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Abstract 11 

Aim: Despite the increasing interest in developing new bioregionalizations and assessing the 12 

most widely accepted biogeographic frameworks, no study to date has sought to systematically 13 

define a system of small bioregions nested within larger ones that better reflect the distribution 14 

and patterns of biodiversity. Here, we examine how an algorithmic, data-driven model of 15 

diversity patterns can lead to an ecologically interpretable hierarchy of bioregions. 16 

Location: Australia. 17 

Time period: Present. 18 

Major taxa studied: Terrestrial vertebrates and vascular plants. 19 

Methods: We compiled information on the biophysical characteristics and species occupancy of 20 

Australia’s geographic conservation units (bioregions). Then, using cluster analysis to identify 21 

groupings of bioregions representing optimal discrete-species areas, we evaluated what a 22 

hierarchical bioregionalization system would look like when based empirically on the within- 23 
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and between-site diversity patterns across taxa. Within an information-analytical framework, we 24 

then assessed the degree to which the World Wildlife Fund’s (WWF) biomes and ecoregions and 25 

our suite of discrete-species areas are spatially associated and compared those results among 26 

bioregionalization scenarios. 27 

Results: Information on biodiversity patterns captured was moderate for WWF’s biomes (50–28 

58% for birds’ beta, and plants’ alpha and beta diversity, of optimal discrete areas, respectively) 29 

and ecoregions (additional 4–25%). Our plants and vertebrate optimal areas retained more 30 

information on alpha and beta diversity across taxa, with the two algorithmically derived 31 

biogeographic scenarios sharing 86.5% of their within- and between-site diversity information. 32 

Notably, discrete-species areas for beta diversity were parsimonious with respect to those for 33 

alpha diversity. 34 

Main conclusions: Nested systems of bioregions must systematically account for the variation 35 

of species diversity across taxa if biodiversity research and conservation action are to be most 36 

effective across multiple spatial or temporal planning scales. By demonstrating an algorithmic 37 

rather than subjective method for defining bioregionalizations using species-diversity 38 

concordances, which reliably reflects the distributional patterns of multiple taxa, this work offers 39 

a valuable new tool for systematic conservation planning. 40 

 41 
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1. Introduction 46 

The division of the Earth’s surface into regions of unique biotic communities or similar 47 

ecological processes is a cornerstone of biogeographic and macroecological research (Ebach & 48 

Parenti, 2015; Mackey, Berry, & Brown, 2008). The identification of alternative macrounits of 49 

biodiversity reflects differences in scale of analysis, methods of classification, and type of data 50 

governing the existing biogeographic frameworks (Mackey et al., 2008). Many 51 

bioregionalizations have delineated precise geographic units based on differences in species 52 

composition (Kreft & Jetz, 2010; Wallace, 1876) and/or discontinuities in the abiotic 53 

environment (Olson et al., 2001; Omernik, 2004). Recently, biogeographic frameworks have 54 

focused instead on either using phylogenetic data (Daru, Elliott, Park, & Davies, 2017; Holt et 55 

al., 2013; Maestri & Duarte, 2020) to define those hard boundaries, or have taken a ‘softer’ 56 

approach to their geographic delineation by identifying transition zones (Edler, Guedes, Zizka, 57 

Rosvall, & Antonelli, 2017; Vilhena & Antonelli, 2015). Another key difference is that while 58 

some biogeographers have sought to define systems of small units nested within larger ones—59 

such is the case of World Wildlife Fund (WWF) Terrestrial Ecoregions (Dinerstein et al., 2017; 60 

Olson et al., 2001)—others have rejected this as a desirable outcome of the study system (Ebach 61 

& Parenti, 2015). At finer resolution, the spatial delineation of homogeneous areas characterized 62 

by broad, landscape-scale natural features and environmental processes (called land systems, 63 

bioregions, or equivalents) has also been crucial in the development of many bioregionalizations 64 

at sub-continental scales (Mackey et al., 2008). Yet, despite the great contribution that this 65 

diversity of frameworks has made to our understanding of biodiversty patterns, creating an 66 

objective, repeatable and transferable hierarchical system of geographic operational units to 67 
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meaningfully aggregate biodiversity from-regional-to-global scale, across multiple taxonomic 68 

groups, remains elusive (Antonelli, 2017; Morrone, 2018). 69 

 70 

Alongside Wallace’s zoogeographic regions (Wallace, 1876), WWF’s hierarchical 71 

framework (Olson et al., 2001) of discrete areas of natural communities (i.e., ecoregions), 72 

spatially nested within larger distinct areas that reflect relations between climate, flora and fauna 73 

(i.e., biomes), is the most widely accepted global bioregionalization that has been the foundation 74 

of scientific research, environmental policy, resource management and conservation for almost 75 

two decades (Kier et al., 2005; Mackey et al., 2008; Smith et al., 2018). However, few 76 

continental-level bioregionalizations that correspond to a spatial subdivision of WWF’s 77 

geographic operational units have been developed and adopted over this period (Omernik, 2004; 78 

Thackway & Cresswell, 1995). Notably, only the bioregionalization for Australia—known as the 79 

Interim Biogeographic Regionalization for Australia (IBRA) framework—has been explicitly 80 

defined as a more detailed geographic division of WWF’s ecoregions (Department of 81 

Agriculture, 2012a). 82 

 83 

Since its inception, the IBRA framework has been framed as a tool to guide the 84 

systematic conservation planning of Australia’s biodiversity. The initial release divided the 85 

continent in 80 biogeographic regions, called bioregions (Thackway & Cresswell, 1995). Over 86 

the subsequent 25 years, new bioregions have been identified, and boundaries updated to 87 

coincide better with faunal and floral patterns and environmental processes that influence the 88 

functioning of entire ecosystems. In an effort to aid regional conservation, IBRA bioregions have 89 

been further divided into subregions, using finer-scale differences in biophysical attributes—90 
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such as geology and vegetation—to spatially define major regional ecosystems. Like WWF’s 91 

global ecoregions and other continental-scale bioregionalization templates (Mackey et al., 2008; 92 

Omernik, 2004), the IBRA framework reflects a hierarchical structure delineated bio-topically 93 

where the spatial aggregation of subregions makes up bioregions (Department of Agriculture, 94 

2012a). The creation and update of WWF’s and Australia’s biogeographic frameworks have also 95 

been similar, in that the tacit knowledge of an expert panel was used to compile a suite of 96 

disparate spatial information to define regions within which geographic phenomena associated 97 

with differences in ecosystems’ characteristics (i.e., health, quality, and integrity) coincide 98 

(Dinerstein et al., 2017; Olson et al., 2001; Omernik, 2004; Thackway & Cresswell, 1995). The 99 

subjective, expert-based derivation of these two bioregionalizations has prompted criticism. 100 

Nonetheless, only WWF’s biomes and ecoregions have been scrutinized quantitatively, with 101 

their capacity to discriminate species diversity shown to perform better than a random allocation 102 

of boundaries (Smith et al., 2018), but worse in comparison to remotely sensed productivity 103 

clusters (Coops, Kearney, Bolton, & Radeloff, 2018). 104 

 105 

A plethora of studies seeking to develop new bioregionalization scenarios, and to assess 106 

the most widely accepted biogeographic templates, have emerged over the last decade (Ebach & 107 

Parenti, 2015; Kreft & Jetz, 2010). This revived interest is due to a number of recent 108 

developments. There is an increasing accessibility to ecological datasets that provide systematic 109 

information on species distributions, as well as on other facets of biodiversity (e.g., phylogenetic, 110 

and functional diversity) over large extents and at an increasingly finer resolution for many taxa 111 

(Daru et al., 2017; Ficetola, Mazel, & Thuiller, 2017). Alongside this, ecologists and 112 

biogeographers are increasingly using remotely sensed data to understand biodiversity patterns 113 
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and process across multiple spatial and/or temporal scales (Coops et al., 2018). Nonetheless, 114 

many—if not all—of the aggregative frameworks to emerge during the past 20 years would not 115 

have been possible without the use of high-performance computing infrastructure. Together with 116 

high volumes of processing power, spatially explicit aggregative and comparative techniques and 117 

new approaches to disentangle fundamental properties of ecological systems have also been 118 

introduced. These advances have opened the possibility to develop new algorithm-driven 119 

bioregionalizations that are objective, reproduceable, and tractable. However, whether the 120 

operational units of quantitative bioregionalizations—like in bioregionalizations defined by an 121 

expert-panel—can capture multiple facets of biodiversity remains highly contested and of much 122 

research interest among biogeographers (Ebach & Parenti, 2015; Mackey et al., 2008; Morrone, 123 

2018). 124 

 125 

Motivated by these problems with definition and implementation, we developed an 126 

integrative, data-driven approach to bioregionalization that leverages the information on species 127 

richness and composition within the bioregions of the IBRA framework. More specifically, we 128 

asked: 1) What would an IBRA framework look like when based empirically on the 129 

accumulation of species with increase in area (species-area relationship), and the within- and 130 

between-site species diversity (alpha and beta) for multiple taxonomic groups (hereafter referred 131 

as optimal discrete-species clusters)? 2) How well do WWF’ biomes and ecoregions match 132 

‘optimal’ discrete-species clusters? 3) Is the spatial configuration of optimal-discrete-plant and -133 

vertebrate clusters better associated with each other than with other discrete species clusters at 134 

lower taxonomic ranks, and when compared to the spatial association between WWF’s 135 

operational units (biomes and ecoregions) and those of optimal-discrete species clusters? By 136 
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answering those questions, we reveal a hierarchical system of spatial partitions that is 137 

ecologically interpretable, and thereby best suited to inform biodiversity policy, research, and 138 

conservation. 139 

 140 

2. Materials and Methods 141 

2.1 Data collection and processing 142 

We collected spatial information on climate (Hallgren et al., 2016), elevation (Earth Resources 143 

Observation and Science (EROS) Center, NA), vegetation (Department of Agriculture, 2018), 144 

soil (Australian Soil Resource Information System, 2013), lithology (Raymond et al., 2012), and 145 

occurrences of terrestrial species native to Australia (Atlas of Living Australia, NA), which after 146 

pre-processing to minimize errors and biases included 25,995 native species: 23,248 vascular 147 

plants, 233 amphibians, 1,201 birds, 349 mammals, and 964 reptiles (see Appendix S1 in 148 

Supporting Information for details). 149 

 150 

We downloaded version seven of IBRA subregions’ names and borders (Department of 151 

Agriculture, 2012b) to derive a spatially coherent four-tier hierarchical system of geographic 152 

operational units for Australia (see Appendix S1 for details)—where 410 IBRA subregions are 153 

nested within 85 IBRA bioregions. Based on the most recent version of WWF’s 154 

bioregionalization (Dinerstein et al., 2017) those bioregions are nested within 37 ecoregions, and 155 

those macrounits are themselves embedded in 7 broader-scale (and spatially coherent) biomes. 156 

We chose to use geographic operational units, because analyses based on lists of species within 157 

such units, as opposed to a grid-based approach, can highlight gradual changes in species 158 

diversity and are less likely to distort areal relationships due to heterogeneity in the sizes of 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458457
http://creativecommons.org/licenses/by-nc-nd/4.0/


species ranges (Kreft & Jetz, 2010; Kreft, Sommer, & Barthlott, 2006; Morrone & Escalante, 160 

2002). We deem this a desirable feature since our goal was to reveal a bioregionalization’s 161 

hierarchical system of discrete spatial clusters that is more directly relevant to biodiversity. 162 

 163 

We characterized Australia’ biophysical space by calculating the mean value of elevation 164 

and of nineteen climatic variables within IBRA subregions and bioregions. As the geographic-165 

based measures for lithology, soil, and vegetation, we computed the percentage cover for each of 166 

these factors’ categories relative to the size of subregions and bioregions (see Appendix S1 for 167 

details on excluded categories for these three discrete variables). Meanwhile, for the 168 

characterization of Australia’s biotic space, we derived presence-absence matrices for vascular 169 

plants and four vertebrate classes (amphibians, birds, mammals, and reptiles) by intersecting 170 

IBRA bioregions and subregions with both species occurrences with less than 20 records post-171 

equalization (i.e., a procedure to even out the difference in number of species occurrences among 172 

IBRA subregions by minimizing the variance within subregions’ size-classes, while maximizing 173 

the variance between size classes) and our set of empirical extent-occurrence maps for those 174 

species with at least 20 records (see Appendix S1 for details and rationality). We joined 175 

amphibian and reptile presence-absence matrices into a single group (herpetofauna) to ensure 176 

that there were at least 10 species per IBRA operational units across taxonomic groups; we also 177 

created a presence-absence matrix for all vertebrate species. In terms of species, amphibians and 178 

reptiles follow different biogeographic patterns (Powney, Grenyer, Orme, Owens, & Meiri, 179 

2010), yet as a broad taxonomic group (i.e., herpetofauna), exothermic species represent a huge 180 

array of evolutionary adaptations that allow them to cover a wide range of potential niches. We 181 

used ArcGIS v. 10.5.1 (2017) to harmonize spatial data to a common format and coordinate 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458457doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458457
http://creativecommons.org/licenses/by-nc-nd/4.0/


reference system (Australian Albers Equal Area; EPSG: 3577). All spatial calculations and 183 

feature engineering were done in R v. 3.6.3 (R Core Team, 2020) using several packages (see 184 

Appendix S1 for complete list). 185 

 186 

2.2 Metric to discriminate spatial clusters in biophysical space  187 

To assess the ecological significance of the ordination of geographic operational units of the 188 

IBRA framework based on biophysical factors, we used the species-area relationship (SAR) as a 189 

metric because SAR is one of the well-studied properties of ecological systems and has been 190 

applied in identifying priority areas for biodiversity conservation at large scales (Guilhaumon, 191 

Gimenez, Gaston, & Mouillot, 2008; Triantis, Guilhaumon, & Whittaker, 2012). Among nine 192 

alternative mathematical functions, we selected the logarithmic form of the power function to fit 193 

SAR for vascular plants and selected vertebrate species (bird, mammal, and herpetofauna) based 194 

on Akaike’s Information Criteria (AIC) (Akaike, 1974) (see Appendix S2 for details and results). 195 

 196 

2.3 Selection of biophysical factors and IBRA unit of analysis 197 

Our selected geographic and environmental covariates represent a complex dataset (n = 71 198 

variables) that describes IBRA subregions and bioregions by sets of variables structured into 199 

groups. We defined the distance between distinct IBRA spatial clusters at a hierarchical level to 200 

be based on an equal contribution of these five groups of continuous variables. To balance the 201 

influences of each group of variables in the description of distinct spatial clusters (Bécue-Bertaut 202 

& Pagès, 2008), we used multiple factor analysis (MFA) to assess the contribution of groups of 203 

variables to the characterization of IBRA operational units, and to identify the number of 204 

principal components needed to retain at least 90% of the variance, using their eigenvalues to 205 
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model the dissimilarity of IBRA operational units in the biophysical space instead of using 206 

geographic-based measures. 207 

 208 

Additionally, we assessed the relevance of MFA results to discriminate biophysical 209 

factors, if necessary, and to identify the most appropriate hierarchical level of the IBRA 210 

framework for revealing the nature of the IBRA framework differences in terms of species 211 

diversity. We did this by visually exploring the spatial coherence and ecological interpretability 212 

of the ordination of subregions and bioregions into seven clusters—matching the number of 213 

WWF biomes—based on principal components and the ‘static’ technique to cut dendrograms 214 

(see next section for details). This assessment identified IBRA bioregions as the most appropriate 215 

geographic unit of analysis compared with subregions and reduced the biophysical dataset’s 216 

structure to include the eigenvalues of the 27 principal components based on climate, lithology, 217 

soil, and vegetation (see Appendix S3 for details) when constructing the ordination structure of 218 

IBRA bioregions in biophysical space. We used ‘FactoMineR’ v. 1.42 (Lê, Josse, & Husson, 219 

2008) package in the program R to perform MFA, with variables standardized, and the name of 220 

IBRA subregions and bioregions set as non-active variables. 221 

 222 

2.4 Discontinuities of species diversity 223 

2.4.1 Hierarchical clustering 224 

We ordered IBRA bioregions using the Ward’s method as the clustering algorithm, and 225 

Euclidian distance and species turnover—measured with the Beta-Simpson index (Lennon, 226 

Koleff, GreenwooD, & Gaston, 2001; Simpson, 1943)—as the dissimilarity measures of 227 

bioregions in terms of principal components for our suite of biophysical factors (hereafter 228 
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referred as PC-biophysical) and species composition, respectively. Since no existing method is 229 

capable of maximizing both clustering criteria simultaneously (i.e., the amount of information 230 

retained in the dendrogram, and the clusters’ internal coherence), we chose to use Ward’s 231 

algorithm, because it has proven to perform best in the second criterion (Castro-Insua, Gómez-232 

Rodríguez, & Baselga, 2018; Kreft & Jetz, 2010). In addition, the identification of a hierarchical 233 

system of distinct spatial clusters that minimizes within-cluster and maximizes between-cluster 234 

dissimilarity (i.e., clusters’ internal coherence) in terms of biodiversity is a highly desirable 235 

outcome for any bioregionalization (Ebach & Parenti, 2015; Kreft & Jetz, 2010), and aligns 236 

clearly with our study’s overarching goal. We used the ‘stats’ v. 3.6.3 (R Core Team, 2020), and 237 

the ‘betapart’ v. 1.5.1 (Baselga & Orme, 2012) packages to compute dissimilarity matrices. 238 

While bioregions’ cluster analysis based on species compositional dissimilarity was done using 239 

‘stats’ too, we used the ‘FactoMineR’ (Lê et al., 2008) package to conduct that analysis in the 240 

PC-biophysical dissimilarity space. 241 

 242 

2.4.2 Optimal discrete-species clusters  243 

We cut the dendrograms resulting from the hierarchical cluster analyses of IBRA bioregions in 244 

the PC-biophysical space and the dissimilarity in species composition for five taxonomic groups 245 

(birds, mammals, herpetofauna, vertebrate, and vascular plants) using different techniques to 246 

identify sets of prominent, spatially coherent biodiversity clusters. This included: defining 247 

continuous dendrogram branches based on a desired number of clusters (‘static’ technique), 248 

pruning branches based on their structure in the dendrogram (‘dynamic’ technique; specifically a 249 

bottom-up algorithm, called Dynamic Hybrid Cut) (Langfelder, Zhang, & Horvath, 2008), and/or 250 

identifying the intersection point between two straight lines that best fit an evaluation curve by 251 
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minimizing the total root mean square error (‘L’ technique) (Salvador & Chan, 2004). We used 252 

these pruning techniques together with goodness-of-fit and parsimony metrics (e.g., R-squared, 253 

and AIC and/or Bayesian Information Criteria – BIC) to discriminate prominent clusters in terms 254 

of species accumulation as the area sampled is increased (SAR models for prominent clusters in 255 

the PC-biophysical space), and the within- and across-variance of species richness and 256 

composition (alpha and beta diversity models, respectively). We selected the most parsimonious 257 

yet ecologically coherent model of the species-area relationship, and pairs of the best models of 258 

the variance in alpha and beta diversity, respectively, as the optimal discrete-species clusters (see 259 

Appendix S4 for methodological details). 260 

 261 

2.5 An ecologically meaningful algorithmic IBRA framework 262 

To reveal a hierarchical system of IBRA bioregions that meaningfully aggregates species 263 

diversity from-regional-to-global scale, we examined the ecological interpretability of our suite 264 

of eleven optimal discrete-species clusters (i.e., ten optimal partitions of species diversity, along 265 

with the optimal partition of SAR). We did this by calculating the slope and the standard error of 266 

the regression line of the species-area relationship across five taxonomic groups for (i) the spatial 267 

configuration of the optimal SAR model and (ii) the bespoke WWF’s classification of IBRA 268 

bioregions into seven biomes. We then plotted the distribution, mean, median, and standard 269 

deviation of the merging height of nodes in the dendrograms of species composition, to visualize 270 

differences in the dissimilarity distance within and across the five target taxonomic groups. 271 

 272 

We assessed the spatial coherence of optimal discrete-species clusters visually, and then 273 

quantitatively by estimating how well WWF’s classification of IBRA bioregions into biomes and 274 
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ecoregions captured information on species richness and turnover stored in our set of maps for 275 

the optimal discrete-species clusters. We computed an overall global measure of association—276 

called the ‘V-measure’ and implemented in the ‘sabre’ v. 0.3.2 (Nowosad & Stepinski, 2018) 277 

package—to quantify the degree of spatial association between these maps. The 0-1 range of the 278 

V-measure is grounded in information theory and interpretable in terms of analysis of variance, 279 

where 0 indicates absence of spatial association between two maps and 1 when the spatial 280 

association is perfect–respectively meaning that the amount of mutual information of a pairwise-281 

map comparison totally differs or is identical. We computed this global measure of association to 282 

determine whether the amount of information on species richness and composition stored in the 283 

optimal discrete-plant clusters and the optimal discrete-vertebrate clusters is higher with each 284 

other than with other discrete-species clusters at lower taxonomic ranks, and then compared 285 

these results with those for the WWF ecoregions. 286 

 287 

3. Results 288 

3.1 Optimal discrete-species clusters 289 

To identify an optimal partition of IBRA bioregions in the PC-biophysical space, we fitted 150 290 

SAR models across five taxonomic groups to five sets of prominent clusters that were defined 291 

using three different dendrogram cutting techniques (see methods and Appendix S4 for details). 292 

Based on AIC scores, the best-selected SAR models across this set of prominent clusters 293 

frequently included the same grouping of bioregions as the best distinct spatial cluster among 294 

five taxonomic groups, except in three cases: SAR of plants where the seven groups were 295 

defined using the ‘dynamic’ technique, and SAR of mammals in prominent clusters with seven 296 

and nine groups based on ‘static’ and the ‘L’ techniques, respectively (Table 1). 297 
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< Insert table 1 around here > 298 

 299 

These three special cases also had the highest variance in species richness explained by 300 

size of bioregions (Table 1). In the prominent clusters to which two of them belong (i.e., 301 

prominent clusters with seven and nine groups based on ‘static’ and the ‘L’ techniques), the 302 

Tropical and Subtropical Moist Broadleaf Forests biome was reconstructed (Fig. S5.5 c and e in 303 

Supporting Information). Yet, the rate of increase in the number of species per standard area 304 

differed greatly among taxonomic groups for this biome (Biome 7 in Fig. 1b), with the slope of 305 

SAR models for vertebrates and vascular plants being 1.5 and 5.5 the slope of the bird SAR 306 

model. Considering this as a whole, the partition of bioregions into seven groups using the 307 

‘dynamic’ tree-cutting technique—which based on its formulation is a technique that improves 308 

the detection of outlying group members in a prominent cluster (Langfelder et al., 2008)—was 309 

finally selected as the optimal partition for changes in species richness per standard area (i.e., 310 

optimal partition for SAR). 311 

 312 

Based on our approach to discriminate prominent clusters in terms of the variance of 313 

alpha or beta diversity across groups of bioregions in sets of prominent clusters (see Appendix 314 

S4), the clearest break in log-likelihood of the within- and across-variance of species richness 315 

(i.e., ANOVA models for birds, mammals, herpetofauna, vertebrate, and vascular plants) was 316 

evident when dendrograms of compositional dissimilarity were cut using the ‘dynamic’ 317 

technique (Fig. S6.6). Notably, the optimal discrete-species cluster for vertebrates’ alpha 318 

diversity was defined using only the prominent cluster with the lowest BIC score rather than the 319 

agreement between AIC and BIC scores, as done for the other taxonomic groups. Likewise, the 320 
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highest ratio between the sum of multiple-site measures of compositional dissimilarity across 321 

groups of bioregions in sets of prominent clusters and the multiple-site measure of compositional 322 

dissimilarity across Australia’s bioregions appeared stable across taxa—particularly for birds, 323 

mammals, and vascular plants—when prominent clusters were defined by ‘dynamic’ tree-cutting 324 

technique (Fig. S7.7). As in the optimal partition for SAR, optimal partitions of alpha and beta 325 

diversity among all five taxonomic groups were also more appropriately identified when 326 

dendrograms of species compositional dissimilarity were cut using the ‘dynamic’ technique, and 327 

thereby this suite of eleven optimal discrete-species clusters were used in subsequent analysis. 328 

< Insert figure 1 around here > 329 

 330 

3.2 An ecologically meaningful IBRA framework 331 

Using the spatial configuration of our suite of optimal clusters (Fig. S8.8 b–l) to examine what an 332 

IBRA framework would look like when based empirically on patterns of species diversity, we 333 

found that while the most parsimonious, ecologically coherent model of Australia’s biophysical 334 

dissimilarity (i.e., optimal partition of SAR)—like WWF’s biome map—also aggregated 335 

bioregions into seven groups, our algorithmically driven bioregionalization differed from the 336 

bespoke WWF’s expert-derived classification (Fig. 1 a). When assessing the ecological 337 

significance of the spatial configuration of these two biogeographic scenarios—based on a log-338 

log implementation of the power function to fit the species-area relationship—we found that the 339 

increase in species richness with area varies among distinct spatial regions and taxonomic groups 340 

within regions (Fig. 1 b and c). Notably, similar—if not the same—patterns of species richness 341 

per standard area across taxonomic groups were detected between two regions of the optimal 342 

partition of SAR and those of WWF’s expert-derived classification that overlapped (i.e., Group 1 343 
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vs. Biome 4 - Temperate Broadleaf & Mixed Forests; and Group 3 vs. Biome 6 - Tropical & 344 

Subtropical Grasslands, Savannas & Shrublands), despite geographical differences due to the 345 

number of bioregions within their boundaries.  346 

< Insert figure 2 around here > 347 

 348 

When hierarchical systems of IBRA bioregions were defined based on pairs of the best 349 

models of the variance in species richness and multiple-site compositional dissimilarity (i.e., 350 

optimal partitions of alpha and beta diversity), we found that like for the optimal partition of 351 

SAR, the distinct spatial clusters for the alpha- and beta-diversity of birds, mammals, 352 

herpetofauna, vertebrates and vascular plants largely included adjacent bioregions (Fig. S8.8 c–353 

l), even with no explicit spatial aggregation or distance penalty being imposed on the algorithm. 354 

For vertebrate and vascular plant species, the spatial configuration and the numbers of optimal 355 

discrete clusters were the same for their alpha and beta diversity (Fig. S8.8 i–l)—with distinct 356 

plant-species areas almost perfectly collapsing within those for vertebrates (Fig. 2). Further, the 357 

distribution of the height of nodes in the species composition dendrograms was right skewed 358 

across all taxa, with the variation of compositional dissimilarity being larger for herpetofauna 359 

and vascular plants (Fig. 3). 360 

< Insert figure 3 around here > 361 

 362 

Within an information-theoretical analytical framework (Nowosad & Stepinski, 2018), 363 

the degree of spatial association between WWF’s biome map and those of optimal discrete-364 

species clusters was moderate (Table 2), ranging from 50% of the information shared between 365 

the biome map and the spatial configuration of beta diversity in birds, and 58% for alpha and 366 
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beta diversity in vascular plants. At the ecoregional level, WWF’s bioregionalization of Australia 367 

captured an additional 4 to 25% of information on patterns of species diversity embodied within 368 

our suite of optimal clusters, except when compared to the optimal discrete-bird map of beta 369 

diversity (i.e., - 4.3% spatial association between maps). The spatial concordance of optimal 370 

discrete-plant and -vertebrate clusters was slightly worse with each other than with other optimal 371 

discrete-species clusters at lower taxonomic ranks only for the pairwise-map comparisons 372 

between discrete-vertebrate and -mammal clusters (Table 2), for which the loss of information on 373 

alpha and beta diversity ranged from 0.8% to 4%, respectively. When contrasting the spatial 374 

association results of these two biogeographic scenarios, an algorithmically driven IBRA 375 

framework of discrete-plant and -vertebrate clusters retained more information on species alpha 376 

and beta diversity patterns within bioregions across multiple taxonomic groups than WWF’s 377 

hierarchical system of biomes and ecoregions. Nonetheless, the bespoke expert partitioning of 378 

Australia (IBRA) performed slightly better at retaining differences in species richness between 379 

bioregions of varying sizes (Table 2). 380 

< Insert table 2 around here > 381 

 382 

3. Discussion 383 

Just as endemism is a commonly used basis for bioregionalizations (Ebach & Parenti, 2015; 384 

Morrone, 2014), species’ intrinsic traits are also responsible for defining ecologically meaningful 385 

clusters at large scale. We found strong spatial concordances across taxonomic groups and 386 

patterns of species richness and composition among the suite of optimal discrete-species clusters, 387 

signaling the effect that species’ biology and evolutionary history have in the identification of 388 

distinct areas of co-occurring species. The variation of compositional dissimilarity across our 389 

five target taxonomic groups (Fig. 3) reflects the overall small distributions of species with 390 
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restricted range and/or low occupancy (Kreft & Jetz, 2010) and suggests that species’ dispersal 391 

abilities are important determinants of the emergent biogeographic divisions. Furthermore, 392 

having discrete plant-species areas almost perfectly nested within larger vertebrate-species areas 393 

suggests that interspecific relationships are also involved in explaining most of the variation in 394 

species diversity. Consequently, basing a hierarchical system of bioregions on plants and 395 

vertebrate optimal clusters is ecologically intuitive, because plants are essential to all animals, 396 

and interspecific interactions are largely responsible for generating community structure (Wisz et 397 

al., 2013). 398 

 399 

Underpinning hierarchical systems of bioregions solely in the analysis of geographic and 400 

environmental covariates is not necessarily so strong as to capture the distributional patterns of 401 

multiple taxa in unison. Variation in the z-values (log-slopes) of the species-area relationship 402 

among discrete macrounits of biodiversity, such as the case of biomes, has already been 403 

documented (Kier et al., 2005). Yet, when combined with both the variability of z-values across 404 

taxonomic groups, and the parsimony of distinct spatial clusters for beta diversity with respect to 405 

those for alpha diversity (Fig. S8.8 c–l), it suggests that although environmental gradients are not 406 

impenetrable barriers to the arrangement of distinct communities, they can be important 407 

determinants of species richness within the structure of those communities. This demonstrates 408 

that while environmental heterogeneity is a well-established driver of species richness (Stein, 409 

Gerstner, & Kreft, 2014), defining a hierarchical system of bioregions that meaningfully 410 

aggregates biodiversity should not rely on species richness alone, because it varies among higher 411 

taxonomic groups, and does not necessarily have a positive relationship with species endemism 412 

(Koleff & Gaston, 2002). 413 
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 414 

Considering that WWF’s biomes were defined using associations of climate and 415 

dominant vegetation forms and structure to broadly classify terrestrial ecosystems (Kier et al., 416 

2005; Mackey et al., 2008), the relatively moderate degree of the overall spatial association 417 

between WWF’s biomes and our eleven optimal-cluster maps was expected. This finding aligns 418 

qualitatively with those reported in recent studies (Coops et al., 2018; Edler et al., 2017), and 419 

they together give strength to our conclusion that complex interactions between biophysical 420 

factors and species’ intrinsic attributes are reflected in a nested hierarchy of bioregions (Sexton, 421 

McIntyre, Angert, & Rice, 2009). This means that hierarchical bioregionalization systems must 422 

account for variability in the distributional patterns of different taxa (Morrone, 2018) if they are 423 

to direct more efficient and appropriately targeted biodiversity research, policy, and conservation 424 

across multiple spatial or temporal planning scales. 425 

 426 

Bias in biodiversity conservation is systemic (Butchart et al., 2015) and usually attributed 427 

to conservation efforts being implemented, for practical reasons, in areas of low agricultural 428 

productivity (Joppa & Pfaff, 2009) and/or targeting specific groups of species, such as 429 

charismatic species (Colléony, Clayton, Couvet, Saint Jalme, & Prévot, 2017). However, 430 

biogeographic frameworks might also contribute to this bias. When comparing WWF’s 431 

hierarchical system (ecoregions nested within biomes) to an algorithmic, data-driven hierarchical 432 

system of IBRA bioregions based on plant- and vertebrate-oriented optimal areas, the difference 433 

in the amount of information on Australian biodiversity patterns that each tier of these two 434 

bioregionalization scenarios captured was greater for the (bespoke) WWF’s expert-derived 435 

classification, with neither biomes nor ecoregions outperforming an integrative, data-driven 436 
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alternative at retaining information on alpha and beta diversity across taxa (Table 2). This 437 

finding suggests that—from inception—systematic conservation planning may have been 438 

undermined by how a particular biogeographic framework was defined, which in the case of 439 

WWF’s global bioregionalization included biotopic and biocoenotic classification approaches 440 

(Mackey et al., 2008). This is troublesome if we consider that, in addition to being one of the 441 

most widely used biogeographic templates for biodiversity conservation, WWF’s ecoregions 442 

have served as the basis of other well-established conservation strategies at global scale 443 

(Lamoreux et al., 2006). Given that spatial information on biodiversity patterns is essential for 444 

effective biodiversity conservation, the design of environmental policies, the establishment of 445 

protected area networks, and the implementation of more recent in situ interventions (e.g., 446 

rewilding, species’ translocations), there is a substantial need for a hierarchical system of 447 

geographic operational units that is ecologically interpretable across broad spatial and taxonomic 448 

breaths. 449 

 450 

Over the past 200 years, the history of bioregionalization in Australia has been driven as 451 

much by changes in foci (i.e., from exploration, to the conservation of biodiversity) as by 452 

theoretical and methodological advances and data availability (Ebach, 2012). Multiple studies 453 

have found that different biogeographic templates, encompassing those both qualitative and 454 

quantitative perspectives, were mostly congruent with each other (Bloomfield, Knerr, & Encinas-455 

Viso, 2018; González-Orozco, Laffan, Knerr, & Miller, 2013; González-Orozco, Thornhill, 456 

Knerr, Laffan, & Miller, 2014). Yet, even when applying similar biogeographic approaches to 457 

partition Australia’s landscape, phyto- and zoo-geographers disagreed on the boundaries of some 458 

areas of Australia, such as the arid region (Ebach & Murphy, 2020). In our algorithmic, data-459 
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driven model, the partition of arid Australia is greater than in any of the bioregionalization 460 

scenarios of Bloomfield et al. (2018). Yet, despite methodological differences, a visual 461 

comparison of these two approaches’ bioregionalization scenarios suggests that geographic 462 

operational units of optimal discrete-vertebrate and -plant clusters in arid Australia are spatially 463 

nested within the zones delineated in the study of Bloomfield et al. (2018), which the authors in 464 

turn argued to be spatially consistent with Eremaean biogeographic region (i.e., arid Australia 465 

based on its flora).  466 

 467 

As a basis for developing ecologically sensible bioregionalizations that are both 468 

methodologically robust and repeatable, we argue that this new approach is highly innovative 469 

and can be applied in many contexts. Nonetheless, there are some caveats. First, no consensus 470 

exists on how to decisively identify biogeographic divisions and to delineate their boundaries 471 

(Antonelli, 2017; Morrone, 2018). Yet, the plethora of aggregative approaches to emerge in 472 

biogeographic research has been instrumental in our understanding that any single 473 

bioregionalization cannot hope to consistently capture the distributional patterns of multiple taxa 474 

(Coops et al., 2018; Edler et al., 2017; Kreft & Jetz, 2010; Vilhena & Antonelli, 2015). While 475 

our study reinforces this conclusion, we do show that a hierarchical system more directly 476 

relevant to biodiversity can be derived systematically by leveraging information on species 477 

diversity and composition within a bioregionalization’s geographic operational units. Second, 478 

biased, and inadequate knowledge on species’ distribution can confound the identification of 479 

natural biogeographic areas (Pimm et al., 2014; Whittaker et al., 2005). However, a hierarchical 480 

bioregionalization system based on our algorithmic approach can be readily and transparently 481 

revised to reflect the increasing availability of distributional data, and the species’ responses to 482 
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global and regional environmental changes. Third, because diversity is unevenly distributed 483 

between taxa, as well as in space and time (Whittaker et al., 2005) other biodiversity dimensions 484 

beyond species might be relevant. As functional and phylogenetic data continue to accumulate, 485 

and comparative approaches are advanced, a similar approach might be used to investigate 486 

whether a general bioregionalization is maintained under such patterns, and how the different 487 

dimensions of biodiversity interrelate within a particular biogeographic framework. 488 

 489 

This work demonstrates how a systematic, objective examination of the patterns of 490 

species diversity within the geographic operational units of a biogeographic template—in this 491 

study, 85 IBRA bioregions—can be used to develop a rigorous hierarchical system of discrete 492 

spatial partitions that is directly relevant for aggregating biodiversity. The use of existing, 493 

geographically restricted operational units, which might also be delineated using quantitative 494 

techniques, makes our approach not only generic (Mackey et al., 2008), but also sufficiently 495 

flexible to account for the increasing knowledge of biodiversity. As such, this robust, data-driven 496 

method can underpin the design and implementation of in situ conservation initiatives in other 497 

regions and even globally, inform policy for meaningful environmental and biodiversity 498 

outcomes across multiple planning scales, and bolster interests in the factors and the processes 499 

driving discontinuities of biodiversity. This is crucial, given the effect of human-mediated habitat 500 

transformations on the boundaries of biogeographical regions globally. 501 

  502 
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be provided should the manuscript be accepted for publication]. 684 
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Table 1. Best models of the species-area relationship (SAR). 694 

Taxa 

Clusters (9)   Clusters (7)   Clusters (5) 

‘L’ 

technique 
 WWF’s 

Biomes 
  

‘Static’ 

technique 
  

‘Dynamic’ 

technique 
 ‘Static’ 

technique 
  

‘Dynamic’ 

technique 

n z R2   n z R2   n z R2   n z R2   n z R2   n z R2 

Birds 14 0.10 0.43  23 0.14 0.47  14 0.10 0.43  14 0.10 0.43  14 0.10 0.43  14 0.10 0.43 

Mammals 5 0.62 1.00  4 0.03 0.01  20 0.50 0.85  14 0.13 0.26  14 0.13 0.26  14 0.13 0.26 

Herpetofauna 14 0.18 0.64  23 0.21 0.73  14 0.18 0.64  14 0.18 0.64  14 0.18 0.64  14 0.18 0.64 

Vertebrate 14 0.13 0.52  23 0.17 0.56  14 0.13 0.52  14 0.13 0.52  14 0.13 0.52  14 0.13 0.52 

Vascular plants 14 0.13 0.20   20 0.15 0.17   14 0.13 0.20   6 0.40 0.89   14 0.13 0.20   14 0.13 0.20 

Note: SAR in a log-log implementation of the power function for the partition of bioregions of the Interim Biogeographic 695 

Regionalization for Australia (IBRA) framework based on the World Wildlife Fund’s (WWF) expert classification of Australia into 696 

seven biomes (Dinerstein et al., 2017), and for the partition of the hierarchical cluster analysis of the principal components of 697 

Australia’s biophysical dissimilarity space of IBRA bioregions into a pair of five and another of seven groups using the ‘static’ and 698 

‘dynamic’ tree-cutting techniques, and nine groups defined by the ‘L’ technique. Best model corresponds to the most parsimonious 699 

SAR model for birds, mammals, herpetofauna, vertebrates, and vascular plants based on the Akaike’s Information Criteria (i.e., best-700 

selected SAR models). The number of bioregions in groups/biomes (n), the slope of SAR (z), and the amount of variance explained by 701 

SAR model (R2) are reported. The color of cells match those of the discrete spatial clusters from which these values were estimated 702 

(see Fig. S3.4 a and Fig. S5.5 in Supporting Information for WWF biomes and the best-selected SAR models, respectively). The 703 

number of partitions of prominent discrete clusters in the PC-biophysical space are shown between parenthesis. 704 
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Table 2. Mutual information on species richness and composition across pairwise-map 706 

comparisons.  707 

Optimal clusters’ maps 

WWF’s bioregionalization  Algorithm-driven IBRA framework 

Biome’s 

map 

Ecoregion’s  

map 

 Discrete-vertebrate’s  

map 

Discrete-plant’s 

map 

V-measure 

(%) 

V-measure 

(%) 

 V-measure (%) V-measure (%) 

Biophysical heterogeneity      

Species-area 

relationship 

57.7 61.9  53.5 54.8 

Within-site diversity 

(Alpha) 

     

Birds 53.3 76.8  83.0 81.9 

Mammals 55.9 69.4  90.5 82.2 

Herpetofauna 53.1 77.6  80.2 83.7 

Vertebrates 56.4 70.4  100.0 86.5 

Vascular Plants 58.0 77.8  86.5 100.0 

Between-site diversity 

(Beta) 

     

Birds 50.0 45.7  68.5 60.9 

Mammals 54.8 67.5  87.3 79.0 

Herpetofauna 54.3 58.3  70.9 71.1 

Vertebrates 56.4 70.4  – 86.5 

Vascular Plants 58.0 77.8  86.5 – 

Note: Within an information-theoretical analytical framework (Nowosad & Stepinski, 2018), the 708 

spatial association between the World Wildlife Fund’s (WWF) biomes and ecoregions of 709 

Australia (Dinerstein et al., 2017) and our suite of eleven optimal discrete-species cluster maps 710 

(Fig. S8.8) were computed to quantify the overall degree of similarity between these maps. This 711 

global index, called the V-measure, changes from 0 for no spatial association between two maps 712 

to 1 when perfect. ‘–’ indicates that degree of spatial association was not computed because 713 

pairwise map comparison would have been with the optimal discrete-species clusters itself. 714 
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 716 

FIGURE 1 Relationship between biophysical factors and species richness. (a) Overlap of 717 

distinct spatial clusters of Australia’s bioregions based on the World Wildlife Fund’s (WWF) 718 

biomes (Dinerstein et al., 2017), and the optimum partition for changes in species richness per 719 

standard area (i.e., optimal partition for SAR), with the number of bioregions in biomes/groups 720 

found between parentheses. Species-area relationship (SAR) in a log-log implementation of the 721 

power function for the aggregations of bioregions according to (b) WWF’s biomes and (c) 722 

groups of the optimal partition for SAR. Point represents the slope (z-value) of the shape of 723 

SAR, and line shows the standard error of the regression line. Due to Biome 3 including only one 724 

bioregion, neither slope nor the standard error could be computed, whereas only the slope could 725 

be estimated for Biome 7. Biome 1 = Deserts & Xeric Shrublands; Biome 2 = Mediterranean 726 

Forests, Woodlands, Scrub; Biome 3 = Montane Grasslands & Shrublands; Biome 4 = 727 

Temperate Broadleaf & Mixed Forests; Biome 5 = Temperate Grasslands, Savannas & 728 
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Shrublands; Biome 6 = Tropical & Subtropical Grasslands, Savannas & Shrublands; and Biome 729 

7 = Tropical & Subtropical Moist Broadleaf Forests. 730 
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 732 

FIGURE 2 Spatial configuration of the optimal clusters for species diversity. (a) Vertebrate 733 

and (b) vascular plant species. Ellipses highlight the areas where plant clusters do not collapse 734 

within vertebrates. The number of bioregions in distinct spatial clusters are found between 735 

parentheses. 736 
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 738 

FIGURE 3 Height of nodes in five dendrograms. Kernel density plot shows the distribution of 739 

the nodes’ height for the spatial turnover of bird, mammal, herpetofauna, vertebrate, and vascular 740 

plant species. Color circle corresponds to the height of nodes as clusters are merged. Point and 741 

crossbar respectively represent the mean and median dissimilarity among nodes’ height, and dark 742 

line shows the standard deviation. 743 
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