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ABSTRACT

Grasslands are predicted to experience a major biodiversity change by the year 2100 in part due to recent and projected
increases in atmospheric CO2 concentration. A better understanding of how grasslands have responded to past environmental
changes will help predict the outcome of current and future environmental changes. Here, we explore the relationship between
past atmospheric CO2 and temperature fluctuations and the shifts in diversification rate of grasses (Poaceae) and daisies
(Asteraceae), two exceptionally species-rich grassland families (∼11,000 and ∼23,000 species, respectively). To this end, we
developed a novel Bayesian approach that simultaneously estimates diversification-rates through time from time-calibrated
phylogenies and correlations between environmental variables and diversification rates. Additionally, we developed a new
statistical approach that incorporates the information of the distribution of missing species in the phylogeny. We found
strong evidence supporting a simultaneous increase in diversification rates for daisies and grasses after the most significant
reduction of atmospheric CO2 in the Cenozoic (∼34 Mya). The fluctuations of paleo-temperatures, however, appear not to have
had a significant relationship with the diversification of these grassland families. Overall, our results shed new light on our
understanding of the origin of grasslands in the context of past environmental changes.
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Introduction14

The grassland biome (steppes, savannas and prairies) covers vast areas of the Earth’s surface and today accounts for as much as15

one-third of the net primary production on land1, 2. Although grasses (Poaceae) comprise the bulk of the biomass and plant16

population in grasslands, other plant families—in particular the daisies (Asteraceae)—are usually as much as (or even more)17

diverse than grasses (Fig. S1). The evolution of grasslands marked the emergence of a new landscape and provided the substrate18

for the adaptive radiation of other life forms that coevolved along with this biome, including grazing mammals3 such as horses,19

wombats, and capybaras.20

The age of a given biome is often estimated by detecting when particular representative taxonomic groups first appear in the21

fossil record. For example, the early evolution of the grassland biome—and open-habitat biomes in general—has been estimated22

from the fossil record of grass phytoliths (plant silica)4 or from the record of fossil pollen of daisies, grasses and amaranths5, 6.23

Phylogenetic trees based on DNA sequence data calibrated with fossils provide a powerful new perspective on the history of24

biomes7. This approach has been used to estimate the timing of tropical-rainforest evolution based on phylogenetic trees of25

plant groups that are characteristic of this biome (e.g., Malpighiales8, Arecaceae9, and the legume genus Inga10). Nevertheless,26

phylogenetic approaches have barely been used to study the evolutionary history of grassy biomes; most previous studies of27

grassland evolution have focused on the origins of C4 grasslands11. Here we estimate when grasslands first expanded using28

phylogenetic trees of its two primary plant families, Asteraceae and Poaceae. We assembled a large calibrated phylogenetic tree29

for daisies and used the largest tree yet inferred for grasses11 to explore temporal shifts in rates of lineage diversification, and to30

test correlations between diversification-rate shifts and past climatic fluctuations.31

A major limitation when analyzing hyper-diverse groups—in our case Asteraceae with ∼23,000 species and Poaceae with32

∼11,000 species—is the inevitable sparse species sampling (Figs. 1, 2). Although existing approaches for inferring rates33
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Figure 1. Phylogenetic tree scaled to geological time of Asteraceae with 2723 sampled tips. Asteraceae is one of the
most species-rich families of flowering plants with more than 23,000 species. The number of non-sampled (missing) species
increased enormously towards the more derived and specious lineages. For this reason, the sampling among clades is severely
biased. Note that these rich and derived lineages evolved during the late Paleogene or early Neogene. K=Cretaceous,
Pg=Paleogene, Ng=Neogene.

of lineage diversification (speciation and extinction) can accommodate incomplete species sampling12, 13, the distribution of34

missing species on the tree in these approaches is modeled in a simplistic and somewhat unrealistic manner. Previous work has35

shown that biased species sampling has a strong impact on diversification-rate estimates14–16. We develop a novel Bayesian36

approach for detecting diversification-rate shifts that incorporates a more realistic (non-uniform) model of species sampling37

and implemented it in the open-source software RevBayes17. Our model builds on the episodic birth-death process, where38

speciation and extinction rates are constant within an interval but may shift instantly to new rates at a rate-shift episode18–21.39

Furthermore, we tested for a correlation between diversification rate and two environmental variables —atmospheric CO240

concentration and average global paleo-temperature— using one existing22–27 and three new environmentally-dependent41

diversification models. We used an empirically informed and biologically realistic model to accommodate missing species that42

assigns unsampled species to their corresponding clades using taxonomic information.43

Results and Discussions44

Our analyses demonstrate that the most dramatic increase in diversification rates in both Asteraceae and Poaceae (calibration45

scenario #1, see Methods) occurred from the late Oligocene (∼28 Mya) to the early Miocene (∼20 Mya) (Fig. 3 and Fig. S5).46

This diversification rate shift are robust to several model assumptions. We recovered the same diversification rate shifts47

regardless of the assumed number of time intervals (Fig. S6). Both autocorrelated diversification rate prior models qualitatively48

agree on the overall pattern of diversification rates (Gaussian Markov random field (GMRF) or Horseshoe Markov random49

field (HSRMF), Fig. S5 and S6). Only the uncorrelated diversification rate prior model differed in the inferred pattern (UCLN,50
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Figure 2. Lineage-Through Time (LTT) plots of Asteraceae (A) and Poaceae (B). Solid grey lines represent LTT curves
derived from time-calibrated phylogenetic trees of Asteraceae and Poaceae (calibration scenario #1). Colored boxes depict the
name and number of non-sampled (missing) species per clade that we integrated in our novel empirical taxon sampling. The
shape of LTT curves have demonstrated to be a convenient summary metric for diversification diagnostics, particularly when
diversification deviates from the expectation of constant rates28, 29. However, the distribution of missing species might not be
uniform ––as it is the case of these angiosperm families–– and can severely impact on diversification-rate estimates. Our work
shows that the most important increase in diversification rate for both Asteraceae and Poaceae is completely unnoticeable using
the LTT analysis, even when calibrated phylogenetic trees include a large number of species.

Fig. S5 and S6). However, the autocorrelated diversification rate prior models were significantly favored according to our Bayes51

factor analyses (GMRF for the daisy phylogenetic tree and HSMRF for the grass phylogenetic tree, Fig. S7). The diversification52

rate patterns were strongly influenced by the assumed incomplete taxon sampling (Fig. S8). In our simulation study we show53

that incorrectly assuming uniform taxon sampling and thus disregarding taxonomic information about the distribution of missing54

species strongly biases diversification rates (Fig. S22). Conversely, our empirical taxon sampling informed by a more accurate55

distribution of missing species has good power to detect the correct time-varying diversification rates and low false-positive rate56

when diversification rates are in reality constant (Fig. S22). Thus, we recommend to include as much information as possible57

regarding the distribution of missing species.58

The respective diversification rates of Asteraceae and Poaceae (calibration scenario #1, see Methods) peak between 2059

Mya and 15 Mya, and subsequently decreases for a brief period of time before increasing again from the late Miocene (∼1060

Mya, Fig. 3 and Fig. S5). Our second analysis using the Poaceae phylogeny calibrated with a Cretaceous phytolith (calibration61

scenario #2) detects an earlier peak for Poaceae at about 30 Mya (Fig. S4). The phylogenetic placement of this fossil phytolith62

has been debated30, thus this last result should be considered with caution. Our estimates of low diversification rates prior to63

the Oligocene is consistent with the scarcity of fossil forms assigned to both daisies (Table S1) and grasses4, 31 known from64

this period. Similarly, our estimates of a high diversification rate in the late Oligocene and early Miocene is in line with the65

high diversity of fossil remains assigned to these groups4, 32. The Cenozoic ’temporal hotspot’ of grassland diversification66

(∼30 Mya to ∼15 Mya) –based on daisies and grasses (calibration #1 and #2) phylogenetic trees– coincides with one of the67

most fundamental changes in global climate in the geologic record; a marked decline of atmospheric CO2 occurred during the68

Oligocene (∼34 Mya), reaching modern levels by the latest Oligocene33, 34. This scenario marks the onset of a cooler and more69

modern world (Coolhouse state), identified by the earliest Cenozoic glaciations in Antarctica, and the consequent drop in global70

paleotemperatures35.71

In line with the reconstructed climatic scenario, our analyses of correlation between diversification rates and CO2 or72

paleo-temperature show very interesting results (Fig. 3 and S8). Diversification rates inferred from both the daisy and grasses73

phylogeny support correlation to CO2 over paleo-temperature (Fig. S10). Surprisingly, the best fitting environmentally-74
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Figure 3. Estimating diversification rates and correlation to CO2 and paleo-temperature. a) Diversification rates
through time of daisies (yellow) and grasses (green) –calibration scenario #1– for the last 50 Mya. Dotted line represents
atmospheric CO2 fluctuations (22); note that the Oligocene steep decrease mirrors the onset of the increase in diversification of
daisies and grasses. Grey arrow indicates a period (13-10 Mya) of lower diversification rates probably linked either with a brief
increase in CO2 (not represented in the dotted smoothed curve) or the explosive radiation of hypsodont grazers (e.g., horses)
and other mixed feeder grazers3 who may have had a tremendous impact on grasslands through their effects on plant
populations and community composition. b) The correlation coefficient (β ) between diversification rates and CO2
concentrations for daisies and grasses is significantly negative (posterior probability of 1.0 for all models except the HSRMF,
which has a posterior probability of 0.98; Bayes factors of 37,501 and 49 respectively). The support for a negative correlation
between paleo-temperature and diversification rates is ambiguous; the UC and fixed models show significant support (posterior
probability of 1.0, Bayes factor of 37,501) while the autocorrelated models show no support (posterior probability between 0.05
and 0.095, Bayes factors supporting a positive correlation of 1.04 and 17.86 for the daisy dataset and 2.85 and 9.75 for the
grasses dataset for the GMRF and HSMRF models respectively).

dependent diversification model for the daisy phylogeny was the uncorrelated lognormal (UC) variation model and for the75

grasses phylogeny the fixed rate model without additional variation. The support of the uncorrelated model over the two76

autocorrelated models (GMRF and HSRMF), although the autocorrelated models were favored when using time-varying77

diversification rates without environmental variables (Fig. S7), could stem from the use of vague prior distribution which78

allows for more rate variation in autocorrelated models21. However, regardless of the specific environmentally-dependent79

diversification model, we inferred a negative correlation between diversification rates and environmental CO2 (Fig. S9). The80

resulting Bayes factors for a negative correlation were decisive with values of 37,501 for the fixed, UC and GMRF models and81

49 for the HSMRF model (Fig. 3). We also see the same agreement between the four environmentally-dependent diversification82

models in our simulation study (Fig. S19 and S20). Thus, if there is a clear signal of correlation between the environmental83

variable and diversification rates, then our analyses appear robust to modeling of the additional component of time-varying84

diversification rates. This agreement can also be seen when all four environmentally-dependent diversification models show the85

same estimated diversification rates (Fig. S13-14). When the signal is less clear, as for the paleo-temperature analyses, the four86

models disagree and range from significant positive to significant negative correlation and the estimated diversification rates87

of the environmentally-dependent diversification models also differ (Fig. S13-14). Finally, our results of correlation between88

environmental CO2 and diversification rates are also robust to the chosen epoch size (Fig. S11).89

The negative correlation between diversification rates of these selected grassland families and atmospheric CO2 might not90

be surprising; atmospheric CO2—the main source of carbon for photosynthesis— serves as a fundamental substrate for plant91

growth. The available experimental evidence shows that low atmospheric CO2 limits plant performance36, although responses92

vary significantly between species. At a landscape scale, carbon limitation and water stress due to lower atmospheric CO293
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concentrations (’ecophysiological drought’), rather than water stress due to lower precipitation (‘climatic drought’), cause94

changes in vegetation structure37. During the Last Glacial Maximum (LGM; ∼21,000 years ago), for example, atmospheric95

CO2 was at its lowest concentration in the history of land plants (∼180–200 ppm)38. Models have predicted that the direct96

physiological impact of the of low CO2 concentrations during the LGM drove the expansion of grasslands and dry shrublands97

at the expense of forest39 (Fig. S2). Other modeling experiments indicate that low atmospheric CO2, in combination with98

increased aridity and decreased temperatures, causes new xeric biomes to develop38.99

Although our primary hypothesis is that a CO2-depleted atmosphere played a role in the geographic expansion and100

diversification of grassland families since the Oligocene, other environmental and biological variables could have also been101

involved. In particular, the decreasing temperatures, increasing aridity, and increasing seasonality of temperature and/or102

precipitation of the late Cenozoic have been traditionally linked to the early radiation of grasslands40, 41. The role of cooling103

in the emergence of open-habitat grasses has been debated as the adaptation to low temperatures became prominent in the104

more derived groups of grasses4, 42. Grazing mammals have been also important components in the evolution of grasslands;105

grazers and grassland ecosystems probably coevolved over millions of years43. Grazing increased species diversity according to106

experimental studies, as grazers prevent dominant plant species from monopolizing resources. Without grazing, tall, vegetatively107

reproducing plant species increase in cover and shade out short and sexually reproducing species44. Grazing also affects the108

flux of nutrients by accelerating the conversion of plant nutrients from forms that are unavailable for plant uptake to forms109

that can be readily used. Overall, grazing mammals have an important role in the diversity of present-day natural grasslands110

and we assume they might have done so during their early radiation. However, the explosive radiation of true hypsodonts may111

have negatively impacted grasslands’ distribution and diversity (see below). Sorting out the relative importance of all these112

environmental and biological competing forces from the hypothesized CO2-induced shift is challenging.113

We detected a short decrease in diversification rates for daisy and grass plant groups during the mid-Miocene, about 13-10114

Mya (Fig. 3). The causal mechanism underlying remains to be elucidated. However, we suspect that the dramatic radiation115

of hypsodont grazers –such as horses– and other mixed feeder grazers may have had an impact on grasslands3, 45. Since the116

late Miocene (∼10 Mya), however, the more recent expansion of C4 grass lineages11 may have contributed to the increased117

diversification rates in these groups. Plants using the C4 photosynthetic pathway have anatomical and biochemical adaptations118

for concentrating CO2 within leaf cells prior to photosynthesis, which may lead to a selective advantage over C3 plants under119

conditions of low atmospheric CO2. Although the evolutionary origin of C4 photosynthesis in grasses most likely occurred120

early in the Cenozoic30, their expansion and ecological dominance may have taken place during the last 10 Mya, by the late121

Miocene in warmer and fire-prone landscapes of the world46. Likewise, the evolution of hyper-diverse Asteraceae lineages (e.g.122

Senecio)47 have also contributed to the increasing rates of diversification since the last 10 Mya. Our evidence also supports the123

notion that the ongoing rise of atmospheric CO2 will likely altered vegetation distributions through differential effects on C3 and124

C4 plant types. In fact, modelling future distributions predicts the near-complete eradication of C4 species across the globe for125

the next 50 year48; this implies that about half of the species in the grass family will be extinct. In summary, our study reveals126

episodic shifts in diversification rates of grasses and daises which are correlated with changes in atmospheric CO2 (Fig. 3);127

these insights are made possible by the development of our new Bayesian phylogenetic approach which combines the episodic128

birth-death process18–21 with environmentally-dependent diversification rates22–24, 26 and empirical taxon sampling15, 16, 49. Our129

environmentally-dependent and episodic birth-death diversification model provides a novel approach for exploring the evolution130

of hyper-diverse groups of plants and animals in the context of historical environmental changes.131

Material and Methods132

Grassland diversity. To quantify the taxonomic representativeness of vascular-plant families found in open-habitat landscapes133

(Fig. S1), we selected seven distantly distributed eco-regions dominated by grasslands from the World Wide Fund for134

Nature (WWF)50. Using the coordinate boundaries of each of the selected eco-regions, we extracted the vascular plant taxa135

(=Tracheophyta) from the Global Biodiversity Information Facility (GBIF), using the R ‘RGBIF’ package51 with the option136

“hasGeospatialIssue=FALSE”, that includes only records without spatial issues. Plant families were sorted according to the137

number of species, removing duplicated species.138

Palaeobotanical analysis. Asteraceae and Poaceae have a fairly similar fossil record; their oldest findings are known from139

the Late Cretaceous —which mainly comprise microscopic remains (that is, phytoliths52 or pollen grains53)— whereas the first140

indisputable macroscopic Asteraceae and Poaceae fossils are first known from the Eocene54, 55, with a substantial increase of141

diversity since since the Oligocene/Miocene. While the fossil record of Poaceae has been fully revised4, 56, 57, the fossil record142

of Asteraceae has not been as carefully reviewed. We compiled published pollen and macroscopic fossil data for Asteraceae143

including all fossil species assigned to Asteraceae (Table S1). The earliest record of the Asteroideae (the clade that includes the144

most common open-habitat daisy tribes) occurs since the Late Oligocene of New Zealand but in very low frequencies. Fossils145

refer to this subfamily increased in abundance and diversity during the Miocene and Pliocene. Pollen referred to Artemisia, in146
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particular, did not become abundant until the Middle-Late Miocene with several reports from central Europe, Asia and North147

America. Pre-Miocene findings need further verification. Overall, the Late Oligocene and in particular the Miocene witnessed148

the major step in the diversification of Asteraceae; ca. 80% of the fossil species recorded have been assigned to this time149

interval.150

Divergence-Time estimation. To construct the Asteraceae supertree (2,723 tips), we first inferred a backbone chronogram151

using 14 plastid DNA regions from 54 species, including representatives of all 13 subfamilies, with an additional four species152

of Calyceraceae used as outgroup taxa (Table S2). Sequences were compiled from GenBank and each region was aligned153

separately using MAFFT58 with the options maxiterate 1000 and localpair. Two fossil constraints were applied: (i) a macrofossil154

(capitulum) and associated pollen (Raiguenrayun cura + Mutisiapollis telleriae) from the Eocene (45.6 Mya) to calibrate155

the non-Barnadesioideae Asteraceae clade55 and; (ii) the fossil-pollen species Tubulifloridites lilliei type A from the late156

Cretaceous (72.1 Mya)53 to calibrate the crown Asteraceae (considering T. lilliei as a stem group, see Huang et al.59 for further157

discussion). Divergence-time estimates and phylogenetic relationships were inferred using RevBayes17. For the aligned158

molecular sequences we assume a general-time reversible substitution model with gamma-distributed rate variation among159

sites (GTR+Γ), an uncorrelated log-normal prior on substitution-rate variation across branches (UCLN relaxed clock), and a160

birth–death prior model on the distribution on node ages/tree topologies. A densely sampled phylogeny is crucial to identify161

shifts in diversification rates. Therefore, we constructed a supertree by inserting eleven individual sub-trees —representing162

all subfamilies of the Asteraceae except those less diverse or monotypic clades (that is, Gymnarrhenoideae, Corymbioideae,163

Hecastocleidoideae, Pertyoideae)— into the calibrated backbone chronogram. This method follows a previous study that164

constructed a supertree of grasses using the same approach11. Each of the eleven clades of Asteraceae was built using their own165

set of markers and the same phylogenetic approach as the one used to infer the backbone tree (Table S2). Sequence data for166

each of the eleven trees and their respective outgroup taxa were collected from Genbank using the NCBIminer tool60. The167

estimated ages of the nodes given by the backbone analysis were used to constrain the age of each of the eleven sub-trees168

(Table S2). Divergence-time estimates and phylogenetic relationships for each of the eleven sub-clades were estimated using169

RevBayes as described above. The eleven trees were grafted onto the backbone tree using the function ‘paste.tree’ from the170

phytools R package61. We used GGTREE R package62 to plot the circle phylogenetic tree of Figure 1 and phytools61
171

to include the concentric geological scale. The supertree of the grass family (3,595 taxa) was obtained from Spriggs et al.11
172

(Table S3). They inferred two chronograms using two different calibration scenarios, that is, a younger scenario (#1) calibrated173

using an Eocene megafossil54 and an older scenario (#2) calibrated using Cretaceous phytoliths52. We run our diversification174

analyses using these two chronograms.175

Inferring Changes in Diversification Rate Through Time. Our species-diversification model is based on the reconstructed176

evolutionary process described by Nee et al12 and more specifically on the episodic birth-death process18–21. We assume that177

each lineage gives birth to another species with rate λ (cladogenetic speciation events) and dies with rate µ (extinction event;178

see Figure 4). We model diversification rates (i.e., speciation and extinction rates) as constant within an interval but independent179

between intervals, where intervals are demarcated by instantaneous rate-shift events. We denote the vector of speciation rates180

Λ = {λ1, . . . ,λk} and extinction rates M = {µ1, . . . ,µk} where λi and µi are the (constant) speciation and extinction rates in181

interval i. Additionally, we use the taxon sampling fraction at the present denoted by ρ15, 16. Following the notation of May et182

al.20, we construct a unique vector, X, that contains all divergence times and rate-shift event times sorted in increasing order. It183

is convenient for notation to expand the vectors for all the other parameters so that they have the same number of elements184

k = |X|. Let Ψ denote an inferred tree relating n species, comprising a tree topology, τ , and the set of branching times, T. We185

use the notation S(2, t1=0,T ) to represent the survival of two lineages in the interval [t1,T ], which is the condition we enforce186

on the reconstructed evolutionary process. Transforming Equation (A4) in May et al20 to our model yields the probability187

density of a reconstructed tree as:188
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f (Ψ|N(t1=0)=2,S(2, t1=0,T ))
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The first term, 2n−1

n!189

corresponds to the combinatorial constant for the number of labelled histories18, the second term corresponds to the condition190

of two initial lineage at the root of the phylogeny surviving until the present, and the third term corresponds to the product of all191

speciation events and the new lineages surviving until the present.192

Empirical taxon-sampling model. Here we develop an empirical taxon sampling model that uses taxonomic information193

on the membership of unsampled species to clades and speciation times of unsampled species, which is an extension to the194

work by Höhna et al15, 16 and similar to the approach used by Stadler and Bokma49. The main difference of our approach and195

the approach by Stadler and Bokma49 is that their model uses a constant-rate birth-death process (compared to our episodic196

birth-death process). Additionally, Stadler and Bokma49 derive the density of the missing species using a random probability s197

of an edge being sampled, which differs from our approach where we integrate over the time of the missing speciation event.198

Nevertheless, at least for the constant-rate birth-death process, both approaches arrive at the same final likelihood function.199

We include information on the missing speciation events by integrating over the known interval when these speciation
events must have occurred (that is, between the stem age tc of the MRCA of the clade and the present). This integral of the
probability density of a speciation event is exactly the same as one minus the cumulative distribution function of a speciation
event16,

F(tc|N(t1) = 1, t1 ≤ t ≤ T ) = 1− 1−P(N(T )> 0|N(tc) = 1)exp(r(tc,T ))
1−P(N(T )> 0|N(t1) = 1)exp(r(t1,T ))

, (2)

where t1 is the age of the root. The probability of survival is given by:200

P(N(T )>0|N(tc)=1)

=

1+
k

∑
i=c

 µi

µi−λi
× e

i−1
∑
j=c

(µ j−λ j)(x j+1−x j)

×
(

e(µi−λi)(xi+1−xi)−1
)− ρ−1

ρ
× e

k
∑

i=c
(µi−λi)(xi+1−xi)


−1

(3)

where k = |X|. Let us define n as the number of sampled species, m as the total number of species in the study group, K as the201

set of missing species per clade and |K| the number of clades with missing species. Additionally, we define ci as the time of202

most recent common ancestor of the ith clade. Then, the joint probability density of the sampled reconstructed tree and the203

empirically informed missing speciation times is204

f (Ψ,K|N(t1=0)=2,S(2, t1=0,T )) = f (Ψ|N(t1=0)=2,S(2, t1=0,T ))

× (m−1)!
(n−1)!

|K|

∏
i=1

1
ki!

(1−F(t|N(ci) = 1,ci ≤ t ≤ T ))ki

(4)

Prior models on diversification rates. Our model assumes that speciation and extinction rates are piecewise constant but205

can be different for different time intervals (Figure 4). Thus, we divide time into equal-length intervals (e.g., ∆t=1). Following206

Magee et al.21, we specify prior distributions on the log-transformed speciation rates (ln(λi)) and extinction rates (ln(µi))207
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B)

C)

A)

Speciation event

Extinction event

1.0

F(t)
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2 missing species

1 missing species

time before present

Distribution function of missing speciation event
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E)

time of missing 
speciation event

Sampled phylogeny with missing species

Reconstructed phylogeny 

Complete phylogeny 

Diversification rates through times 

0.0

0.5

1.0

1.5

time before present

1030 20
 

Rate-shift event

0

Figure 4. Cartoon of the birth-death process with rate-shift events and empirical taxon sampling. A) Depiction of the
speciation (purple lines) and extinction (red lines) rates through time. Here we assume that speciation and extinction rates are
episodically constant, that is, diversification rates shift instantly and only at the beginning of an episode. Each episode lasts 5
time units in this example. B) A realization (complete phylogeny) of the birth-death process. Lineages that have no extant or
sampled descendant are shown as dashed lines and surviving lineages are shown as solid lines. C) Reconstructed phylogeny
corresponding exactly to the one shown in B with the extinct lineages pruned away. Thus, plot C depicts the “observed”
phylogeny from which the speciation times are retrieved. D) Sampled phylogeny with gray boxes depicting named clades with
known number of missing species. The phylogenyis the same as in C with fewer taxa. E) Distribution function of the time of
the missing speciation event. The missing speciation event could have occurred any time between the crown age of the named
clade and the present time (gray box). The distribution function is integrated over and hence the uncertainty of the missing
speciation event accounted for.
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because the rates are only defined for positive numbers and our prior distributions are defined for all real numbers. We apply208

and compare three different prior models: (i) an uncorrelated log-normal (UCLN) prior distribution, (ii) a Gaussian Markov209

random field (GMRF) prior21, and (iii) a Horseshoe Markov random field (HMRF) prior21. The first prior distribution specifies210

temporally uncorrelated speciation and extinction rates, whereas the second and third prior distributions are autocorrelated211

prior models. The assumption of autocorrelated rates might make more sense biologically (an interval of high speciation212

rates is likely to be followed by another interval with high speciation) but also improves our ability to estimate parameters21.213

Nevertheless, our inclusion of both uncorrelated and autocorrelated prior distributions allows for testing whether an uncorrelated214

or autocorrelated model is preferred.215

The prior distribution on the speciation rates λi and extinction rates µi are set in exactly the same form in our models with216

their respective hyperprior parameters. Thus, for the sake of simplicity, we omit the prior distribution on the extinction rates217

here in the text. Our first prior distribution, the uncorrelated log-normal (UCLN) distributed prior, specifies the same prior218

probability for each speciation rate λi,219

ln(λi) ∼ Normal(m,σ) . (5)

Thus, each speciation rate is independent and identically distributed.220

Our second, prior distribution, the Gaussian Markov random field (GMRF) prior, models rates in an autocorrelated form221

analogous to a discretized Brownian motion. That is, we assume that diversification rates λ (t) and µ(t) are autocorrelated and222

the rates in the next time interval will be centered at the rates in the current time interval,223

ln(λi) ∼ Normal(ln(λi−1),σλ ) . (6)

The standard deviation σ regulates the amount of change between each time interval.224

Our third prior distribution, Horseshoe Markov random field (HSMRF) prior, is very similar to the GMRF but additionally225

allows for the variance to change between time intervals,226

γi ∼ halfCauchy(0,1) (7)
ln(λi) ∼ Normal(ln(λi−1),σγi) . (8)

The HSMRF prior model is more adaptive than the GMRF; it allows for more extreme jumps between intervals while227

favoring/smoothing more constant rate trajectories if there is no evidence for rate changes.228

These three prior models of diversification rates provide the null models of our analyses as it does not assume any229

dependence to an environmental variable. We use this model first to estimate diversification rates through time before testing230

for a correlation of the speciation or extinction rate to an environmental variable (e.g., atmospheric CO2 or paleo-temperature).231

Magee et al.21 found that 100 epochs perform well for autocorrelated models. Since we do not know how many bins (i.e.,232

epochs) should be used for the episodic birth-death process, we test various numbers of equal-sized epochs (4, 10, 20, 50, 100233

and 200). We show both the mean posterior diversification rates (Fig. S5) as well as select the best fitting model based on the234

number of epochs (Fig. S7).235

Correlation between speciation and extinction rate to CO2. Previously, Condamine et al.22 introduced an environmentally-236

dependent diversification model. In their model, diversification rates are correlated with an environmental variable22–27.237

For example, the speciation rate can be modeled as λ (t) = λ0eβ×CO2(t) (see Box 1 in Condamine et al.22), which is238

equivalent to ln(λ (t)) = ln(λ0)+ β ×CO2(t). Since we are using the episodic birth-death process which has piecewise-239

constant diversification rates, we modify the original continuous-time environmentally-dependent diversification model to240

ln(λi) = ln(λ0)+β ×CO2,i, which is equivalent to and more conveniently written as ln(λi) = ln(λi−1)+β ×∆CO2,i where241

∆CO2,i = CO2,i−CO2,i−1. Note that we only use the so-called exponential dependency and not the linear dependency24
242

because the linear dependency can result in negative rates which are mathematically and biologically impossible63.243

We applied this original environmentally-dependent diversification model and three new environmentally-dependent diversi-244

fication models. The original environmentally-dependent diversification model of Condamine et al.22 does not accommodate245

diversification-rate variation that is independent of the environmental variable. Instead, our three new environmentally-246

dependent diversification models build on our diversification-rate prior models which allow for rate-variation through time (see247

above). Thus, our environmentally-dependent diversification models will collapse to the episodic birth-death model if rates of248

diversification and atmospheric CO2 are uncorrelated and hence inherently allows for diversification rate variation. The linkage249

of environmental variable and diversification rates without allowing for independent diversification rate variation might provide250

spurious results, as has been noticed for trait evolution64 and state-dependent diversification rates65. We explore this potential251

of misattribution of diversification rate variation to the environmental variable in our model selection procedure and simulation252

study (see below).253
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As before, we omit the description of the extinction rates in the text for the sake of notational simplicity. Both speciation254

and extinction rates are model exactly in the same way with their corresponding set of hyperparameters (e.g., see the Tables255

S4-S7). Our first environmentally-dependent diversification model has a fixed linkage between the diversification rate variation256

and variation in the environmental variable;257

λ0 ∼ Uniform(0,100) (9)
ln(λi) = ln(λi−1)+βλ ×∆CO2 . (10)

This model does not have a counterpart in the above diversification rate priors, but is included as a comparison to the work258

Condamine et al22.259

Our second environmentally-dependent diversification model adds uncorrelated lognormal variation on top of the variation260

in the environmental variable;261

λ0 ∼ Uniform(0,100) (11)

ln(λ̂i) = ln(λ̂i−1)+βλ ×∆CO2 (12)
εi ∼ Normal(0,σ) (13)

ln(λi) = ln(λ̂i)+ εi . (14)

Thus, this model collapses to the above UCLN model if there is no correlation between the environmental variable and262

diversification rates (β = 0). Importantly, the difference in the variation of the diversification rates and environmental variable263

is independent in each epoch, contributed by the variable εi. The environmental-dependent part of the diversification rates λ̂i is264

equivalent to the fixed environmentally-dependent diversification model.265

Our third environmentally-dependent diversification model adds correlated lognormal variation on top of the fixed266

environmentally-dependent diversification mode;267

λ0 ∼ Uniform(0,100) (15)
ln(λi) ∼ Normal(ln(λi−1)+βλ ×∆CO2),σ) . (16)

This model an extension of the above GMRF model and collapses to it if there is no correlation between the environmental268

variable and diversification rates (β = 0). As the GMRF model is a discretized Brownian motion model, this environmentally-269

dependent extension can be considered as a Brownian motion with trend model, where the trend is predicted by the environmental270

variable. Instead of writing this model with a separate environmentally-dependent part λ̂i and autocorrelated part εi, we directly271

use the combined environmentally-dependent and independent rate variation as the mean for the next time interval. Nevertheless,272

we want to emphasize this equivalence to bridge the connection to the UCLN model above.273

Finally, our fourth environmentally-dependent diversification model extends the above HSRMF to allow for diversification274

rates predicted by the environmental variable;275

λ0 ∼ Uniform(0,100) (17)
γi ∼ halfCauchy(0,1) (18)

ln(λi) ∼ Normal(ln(λi−1)+βλ ×∆CO2),σγi) . (19)

This model follows the same extension as the environmentally-dependent GMRF model with local adaptability of the rate276

variation through the parameter γi, as before for the HSMRF.277

In all our four models, we denote the correlation coefficient by β . If β > 0 then there is a positive correlation between the278

speciation rate and CO2, that is, if the CO2 increases then the speciation rate will also increases. By contrast, if β < 0 then there279

is a negative correlation between the speciation rate and CO2, that is, if the CO2 concentration increases then the speciation rate280

will decrease. Finally, if β = 0 then there is no correlation and our environmentally-dependent diversification model collapses281

to corresponding episodic birth-death model.282

All four models have the same parameter for the initial speciation rate λ0 with a uniform prior distribution between 0283

and 100. The models are constructed in increasing complexity and all three new models can collapse either to the fixed284

environmentally-dependent diversification model or to their environmentally-independent episodic birth-death process.285

Environmental Data. In our analyses we tested for correlation between two environmental factors: CO2 and temperature.286

The concentration of atmospheric CO2 throughout the Cenozoic were compiled by Beerling & Royer33 using terrestrial and287

marine proxies. An updated dataset was provided by Dr. Dana Royer. Paleo-temperature fluctuations come from Zachos et al.288

(2001)66. Raw data were extracted from ftp://ftp.ncdc.noaa.gov/pub/data/paleo/.289

Analogous to our tests about the number of epochs for the diversification rate analyses, we computed the arithmetic mean for290

the environmental variable for 1-, 2- and 5-million year intervals. We both estimated the correlation between the environmental291

variable and diversification rates for each interval size and performed model selection using Bayes factors.292
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Model Selection. We performed three sets of empirical diversification rate analyses for each dataset. We estimated the293

diversification rates over time using three different models, we estimated the environmentally-dependent diversification rates294

using four different models, and we applied two different taxon sampling schemes. For the first two sets of analyses we295

performed standard model selection in a Bayesian framework using Bayes factors67. Thus, we computed the marginal likelihood296

for each model using stepping-stone sampling68 as implemented in RevBayes. We run 128 stepping stones with each stone297

comprising of its own MCMC run with 2,000 iteration and on average 1,374 moves per iteration (i.e., the runs being equivalent298

to standard single-move-per-iteration software with 2,748,000 iterations).299

We tested the support for the environmental correlation using Bayes factors computed from the posterior odds. Our prior300

probability for the correlation coefficient β was symmetric and centered at zero, that is, we specified exactly a probability of301

0.5 that β < 0 and β > 0. Thus, the prior probability ratio of P(β<0)
P(β>0) = 1.0 Then, to compute the Bayes factor for in support of302

a negative correlation is simply the number of MCMC samples with β < 0 divided over the total number of MCMC samples.303

We did not compute marginal likelihoods for the two different sampling schemes; the uniform taxon sampling and the304

empirical taxon sampling. Empirical taxon sampling uses additional data, the age ranges of the missing speciation events, and305

two analyses with different data cannot be compared using traditional model selection. Instead, we performed a simulation306

study to show the robustness of our parameter estimates under empirical taxon sampling and the resulting bias if wrongly307

uniform taxon sampling was assumed.308

Simulation Study. We performed two sets of simulations; focusing (a) on the environmentally-correlated diversification model,309

and (b) the incomplete taxon same scheme. First, we simulated phylogenies under the UCLN and GMRF environmentally-310

correlated diversification model using the R package TESS69, 70. We set the diversification rate variation to σ = {0,0.02,0.04}311

and correlation coefficient to β = {0,−0.005,−0.01}. Thus, our simulations included the constant-rate birth-death process312

(when σ = 0 and β = 0), time-varying but environmentally independent diversification rates (when σ > 0 and β = 0), the fixed313

environmentally-dependent diversification model (when σ = 0 and β 6= 0), and the time-varying and environmentally-dependent314

diversification model (when σ > 0 and β 6= 0). For each setting, we simulated ten diversification rate trajectories (Figure S14315

and S15) and trees (Figure S12 and S13). We analyzed each simulated tree under the same four environmentally-dependent316

diversification model as in our empirical analysis (see above).317

Second, we simulated phylogenetic trees under empirical taxon sampling to validate the correctness of our model derivation.318

Unfortunately, simulation of empirical taxon sampling is not straight forward. We circumvented the problem by randomly319

adding the missing species to the daisy phylogenetic tree, then drawing new divergence times under (a) a constant-rate320

birth-death process, and (b) a time-varying episodic birth-death process with rates taken from the empirical estimates. Then,321

we pruned the additional species to mimic empirical taxon sampling. The simulations under the constant-rate birth-death322

process provide information about falsely inferring diversification rate variation (false positives) and the simulations under323

the time-varying episodic birth-death process provide information about the power to correctly inferring diversification rate324

variation (power analysis). We simulated 100 trees under each setting and analyzed each tree using the GMRF prior model with325

both empirical and uniform taxon sampling. The MCMC inference settings were identical to the empirical analyses.326

Software Implementation and Availability. Both models, the episodic birth-death process and the environmentally-dependent327

diversification model, are implemented in the Bayesian phylogenetics software RevBayes17. Moreover, the implementation is328

not restricted to the models we introduce here because RevBayes is built on the principle of probabilistic graphical models71.329

The graphical model approach provides full flexibility to extend or modify the current analyses to other models and assumption,330

for example, testing for correlation to multiple environmental variables. RevBayes is open-source and freely available from331

https://github.com/revbayes/revbayes. The analysis from this paper are described in detail in several tutorials available at332

http://revbayes.github.io/tutorials.html.333
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