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ABSTRACT 32 

 33 

Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that 34 

benzene exposure is associated with an increased risk for cardiovascular disease. However, it is 35 

unclear whether benzene exposure is sufficient to induce cardiovascular toxicity. We examined 36 

the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air 37 

exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation 38 

significantly increased the biomarkers of endothelial activation and injury including endothelial 39 

microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, 40 

lung endothelial microparticles, and activated lung and endothelial microparticles while having no 41 

effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and 42 

biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we 43 

exposed human aortic endothelial cells to benzene metabolites. Of metabolites tested, 44 

trans,trans-mucondialdehyde (10 µM, 18h) was most toxic. It induced caspases-3, -7 and -9 45 

(intrinsic pathway) activation, and enhanced microparticle formation by 2.4-fold. Levels of platelet-46 

leukocyte aggregates, platelet macroparticles, and proportion of CD4+ and CD8+ T-cells were also 47 

significantly elevated in the blood of the benzene-exposed mice. We also found that benzene 48 

exposure increased the transcription of genes associated with endothelial cell and platelet 49 

activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the 50 

lungs and the liver. Together, these data suggest that benzene exposure induces endothelial 51 

injury, enhances platelet activation and inflammatory processes; and circulatory levels of 52 

endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are 53 

excellent biomarkers of cardiovascular toxicity of benzene.  54 

 55 
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INTRODUCTION 63 

Environmental pollution accounts for 9 million pre-mature deaths worldwide, and two-third of 64 

these deaths are attributed to air pollution (1). Benzene, a volatile organic compound (VOC), is 65 

abundant both in outdoor and indoor air. Ranked number sixth on the Agency for Toxic 66 

Substances and Disease Registry (ATSDR) priority list, benzene is one of the top twenty 67 

chemicals generated by industrial sources in the United States. It is used to produce industrial 68 

chemicals, rubbers, dyes, lubricants, detergents, etc. (2). The United States Occupational Safety 69 

and Health Administration has set the occupational benzene exposure limit of 1 ppm (3), however, 70 

benzene exposure in excess of 100 ppm is still prevalent in the developing countries (4). High 71 

levels of benzene (>50 ppm) are also generated by tobacco products such as water pipes, cigars, 72 

pipe tobacco, and cigarettes (5, 6). Petroleum products and automobile exhaust also contain 73 

copious amount of benzene, especially near the emission source (7-9). Indoor sources of 74 

benzene include vapor or gases released by benzene containing products such as paints, 75 

furniture wax, and detergents (2). The atmospheric benzene exposure is likely to be higher in 76 

people living near gasoline refineries, petrochemical industries, gasoline fueling stations, and 77 

Superfund and other hazardous waste sites.   78 

 79 

Excessive rates of type 2 diabetes and stroke have been found in an evaluation of 720,000 80 

individuals living within a half-mile of 258 Superfund sites that were associated with excessive 81 

VOC (such as benzene and trichloroethylene) exposure (10). We observed that environmental 82 

benzene exposure is associated with increased CVD risk scores and augmented levels of sub-83 

clinical markers of cardiovascular disease (11-14). Others have shown that benzene exposure 84 

increases the risk for arterial hypertension (15, 16), rhythm abnormalities (15), and heart 85 

failure(17). An assessment of excessive amount of VOC exposure and cardiovascular disease 86 

(CVD) mortality shows that in a single-pollutant model, benzene, propylene, and xylene are all 87 

significantly associated with CVD mortality (18).  In a cohort study of intra-urban variation in VOCs 88 
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and mortality, similar associations were found between CVD mortality and exposure to benzene, 89 

hexane, and total hydrocarbon (19). However, it is unclear whether benzene exposure is sufficient 90 

to cause cardiovascular disease or injury. Therefore, using a well-controlled mouse model, we 91 

systematically examined the effect of inhaled benzene exposure on biomarkers of cardiovascular 92 

toxicity.  93 

 94 

MATERIALS AND METHODS 95 

 96 

Murine Benzene Exposure: Seven-week-old male C57BL6/J mice were obtained from Jackson 97 

laboratories, Bar Harbor, ME. Mice were treated according to American Physiological Society 98 

Guiding Principles in the Care and Use of Animals, and all protocols were approved by University 99 

of Louisville Institutional Animal Care and Use Committee. Mice (n=24/group) were housed under 100 

pathogen-free conditions in the University of Louisville vivarium under controlled temperature and 101 

12h light/12h dark cycle. Mice were maintained on a standard chow diet (Rodent Diet 5010, 102 

LabDiet, St. Louis, MO) containing 4.5% fat by weight). Starting at eight weeks of age mice were 103 

exposed to 50 ppm benzene (6 h/day, 5days/week) for 6 weeks as described before(20, 21). Mice 104 

exposed to HEPA-filtered air only served as a control. To examine the effect of benzene exposure 105 

on the susceptibility to inflammation, a sub-set of benzene and air-exposed mice (n=24/group) 106 

were treated with 0.5 mg/kg lipopolysaccharides (LPS, Sigma Cat# 2630, Lot# 028M4022V; i.p). 107 

At the end of the exposure protocol, mice were euthanized with sodium pentobarbital (150 mg/kg 108 

body weight; i.p.) and blood and tissues were harvested. 109 

 110 

RNA-seq analysis:  One µg of DNase-I-treated total RNA, isolated from the liver and lung 111 

tissues, was used for the cDNA library construction for poly-A RNA-seq at Novogene, 112 

Sacramento, CA using NEBNext Ultra II RNA Library Prep Kit for Illumina (New England BioLabs, 113 

#E7775) according to manufacturer’s protocol. After a series of terminal repair, poly-adenylation, 114 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458364doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.31.458364
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

and sequencing adaptor ligation, the double-stranded cDNA library was completed following size 115 

selection and PCR enrichment. The resulting 250-350 bp insert libraries were quantified using a 116 

Qubit 2.0 fluorometer (Thermo Fisher Scientific) and quantitative PCR. The size distribution was 117 

analyzed using an Agilent 2100 Bioanalyzer. Qualified libraries were sequenced on an Illumina 118 

Novaseq 6000 system using a paired-end 150 run (2×150 bases). A minimum of 20 million raw 119 

reads were generated from each library. The RNA-seq data generated in this study were 120 

deposited in the Gene Expression Omnibus (GSE). 121 

 122 

For data analysis, FASTQ files were trimmed using fastp(22) (version 0.20.0) and the following 123 

parameters: --cut_by_quality5 --cut_by_quality3 --detect_adapter_for_pe  --124 

overrepresentation_analysis --correction  --trim_front1 7 --trim_front2 7. The alignment to the 125 

mouse genome (GRCm38.90) was performed using STAR(23) (version 020201) and the following 126 

parameters: --runMode alignReads --runThreadN 8  --outSAMstrandField intronMotif --127 

outSAMmode Full --outSAMattributes All  --outSAMattrRGline  --outSAMtype BAM 128 

SortedByCoordinate --limitBAMsortRAM 45000000000 --quantMode GeneCounts --129 

outReadsUnmapped Fastx  -outSAMunmapped within. Differential expression analysis was 130 

performed using edgeR(24)  (version 3.10). The RLE (relative log expression) method was used 131 

to normalize the data. Gene ontology analysis was performed with the DAVID Bioinformatics 132 

Resources 6.8 (25). A Venn diagram was drawn using Bioinformatics & Evolutionary Genomics 133 

website (26). Heatmaps were created with Multiple Experiment Viewer (MEV) (27). 134 

 135 

Bone marrow derived stem cells: Bone marrow cells were isolated from the femur and tibia and 136 

separated by Ficoll gradient. The cells were washed twice with PBS containing 1% BSA 137 

(PBS/BSA) and incubated with Fc Block (CD32/CD16) anti-mouse antibody for 10 minutes at 4°C 138 

to prevent non-specific binding. Samples were incubated (30 min, 4ºC) with antibody cocktails 139 

containing Lineage-Pacific Blue, ckit-APC-Cy7, Sca-FITC, and CD34-Alexa Fluor 700 antibodies, 140 
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and analyzed on an LSR II flow cytometer for 90 seconds on high speed. Cell populations were 141 

gated using the FlowJo software and normalized to the total number of cells.  142 

 143 

Microparticles: Microparticles in the peripheral blood were measured as described before (28, 144 

29) with slight modifications. Briefly, plasma was centrifuged for 2 min (11,000xg at 4°C) to 145 

remove residual cells and debris, and the supernatant was aspirated and centrifuged for 45 min 146 

(17,000xg at 4°C). The resulting microparticle pellet was resuspended in Annexin V Buffer pre-147 

filtered through 0.22µm syringe filter and incubated with the anti-mouse FcBlock (CD32/CD16) 148 

for 10 minutes.  Endothelial microparticles were stained with the antibody cocktail containing 149 

Annexin V-Pacific Blue, Flk-APC, Sca-PECy7, CD62E-PE and CD143-FITC for 30 min.  Platelet 150 

microparticles were stained in a separate tube with Annexin V-Pacific Blue and platelet CD41-151 

FITC antibody. Identical samples with no antibodies were utilized as controls for the gating. 152 

Counting beads, added to individual samples were used for data normalization. Samples were 153 

analyzed on BD LSR II flow cytometer for 5 min at low speed. Microparticle numbers were 154 

quantified in gated populations <1µm in size and positive for Annexin V staining using the FlowJo 155 

software.  Microparticle subpopulations were further identified based on expression of various 156 

surface markers.  157 

 158 

To examine the effect of benzene metabolites on endothelial cell apoptosis and microparticles 159 

formation in vitro, human aortic endothelial cells (HAEC) were incubated with hydroquinone - HQ, 160 

Catechol - Cat, and MA (10 µM each) for 18h, and the apoptosis was examined by western blotting 161 

using anti-cleaved-caspase-3, -cleaved caspase-7, -cleaved caspase-8, and cleaved caspase-9 162 

antibody (Cell Signaling Technology, Danvers, MA). The microparticles (<1µm, Annexin V+) 163 

released in the cell culture medium were analyzed by flow cytometry. 164 

 165 
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Synthesis of trans,trans-Mucondialdehyde: trans,trans-Mucondialdehyde (MA) was prepared 166 

from muconic acid (Sigma-Aldrich, St. Louis, MO) by a recently developed one-pot acid-to-167 

aldehyde reduction protocol (30)  168 

 169 

Markers of endothelial function and inflammation: Levels of soluble adhesion molecules, 170 

markers of angiogenesis, and cytokines and chemokine in the plasma were measured by 171 

multiplex arrays at Eve Technologies (Calgary, Alberta, Canada). 172 

 173 

Immune cells: Circulating immune cells were analyzed by flow cytometry as described before 174 

(28, 31). Briefly, lysed whole blood was centrifuged and washed twice with PBS containing 1% 175 

BSA (PBS/BSA). The cell pellets were re-suspended in the same buffer and incubated with 176 

CD32/CD16 for 10 min at 4°C to prevent unspecific binding. The cells were then incubated with 177 

an antibody cocktail consisting of FITC-anti-Nk1.1, PE-anti-Ly6C, PerCPe710-anti-CD8, PECy7-178 

anti-CD62, APC-anti-CD19, Alexa 700-antiGr-1, APCe780-anti-CD3, eVolve605-CD11b, and 179 

e650-anti-CD4. After 30 min on ice, the cells were washed, re-suspended in PBS/BSA, and 180 

analyzed on an LSR II flow cytometer for 90 sec on high speed. Cell numbers were analyzed 181 

using the FlowJo software and normalized to the total leukocyte numbers.  182 

 183 

Platelet-leukocyte aggregates. Platelet-leukocyte aggregates were identified by flow cytometry 184 

and quantified as events double positive for CD41 (platelets) and CD 45 (leukocytes) as described 185 

before(28). 186 

 187 

Statistics: Data are expressed as mean ± standard error of mean (SEM). Statistical significance 188 

was accepted at P<0.05 level. Student’s two-tailed t test with unequal variance was used to 189 

compare the data sets.  190 
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RESULTS 191 

 192 

Inhaled benzene exposure and endothelial microparticles formation: The endothelium is a 193 

critical regulator of vascular homeostasis, vascular tone, angiogenesis, and thrombosis. Our 194 

recent studies demonstrate that exposure to benzene depletes circulating endothelial progenitor 195 

cells (EPCs, also known as circulating angiogenic cells) in human and mice (11, 14). Mobilization 196 

of EPCs from the bone marrow and their homing to the injury sites can be affected by exogenic 197 

factors such as aging, disease, and an unhealthy lifestyle (32-36), and therefore changes in EPC 198 

levels are reflective of endothelial health. A decrease in the levels of blood EPCs reflects 199 

endothelial injury and impaired repair. To assess the benzene exposure-induced endothelial 200 

toxicity, we measured circulating endothelial microparticles. Endothelial microparticles, 0.1-1.0 201 

µm vesicles shed from activated or injured cells, are surrogate markers of endothelial activation 202 

and injury and comprise 5-15% of microparticles in the blood. Circulating endothelial 203 

microparticles are positively associated with coronary artery disease and stroke (37, 38). We 204 

observed that inhaled benzene exposure significantly increases the levels of circulating 205 

endothelial microparticles (<1µm; Annexin V+/CD41-/Flk+), activated endothelial microparticles 206 

(<1µm; Annexin V+/CD41-/CD62E+ [E-selectin]), EPC-derived microparticles (<1µm; Annexin 207 

V+/CD41-/Flk+/Sca+), lung endothelial microparticles (<1µm; Annexin V+/CD143+), and activated 208 

lung endothelial microparticles (<1µm; Annexin V+/CD143+/CD62E+) by 1.8-3.8-fold (Fig. 1). To 209 

assess the effect of inhaled benzene exposure on endothelial activation we measured the 210 

circulating levels of soluble adhesion molecules. Our data showed that benzene exposure 211 

modestly decreased the levels of soluble intra cellular adhesion molecule-1 (sICAM-1; 212 

Supplemental Table 1), whereas other soluble adhesion molecules – platelet endothelial cell 213 

adhesion molecule-1 (sPECAM-1), endothelial selectin (sE-selectin), and platelet selectin (sP-214 

selectin) were comparable with air-exposed controls. Together these data suggest that inhaled 215 

benzene exposure does not induce endothelial activation and most of the endothelial 216 
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microparticles are derived from benzene-induced endothelial injury. Since benzene inhalation 217 

also depletes circulating angiogenic cells mice (11, 14), we also quantified circulating 218 

angiogenesis markers. However, our data show that levels of angiogenesis markers in benzene-219 

exposed mice are comparable to the air-exposed controls (Supplemental Table 1). 220 

 221 

Because toxicity of benzene is mediated by its metabolism to reactive metabolites, next we 222 

directly examined the effect of benzene metabolites hydroquinone, catechol, and MA on HAEC 223 

apoptosis. As shown in Fig. 2, hydroquinone and catechol only modestly increased the activation 224 

of the pan apoptosis marker caspase-7 in HAEC, whereas MA profoundly increased caspase-7 225 

cleavage. MA also robustly increased caspase-3 activation, suggesting that it is the most toxic 226 

benzene metabolite for endothelial cells. To examine the mechanisms by which MA exerts its 227 

toxicity, we measured the activation of caspase-8 and caspase-9. As shown in Fig. 2, MA had no 228 

effect on caspase-8, but robustly activated caspase-9. Together, these data suggest that MA 229 

doesn’t affect the extrinsic pathway of apoptosis, but selectively activates the intrinsic pathway.  230 

 231 

Inhaled benzene exposure and hematopoietic progenitor cells: Benzene is a well-known 232 

hematopoietic toxin (39). Metabolites of benzene such as hydroquinone, catechol, and MA can 233 

diffuse from their sites of generation and exert the toxicity at distal sites. We observed that under 234 

our experimental conditions, benzene exposure did not affect the levels of common myeloid 235 

progenitor (CMPC) and multipotent progenitor cells (MPC) in the bone marrow but significantly 236 

decreased the levels of hematopoietic progenitor cells (HPC; Fig. 3). Because the vascular niche 237 

of HPC is critical for hematopoiesis and endothelial cell materialization, benzene-inhalation-238 

induced depletion of HPC could affect EPC formation in the bone marrow and compromise 239 

endothelial repair.  240 

 241 
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Inhaled benzene exposure and platelet activation: The surface of quiescent endothelial cells 242 

(luminal surface) which face the blood is normally anti-adhesive. However, injury to the endothelial 243 

cells promotes platelet adhesion for repair. We observed that inhaled benzene exposure 244 

augments platelet-leukocyte aggregate formation by 3-fold (Fig. 4). This was accompanied by 245 

1.6-fold increase in circulating levels of platelet microparticles in benzene-exposed mice. 246 

Together these data suggest that benzene exposure enhances platelet activation and platelet-247 

derived microparticles could serve as a biomarker of pro-thrombotic response of inhaled benzene.   248 

 249 

Inhaled benzene exposure and inflammatory markers: In humans, polymorphism of cytokines 250 

and endothelial activation markers increases the susceptibility to benzene-induced hematopoietic 251 

toxicity (40). We have recently shown that in addition to depleting circulating EPCs, benzene 252 

inhalation also suppresses the levels of leukocytes, lymphocytes, monocytes, and neutrophils in 253 

the peripheral blood in mice (11). However, our flow cytometric analysis of T-lymphocytes shows 254 

that inhaled benzene exposure modestly increases the circulating levels of CD3+, CD4+ and CD8+ 255 

T-cells (Fig 5). Blood CD19+ B cells, NK1.1+ natural killer cells, Gr1+ granulocytes and Ly6C+ 256 

monocytes (Fig. 5) in benzene-exposed mice were comparable to the corresponding air-exposed 257 

controls. Quantitation of plasma cytokines showed that IL-6 levels were significantly lower in 258 

benzene-exposed mice. All the other circulating cytokines in the benzene-exposed mice were 259 

comparable with the air-exposed controls (Supplemental Table 1). Stimulation with low dose 260 

LPS, 18h before euthanasia, significantly increased the levels of cytokines and chemokines such 261 

as GM-CSF, IL-6, IL-10, KC, MCP-1 etc. in the peripheral blood. However, benzene exposure did 262 

not affect the LPS-induced cytokine formation.  263 

 264 

Inhaled benzene exposure and pulmonary and hepatic metabolism: While benzene is 265 

primarily metabolized in the liver, lungs are the first target of inhaled benzene. We, therefore, 266 

examined gene transcription in the liver and the lungs of benzene exposed mice. Although six 267 
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weeks of benzene exposure did not affect the expression of CYP2E1, which plays a pivotal role 268 

in benzene metabolism, benzene exposure significantly down-regulated 185 genes in the lungs 269 

and 29 genes in the liver, whereas transcription of 301 genes was increased in the lungs and 43 270 

genes in the liver (>1.5-fold and P<0.05, Fig 6). The Heat map of genes associated with 271 

cardiometabolic toxicity showed the suppression of cytochrome P450s and up-regulation of 272 

inflammatory genes in the lungs and the liver, increased transcription of glycolysis associated 273 

genes in the lungs, and induction of the transcription of genes associated with oxidative stress, 274 

endothelial activation, and platelet activation in the liver (Fig. 6). Gene ontology analysis showed 275 

strong association with the lipid metabolic process, cardiac contractility genes, and keratinization 276 

in the lungs, and activation of NF-kB, inflammatory response, leukocyte cell-cell adhesion and 277 

apoptosis in the liver (Fig. 6). These observations are consistent with benzene-induced 278 

endothelial apoptosis and our recent studies demonstrating that the benzene-induced insulin 279 

resistance is mediated by NF-kB activation, inflammatory signaling, and oxidative stress in the 280 

liver (12).   281 

 282 

 283 

DISCUSSION 284 

 285 

The major findings of this study are that benzene exposure induces endothelial injury and 286 

augments platelet activation, as assessed by a panel of blood endothelial cell and platelet 287 

microparticles and platelet-leukocyte adduct formation. This was accompanied by the differential 288 

regulation of genes associated with xenobiotic metabolism, endothelial function, platelet 289 

activation, and inflammatory signaling associated genes in the liver and the lung, suppression of 290 

hematopoietic progenitor cells in the bone marrow, and increase in the levels of T-cells in the 291 

peripheral blood. 292 

 293 
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Although little is known about the direct effect of VOCs such as benzene on vascular injury and 294 

thrombosis, the endothelium has been shown to be particularly vulnerable to the effects of 295 

tobacco smoke which contains high levels of benzene and other VOCs. In smokers, endothelial 296 

dysfunction is the most primitive sign of injury and precedes morphological changes in the vessel 297 

wall (41). A dysfunctional endothelium affects vascular homeostasis, blood pressure regulation, 298 

thrombosis, atherogenesis, plaque stability, and cardiac functions (42, 43).  To examine the effect 299 

of benzene exposure on endothelial changes, we measured the levels of  microparticles  that are 300 

released from activated or apoptotic endothelial cells (44) and are a sensitive index of vascular 301 

injury (45, 46). Increased levels of circulating endothelial microparticles correlate with endothelial 302 

dysfunction in patients with coronary artery disease (36), end stage renal failure (47), obesity (48), 303 

and type-2 diabetes (37). Augmented activated endothelial microparticles in the blood are 304 

associated with cardiovascular events (49), and enhanced plasma lung endothelial microparticle 305 

levels in healthy smokers precede changes in pulmonary function (50). Our data demonstrating 306 

that benzene exposure increases the circulating levels of endothelial microparticles, activated 307 

endothelial microparticles, EPC microparticles, lung endothelial microparticles and activated lung 308 

endothelial microparticles, suggest that these microparticles are sensitive and robust surrogate 309 

markers of benzene-induced endothelial injury.  310 

 311 

Increased circulating endothelial microparticles have also been observed in humans following 312 

episodic fine particulate matter exposure (29). Nonetheless, unlike murine exposure to benzene, 313 

fine particulate matter exposure in humans did not increase blood activated endothelial 314 

microparticles, suggesting that activated endothelial cells are more sensitive to benzene exposure 315 

than fine particulate matter.  316 

 317 

Endothelial microparticles contain Von Willebrand factor and factor VIII which promote platelet 318 

activation (51, 52). Therefore, the observed increase in platelet-leukocyte adduct formation in 319 
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benzene-exposed mice could be secondary to benzene-induced endothelial injury and 320 

microparticle formation. Moreover, hypercholesterolemia following benzene exposure (11) could 321 

also augment platelet activation. Induction of thromboxane A synthase 1 (Tbxas1) in the liver of 322 

benzene-exposed mice also corroborates hyper platelet activation, whereas hepatic induction of 323 

guanylate cyclase soluble subunit β-1 (Gucyb1), the receptor of nitric oxide, could reflect an 324 

adaptive response to benzene exposure-induced platelet activation. 325 

 326 

MA-induced endothelial cell apoptosis and endothelial microparticle formation suggest that the 327 

observed toxicity of benzene is likely to be mediated by its reactive metabolites. Hepatic induction 328 

of the orphan nuclear receptor Nr4a1 (Nurr77), a molecular regulator of apoptosis and 329 

inflammation (53-59), in benzene-exposed mice further support that benzene exposure affects 330 

apoptotic and inflammatory processes. Although the contribution of benzene-induced Nr4a1 331 

transcription in endothelial toxicity is unknown, Nr4a1 has been suggested to prevent TNFα and 332 

IL-1β-induced endothelial activation (60), and endothelial deficiency of Nr4a1suppresses oxLDL-333 

induced apoptosis (57). Unlike Nr4a1, benzene exposure suppressed the hepatic expression of 334 

Snai2, a transcription factor involved in the endothelial to mesenchymal transition and implicated 335 

in pathological angiogenesis and atherosclerosis (61, 62). Further studies are required to examine 336 

the contribution of Snai2 in benzene-induced endothelial toxicity.  337 

 338 

Benzene-induced increase in the expression of Thromboxane A synthase 1 (Tbxas1) in the liver 339 

corroborate benzene-induced platelet activation. Because thromboxanes play a critical role in 340 

modulating vasoconstriction and platelet aggregation, increased formation of thromboxanes can 341 

disrupt vascular homeostasis and promote thrombotic vascular events. Increased hepatic 342 

transcription of guanylate cyclase 1 soluble subunit beta 1(Gucy1b1) could and guanylate cyclase 343 

1 soluble subunit beta 1(Gucy1b1), the receptor for nitric oxide, could be an adaptive response to 344 

mitigate benzene-induced pro-thrombotic responses. However, additional studies are required to 345 
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examine which cells in the liver induce Tbxas1 and Gucy1b1 and how do these proteins affect 346 

benzene-induced vascular homeostasis and thrombosis. Likewise, additional studies are also 347 

required to examine the contribution of benzene inhalation-induced transcription of an array of 348 

inflammatory genes in the lungs and the liver on endothelial toxicity and platelet activation. 349 

 350 

Together, these studies suggest that inhaled benzene exposure induces endothelial injury and 351 

affects platelet activation and inflammatory processes. Because benzene is a pervasive and 352 

abundant air pollutant, decreasing its exposure can significantly reduce air pollution-induced 353 

cardiovascular disease. 354 

 355 
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FIGURE LEGENDS: 371 

Figure 1: Benzene exposure increases circulating endothelial microparticles in mice. Abundance 372 

of endothelial microparticles (EMP; <1µm, AnnexinV
+
/Flk

+
), activated endothelial microparticles 373 

(AEMP; <1µm, AnnexinV
+
/CD62E

+
), endothelial progenitor cell microparticles (EPCMP; <1µm, 374 

AnnexinV
+
/Flk

+ 
/Sca

+
), lung endothelial microparticls (LEMP; <1µm, AnnexinV

+
/Flk

+ 
/CD143

+
), and 375 

activated lung endothelial microparticles (ALEMP; <1µm, AnnexinV
+
/CD62E

+
/CD143

+
) in the 376 

plasma of benzene- or HEPA-filtered air-exposed mice were analyzed by flow cytometry (n=10/ 377 

group). Values are mean ± SEM.  *P<0.05 vs control mice. 378 

 379 

Figure 2: Benzene metabolite trans,trans-mucondialdehyde (MA) increases endothelial 380 

microparticle formation from human aortic endothelial cells. A. Caspase activation in human aortic 381 

endothelial cells (HAEC) incubated with benzene metabolites (hydroquinone - HQ, Catechol - 382 

Cat, and t,t-mucondialdehyde – MA; 10 µM each, 18h). B. MA (10 µM, 18h, n=6/group) - induced 383 

microparticle formation from HAEC. Values are mean ± SEM.  *P<0.05 vs controls. 384 

 385 

Figure 3: Benzene exposure depletes hematopoietic progenitor cells in the bone marrow. Mice 386 

were exposed to benzene or HEPA-filtered air as described under Methods and the bone marrow 387 

derived stem cells were analyzed by flow cytometry (n=10/ group). Subpopulations of stem cells 388 

were identified based on expression of surface markers: Common Myeloid Progenitor Cells 389 

(CMPC; Lin-ckit+Sca-CD34+), Hematopoietic Progenitor Cells (HPC; Lin-ckit+Sca+CD34-) and 390 

Multipotent Progenitor Cells (MPC; Lin-ckit+Sca+CD34+). Panel A depicts the gating scheme for 391 

measuring hematopoietic stem cells. Panel B shows effects of benzene exposure on bone 392 

marrow stem cells. Values are mean ± SEM.  *P<0.05 vs control mice. 393 

 394 
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Figure 4: Benzene exposure augments platelet-leukocyte adduct formation. Markers of platelet-395 

leukocyte aggregates were analyzed in the peripheral blood of HEPA-filtered air and benzene-396 

exposed mice by flow cytometry as described under Methods. A. Platelet-leukocyte adduct (n=10/ 397 

group) formation assayed using FITC-labeled anti-CD-41(platelets) and APC-labeled anti-CD 45 398 

(leukocyte) antibodies. B. Platelet microparticle levels (< 1 µm cells double positive for Annexin 399 

V and CD41). Values are mean ± SEM.  *P<0.05 vs control mice. 400 

 401 

Figure 5: Benzene exposure enhances circulating lymphocytes.  Levels of lymphocytes were 402 

measured in the peripheral blood by flow cytometry as described under Methods. A. T-cells 403 

(CD3+, CD4+, and CD8+), B. B-cells (CD19+). C. natural killer (NK)-cells (NK1.1+). D. Granulocytes 404 

(GR1+). E. Monocytes (CD11b+). Ly6C- and Ly6C+ subpopulations were measured by flow 405 

cytometry (n=10/ group). Values are mean ± SEM.  *P<0.05 vs control mice. 406 

 407 

Figure 6: Benzene-induces differential gene regulation in the lung and the liver. Mice were 408 

exposed to benzene or HEPA-filtered air as described under Methods and RNA-seq analysis was 409 

performed on lung and liver tissues (n=6/group). Panel A shows the differential regulation of 410 

genes in the liver and the lungs of benzene exposed mice. Panels B and C show the volcano plot 411 

of the differentially expressed genes, Panels D and E illustrate the heat map of prominent gene 412 

changes, and panels F and G depict the gene ontology (GO) analysis of differentially regulated 413 

rnRNA in the lungs and the liver, respectively, of benzene-exposed mice.  414 

 415 

 416 

 417 

 418 

 419 

 420 
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Highlights 667 

• Inhaled benzene exposure increases the levels of blood endothelial microparticles. 668 
• In vitro, benzene metabolite trans, trans-mucondialdehyde induces endothelial cell 669 

apoptosis and microparticles formation. 670 
• Inhaled benzene exposure decreases the levels of hematopoietic progenitor cells in the 671 

bone marrow. 672 
• Inhaled benzene exposure augments the circulating levels of platelet-leukocyte adducts. 673 

 674 

 675 
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Fig. 3
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Fig. 4
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Supplemental table1: Plasma parameters in benzene-exposed mice 

Parameters (pg/mL) Air  Benzene Air + LPS Benzene + LPS 
Adhesion molecules 
sE-Selectin 643±59 610±66 2154±161 2131±204 
sP-Selectin 1732±254 1390±119 2427±336 2217±328 
sICAM-1 128±6 109±6* 476±25  466±23 
Pecam-1  37±3 30±2 48±3 41±3 
Angiogenesis markers 
Angiopoietin-2  4732±342 4872±243   
EGF  156±89 513±339   
FGF-2  ND ND   
HGF  327±74 232±26   
Leptin  608±126 801±222   
PLGF-2  3.3±0.7 3.2±0.4   
SDF-1  ND ND   
VEGF   1.02±0.1 1.12±0.05   
Cytokines 
GM-CSF  2±1 14±8 9±2 8±1 
IFNγ  1.3±0.4 2.3±0.5 1.8±0.3 1.6±0.4 
IL-1α  8±3 3±1 14±4 6±2 
IL-1β  ND ND ND ND 
IL-2  13±6 17±11 15±8 5±1 
IL-4  0.19±0.11 0.04±0.01 0.19±0.04 0.16±0.04 
IL-5  6±1 5±1 13±3 9±1 
IL-6  22±8 4±1* 293±54  354±80 
IL-7  22±9 9±5 11±5 23±9 
IL-10  3.7±0.4 3.4±0.4 583.5±39.6 447±45.5# 
IL-12 6±2 6±1 17±5 11±2 
IL-13  10±2 9±2 12±1 18±4 
LIX  130±61 166±72 165±41 222±43 
IL-17A  6±2 5±1 4±1 6±1 
KC  406±153 178±34 3048±443 2675±503 
MCP-1  14±3 31±22 593±133 481±56 
MIP-2  75±14 53±8 192±25 210±51 
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