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Abstract
Background
Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is
essential for diagnosis and treatment. Clinical decision-making requires high confidence and
precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising
for genome-wide detection of fusion products, but hindered by many false positives that
require extensive manual curation and impede discovery of pathogenic fusions.

Results
We developed Fusion-sq to detect tumor-specific gene fusions by integrating and “fusing”
evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene
structure. In a pediatric pan-cancer cohort of 130 patients, we identified 165 high confidence
tumor-specific gene fusions and their underlying structural variants (SVs). This includes all
clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq
distinguishes healthy-occurring from tumor-specific fusions, and resolves fusions in amplified
regions and copy number unstable genomes. A high gene fusion burden is associated with
copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes
or tumor-suppressor genes characterised by underlying SVs or expression changes
indicative of activating or disruptive effects.

Conclusions
Our results indicate how clinically relevant and potentially pathogenic gene fusions can be
identified and their functional effects investigated by combining WGS and RNA-seq.
Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond
extensive manual filtering. Taken together, we developed a method for identifying candidate
fusions that is suitable for precision oncology applications. Our method provides multi-omics
evidence for assessing the pathogenicity of tumor-specific fusions for future clinical decision
making.
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Background
Gene fusions are important driver mutations in cancer and their accurate detection is
essential for diagnosis, treatment selection and understanding disease mechanisms. The
fusion of two or more genes through a structural variant (SV) can affect the involved genes
directly, but also give rise to a chimeric protein with oncogenic properties [1, 2]. SVs can
dysregulate cells in multiple ways, for instance by disrupting genes or by displacing an
enhancer resulting in overexpression of oncogenes (e.g. TLX1/3, NKX2-1)[3]. However,
gene fusions are a distinct type of variants characterised by the formation of fusion products
and their chimeric transcripts[3]. The contribution of gene fusions to cancer etiology strongly
differs per cancer type and they are especially important in the diagnostic process of
pediatric cancers [1, 2]. For example, KIAA1549--BRAF fusions in pilocytic astrocytoma and
EWRS1--FLI fusions in Ewing sarcoma are prime determinants of these tumor types[2]. Also
many leukemias have characteristic driver fusions [4]. Detection of these fusions for
diagnostic purposes is usually done with targeted assays, which are reliable, fast and
cost-effective, but limited to known partner genes and/or breakpoints[5, 6]. As a result,
targeted assays fail to detect some fusions with alternative breakpoints (e.g.
KIAA1549--BRAF) [7] or which have different partner genes (e.g. fusions involving TFE3,
NUP98, FGFR)[8–10]. These limitations also make targeted assays unsuitable for discovery
of novel gene fusions.

RNA sequencing (RNA-seq) is increasingly applied in research to detect gene fusions that
result in chimeric transcripts. More recently within a diagnostic context, it has been shown
that RNA-seq is a robust alternative to targeted assays for detecting “clinically relevant” gene
fusions. Here we consider fusions as clinically relevant if they have been published in
peer-reviewed journals as associated with specific cancer types and are used for diagnosis,
prognosis and treatment selection. In a pediatric cancer cohort, a 38% increase in diagnostic
yield was achieved with RNA-seq compared to traditional diagnostic assays (Hehir-kwa,
2021, manuscript under revision). However, one of the key issues with robust detection of
gene fusions based solely on RNA-seq data is controlling the false positive rate. Hundreds of
chimeric transcripts per sample can be detected by RNA-seq and predicted to reflect gene
fusions [11]. Although some have underlying genomic SVs, others result from normal
transcription processes such as read-through and intergenic trans-splicing events [12]. Many
chimeric transcripts are found in healthy tissue with no known links to malignancy [12, 13].
For example, the translocation resulting in a PAX3--FOXO1 gene fusion is a driver mutation
in alveolar rhabdomyosarcoma, but the chimeric transcript is also transiently expressed in
healthy muscle tissue without an underlying SV[12, 13]. Therefore, fusion predictions from
RNA-seq require stringent filtering to remove technical artefacts and healthy-occurring
chimeric transcripts, as well as to rescue detection of lowly expressed fusions known to be
clinically relevant. This introduces bias in the detection as the filtering is done with manually
curated inclusion and exclusion lists which also limits its use for gene fusion discovery
purposes. Alternatively, identifying the underlying SV can distinguish bonafide tumor-specific
gene fusions from artefacts and other chimeric transcripts, as well as provide support to
lowly expressed chimeric transcripts without the need for biased manual filtering.

Combining RNA-seq with SVs inferred from whole genome sequencing (WGS) data can help
to detect potentially pathogenic gene fusions by identifying breakpoints that support the
genomic origin of chimeric transcripts [14]. These SVs can be classified as tumor-specific
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based on analysis of paired tumor and normal WGS samples, whilst matching normal tissue
for RNA isolation is often problematic to obtain. By itself, WGS is less suitable for reliable
detection of actively transcribed gene fusions as SVs can affect multiple genes and WGS
also infers many other non-transcribed variants. Similar to RNA-seq, WGS is prone to
technical artifacts and false positives [15]. Despite this, using these orthogonal sequencing
methods in combination is promising for genome-wide gene fusion detection as
demonstrated for large cancer cohorts [14, 16].

To identify and interpret tumor-specific gene fusions in individual patients, we resolved the
underlying SVs by combined analysis of RNA-seq and WGS data. For a heterogeneous
cohort of 130 pediatric cancer patients, SVs were matched to gene fusion predictions based
on intron-exon gene structure. For all 30 patients in which clinically relevant fusions were
detected by RNA-seq, the underlying tumor-specific SVs were resolved with high
confidence. Our approach avoids filtering out lowly expressed fusions while still removing
healthy-occurring chimera. In 34 other patients without a known clinically relevant fusion, we
detected 126 tumor-specific fusions with similar high confidence, including 27 distinct fusions
involving oncogenes or tumor-suppressor genes. To further assess their potential
pathogenicity, we analyzed the characteristics of these underlying SVs and changes in gene
expression of the fusion partner genes. We found an association between copy number gain
and overexpression, and cases of potential oncogene activation or tumor-suppressor gene
disruption. In conclusion, we show that integration of RNA-seq and WGS data can be used
to identify tumor-specific fusions. Also, the multi-omics evidence gathered by Fusion-sq
about these gene fusions can aid molecular tumor boards in assessing their potential
pathogenicity.
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Results

Fusion-sq: detecting tumor-specific gene fusions with high confidence
To resolve gene fusions and investigate their relevance to pediatric cancer, we combined
RNA-seq and paired tumor and normal WGS samples of 130 patients across 53 pediatric
cancer types (Fig. 1a). Known clinically relevant fusions were identified with RNA-seq in 30
patients (Fig. 1a, grey overlay). We investigated the possibility of combining WGS structural
variant analysis with RNA-seq data to increase detection specificity and identify potentially
pathogenic gene fusions in the remainder of the cohort. Hereto, we developed Fusion-sq
which integrates (“fuses”) predicted gene fusions from RNA-seq data with SVs from WGS
data (Methods, Fig. 1b,c). For every predicted gene fusion, Fusion-sq first derives genomic
intervals to match RNA and DNA breakpoints based on intron-exon gene structure. Next,
DNA breakpoints falling within these intervals are used to identify SVs that link the fusion 5’
and 3’ partner genes. To optimize both recall and precision, SVs detected by Manta [17],
DELLY [18] and GRIDSS [19] are considered separately and their support is summarized
per fusion. We further selected high confidence fusions supported by SVs that are detected
by at least two tools and correspond to the chimeric transcript (Fig. 1b,d, Additional file 1:
Figure S1). Fusions are then classified as tumor-specific, (likely) germline or low allele
fraction based on the SV’s variant supporting reads in the paired tumor and normal samples,
as reflected in the allele fractions (AF) of SVs in both samples (Fig. 1b,d). In total, 16,144
fusions were predicted in 130 patients (median 101) using RNA-seq data alone (Fig. 1b). By
combining these fusion predictions with WGS data, Fusion-sq identified 359 fusions
supported by at least one SV tool, further refined into 232 high confidence fusions in 86
patients (median 1)(Fig. 1b,e). To investigate potentially pathogenic gene fusions, we further
analyzed the 165 high confidence tumor-specific fusions (hcTSF) by combining RNA
evidence with properties of the underlying SVs, such as SV type and allele fraction.

All clinically relevant fusions match to tumor-specific SVs
We first focused on the subset of 30 patients for which a clinically relevant gene fusion was
identified by RNA-seq. In all patients, we resolved the tumor-specific SVs for the predicted
gene fusions (Table 1). To better understand gene fusions at the genomic level, we
investigated the underlying SVs supporting the chimeric transcripts. For all patients but one,
the associated duplications (DUP), deletions (DEL) and inversions (INV) were almost
identical (>99% overlap) and breakpoints of intra-chromosomal translocations (CTX) either
overlapped or were resolved within 13 base pairs (bp) (Fig. 2a). The distances between
breakpoints in RNA from the chimeric transcripts and corresponding breakpoints in WGS
data from the underlying SVs are highly variable amongst gene fusions and patients (Fig.
2a). Notably, for nine patients the distance between corresponding RNA-DNA breakpoints is
larger than 10 kilo base pairs (kb) (Fig. 2a, red lines), which illustrates the advantage of
using intron-exon gene structure to define genomic intervals for matching chimeric
transcripts with SVs.

One clinically relevant fusion that proved difficult to resolve was ASPSCR1--TFE3, because
the underlying translocation t(7;X) was identified differently by Manta, DELLY and GRIDSS
(Table 1). Manta resolved it as a composite fusion of a CTX + INV in chrX, whilst GRIDSS
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and DELLY had unusually broad CTX footprints of ~393 bp and 1181 bp respectively. The
associated SV breakpoints of all three tools overlapped SINE mobile elements, which may
indicate difficulties in resolving this gene fusion to base pair accuracy in DNA. Despite this
potentially complex variant, this translocation could still be mapped to the ASPSCR1--TFE3
chimeric transcript by Fusion-sq. This enabled further manual inspection of this clinically
relevant gene fusion.

The underlying SVs of the other clinically relevant fusions are simple SV events [20] and
represent all major SV types, such as deletions, duplications, inversions and translocations.
Inter-chromosomal translocations (CTX, 21) were the most common SV type underlying
clinically relevant gene fusions as expected[1]. In some cases, these translocations support
both the canonical and reciprocal transcripts. As an example, we identified a reciprocal gene
fusion product for three out of four patients with an ETV6--RUNX1 fusion, and for one out of
four patients with an EWSR1--FLI fusion. In nine patients, we identified duplications resulting
in KIAA1549--BRAF fusions. Interestingly, the KIAA1549--BRAF fusion of patient M218AAA
was identified as an inversion by all three tools, and it is likely an inverted duplication as read
depth is also increased (+0.41 copy number log2 fold change, CN l2fc). The two remaining
clinically relevant fusions are FGFR1--TACC1 caused by a 420 kb INV, and LMNA--NTRK1
caused by a 740 kb DEL, showing that a variety of SVs can result in clinically relevant fusion
events.

To reduce false positives in RNA-seq fusion detection, filtering based on read support for
chimeric transcripts is often implemented with a default minimum of 0.1 fusion fragments per
million total RNA-seq fragments (FFPM) [2, 21]. However, by relying only on RNA evidence,
four clinically relevant fusions would be missed due to their low expression (Fig. 2b, Table 1),
two KIAA1549--BRAF fusions (0.08-0.09 FFPM), one ETV6--RUNX1 (0.07 FFPM) and one
PAX3--FOXO1 (0.03 FFPM). These lowly expressed fusions can be discerned from false
positives by integration with WGS. In total, RNA-seq data predicted 3,832 fusions in these
30 patients alone of which 513 passed the read support threshold (FFPM>0.1). In contrast,
for 25 patients their clinically relevant gene fusions are the only hcTSFs indicating a high
specificity of Fusion-sq. In the remaining five patients, Fusion-sq resolved an additional six
hcTSFs with similar support but of unknown significance (Fig. 2b, black dots). This shows
that integration of RNA-seq and WGS by Fusion-sq can accurately resolve tumor-specific
fusions, effectively removing the need for extensive manual filtering to select which fusions
to follow-up by experts.

Underlying SVs distinguish tumor-specific fusions from healthy chimera
After examining the underlying SVs of known clinically relevant fusions, we returned to the
232 high confidence fusions (hcFs) identified in 86 patients, which are classified into
tumor-specific, germline or low allele fraction (Fig. 1b). Both the clinically relevant and
additionally detected hcTSFs have similar mean tumor/normal AF of 0.34/0 and 0.28/0
respectively. Supporting their classification, the germline fusions have 0.37/0.36
tumor/normal AF and low AF fusions have 0.02/0 (Additional file 1: Figure S2). While it is
counter-intuitive to have high confidence variants with these low AFs, we reasoned that a
high number of variant and reference reads could explain this. Indeed, most of these low AF
hcFs (20 of 29) originated from amplified regions (3x fold change in read depth, CN l2fc
>1.58). Next, we evaluated the efficacy of identifying hcTSFs by 1) assessment of the
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underlying SV properties, 2) annotation with databases of chimera and SVs, and 3)
annotation with cancer-related genes.

Firstly, we investigated whether the underlying SVs of additionally detected gene fusions
resemble those of known clinically relevant fusions. Hereto, we mapped the high confidence
fusions resolved in individual patients to distinct fusions to account for recurrent fusions. In
total the 232 hcFs mapped to 201 distinct fusions of which 145 tumor-specific, 26 germline,
29 low AF, and 1 ambiguous (Table 2, Additional file 1: Figure S3). The fusion labelled as
“ambiguous” was categorized differently in two patients and excluded from further analysis.
Similar to the clinically relevant fusions, interchromosomal translocations (CTX, 44 of 130)
are the most common SV type underlying the additionally identified tumor-specific fusions.
The remaining tumor-specific intra-chromosomal SVs are distributed over DUP, DEL and INV
(Fig. 3a). In contrast, germline fusions are depleted in CTX events and generally caused by
shorter intra-chromosomal SVs. The tumor-specific SVs are ~27x larger than germline SVs
with an average size of 16.2 Mbp compared to 606 kb for germline SVs (Fig. 3b). Only a
single germline fusion (CCDC32--CBX3) has an underlying CTX, identified with high
confidence in five patients and with low-confidence in three patients. CCDC32--CBX3 is a
known healthy chimera and in two of the three low-confidence cases, the SV breakpoints
overlap ALU repeat elements which indicates potential mapping difficulties in resolving the
breakpoints and suggests a mechanism involved in forming this event. These results show
that the types and sizes of SVs underlying tumor-specific gene fusions are distinct from
germline events and resemble the SVs of known clinically relevant fusions.

Secondly, to compare hcTSFs with population variants, the gene fusions were annotated
against databases cataloguing healthy chimeric transcripts and databases of SVs occurring
in the general population as normal variation (Table 2). Overall, nine distinct high confidence
fusions occur in a healthy chimera database (4%), which were also all classified as germline
fusions. Next, we compared the underlying SVs of fusions to the NCBI Common SV
database [22], gnomAD [23] and DGV[24], and found that 28 of the 200 distinct hcFs overlap
with SVs occurring in the general population. The majority (16) of these gene fusions were
classified as germline and six of those are also flagged as healthy chimera. In total, 73% of
the distinct germline hcFs (19 of 26) either overlap a population SV or occur in a healthy
chimera database (Fig. 3a). In contrast, only 12 tumor-specific SVs overlap with population
SVs (8%) and none occur in a healthy chimera database. These results indicate that the
hcTSFs are depleted in germline population variants.

Finally, to identify potentially pathogenic fusions, we compared the results of Fusion-sq with
chimera previously detected in cancer and we annotated fusions with cancer-related genes.
44 of the 200 distinct hcFs are present in ChimerDB [25] or the Mitelman database [1]. Most
of these are classified as tumor-specific (26), but also germline (9) and low AF (9) fusions
occured in these databases. The nine “germline cancer chimera” are additionally annotated
as healthy chimera or have underlying intra-chromosomal SVs that overlap with general
population SVs (Fig. 3a). This corresponds to previous observations that cancer chimera
databases can include passenger fusions [26, 27]. Next, we annotated the fusion partner
genes as proto-oncogene or tumor-suppressor gene (TSG). In addition to the known
clinically relevant fusions, we identified 29 high confidence fusions involving an oncogene
(19) or TSG (19), which are all tumor-specific except for two fusions with a low AF. None of
the germline hcFs occur exclusively in a cancer-related resource nor do they affect an
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oncogene or TSG, further substantiating the classification based on AF of the underlying
SVs (Fig. 3a). Annotation of distinct hcFs resulted in identifying 133 of 145 tumor-specific
fusions which have no evidence of occurring in the normal population. In summary, we
resolved 27 distinct hcTSFs involving an oncogene and/or TSG with similar high confidence
as the known clinically relevant fusions, which therefore provide sufficient evidence for
further investigation.

Resolving tumor-specific fusions in individual genomes
Focussing on patients without a known clinically relevant fusion, we identified 126 hcTSFs of
unknown significance to investigate further. These fusions are detected in 34 patients across
many different cancer types. Generally, each individual patient carries no or only a few
hcTSFs (Fig. 1e), whereas a high burden of gene fusions is associated with copy number
instability (Additional file 1: Figure S4). Unlike the known clinically relevant fusions that are
recurrent within a cancer type, the additionally detected hcTSFs are generally unique to
individual patients in this diverse cohort (Additional file 2). Only MTAP--CDKN2B-AS1 is
found in two patients (precursor B-ALL and Pleomorphic xanthoastrocytoma) and this fusion
has been previously suggested as potentially pathogenic in melanoma [28]. Therefore, we
continued with patient-level analysis to further investigate the functional effects of gene
fusions, focussing on fusions involving oncogenes or tumor-suppressor genes.

The benefit of understanding the underlying SVs in a tumor genome is also apparent when
resolving fusions in patients showing copy number instability (Fig. 4). High fusion burden
(>=7 hcFs, 95th percentile) is associated with a high fraction of genome altered (FGA) by
copy number alterations (CNAs) (median 63% vs 3.8%, mean 48% vs 11%, wilcox. p<0.01)
and tumor types prone to copy number instability such as osteosarcoma (4x), embryonal
sarcoma, embryonal rhabdomyosarcoma, neuroblastoma and ependymoma [29].

To further investigate this association between copy number instability and high fusion
burden, we closely studied four osteosarcoma patients carrying TP53 and ATRX fusions
(Additional file 1: Figure S5). These patients’ tumors have many dispersed CNAs (median
FGA 67%) and also many hcFs distributed across their genomes (range 7-19, Fig. 1e,
Additional file 1: Figure S5a). In three of these osteosarcoma patients, we resolved fusions
involving the first exon of TP53 and in each case a different downstream (3’) partner gene
resulting from an inversion and two translocations; t(17;6), t(17;20) (Additional file 1: Figure
S5b) (Table 1). Translocations with the first exon of TP53 have previously been identified as
cancer driver events in osteosarcoma [30]. Therefore, these fusions are potentially also
pathogenic in these patients, especially since a driver mutation had yet to be identified for
these tumors. Apart from the TP53 gene fusions and associated SVs, we did not observe
additional CN losses or deleterious SNVs in the TP53 loci of these patients. In the fourth
osteosarcoma patient (M691AAA, Fig. 4a), we detected an ATRX fusion which has been
suggested previously as a potential driver mutation for osteosarcoma [30]. For the ATRX
fusion, gene expression concomitantly was reduced relative to the cancer type supergroup
(-3.3 z-score FPKM (zfpkm), p<0.01). Similarly, the group of patients with a TP53 fusion
showed reduced expression relative to the cancer type supergroup (0.88 vs 2.0 log2 FPKM,
p<0.05) (Additional file 1: Figure S5c). However, this was not clear for the individual patients,
illustrating that the underlying SV provides additional evidence for a disruptive SV event that
could not be easily derived from RNA-seq alone.
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Multiple fusions originating from highly amplified regions were resolved in two patients with
neuroblastoma (M787AAA, Fig. 4b) and embryonal rhabdomyosarcoma (M002AAB, Fig. 4c).
The neuroblastoma patient has a focal amplification in chromosome 12q13-15 involving the
oncogenes MDM2 and CDK4 (4-6 copy number log2 fold change, CN l2fc). In this region, we
identified 13 high confidence, low AF gene fusions. Including fusions previously identified as
cancer-related chimera (i.e. FRS2--MDM1, FRS2--PTPRR, CCT2--BEST3,
RAB3IP--BEST3) of which both partner genes are overexpressed due to the amplification
(Fig. 4d). Similarly, patient M002AAB carries seven fusions originating from a focal
amplification in chr11q22 (5-7 CN l2fc) which are detected with high confidence but some
with a low AF. Here also, the fusion partner genes are overexpressed which is consistent
with the amplification (Fig. 4d). Although chr11q22 amplification itself is not known to be
clinically relevant, we resolved multiple fusion combinations with oncogenes BIRC3, PGR
and in particular YAP1. YAP1--CFAP300 involves exons 1-5 of the YAP1 oncogene which is
highly amplified (7.2 CN l2fc) and overexpressed (5.3 zfpkm, p<0.1). Also, this exon 1-5
fragment has previously been identified as pathogenic when fused to other 3’ partner genes
by activating the TEAD pathway [31, 32].

These case studies illustrate that Fusion-sq can confidently resolve fusions in unstable
genomes with a high FGA or complex alterations. For some tumor-specific fusions, the
underlying SVs are potentially pathogenic (e.g. the TP53 and ATRX fusions) while in other
cases the fusions seem to be the result of copy number instability. In addition, gene fusions
in amplified regions can exhibit high expression of their partner genes due to the underlying
CN gain. Therefore, characteristics of underlying SVs are key for interpreting potential
functional effects of individual gene fusions, especially in patients with unstable genomes.

Tumor-specific fusions affecting gene expression
Gene fusions can activate oncogenes or disrupt tumor-suppressor genes (TSG) and the
resulting pathogenic effects can be reflected in dysregulation of gene expression. To identify
potentially pathogenic fusions, we aimed to assess the functional effects of the 27 distinct
hcTSFs involving an oncogene or TSG (in bold) (Table 1). In addition, we included two
composite fusions that were detected by both GRIDSS and DELLY but differed in how they
reported the underlying SV (Table 1). For LINC01344--TERT, the translocation breakpoints
overlapped but reported in addition either an insertion or a duplication in TERT. Also for
ETV6--IGL, the same translocation was resolved, but the additional inversion in IGL had
different breakpoints. The SVs underlying the other 27 hcTFs involving oncogenes or TSGs
represent all the simple SV types: CTX (10), DUP(5), DEL(7) and INV(5). As a proxy for
functional effect, we combined expression data, underlying SVs and gene annotation.

Overexpression of oncogenes resulting from gene fusions is often suggested as an
activation mechanism [2]. However we did not observe an enrichment of oncogenes
amongst overexpressed fusion partner genes (>1.96 zfpkm) compared to the cancer type
supergroup or the full cohort. Instead, our data suggests an association with copy number
gain (CN l2fc>0.58) irrespective of gene annotation, as reflected by about half of the fusions
with CN gain found to be overexpressed (20 of 42). Also, partner genes of hcTSFs are more
often affected by CN gain and overexpression together, than each occurring separately (2.3x
odds ratio, p<0.05). Although a cohort wide pattern is lacking, we identified fusions in
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individual patients for which the 3’ oncogenes are significantly overexpressed relative to the
cancer type supergroup (p<0.1): PAX3--WWRT1 (2.1 and 3.0 zfpkm), LINC01344--TERT
(2.4 zfpkm) and SYMPK--MEF2B (2.1 zfpkm) (Fig. 5). In addition, we identified a
MED14--HOXA9 fusion and associated overexpression of HOXA9 (2.2 zfpkm, p=0.15) in a
pre-T-cell lymphoblastic leukemia patient (M385AAA). In this case, HOXA9 overexpression
did not reach significance because an acute myeloid leukemia patient (M975AAA) with a
NUP98--NSD1 fusion, which is known to dysregulate HOXA genes, also has a high HOXA9
expression (3.0 zfpkm, Additional file 1: Figure S6) [9]. Taken together, these results indicate
that resolving the SV and copy number can help to distinguish between overexpression due
to underlying amplifications and expression changes resulting from the fusion of a 3’ partner
gene to an active upstream promoter.

Gene fusions can also be pathogenic through activation of kinases due to e.g. loss of an
auto-inhibitory domain or increased dimerisation. We identified six fusions involving kinases,
of which three in patients with unstable genomes (QKI--MAPK3K4, TRPM7--USP8,
STK40--OSCP1). In patients without known driver alterations, we identified
ERBB4--LINC01807, FBXW7--DCLK2 and IGSF3--AKT3. However, the relevance of these
fusions remains unclear. The ERBB4 fusion arises from a tandem duplication and is
associated with an increase in gene expression (1.9 zfpkm, pval=0.1) in a region with
reduced read depth (-0.13 CN l2fc), but the ERBB4 kinase domain is not involved in the
gene fusion. Similarly, the underlying SV of the AKT3 fusion also showed only the last exon
is included in the fusion product and there are no known mechanistic links for DCLK2
activation in nephroblastoma. Combining the evidence from SVs, CN and gene expression
suggests that these fusions are unlikely to result in kinase activation.

Fusions disrupting tumor-suppressor genes
Gene fusions that involve tumor-suppressor genes (TSGs) are potentially pathogenic, as the
underlying SVs can disrupt the TSGs. Similar to oncogenes, we did not find a general trend
of downregulation in the 19 fusions involving TSGs, however SVs intersecting a gene can be
disruptive regardless of whether gene expression is affected. Three specific cases did show
a significant decrease in gene expression (p<0.1) relative to the cancer type supergroup:
ZBTB20--LSAMP (-4.0 zfpkm, p<0.05), NF1--RAB11FIP4 (-2.4 zfpkm) and the previously
mentioned ATRX--LINC01280 (-3.5 zfpkm) in a patient with osteosarcoma. Both
ZBTB20--LSAMP and NF1--RAB11FIP4 have been previously detected in other adult cancer
types [1, 25]. In addition, ZBTB20 and NF1 play important roles as TSG in pediatric cancers
and LSAMP is suggested as a potential TSG in osteosarcoma and neuroblastoma [33–35].

To investigate whether TSGs could be disrupted by gene fusions without this being reflected
in gene expression changes, we sought to identify co-occurring somatic single nucleotide
variants (SNVs). We found co-occurring fusions and SNVs for RB1 and NCOR1 that could
indicate double-hits of these TSGs, despite the fact that no reduction in gene expression
was observed for RB1 (-0.1 zfpkm) and only a minor reduction for NCOR1 (-1.2 zfpkm). In
an adrenal cortical carcinoma patient (M152AAD), the RB1 gene was affected by a
translocation resulting in the RB1--DGKB fusion and by a splice donor site mutation
(chr13:48473390_GGTGA/G, tumor AF 0.32, normal AF 0, Additional file 1: Figure S7a). In a
second patient with pre B-cell lymphoblastic leukemia (M930AAB), we identified a 158 kb
deletion in the NCOR1 locus resulting in the fusion NCOR1--ZWIM7, as well as a frameshift
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mutation (chr17:16070282_C/CT, tumor AF 0.85, normal AF 0.03, Additional file 1: Figure
S7b). This deletion overlaps a healthy population SV and is likely ALU-mediated given that
the breakpoints fall in ALU repeats. However, in this case, the deletion is specific to the
patient’s tumor sample (0.33 tumor AF, 0 normal AF). Also, for both RB1 and NCOR1, gene
fusions with different 3’ partner genes have been previously identified in cancer [1, 25]. In
combination, the co-occurrence of deleterious SNVs and the promiscuity of these fusions
seem to suggest that the presence of these gene fusions is indicative of TSG disruption.
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Discussion
Discovery of novel driver gene fusions in pediatric cancer has been severely limited by a
lack of methods for genome-wide unbiased detection. To systematically discover
tumor-specific gene fusions, we developed Fusion-sq which integrates chimeric transcripts
from RNA-seq with SVs from WGS using intron-exon gene structure. Previous studies
combining RNA-seq and WGS data for gene fusion detection have reported a large variation
in validation rates, which is likely due to differences in the detection and integration methods
used [14, 27, 36, 37]. We identified supporting SVs for ~2.5% of (unfiltered) gene fusion
predictions, which is similar to the previously reported 91% false positive rate for
STAR-Fusion predictions [36]. In contrast, the PCAWG transcriptomics group identified
supporting SVs for 82% of RNA alterations in their study [14]. This difference is likely due to
stringent pre-filtering of gene fusion predictions and lenient RNA-DNA breakpoint matching
with 500kb intervals. In contrast, we identified SVs that precisely support chimeric transcripts
and abstained from expression-based filtering, which would otherwise have excluded four
clinically relevant fusions with low expression levels. The recently published tool MAVIS also
integrates SVs and RNA-seq, but treats them separately and requires recurrence to identify
gene fusions [37]. Other pediatric cancer studies focusing on precision oncology rely heavily
on experts to perform the data-integration manually [16, 38] thereby limiting its applications
for candidate discovery.

A common strategy to identify potentially pathogenic fusions and distinguish them from
passenger fusions is to focus on recurrent events [14, 16, 37]. This approach yielded little
results in our pediatric pan-cancer cohort, likely due to the relatively small size, high
heterogeneity of cancer types and low mutation burden of pediatric cancers. In addition to
the known clinically relevant fusions that we successfully identified, the only other recurrent
fusion we found is MTAP--CDKN2B-AS1. Yet, we were able to identify multiple potentially
pathogenic gene fusions in individual patients by leveraging SV properties and gene
expression data. We showed that analyzing the underlying SVs of gene fusions can help to
discern tumor-specific fusions from likely passenger fusions that are the result of normal
transcription processes, germline SVs or are related to copy number instability. Consistent
with reports from adult cancers [1, 27], we found associations between high gene fusion
burden and a high FGA, or unstable regions such as focal amplifications. Although it was
suggested that this relationship might be absent in pediatric cancers[29], the observed
discrepancy with our analysis could be due to how copy number instability is quantified or
differences in cohort composition rather than a mechanistic difference between adult and
pediatric cancers. Therefore, our results suggest that alternative strategies to recurrence can
identify potentially pathogenic fusions. Recurrence is nevertheless an important criteria for
defining fusions of clinical relevance and is an important rationale for further expanding
genomic studies.

Detection of gene fusion chimeric transcripts using RNA-seq data is limited to actively
transcribed genes, and fusions with non-coding elements may be missed. In addition to
protein-coding fusion products, SVs that displace an enhancer can cause unusually high
expression of oncogenes[3]. However, these “enhancer hijacking” events fall outside the
scope of this study as they lack chimeric transcript evidence. For example, an IGH--MYC
translocation was identified with FISH in patient M879AAA and in WGS data we also
identified the underlying reciprocal translocation from the IGH locus to ~200kb upstream of
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MYC. However, this translocation results in an enhancer exchange and not in the formation
of a chimeric transcript, hence it could not be identified by Fusion-sq. Also chimera resulting
from intergenic fusions can be missed, since they arise from SVs followed by additional
splicing alterations and may not have SV breakpoints corresponding to their chimeric
transcript [39]. Moreover, requiring orthogonal support from WGS is highly effective in
filtering potential false positives from RNA-seq, as well as other chimeric transcripts without
underlying genomic mutations that result from normal transcription processes (i.e.
read-through events or cis/trans splicing) [12, 26]. Many of these RNA-only chimeric
transcripts also occur in healthy tissues and are less likely to have a pathogenic effect than
fusions caused by tumor-specific SVs[12] [13]. Our results show distinct differences between
types and sizes of SVs underlying tumor-specific and germline high confidence fusions
(hcFs) (Fig. 3). The majority of tumor-specific hcFs were found to be the result of
inter-chromosomal translocations. These properties provide a strong basis for distinguishing
passenger gene fusions from potentially pathogenic variants based on WGS SV data [27].

In addition to the high confidence subset of 232 gene fusions, we also identified 33 fusions
for which two or more tools resolved underlying SVs but with differences in SV type and
exact breakpoint location. This is likely the result of mapping difficulties due to repeat
elements at the breakpoints. We found evidence of composite fusions having two underlying
SVs, for example the known clinically relevant fusion ASPSCR1--TFE3 (Table 1) which was
reported as t(17;X) in combination with an inversion. In addition, we identified two composite
fusions LINC01344--TERT and ETV6--IGL both of which have an underlying translocation
combined with a duplication likely mediated by segmental duplications surrounding the
breakpoints. As a result, they are not in the high confidence set as their underlying SVs are
identified with slight differences between SV tools. Despite these challenges, we were able
to identify gene fusions with high confidence also for patients with highly rearranged
genomes and focal amplifications. Further analysis of both DNA and RNA with long-read
sequencing would be beneficial to fully resolve underlying complex SVs and gene fusions in
detail [40].

Overall, we identified 27 distinct gene fusions in 19 patients that involve oncogenes or TSGs
and display similar characteristics to fusions that have previously been linked to tumor
etiology. For some patients, these candidate fusions add to the list of variants of unknown
significance which have been identified in their tumor genomes, but for others the identified
gene fusion presents a strong candidate for follow-up studies.

In case patients have copy number unstable genomes and carry many gene fusions, the
pathogenicity of individual fusions is difficult to assess. For example, the co-amplification and
resulting overexpression of MDM2/CDK4/FRS2 in neuroblastoma patient M787AAA is
clinically relevant [41], and the fusions originating from this amplification are more likely to be
passenger events [27, 42]. This shows that resolving the underlying SVs and copy number
alterations (CNAs) can help to distinguish expression changes due to “catastrophic” genomic
events from pathogenic fusions where 3’ (onco)genes are upregulated due to fusion with an
active promoter. However, we did not observe strong cohort-level trends of gene fusions
resulting in 3’ oncogene overexpression, likely because of the highly specific associations
between oncogenes and certain pediatric cancer types. Instead, we found an association
between CN gain and fusion partner gene overexpression, consistent with observations in
adult cancers that CNAs are the main contributing factor to gene expression changes[14].

12

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458342doi: bioRxiv preprint 

https://paperpile.com/c/57inwX/rLCC8
https://paperpile.com/c/57inwX/25mkN+xhaNs
https://paperpile.com/c/57inwX/xhaNs
https://paperpile.com/c/57inwX/1Nrk1
https://paperpile.com/c/57inwX/q4k31
https://paperpile.com/c/57inwX/yIu4R
https://paperpile.com/c/57inwX/JT8Nj
https://paperpile.com/c/57inwX/q4k31+UZv8g
https://paperpile.com/c/57inwX/ywc2D
https://doi.org/10.1101/2021.08.31.458342
http://creativecommons.org/licenses/by-nc/4.0/


For a subset of patients, we resolved fusions that potentially activate 3’ oncogenes as
reflected in expression changes. For example, we identified a fusion associated with TERT
overexpression in a patient diagnosed with liver cell adenoma (M637AAB, Additional file 1:
Figure S8a). This fusion warrants further investigation, because TERT activation may be a
factor contributing to malignant transformation to liver carcinoma [43]. Also, in a yolk sac
tumor (M014AAA), we identified a gene fusion with the ERBB4 kinase, which was previously
found to be overexpressed in yolk sac germ cell tumors [44] and suggested as a potential
drug target [45]. Although the kinase domain is not involved in this patient’s gene fusion
(Additional file: Figure S8b), also kinase-dead mutants can have functional consequences in
cancer [46].

In addition, we identified two gene fusions involving transcription factors that potentially
result in gain-of-function chimeric proteins. We identified a PAX3--WWRT1 fusion in an
embryonal rhabdomyosarcoma patient (M911AAA) resulting from a translocation t(2;3)
(tumor AF 0.81) which gives rise to a fusion product involving exons 1-7 of PAX3. Canonical
PAX3--FOXO1 fusions involve the same PAX3 exons, which suggests that PAX3--WWRT1
may have similar functional effects as the PAX3/7 driver gene fusions in alveolar
rhabdomyosarcoma (Additional file: Figure S8c). In a patient with pre-T-cell lymphoblastic
leukemia (M385AAA), we identified MED14--HOXA9 as in-frame gene fusion involving the
homeobox transcription factor domain (tumor AF 0.47, normal AF 0.06, Additional file 1:
Figure S8d). While this specific fusion has not yet been reported, diverse mechanisms of
HOXA9 activation might impact treatment and prognosis in T-cell leukemia [47, 48]. Notably,
a FLT3-ITD was identified in this patient too, and concurrent FLT3-ITD and HOXA9
overexpression was suggested to be potentially pathogenic in acute myeloid leukemia [49].
Taken together, these examples highlight candidate gene fusions which may activate
oncogenes relevant in these cancer types and warrant further investigation of their
pathogenic potential and relevance for the clinic.

Disruption of TSGs through gene fusion events has been previously reported in pediatric
cancer, but the impact of this mechanism remains underestimated [50]. While gene fusions
can result in activation of oncogenes, less is known about fusions involving TSGs [2]. These
fusions that potentially disrupt TSGs can be promiscuous in their partner genes and
breakpoints which makes them difficult to detect with targeted assays [7, 8]. For example,
the three TP53 fusions occurred with different partner genes and gene expression data
alone did not clearly indicate a disruptive effect. However, osteosarcoma samples can have
low tumor cell percentages that complicate gene expression analysis [30]. In these patients,
resolving the underlying SVs provided additional evidence supporting potential TP53
disruption.

In total, we identified three cases where TSG fusion partners are downregulated in
expression: ATRX--LINC01280, ZBTB20--LSAMP and NF1--RAB11FIP4. The ATRX fusion
is potentially pathogenic in osteosarcoma since it has been suggested as a driver before
[30]. Both ZBTB20--LSAMP and NF1--RAB11FIP4 involve known TSGs in neurological
pediatric cancers and have been reported in adult cancers [1, 25]. However, they have not
yet been described as markers of TSG disruption in pediatric cancers. In a neuroblastoma
patient (M909AAA), we resolved a ZBTB20--LSAMP fusion due to a 1 Mb duplication which
indicates a potentially pathogenic disruptive event (Additional file 1: Figure S8e). ZBTB20 is

13

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458342doi: bioRxiv preprint 

https://paperpile.com/c/57inwX/25mlt
https://paperpile.com/c/57inwX/1PBsW
https://paperpile.com/c/57inwX/8sTur
https://paperpile.com/c/57inwX/317rs
https://paperpile.com/c/57inwX/Sahi+YWDF
https://paperpile.com/c/57inwX/qPOQ
https://paperpile.com/c/57inwX/SebOp
https://paperpile.com/c/57inwX/zbAqq
https://paperpile.com/c/57inwX/JExCl+oXsag
https://paperpile.com/c/57inwX/rPb4A
https://paperpile.com/c/57inwX/rPb4A
https://paperpile.com/c/57inwX/eGZYQ+ivLau
https://doi.org/10.1101/2021.08.31.458342
http://creativecommons.org/licenses/by-nc/4.0/


associated with neuronal differentiation and disruption of this process is a known oncogenic
factor in neuroblastoma [51]. The neural cell-adhesion protein LSAMP has been suggested
as a potential TSG in neuroblastoma [33, 35] as well as other cancer types such as
osteosarcoma [34], however the mechanism is less clear. Both ZBTB20 and LSAMP are
downregulated and for ZBTB20 low expression is correlated with poor prognosis in a publicly
available neuroblastoma dataset (Additional file 1: Figure S9) [51].

The NF1--RAB11FIP4 fusion identified in a patient with Pleomorphic xanthoastrocytoma
(M535AAA), was caused by a 185 kb deletion with a disruptive effect on NF1 (Additional file
1: Figure S8f). NF1--RAB11FIP4 fusions have been previously detected in multiple cancer
types [25]. NF1 is also an important TSG that is recurrently mutated in pediatric CNS tumors
[52] and in rare instances also specifically xanthoastrocytoma [53]. Of note, germline NF1
alterations in combination with a second-hit somatic mutation can indicate sensitivity to
immunotherapy [52]. Although we only identified a somatic deletion with 0.5 tumor AF, the
expression analysis provides additional evidence that the NF1 gene is significantly disrupted
in this patient.

Finally, TSG disruption can also occur through alternative mechanisms as with the
MTAP--CDKN2B-AS1 fusions. These were the only recurrent fusions in our cohort and have
been previously reported in melanoma [28]. The presence of a MTAP--CDKN2B-AS1 fusion
indicates disruption of the CDKN2A locus via two possibly parallel mechanisms; directly
resulting from the deletions in the CDKN2A locus causing the gene fusion, and indirectly
through upregulation of CDKN2B-AS1 (0.9-2.0 zfpkm, Additional file 1: Figure S10) which
can have a repressive effect via Polycomb or RNA interference [28, 54]. Therefore, presence
of MTAP--CDKN2B-AS1 fusions can indicate concurrent CDKN2A disruption on multiple
regulation levels. Taken together, these examples illustrate that resolving underlying SVs can
provide crucial orthogonal support and additional evidence for TSG disruption, thereby
facilitating mechanistic understanding and clinical interpretation.

Conclusion
To increase our understanding of pediatric cancer, new approaches should be developed to
identify novel driver gene fusions. In this paper, we identified tumor-specific gene fusions
with high confidence by combining chimeric transcripts from RNA-seq and SVs from WGS
data. Resolving the underlying SVs enables confident detection of known clinically relevant
fusions, as well as discovery of potentially pathogenic fusions by distinguishing them from
artefacts and healthy-occurring events.

SVs can aid selection of tumor-specific fusions for targeted therapies and aid minimal
residual disease monitoring by providing allele fractions and exact breakpoints. Furthermore,
we identified 27 potentially pathogenic tumor-specific gene fusions involving oncogenes and
tumor-suppressor genes and demonstrated how these events can be linked to gene
expression changes. Regardless of the pathogenicity of the fusion itself, it can be a marker
for underlying genomic rearrangements especially in the case of TSG disruption. Rare gene
fusions present an interpretation challenge and, without recurrence, they require further
investigation into biological mechanisms or pathways. For example, through the integration
of expression data and in combination with the mutational landscape of the patient. The
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approach used in this study is not only useful for pediatric cancer, but can also be applied in
adult cancer for identifying candidate pathogenic fusions. Overall, we show the power of
integrating RNA-seq gene fusion predictions with WGS structural variants, which can aid
discovery and interpretation of pathogenic fusions for precision oncology applications.
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Materials and methods

Sample preparation and sequencing
Data was collected as part of the biobanking initiative at the Princes Máxima Center for
Pediatric Oncology, and resulted in a pan-cancer cohort of 130 patients. The inclusion
criteria used were: the availability of informed consent, paired tumor-normal sequencing
WGS data and RNA-seq data of the tumor of sufficient quality (see quality control metrics),
and the sample being representative of the cancer type group (i.e. presence of tumor
material in the sample).

Following the institute's standardized biobanking protocols (Hehir-kwa, 2021, manuscript
under revision), RNA and DNA were isolated from fresh frozen tumor tissue and as a
matching normal, DNA was isolated from whole blood. Blood and bone marrow samples
were enriched for monocytic cells using Ficoll. Total RNA was isolated from tumor samples
using the AllPrep DNA/RNA/Protein Mini Kit (QIAGEN) according to standard protocol on the
QiaCube (Qiagen) RNA-sequencing (RNA-seq) libraries were generated from 300ng RNA
using the KAPA RNA HyperPrep Kit with RiboErase (Roche) and sequenced with NovaSeq
6000 (2x150 bp) (Illumina). DNA was isolated from paired tumor-normal samples also using
the AllPrep DNA/RNA/Protein Mini kit. Whole-genome sequencing (WGS) libraries were
generated from 150 ng DNA using the KAPA DNA HyperPlus kit and NovaSeq 6000
sequencing platform (Illumina).

RNA and WGS sequencing data pre-processing
Pre-processing of RNA-seq and WGS was done with the institute's standardized pipelines
implementing GATK 4.0 best practices for variant calling using a wdl and cromwell-based
workflow [55, 56] .

Data quality was assessed with Fastqc (version 0.11.5) to calculate the number of
sequencing reads[12]. Picard (version 2.20.1) for both WGS and RNA metrics output such
as insert size and MarkDuplicates [13]. The RNA sequencing reads were aligned using Star
(version 2.7.2b) to GRCh38 and gencode version 31 [14]. WGS reads were aligned using
BWA mem (0.7.13) to GRCh38.

Quality control (QC) metrics are available for all samples (Additional file 3). For WGS, a
minimum median coverage of 25x for normal samples and 60x for tumor samples was used.
The percentage of duplicate reads was reasonable as well with median 8% and maximum
13% for tumor samples, 7% and 13% for normal samples respectively. Patient M129AAA
was resequenced once to achieve sufficient coverage.
For RNA data, a minimum unique reads count of 30M was used based on the Picard total
reads and percentage of duplicates.

Diagnostic process
As part of the institute’s routine diagnostic process, patients were diagnosed according to
ICD-O-3 guidelines combining histopathological and molecular characteristics by a
pathologist and molecular tumor board. In order to achieve sufficient sample size for some of
the downstream analyses, the ICD-O-3 primary cancer type groups were further grouped
into three cancer type supergroups: hemato, neuro and solid. Hemato contains the leukemia

16

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.458342doi: bioRxiv preprint 

https://paperpile.com/c/57inwX/sCbUU+WLuJV
https://doi.org/10.1101/2021.08.31.458342
http://creativecommons.org/licenses/by-nc/4.0/


(1) and lymphoma (2) primary groups, Neuro the CNS tumors (3) and neuroblastomas (4).
Note that there were no patients with retinoblastoma (5) in our cohort. The solid group is
composed of all other primary cancer groups (6-12).

Variant calling
Gene fusion predictions were obtained from tumor RNA-seq using STAR Fusion (version
1.8.0) [57] and GRChr38/Gencode v31 CTAT Oct 2019. Fusion predictions involving human
leukocyte antigens or mitochondrial genes are filtered out, but no other pre-filtering based on
RNA support was done.

Single nucleotide variants (SNVs) were inferred from paired tumor-normal WGS by Mutect2
from GATK 4.1 [58] and pathogenicity was predicted by variant effect predictor (VEP)
(version 92)[59] , according to the GATK4 standards. Somatic SNVs were filtered based on
tumor variant allele frequency (AF) > 0.05 and predicted impact (MODERATE or HIGH).
Somatic copy number alterations (CNAs) were identified with the GATK4 pipeline according
to their standards. We generated a panel of normals (PON) from 18 normal samples
prepared and sequenced under the same conditions and used this for normalisation. The
allelic imbalance ratios were calculated using 1000 genomes, autosomal SNP sites with a
minor allele frequency (MAF) > 0.1.

Structural variants (SVs) were inferred from paired tumor-normal WGS using Manta [17]
(version 1.6), DELLY [18] (version 0.8.1) and GRIDSS [19] (version 2.7.2). Due to technical
issues with running the tool, no GRIDSS output was available for four patients (M863AAC,
M479AAA, M156AAA, M606AAA). SVs were not filtered based on quality, read support or
somatic/germline annotation. Since these tools vary in how they classify SVs as somatic or
germline, we performed this classification based on variant allele fraction (AF) of the paired
tumor and normal samples.

The calculation of variant AF was done in agreement with the developer’s recommendations
for every tool. In the case of Manta, the tool outputs separate files with “somatic SVs” for the
tumor and “diploid SVs” for the normal sample. The tumor and normal AF was calculated for
the variants in the somatic file using the number of spanning read pairs and split reads that
strongly (Q30) support the reference or variant alleles. Variant AF = SRV+PRV / (SRR +
PRR + SRV + PRV). For the variants scored under the diploid assumption, only normal AF
could be calculated.

For DELLY and GRIDSS the AF was calculated for all variants. DELLY recommends
reference/variant allele supporting pairs for imprecise variants (AF = DV/(DR+DV)) and
reads for precise variants (AF = RV/(RR+RV)). GRIDSS recommends using the supporting
fragments (VF) that combine split reads, discordant pairs and assembly-based support. (AF
= VF / (VF + REF + REFPAIR) for variants larger than the max fragment size distribution,
and excluding the REFPAIR for smaller variants (<1000bp).
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Fusion-sq algorithm

Prepare matching intervals
Gene fusion predictions from RNA-seq were used to derive genomic intervals for SV
breakpoint matching taking into account intron-exon gene structure. First, transcripts were
retrieved from the ENSEMBL database based on ENSEMBL gene stable identifiers provided
by STAR-Fusion, or based on genomic location in case an identifier was lacking (e.g.
immunoglobulin genes). Second, a hierarchy of matching intervals was generated, from
more to less precise: 1) intron adjacent to the RNA breakpoint, 2) alternative splice junction
+/-10 bp from breakpoint, 3) flanking interval spanning +/-500bp at each side of the
breakpoint which is subsetted to the gene body if available, 4) RNA breakpoint to start/end of
the gene body. The adjacent intron interval can differ between transcripts, therefore the
union of introns was used for initial matching of RNA and SV breakpoints. The
transcript-specific intervals later used to match SV breakpoints to individual transcripts.

Match SVs to gene fusions
SVs identified by Manta, DELLY and GRIDSS were matched to gene fusion predictions
based on these genomic intervals. Note that respecting the hierarchy of the intervals is
important because of the inherent overlap between the intervals, i.e. introns fall inside the
gene body. We conclude that fusions are validated by WGS if SVs are found that link the up-
and downstream (5’/3’) partner genes by any of these genomic intervals.

If no SV was identified that directly links the 5’ and 3’ gene, an attempt was made to resolve
the fusion by a composite of two SVs. All SV breakpoints originating in respectively the 5’
and 3’ partner gene’s adjacent intron/flanking/splice-junction intervals were considered.
Fusions were flagged as ‘composite’ when two SVs were identified that respectively
originate from the 5’/3’ partner genes and have their “other end” in close proximity (5kb)
therefore indirectly but effectively linking the partner genes to form a fusion.

Combine supporting SVs
As the final step of the pipeline, the supporting SVs from the different tools were integrated
for the WGS validated fusions. Each fusion was annotated with the genomic breakpoints and
SV characteristics (i.e. SV type, size, tumor and normal allele fractions, breakpoint quality
filters). Also, the SV breakpoints were used to select corresponding transcripts for the
partner genes and annotated with the involved exons and gene fragments based on this
selection. This step also further annotates the precision of SV support by distinguishing
between SVs that link the 5’/3’ partner genes via introns of individual transcripts
(gup/gdw_location = intron) and SVs that link via the union of introns used during matching
but do not satisfy this strict criterium for both partner genes (gup/gdw_location =
intron_consensus). In some cases, multiple fusion predictions were validated by the same
SV and subsequently considered as a single fusion. Vice versa, multiple SVs could be linked
to a single fusion prediction as well.

We further selected high confidence fusions (hcFs) based on the support by at least two SV
tools and the location of the SV breakpoints relative to the chimeric transcript. Fusions were
labeled as ‘precise_location’ in case the SVs link partner genes by their adjacent introns,
flanking regions or alternative splice junctions. To be considered as ‘high_confidence’, these
supporting SVs had to be resolved as the same event by at least two tools based on 50%
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reciprocal overlap and matching SV type. SV breakpoints smaller than 30bp were resized to
30bp during matching. In case multiple high confidence SVs support the fusion, the SV with
the highest tumor AF is selected.

Fusions were classified based on AF after resolving the underlying high confidence SVs,
since this filters out potential additional lower confidence SVs. Fusions were classified as
tumor-specific, (likely) germline and low AF based on mean tumor and normal AF of the
associated SVs.

● Tumor specific: (tumor AF - normal AF) > 0.05 & (tumor-normal)/normal ratio > 1.5
● Germline: normal AF > 0.05 & (tumor-normal)/normal ratio < 1.1
● Low AF: (tumor AF - normal AF)<0.05 & normal AF <0.05

Expression data generation and analysis
Gene expression was analyzed using featureCounts from Rsubread (version 1.32.4) with
Gencode v31 CTAT Oct 2019 annotation and settings allowMultiOverlap=T,
largestOverlap=T and countMultiMappingReads=F.

Gene expression alterations were assessed with z-scores of log2 transformed gene length
normalized read counts (Fragments Per Kilobase of transcript per Million mapped reads,
FPKM). Expression values were first log transformed, after which the group mean and
standard deviation were calculated. z-score = (fpkm - fpkm_mean )/ fpkm_sd. Gene
expression z-scores (zfpkm) were reported relative to the full cohort, cancer type supergroup
and the primary cancer group. Normality of the log-transformed FPKMs was assessed with
Shapiro for each group separately to assess the validity of using gene expression z-scores
for outlier analysis. As threshold for aberrantly expressed genes, +/-1.96 z-score was used
corresponding to 95% confidence interval (p<0.05). To account for cases where gene
expression is not normally distributed in a certain group, we also assessed whether a patient
carrying a gene fusion has a significantly different gene expression than other patients in
their subgroup using Wilcoxon rank sum test.

To study whether fusions with oncogenes or tumor-suppressor genes as partner genes are
associated with gene expression changes, we assessed subset enrichments with Fisher’s
exact test and compared zfpkm distribution amongst subsets of fusions with Wilcoxon rank
sum tests.

Overexpression is defined as >1.96 zfpkm relative to the cancer type supergroup.
Distributions of zfpkm supergroup scores were compared relative to all tumor-specific high
confidence gene fusions (hcTSFs) for fusions with and without downstream oncogenes.
Similar analysis was conducted for downregulation of tumor-suppressor genes. Next, we
investigated whether expression changes and copy number (CN) changes were associated.
Hereto again the Fisher’s exact test was used for subset enrichments relative to all hcTSFs
and Wilcoxon rank sum tests for changes in zfpkm distributions. CN gain was defined as
>1.58 read depth log2 fold change which corresponds to 3x fold change.
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SV type and size analysis
SV properties were analyzed for the high confidence gene fusion that have underlying SVs
supported by at least two SV tools. To account for differences between how these tools
report events, SV properties were harmonized between tools prior to analysis. SV
breakpoints were classified into the major types of simple SVs based on their relative
orientation: deletions, duplications, inversions and inter-chromosomal translocations. Sizes
of SVs were regarded as positive numbers and only considered for intra-chromosomal
events. One gene fusion (AC063944.1--LINC00882) was resolved as tumor-specific in one
patient and as germline in another, therefore it was labeled as ambiguous and ignored
during this analysis.

Recurrence analysis
The number of unique occurrences of fusions across patients was used during recurrence
analysis. Every occurrence of an upstream-downstream (5’/3’) partner gene pair in a patient
is counted once, ignoring multiple predicted breakpoints in a single patient. Fusion
directionality was respected, so canonical and reciprocal gene fusions were regarded as two
distinct events.

Integration of CN data and SVs
Copy number (CN) segments were mapped to SVs based on genomic location. To analyze
read depth of SVs, we considered the CN ratio log2 fold change (l2fc) of SV breakpoints and
calculated a weighted average from overlapping segments.

Measures of copy number instability
Fraction of genome altered (FGA) was calculated relative to the expected autosomal
genome size, excluding chromosome X and alternate loci: 2875001522 bp.

FGA = number of base pairs >0.2 absolute CN l2fc / expected autosomal genome size.

In addition to the FGA, the maximum CN l2fc was used to gauge whether patients had focal
amplifications.

The subset “patients with a high gene fusion burden” is defined by the 95th percentile (7 or
more) of high confidence gene fusions classified as either tumor-specific or low AF.
Patients in this subset: M809AAA, M479AAA, M691AAA, M002AAB, M787AAA, M040AAA,
M606AAC, M597AAC.

Annotation of SVs
To verify how SVs link together the fusion partner genes independently of RNA-seq
evidence, SVs were annotated with introns based on overlap with canonical transcripts. For
each partner gene, a canonical transcript was selected based on stepwise filtering until a
single transcript remained: MANE select, the tags "basic, CCDS, APRIS", protein coding,
transcript support level and coding sequence length. The transcript annotation was retrieved
from Gencode v31 [14].

As an additional confirmation of the classification between tumor-specific and germline SVs
based on AF, SVs underlying gene fusions were compared to SVs occurring in the general
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population. Hereto, SVs were retrieved from NCBI Curated Common Structural Variants
(nstd186) [22], gnomAD Structural Variants (nstd166) [23] from NCBI repository and from
DGV [24] (version 2020-02-25) accessed on 2021-03-11. SVs supporting gene fusions were
matched to population SVs based on 50% reciprocal overlap, regardless of SV types as
variant type annotation differs per database and SV detection method. Fusions were flagged
in case their underlying SVs matched to population SVs from any of these databases
(anno_sv_population) (corresponding column of Table 1).

Furthermore, SVs were annotated with repeats and segmental duplications to assess
whether their breakpoints reside in rearrangement-prone genomic regions. Hereto, repeats
and segmental duplications tracks were retrieved from UCSC table browser accessed on
2021-04-20 [60]. Repeats from RepeatMasker were pre-filtered by repeat class (LINE, SINE,
LTR) and completeness (<50 bp of repeats left) to prevent spurious annotations. Gene
fusions were annotated with identifiers of repeats and segmental duplications overlapping
the underlying SV start/end coordinates (repeat_family, segdup).

Annotation of gene fusions
To identify whether gene fusions were previously reported in either healthy tissue or cancer
samples, we compared our findings to chimeric transcript databases. Fusions were
annotated as healthy chimera based on the default annotation from STAR-Fusion [57]. For
the annotation of cancer chimera, we used ChimerDB 4.0 (retrieved on 2021-02-17) [25] and
the Mitelman database (v20201015, retrieved on 2021-01-07) [1] matching exact gene pairs.
(anno_cancer_chimera).

To aid the interpretation of gene fusions and select potentially pathogenic gene fusions, we
assigned gene-level properties to the 5’/3’ partner genes of fusions based on their stable
ENSEMBL identifiers and/or gene names. Cancer-related gene datasets were retrieved from
COSMIC [61] (cancer gene census v92), OncoKB (accessed on 2021-04-14) [62] and
Grobner [29]. For COSMIC and OncoKB we adopted their annotation of oncogenes and
tumor-suppressor genes (TSGs). As a pediatric cancer resource, we retrieved recurrently
mutated genes identified by Grobner et al. and used “amplification” as proxy for oncogene
and “deletion/gene-disrupting structural variant” for TSG. Similarly, genes and fusions are
annotated as kinase based on the human kinome [63] (retrieved from www.kinase.com on
2021-01-16). For each annotation, it was specified whether the fusion partner gene has that
property (gup_label, gdw_label), and the annotation was summarized on the level of the
gene fusion for easier selection (anno_has_onco_or_tsg, anno_has_kinase). Finally, gene
fusions were also annotated with cytobands retrieved from the UCSC table browser on
2021-05-06.

To summarize annotations for visualisation and reporting (including in Figure 3 and Tables 1
and 2), we annotated fusions (annotation) based on known clinical relevance (clinical),
involving a cancer-related gene or cancer chimera (cancer), population SV or healthy
chimera (common), or both cancer and common (both). For further analysis, we selected
potentially pathogenic fusions based on whether they contain an oncogene or TSG.
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Correlating gene expression and prognosis
Kaplan Meier plots were retrieved from the R2 genomics analysis and visualisation platform.
(http://r2platform.com/, accessed on 2021-07-12). Results were obtained with KaplanScan,
which calculates the optimum gene expression threshold for survival analysis with statistical
testing. Data from neuroblastoma samples in the publicly available Versteeg dataset was
used for this analysis http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16476

Gene fusion schematics
Gene fusion schematics were generated with Protein Paint from the St. Jude cloud
(https://proteinpaint.stjude.org/ [64, 65] using the default RefSeq transcripts in hg38 and
genomic coordinates of the underlying SVs resolved with Fusion-sq.
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Figures and tables

Fig. 1: Gene fusion detection in 130 pediatric cancer patients

Fig. 2: Tumor-specific SVs resolve clinically relevant fusions with high precision and recall

Fig. 3: Underlying SVs distinguish tumor-specific fusions from healthy chimera

Fig. 4: Resolving tumor-specific fusions in patients with high copy number instability and
focal amplifications

Fig. 5: Fusion partner gene expression can indicate oncogene activation or
tumor-suppressor gene disruption

Table 1: Gene fusions for which underlying SVs are resolved with high confidence as
tumor-specific or low AF variants. Also included are the three gene fusions caused by a
composite SV detected by at least two tools: ASPSCR1--TFE3, ETV6--IGL-@-ext,
LINC01344--TERT. For convenient subset viewing, use the anno_clinically_relevant and
anno_has_onco_or_tsg flags.

Table 2: Gene fusions from Table 1 mapped to distinct fusions such that fusions occurring in
multiple patients are merged and listed only once.
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Fig. 1: Gene fusion detection in 130 pediatric cancer patients
a Distribution of 130 pediatric cancer patients colored according to ICD-O-3 primary group.
Grey overlay indicates patients for which a clinically relevant fusion was identified by
RNA-seq. b Schematic overview of the number of fusions at different steps throughout the
Fusion-sq pipeline. Subsets discussed extensively in the main text are highlighted in red and
available in Table 1. Note that for the 165 high confidence tumor-specific fusions (hcTSFs),
126 occur in patients without a known clinically relevant gene fusion. The same applies to
the 27 distinct fusions involving oncogenes or TSGs (onco/TSG).
c Schematic overview of the Fusion-sq algorithm to find SVs that support fusion predictions
by linking the upstream (5’, blue) and downstream (3’, red) partner genes. First, genomic
intervals to match RNA-DNA breakpoints are derived based on the intron-exon gene
structure and the RNA breakpoints. Next, DNA breakpoints located in these matching
intervals are used to identify SVs that link together the partner genes (Methods). d Upper
panel: schematic representation of high confidence fusion detection based on SVs identified
by two or more tools (>50% reciprocal overlap). Lower panel: scatter plot of tumor and
normal AF, resulting in classification of fusions in tumor-specific (blue), likely germline (red)
and low AF (green). e Number of fusions in individual patients: hcTSFs (circles, grouped and
color-coded by primary cancer type group) and fusion predictions by RNA-seq with
FFPM>0.1 (grey bars). Fusion status is indicated by a black square for clinically relevant
fusions and a circle for oncogene/tumor suppressor gene fusions.
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Fig. 2: Tumor-specific SVs resolve clinically relevant fusions with high precision and
recall
a Distance between RNA breakpoints and matching SVs as resolved by DELLY (circle),
Manta (square)and GRIDSS (triangle) for the 5' and 3' partner genes in 30 patients carrying
clinically relevant fusions.. Colors represent specific gene fusions. Red lines indicate 10 kb
fixed-size matching intervals and would fail to match SVs for nine gene fusions (labelled).
Note that all clinically relevant fusions are detected by at least two SV tools at nucleotide
resolution (<10bp, overlapping symbols) except for ASPSCR1--TFE3. b Gene fusion
predictions (all circles) in individual patients (same as in a) with their read support in fusion
fragments per million total RNA-seq fragments (FFPM). The red line indicates the default
cutoff below which fusions are usually discarded (low expression FFPM<0.1). Supporting
high confidence tumor-specific SVs were identified for all clinically relevant fusions (colored
circles; colors same as in a) and six additional fusions (black) of unknown significance, but
not for the remaining RNA-only fusion predictions (grey). Colored bar at the x-axis indicates
the primary cancer type group.
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Fig. 3: Underlying SVs distinguish tumor-specific fusions from healthy chimera
Number of (a) and average SV length in base pairs (bp) for (b) distinct high confidence
fusions categorized either as tumor-specific (upper panel), likely germline (middle panel) and
low AF (lower panel). . Each category is further subdivided according to SV type: inversion
(INV), duplication (DUP), deletion (DEL) or intra-chromosomal translocation (CTX). Fusions
are colored based on known clinical relevance (clinical; purple), involving a cancer-related
gene or cancer chimera (cancer; red), population SV or healthy chimera (common; blue), or
both cancer and common (both; orange).
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Fig. 4: Resolving tumor-specific fusions in patients with high copy number instability
and focal amplifications
Circos plots of osteosarcoma patient M691AAA (a), neuroblastoma patient M787AAA (b)
and embryonal rhabdomyosarcoma patient M002AAB (c). The plots are annotated with high
confidence tumor-specific gene fusions (multi-colored links) and copy number gains (red)
and losses (blue). d Relationship between gene expression changes of the 5' (left panel) and
3' (right panel) partner gene relative to the cancer type supergroup (FPKM z-score, color
scale displayed on the right) and copy number (CN) log-2 fold changes in read depth. Genes
located inside amplified regions (CN l2fc>1.58) are displayed with larger circles.
Cancer-related genes are labelled according to their patient of origin.
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Fig. 5: Fusion partner gene expression can indicate oncogene activation or
tumor-suppressor gene disruption

Gene expression changes for the 5' (left) and 3' (right) partner genes of tumor-specific gene
fusions involving oncogenes and/or tumor-suppressor genes (TSG). Changes are relative to
the cancer type supergroup (FPKM z-score; color scale on the right). Individual 5' or 3'
genes are marked as either oncogene (circle), TSG (triangle), both TSG and oncogene
(square) or kinase (k). Fusions were divided into ‘activating’ or ‘disruptive’ functional effect
categories based on partner gene annotation, and marked with an asterisk if they originate
from patients with a high gene fusion burden.
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