right) among patients in each619 

of the 12 myeloma subgroups. Global log-rank p-value shown for each KM plot. 620 
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Figure 4: Kaplan-Meier (KM) survival analysis of genomic subgroups versus MDMS8. KM624 

survival analysis showing overall survival (OS) of patients carrying one or more of the following625 

genomic aberrations: [t(4;14), t(14;16), gain1q or del17p] versus the remaining patients (left);626 

overall survival (OS) of patients with genomic aberrations [t(4;14), t(14;16), gain1q or del17p] in627 

MDMS8 versus the same subset of patients in non-MDMS8 subgroups (middle); and628 

progression free survival (PFS) of patients with genomic aberrations [(t(4;14), t(14;16), gain1q629 

or del17p] in MDMS8 versus the same subset of patients in non-MDMS8 subgroups. 630 
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Figure 5: Genomic and gene expression characteristics of MDMS8. A) Signaling pathway634 

network showing significantly up-regulated pathways in MDMS8 compared to the rest of the635 

disease subgroups. B) Prevalence of deletions (negative Y-axis, blue) and gains (positive Y-636 

axis, red) across the genome in MDMS8 (top panel). Percentage of genomic losses in MDMS8637 

vs the rest of ndMM patients (bottom panel). C) Enrichment scores of the Reactome DNA repair638 

pathway in MDMS8 vs the rest (left panel) and Homology-dependent Recombination (HDR)639 

pathway in MDMS8 vs the rest (right panel). 640 
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Figure 6: Comparison of MDMS8 to other Gene Expression Signatures. A) Gene645 

expression enrichment of Zhan et al GE patient subgroups signatures (15) across the twelve646 

molecularly defined myeloma subgroups. Red represents positive enrichment; blue represents647 

negative enrichment. Blue squares highlight significant association (enrichment scores t-test648 

p<0.01) between the Zhan et al signatures and MDMS disease subgroups. 649 
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Figure 7. Master regulator analysis. Master regulators’ regulons and their associated653 

signaling pathways. Color scheme represents -log10 (t test p-value) of activation score of the654 

listed genes in MDMS8 versus the rest, with red for positive values and blue for negative values.655 

Squares represent master regulators; circles represent regulon genes.  656 
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