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ABSTRACT 

Methylation of the cytosine base at CpG dinucleotides is traditionally considered antagonistic to the DNA-

binding activity of the majority of transcription factors (TFs). Recent in vitro studies of TF-DNA interactions 

have revealed a more complex picture, suggesting a heterogeneous cytosine methylation impact that varies 

across TFs, with over a third of TFs preferring methylated sequences. Expanding these in vitro observations to 

in vivo TF binding preferences, however, is challenging, as the effect of methylation of individual CpG sites 

cannot be easily isolated from the confounding effects of DNA accessibility and regional DNA methylation. As 

a result, the in vivo methylation preferences of most TFs remain uncharacterized. 

Here, we introduce Joint Accessibility-Methylation-Sequence (JAMS) models for inferring the effect of CpG 

methylation on TF binding in vivo. JAMS creates quantitative models that connect the strength of the binding 

signal observed in ChIP-seq to the DNA accessibility of the binding site, regional methylation level, DNA 

sequence, and base-resolution cytosine methylation. Furthermore, by jointly modeling both the control and pull-

down signal in a ChIP-seq experiment, JAMS isolates the TF-specific effects from background effects, revealing 

how methylation of specific CpGs within the binding site alters the TF binding affinity in vivo. 

We show that JAMS can quantitatively model the TF binding strength and learn the accessibility-

methylation-sequence determinants of TF binding. JAMS models are reproducible and generalizable across cell 

lines, and can faithfully recapitulate cell type-specific TF binding. Systematic application of JAMS to 2368 

ChIP-seq experiments generated high-confidence models for 260 TFs, revealing that 45% of TFs are inhibited 

by methylation of their potential binding sites in vivo. In contrast, only 6% prefer to bind to methylated sites, 

including 11 novel methyl-binding TFs. Comparison of these in vivo models to in vitro data confirmed high 

precision of the methyl-preferences inferred by JAMS. Finally, among the CpG-binding proteins from the ZF-

KRAB family of TFs, we observed a disproportionately high preference for methylated sequences (24%), 

highlighting the role of CpG methylation in determining the genome-wide binding profiles of the TFs from this 

family. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.27.457995doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.27.457995
http://creativecommons.org/licenses/by/4.0/


3 

 

BACKGROUND 

Transcription factors (TFs) are key regulators of gene expression. Each TF usually recognizes a specific 

sequence motif; however, TF binding is affected by several other variables, among which cytosine methylation 

is traditionally viewed as having a repressive effect on TF binding [1]. However, this traditional view is gradually 

changing, as more examples are reported of TFs that bind to methylated sequences. These include studies that 

have reported increased binding of specific TFs to methylated DNA in vitro [2], in addition to reports indicating 

that, for some TFs, a large fraction of their in vivo binding sites is highly methylated [3, 4]. 

While it is tempting to view these anecdotal cases as exceptions rather than a general trend, a recent 

systematic analysis of TF CpG methylation preferences revealed that, in fact, a large fraction of TFs may bind 

to methylated CpGs in vitro. Based on this study, the effect of methylation is dependent on its position in the 

binding site, and is heterogeneous within and across TF families [5]. While this study provides in vitro evidence 

for widespread recognition of methylated CpGs by TFs, a comparable systematic analysis of in vivo methylation 

preferences of TFs is still lacking. This is primarily because observing the specific in vivo effect of intra-motif 

CpG methylation is confounded by binding site-specific factors such as DNA accessibility, regional methylation 

level, and binding site sequence [6-8]. Experimental approaches to control these confounding factors are 

complicated and resource-exhaustive [9-11], highlighting the need for computational methods to untangle, from 

these confounding variables, the base-resolution relationship between TF binding affinity and intra-motif CpG 

methylation. 

A few recent studies have proposed computational methods to identify TFs that are affected by CpG 

methylation in vitro. These include efforts to better distinguish bound from unbound sequences using TF binding 

models that incorporate CpG methylation status [12, 13], as well as tools that expand the ATGC alphabet by 

adding symbols for methylated cytosines in order to perform methylation-aware de novo motif discovery [14, 

15]. These methods, however, only report whether methylation improves TF binding prediction without 

delineating the direction of the effect [13], lack the resolution to investigate the effect of methylation of 

individual intra-motif cytosines [13], and/or do not consider the confounding effects of DNA accessibility and 

regional methylation level [12-15]. As a result, even some of the most classic methyl-binding TFs, such as 

CEBPB [2] and KAISO [16], are not detected by these methods [12]. 

To overcome these challenges, we introduce Joint Accessibility-Methylation-Sequence (JAMS) models, a 

statistical framework for deconvolving the individual contribution of various factors, including intra-motif CpG 

methylation, on the in vivo strength of TF binding as observed by ChIP-seq. We show that JAMS models are 

reproducible and generalizable, can capture known CpG methyl-preferences of TFs, and can even predict 

differential TF binding across cell lines based on changes in intra-motif CpG methylation. Finally, we apply 

JAMS to a large compendium of ChIP-seq experiments to systematically explore the CpG methylation 

preferences of TFs across different families. 
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RESULTS 

Modeling the joint effect of accessibility, methylation and sequence on TF binding 

Several factors work together to determine the TF binding strength, as measured by ChIP-seq, toward a 

specific binding site. First, the sequence of the binding site determines the TF affinity, given that the majority of 

TFs are sequence-specific. Secondly, for most TFs, the existing level of DNA accessibility heavily influences 

TF binding [7, 8]. Finally, regional methylation outside the TFBS may affect the TF binding strength, for 

example by recruiting Methyl-CpG-binding domain (MBD) proteins, which in turn recruit chromatin remodelers 

[6]. Therefore, in order to examine the specific effect of methylation of the TFBS on TF binding affinity, we 

need to jointly model it together with these confounding factors. 

For this purpose, we developed Joint Accessibility-Methylation-Sequence (JAMS) models, which 

quantitatively explain both the pull-down and background signal in ChIP-seq experiments 

(https://github.com/csglab/JAMS). The JAMS model for each ChIP-seq experiment considers the pull-down 

read density as a combination of a background signal and a TF-specific signal. On the other hand, the read count 

profiles obtained from control experiments (e.g. input DNA) purely reflect the background signal (Fig. 1A). 

Each of the background and TF-specific signals, in turn, is modeled as a function of the peak sequence, chromatin 

accessibility profile along the peak, regional methylation level, and base-resolution intra-motif CpG methylation 

(Fig. 1B-C). JAMS converts these associations into a generalized linear model, whose parameters can be inferred 

by fitting simultaneously to both pull-down and control read counts. To ensure that JAMS can correctly learn 

the features associated with both TF-specific and background signals, we fit the model to the read counts across 

peaks with a wide range of pulldown-to-control signal ratio. These include not only the peaks that have 

significantly high pull-down signal, but also peaks with low pull-down signal as well as genomic locations with 

significantly high background signal. For model fitting, an appropriate error model is needed that connects the 

expected (predicted) signal at each peak to the observed read counts—we use negative binomial with a log-link 

function in this work (Fig. 1D; see Methods for details). 

In order to examine the ability of JAMS models to recover the in vivo binding preferences of TFs, we first 

applied it to ChIP-seq data from CTCF, a widely studied TF that is constitutively expressed across cell lines and 

tissues [17, 18] and has a long residence time on DNA [19]. We initially focused on the cell line HEK293, and 

generated a JAMS model of CTCF binding in this cell line using previously published ChIP-seq [20], WGBS 

[21], and chromatin accessibility data [22] (Methods). To evaluate the performance of the JAMS model, we 

used 10-fold cross-validation, and examined the correlation between the predicted TF-specific signal and the 

observed pulldown-to-control signal ratio across the peak regions. As Fig. 1E shows, the JAMSmodel 

predictions correlate strongly with the pulldown-to-control signal ratio (Pearson r=0.69), suggesting that 

accessibility-methylation-sequence features can quantitatively predict the CTCF-binding strength. 
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Figure 1. Overview of JAMS model. (A) At each genomic region i, the JAMS model considers the control tag 
count (left) or the pull-down tag count (right) as a combination of background and/or TF-binding signals at that 
position. (B) Each of these signals are then modeled as a function of accessibility (Ai), methylation (Mi), and 
sequence (Si) at each region i. (C) Schematic summary of the predictor features extracted for each genomic location 
and the outcome variables. (D) The specifications of the generalized linear model used by JAMS. (E) Comparison 
between the observed and predicted CTCF binding signal in HEK293 cells [20]. (F) DNA accessibility coefficients 
learned by the CTCF JAMS model; each dot corresponds to the effect of accessibility at a 100bp-bin. (G) Sequence 
motif logos representing the known CTCF binding preference (based on SELEX [54] (left), the TF binding 
specificity learned by JAMS (middle), and the effect of sequence on the background signal (right). JAMS motif 
logos are plotted using ggseqLogo [55], with letter heights representing model coefficients; SELEX motif logo was 
obtained from the CIS-BP database [45]. 

Examining the coefficients of the fitted JAMS model, we observed that DNA accessibility, especially at the 

peak center, has a strong effect on the TF-specific signal (which only affects the pull-down read count), but 

limited effect on the background ChIP-seq signal (which affects both the control and pull-down read counts; 

Fig. 1F). Nonetheless, the effect on background signal was still statistically significant, consistent with 
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previously observed bias of DNA sonication toward accessible chromatin regions [23]. Importantly, sequence 

features at the TF binding site are strongly predictive of the CTCF binding strength, while they have limited and 

diffuse effect on the background signal (Fig. 1G). Importantly, the sequence model learned by JAMS is highly 

correlated with the known motif for CTCF (r=0.86, Fig. 1G), suggesting that JAMS models can recapitulate the 

underlying biology of TF binding.  

JAMS models reveal the contribution of CpG methylation to TF binding 

By jointly considering the contribution of accessibility, methylation and sequence to TF binding, JAMS 

models should be able to deconvolve the specific effect of methylation from the confounding effect of other 

variables. To begin to explore this possibility, we examined the JAMS model of CTCF. For this purpose, in 

addition to the widely used sequence motif logos, we developed “dot plot logos” to enable easier visual 

inspection of JAMS coefficients that correspond to sequence and methylation effects. As Fig. 2A shows, the 

JAMS model of CTCF binding in HEK293 cells suggests that CpG methylation in the 2nd and 12th positions of 

the binding site has a significantly negative effect on CTCF binding (but not on the background signal; 

Supplementary Fig. 1). In other words, while a large fraction of CTCF binding sites have CpGs at those two 

positions, CTCF preferentially binds when these CpGs are not methylated. 

To ensure that this observation is not confounded by other variables such as accessibility and the average 

local methylation level, we also trained JAMS models with all the variables except the CpG methylation level 

at each binding site position; we then compared these reduced models to the full model using a likelihood ratio 

test. This analysis revealed that removing the CpG methylation levels at positions 2 or 12 of the binding site 

significantly reduces the fit of the model to the observed data (Supplementary Fig. 2). Therefore, the CpG 

methylation level in these positions is informative about CTCF binding signal even after considering the effect 

of other confounding variables such as sequence, accessibility, and the average methylation of flanking regions. 

The independent effect of CpG methylation on CTCF binding can also be observed after stratification of CTCF 

peaks based on the confounding variables. Specifically, we repeated the JAMS modeling after removing the 

variables that represent the TF-specific contribution of methylation at positions 2 and 12, and sorted the peaks 

by the residual of this model (i.e. by the ChIP-seq signal that could not be explained by the reduced model). As 

Fig. 2B shows, even if we focus on the peaks with similar DNA sequence and accessibility, the residual of the 

reduced model still correlates negatively with CpG methylation at positions 2 and 12. In other words, peaks 

whose signal is smaller than what the reduced model predicts have higher CpG methylation, supporting the 

negative effect of CpG methylation on CTCF binding. Importantly, our observation that CpG methylation 

negatively affects CTCF binding is consistent with previous reports on CTCF methylation preferences in vivo 

[24] and in vitro [25]. Our results are also reproducible across different cell lines, as we obtained similar JAMS  
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Figure 2. CpG methylation preference of CTCF in HEK293 cells. (A) Motif logo and dot plot representations of 
the sequence/methylation preference of CTCF. The logo (top) shows methylation coefficients as arrows, with the arrow 
length proportional to the mean estimate of methylation effect. The heatmap (bottom) shows the magnitude of the 
preference for each nucleotide at each position using the size of the dots, with red and blue representing positive and 
negative coefficients, respectively. The signed logarithm of P-value of the methylation coefficient is shown using the 
color of the squares around the dots, with red and blue corresponding to increased or decreased binding to methylated 
C, respectively (only significant methylation coefficients at FDR<1×10–5 are shown). (B) Heatmap representation of 
the sequence, accessibility, and CpG methylation, for a subset of CTCF peaks that have high DNA accessibility, a close 
sequence match to the initial CTCF motif, and CpGs at positions 2 and 12. Peaks are sorted by the residual of a reduced 
JAMS model that does not use the methylation level of C2 and C12 for predicting the CTCF binding signal. 

models using CTCF ChIP-seq, WGBS, and accessibility data from several other cell lines (Supplementary Fig. 

3). These results overall suggest that JAMS models have the potential to faithfully recapitulate the methylation 

preferences of TFs using ChIP-seq data. 

Differential TF binding across cell lines can be explained using JAMS models 

A model that encodes the intrinsic binding preference of a TF should be able to predict the ChIP-seq signal 

of that TF in new contexts, such as in previously unseen cell types that were not used in model training. We 

began to examine this possibility by investigating the transferability of the CTCF model that was learned in 

HEK293 cells to other cell types. We used DNase-seq and WGBS data (Methods and Supplementary Table 

1) from six cell lines (H1, GM12878, HeLa-S3, HepG2, and K562) to predict the CTCF binding signal (using 

the HEK293-trained JAMS model), and compared the predictions to experimental CTCF ChIP-seq data obtained 

for each cell type. We observed that the CTCF JAMS model that was trained on HEK293 data could successfully 

predict the ChIP-seq pulldown-to-control ratio in other cell types, with a performance comparable to JAMS 

models that were specifically trained on the data from each type (Table 1). These results support the 

transferability of JAMS models across cell types. 
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The above analysis shows that the JAMS models learned 

from one cell type can be transferred to another cell type. 

However, the majority of CTCF binding sites are shared 

across different cell types; therefore, it is not immediately 

clear to what extent this transferability corresponds to cell-

invariant features of the JAMS model (sequence) as 

opposed to potentially cell type-specific features 

(methylation and accessibility).  In fact, one of the most 

challenging aspects of modeling TF binding is the ability to 

identify TF binding sites that are differentially occupied 

across cell types [26]. To understand the extent to which 

differential accessibility and methylation of DNA drives 

differential CTCF binding, and the extent to which these 

effects can be captured by JAMS, we decided to use the 

JAMS model learned from HEK293 cells to predict differential binding of CTCF in other cell lines. We started 

by identification of differentially bound CTCF peaks in pairwise comparisons of cell lines listed in Table 1. For 

any given two cell lines, we used the log-fold change (logFC) in the pulldown-to-control ratio as the measure of 

differential binding (Fig. 3A). The mean and standard error of mean (SEM) of this metric was calculated using 

a statistical model that assumes a negative binomial distribution for the tag counts, which also allows us to 

calculate a P-value for the null hypothesis that logFC is equal to zero (see Methods). Application of this method 

to all pairwise cell comparisons revealed the largest number of differentially bound CTCF peaks between 

GM12878 and HeLa-S3 cells (Fig. 3B); therefore, we focused on prediction of the differential peaks between 

these two cell lines using the HEK293 JAMS model of CTCF. Specifically, we used the JAMS model to predict 

the CTCF binding signal in each of the GM12878 and HeLa-S3 cell lines (based on the accessibility and 

methylation data of each cell line), and then calculated the difference of the JAMS predictions (in log-scale) 

between the two cells. As shown in Fig. 3C, the JAMS-predicted changes in CTCF binding are strongly 

correlated with the experimental logFC values (r=0.40 across peaks with logFC standard error of mean <1.28; 

see Supplementary Fig. 4 for details on the choice of cutoff). These results suggest that the CTCF JAMS model 

can quantitatively predict the change in CTCF binding strength based on differential accessibility and 

methylation. Importantly, for the set of peaks that pass the statistical significance threshold for differential 

binding between the two cell lines (FDR<0.1), the correlation between JAMS predictions and experimental 

logFC reaches as high as 0.84 (Fig. 3C), with JAMS being able to distinguish GM12878-specific from HeLa-

S3-specific binding events with 95% accuracy. 

We note that many of the CTCF binding sites are differentially accessible between GM12878 and HeLa-S3 

(Fig. 3D), which may drive the differential binding. To specifically examine the role of differential methylation 

Table 1: Pearson correlation (r) between 
observed and predicted CTCF-binding across 
cell types. The third column shows r between 
observed and cross-validated JAMS predictions 
for models that were trained on each individual 
cell type. The fourth column shows the r between 
the predictions of the JAMS model that was 
trained on HEK293 and the observed ChIP-seq 
data in other cell lines. 

Cell line 
ChIP-seq 
peaks (n) 

10-fold 
CV 

HEK293-
trained r 

HEK293 135,717 0.69 - 

H1 128,123 0.72 0.62 

GM12878 39,535 0.69 0.54 

HeLa-S3 65,865 0.72 0.60 

HepG2 81,188 0.73 0.64 

K562 85,122 0.74 0.68 
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Figure 3. Prediction of differentially bound CTCF peaks using JAMS. (A) Schematic representation of 
identifying differentially bound peaks based on the combination of pulldown and control signal in two cell lines. See 
Methods for details. (B) Volcano plot showing differential binding of ChIP-seq peaks between GM12878 and HeLa-
S3. Significant peaks at FDR < 0.1 are shown in red. (C) Left: Scatter plot of JAMS-predicted changes in CTCF 
binding and observed differential binding between GM12878 and HeLa-S3 cells. Peaks with observed logFC SEM 
<1.3 are included. Right: Limited to peaks that pass FDR<0.1 for differential binding of CTCF. (D) Comparison of 
the accessibility of putative CTCF peaks between two cell lines. The diagonal band in the middle (blue) shows the 
region that was selected as no-change in accessibility (difference in accessibility < 0.2). (E) Predicting differential 
CTCF binding for peaks with no change in accessibility. Peaks were ranked by accessibility, and the correlation 
between predicted and observed logFC of CTCF binding was calculated for sliding windows of 500 peaks (bottom). 
The average accessibility for each sliding window is shown on top. 

in driving cell type-specific CTCF binding, we further limited our analysis to the set of peaks that had similar 

accessibility in both cell lines (Fig. 3D), and also removed all the JAMS predictor variables corresponding to 

accessibility. We observed that this reduced JAMS model can still predict differential CTCF binding among the 

peaks that are not differentially accessible (r=0.14 between predicted and observed logFC across n=2232 peaks; 

Fig. 3E). This correlation increases to 0.22 for the set of peaks that have high accessibility in both cell lines (Fig. 

3E), suggesting that the effect of CpG methylation is most noticeable when the putative CTCF binding site is 

accessible. 

Overall, these analyses suggest that JAMS models can predict differential TF binding across cell types, 

including differential TF binding events that are driven by changes in the methylation of the putative binding 

sites. The ability of JAMS models to predict cell type-specific TF binding events further highlight their reliability 

in capturing the determinants of TF binding using ChIP-seq data. 
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Figure 4. Systematic application of JAMS. (A) Left: Violin plot showing the distribution of Pearson correlation 
between the observed and predicted TF binding signal. Right: Distribution of the number of peaks used to create 
JAMS models. The violin plots represent a total of 2368 ChIP-seq experiments that were analyzed by JAMS. (B) 
Known BHE40 motif obtained from the CIS-BP database, shown as an example [45]. (C) Results from a high-
quality (top) and a low-quality (bottom) JAMS model for BHE40. Inferred sequence coefficients for TF binding 
(left) and background (middle), as well as the predicted vs. observed TF binding signal (right) are shown. (D) Pie 
charts of the main TF families (left) and C2H2 ZF proteins subfamilies (right) for TFs with at least one high-quality 
JAMS model. (E) Pie chart of the methyl-binding preferences of TFs with at least one high quality JAMS model. 
We obtained high-quality models for a total of 260 TFs. 

A high-confidence compendium of JAMS models for 260 TFs 

To identify TFs whose in vivo binding is positively or negatively affected by methylation of intra-motif CpGs, 

we decided to apply JAMS to a comprehensive compendium of ChIP-seq data for a wide range of TFs. We 

collected and uniformly processed data from 2368 ChIP-seq and ChIP-exo experiments [20, 22, 27], covering 

the in vivo binding profiles of 421 TFs in six cell lines, along with the WGBS and DNase-seq assays in those 

cell lines. On average, we identified ~60k peaks per ChIP-seq experiment using the permissive P-value threshold 

of 0.01 (Fig. 4A). We then used the peak tag counts to fit a JAMS model to each ChIP-seq experiment. We 

noticed that the quality of the JAMS models, measured by the Pearson correlation between the predicted and 

observed TF-specific signal, varied substantially across the experiments, with correlations ranging from 0 to 0.8 

(median 0.48, Fig. 4A and Supplementary Fig. 5). This variation may reflect a multitude of factors, including 
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the ChIP-seq data quality as well as the extent to which the TF signal can be explained by our model 

specifications. We therefore decided to keep only a subset of high-confidence models. Specifically, we selected 

at most one representative model per TF based on the following criteria: (i) the model should have used at least 

10,000 peaks for training, (ii) Pearson correlation >0.2 between the predicted and observed TF-specific signal 

after cross-validation, (iii) Pearson correlation >0.3 between the known and JAMS-inferred sequence motif, (iv) 

and low contribution of the sequence to the background signal compared to the TF-specific signal (control-to-

pulldown ratio of the sequence coefficients mean < 0.4). As an example, in Fig. 4C we show two JAMS models 

for BHE40, obtained from two different ChIP-seq experiments, only one of which passes all the criteria 

mentioned above. Overall, we obtained high-confidence JAMS models for 260 TFs, spanning a range of TF 

families (Fig. 4D). 

Systematic inference of the in vivo TF methyl-binding preferences 

After selecting one JAMS model per TF, we used the JAMS-inferred effects of methylation to classify the 

TFs according to their inferred methyl-binding preferences. We use a notation similar to Yin et al. [5]. 

Specifically, we classified a TF as (a) methyl-minus if its JAMS model included at least one significantly 

negative mCpG effect (FDR<1×10–5), (b) methyl-plus if the model included at least one significantly positive 

mCpG effect, (c) mixed-effect if the model included both significantly positive and negative mCpG effects, (d) 

and no-effect if the motif included a CpG but its methylation level did not have a significant effect. Overall, we 

found 117 methyl-minus TFs, 16 methyl-plus TFs, four mixed-effect TFs, and 67 TFs with no significant mCpG 

effects; we also identified a set of 56 TFs without a CpG site in their binding site (Fig. 4E). 

To understand whether our JAMS-based classification captures known methyl-binding preferences of TFs, 

we started by examining a few TFs whose methyl-binding preferences have been extensively studied in vitro 

and in vivo, including CEBPB and NRF1. Using protein-binding microarrays (PBMs), Mann et al. have 

previously reported enhanced binding of CEBPB to its CpG-containing target sequence when the array probes 

were methylated [2], consistent with the observation that a large fraction of the genomic binding sites of CEBPB 

is highly methylated in vivo [3]. The JAMS model for CEBPB (Fig. 5A-D) is concordant with these previous 

reports, showing that CpG methylation at the 6th position of CEBPB target sequence has a positive effect on its 

binding strength. This effect is in fact highly reproducible, and is present in three out of four JAMS models that 

we obtained using different CEBPB ChIP-seq experiments. 

Another well studied TF is NRF1, which has been found to be sensitive to CpG methylation of DNaseI-

hypersensitive sites in murine stem cells [10]. Moreover, Cusack et al. found that NRF1 preferentially binds to 

unmethylated DNA even after accounting for changes in DNA accessibility caused by the recruitment of HDACs 

to methylated CpGs through MBD proteins [9]. Consistent with these reports, we found that CpG methylation 

of the 3rd and 9th positions of the NFR1 target sequence has a negative effect on its binding (Fig 5E-H); these 

effects were consistent across all the cell lines we analyzed. 
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         Figure 5. Examples of known TF methyl-binding preferences that were also captured by JAMS. Panels A-
D correspond to CEBPB, a known methyl-plus TF. Panels E-H correspond to NRF1, a known TF whose binding is 
inhibited by methylation. (A) Known motif for CEBPB. (B) Scatter plot of JAMS-predicted vs. observed TF binding 
signal for CEBPB. (C) Motif logo and dot plot representations of the sequence/methylation preference of CEBPB as 
inferred by JAMS (see Figure 5 for how these representations should be interpreted).  (D) Heatmap representation of 
the sequence, accessibility, and CpG methylation, for a subset of CEBPB peaks that have high DNA accessibility. 
Peaks are sorted by the residual of a reduced JAMS model that does not use the methylation level for predicting the TF 
binding signal. (E-H) Similar to panels A-D, but for NFR1. 

The above examples suggest that JAMS models are consistent with previously reported methylation 

preferences of TFs. However, there are only a handful of TFs whose methylation preferences have been validated 

in vivo. Therefore, to systematically evaluate our JAMS-based classification of TFs, we compared our inferred 

methyl-binding preferences with in vitro preferences obtained using methyl-SELEX and/or bisulfite-SELEX [5]. 

Overall, 76 out of the 260 TFs that we studied here have methyl/bisulfite-SELEX data (Table 2). These included 

44 TFs that we classified as methyl-minus based on in vivo data; 29 of these TFs (~66%) were also identified as 

methyl-minus by SELEX, and another 7 TFs (16%) were identified as mixed-effect. This suggests that our 

approach has ~82% precision for identification of TFs that are negatively affected by CpG methylation in at least 

one position in their target sequence. On the other hand, out of 39 methyl-minus TFs found by SELEX, 31 were  
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also classified as either methyl-minus or mixed-effect by JAMS, 

suggesting that ~79% of in vitro-observed methyl-minus effects can 

be captured using in vivo data. 

Similarly, out of five JAMS-based methyl-plus TFs that have 

bisulfite-SELEX data [5], four were classified as methyl-plus based 

on SELEX (Table 2), suggesting a precision of ~80%. However, 

despite this high precision, only 5 out of 20 SELEX-based methyl-

plus TFs are identified as either methyl-plus or mixed-effect by 

JAMS—this suggests that a relatively small fraction of in vitro 

methyl-plus effects can also be observed in vivo. Nonetheless, we 

found 11 methyl-plus TFs that were previously unclassified—this is 

in addition to 73 previously unclassified methyl-minus and one novel mixed-effect TF, highlighting the ability 

of JAMS models in revealing novel TF methyl preferences.  

Fig. 6 shows the distribution of different methyl-preferences across main TF families. We noticed that a 

disproportionately large number of methyl-plus TFs belong to the KRAB domain-containing members of the 

C2H2-ZF family (also shown in Table 3 and Supplementary Fig. 6). Specifically, among KRAB-ZF TFs whose 

binding is significantly affected by methylation, ~24% preferentially bind to methylated CpGs, compared to only 

~12% of non-KRAB TFs (Fisher’s exact test P<0.009, Supplementary Table 2). This is an intriguing 

observation, given that a majority of KRAB-ZF proteins evolved to 

specifically bind and repress transposable elements, which largely 

reside in highly methylated genomic regions[28]. It is notable that 

we observed this methyl-plus effect even though we removed all 

repetitive genomic regions from our analysis (see Methods). Our 

observation suggests that many of the KRAB-ZF proteins 

preferentially bind to methylated instances of their target sequence, 

potentially allowing them to distinguish the transposable elements 

from other genomic regions that contain their preferred binding 

sequence. In fact, ~56% of all methyl-plus TFs that we identified are 

KRAB-ZF proteins, suggesting that recognition of methylated 

transposable elements might have been a primary force in the 

evolution of methyl-binding TFs. 

Overall, our results demonstrate that the methylation preferences 

of TFs can be reliably inferred from their in vivo binding profiles, 

and provide a comprehensive resource for classification of TF 

methyl-preferences. 

Table 2: Contingency table of TF 
classifications by JAMS (rows) and 
methyl/bisulfite-SELEX [5] (columns). 
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 Methyl-minus 29 4 7 4 73 

Methyl-plus 1 4 0 0 11 
Mixed-effect 2 1 0 0 1 

No Effect 7 11 4 2 43 

 

Figure 6. Methylation preferences per 
TF family. Stacked bar plots showing 
the distribution of TF methylation 
preferences inferred with JAMS, 
grouped by TF families. The inset shows 
the distribution of methylation 
preferences for C2H2-ZFP subfamilies. 
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Table 3. TFs with methyl-plus and mixed-effect methyl-binding preferences, as inferred by JAMS using 
in vivo data. For mixed-effect TFs, both the position at which a positive methylation effect was observed as 
well as the position with a negative methylation effect are indicated. 

Protein Family JAMS call 

Effect of methylation 
by position 

SELEX call [5] Positive Negative 
ZNF793 C2H2 ZF (KRAB) Methyl-plus 7   
ZKSCAN1 C2H2 ZF (KRAB+SCAN) Methyl-plus 2   
CEBPB bZIP Methyl-plus 6  Methyl-plus 
ZNF141 C2H2 ZF (KRAB) Methyl-plus 17   
ZNF320 C2H2 ZF (KRAB) Methyl-plus 17   
ZNF605 C2H2 ZF (KRAB) Methyl-plus 15   
NR2F2 Nuclear receptor Methyl-plus 5, 8   
ZNF479 C2H2 ZF (KRAB) Methyl-plus 11   
SP1 C2H2 ZF Mixed-effect 5 8 Methyl-plus 
ZNF490 C2H2 ZF (KRAB) Methyl-plus 7   
ZNF506 C2H2 ZF (KRAB) Methyl-plus 5   
ZNF417 C2H2 ZF (KRAB) Methyl-plus 16   
USF1 bHLH Mixed-effect 7 5 Methyl-minus 
USF2 bHLH Mixed-effect 7 5 Methyl-minus 
TCF7 HMG/Sox Methyl-plus 2  Methyl-minus 
ZBTB33 (KAISO) C2H2 ZF (BTB) Methyl-plus 5, 7  Methyl-plus 
TFAP4 bHLH Methyl-plus 7   
NFYB NFYB/HAP3 Mixed-effect 9 13  
SCRT1 C2H2 ZF Methyl-plus 3  Methyl-plus 
CEBPG bZIP Methyl-plus 6  Methyl-plus 

 

DISCUSSION 

In this study, we built Joint Accessibility-Methylation-Sequence (JAMS) models to capture the relationship 

between TF binding and DNA methylation in vivo. Our approach models the TF binding as a function of DNA 

accessibility, sequence and methylation at and around TF binding sites, while separating the background from 

TF-specific signals. 

We started by applying this method to CTCF, which revealed that CpG methylation at the 2nd and 12th 

positions of the CTCF motif is associated with decreased TF binding. This methylation sensitivity is reproduced 

in multiple cell lines, can be observed even among highly accessible genomic regions, and can explain 

differential CTCF binding between different cell lines. As mentioned in the Results section, methylation-

sensitivity of CTCF has been previously reported [24].  An intriguing observation in this regard was made by 

Zuo et al., who used a high-throughput in vitro method to quantify the effect of CpG methylation on CTCF 
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binding: they found a substantial negative effect of the CpG methylation at the 2nd position of the motif [25], 

which is also one of the CpG sites we identified. However, we also identified a second CpG site at the 12th 

position whose methylation reduces CTCF binding, which was not reported by Zuo et al. [25]. Using a likelihood 

ratio test we showed that the observed effect of methylation at this position cannot be simply explained by its 

correlation with the first CpG site (Supplementary Fig. 2), suggesting that we may have identified a novel CpG 

methylation effect.  

One possible explanation as to why the methylation effect at position 12 could not be observed in vitro is that 

it may reflect the direct competition between CTCF and MBD proteins, which are not included in the in vitro 

assay. While JAMS is able to capture the effect of changes in DNA accessibility that result from chromatin 

remodelling factors recruited by MBD proteins, it currently does not model the direct competition of TFs and 

MBD proteins. This undetected direct competition between MBD proteins and TFs for the binding sites could 

affect the interpretation of our model parameters: methylation coefficients obtained by JAMS models should be 

more accurately interpreted as the affinity of a TF toward mCpG sites relative to the affinity of MDB proteins. 

Accordingly, a positive methylation coefficient means that the TF binds more strongly to the mCpG than 

MDB proteins do, therefore outcompeting them. This interpretation may in fact explain why a large number of 

in vitro-detected methyl-plus TFs [5] could not be identified by JAMS: even though these TFs can bind to 

mCpGs in vitro, competition with MDB proteins might attenuate this effect in vivo. On the other hand, a negative 

JAMS methylation coefficient could mean that the MDB proteins outcompete the TF in vivo, or that the TF 

simply does not bind to mCpGs even without considering the effect of MBDs. Since the majority of methyl-

mins TFs that we identified match in vitro observations [5], the latter scenario is likely more prevalent, with 

most negative coefficients reflecting the intrinsic preference of the TF for unmethylated CpGs even without 

considering competition with MBDs.  We would like to note the possibility of directly deconvolving these 

scenarios (i.e. intrinsic preference for unmethylated CpGs vs. competition with MBDs) by including the MBD 

protein occupancy profiles as additional variables in JAMS models. 

One potential limitation of inference of methyl-preferences of TFs from in vivo data is that it is difficult to 

establish the direction of causality: while it is likely that the observed associations reflect the effect of 

methylation on TF binding, it could also be that they reflect the effect of TF binding on the DNA methylation 

level [29]. However, TFs that influence DNA methylation most often have an effect on the local neighborhood 

of their binding sites, which can span tens of nucleotides [30-32]. JAMS takes into account the neighboring 

methylation levels, and tries to identify the site-specific methylation effects within the motif that cannot be 

explained by (or are independent of) the flanking methylation levels. We note that, when available, the majority 

of our methyl-minus and methyl-plus findings (>80%) match the results of in vitro experiments, in which binding 

site methylation levels are established before introducing the TF into the system [5, 25, 33]. Therefore, it is more 

likely that we are observing the effect that CpG methylation has on TF binding, rather than the effect of TF on 

CpG methylation. 
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Our results represent, to our knowledge, the largest resource for exploring the in vivo effect of methylation 

on TF binding: only a handful of studies have previously investigated methylation preferences of a limited 

number of TFs in vivo while accounting for changes in DNA accessibility. Our results match what has been 

reported in these studies [2, 4, 9, 10, 16], but also reveals a substantial number of novel TFs that are affected by 

CpG methylation. Of particular interest, our study revealed a significant number of methyl-plus TFs consistent 

with in vitro studies [5], in stark contrast to previous methods that have attempted to infer the effect of DNA 

methylation on TF binding [12-15]. Notably, a large proportion of methyl-plus TFs belonged to the C2H2-ZF 

family. C2H2-ZF proteins recognize DNA with an array of zinc fingers (ZFs) [34], with each ZF recognizing 

three or four nucleotides using a specific set of base-contacting residues [35]. Identifying the methylation 

preferences of C2H2-ZF proteins opens the possibility of associating the identity of base-contacting residues to 

mCpG binding: with a sufficiently large number of methyl-binding ZFs, we could potentially identify an “mCpG 

recognition code” for these TFs. 
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METHODS 

Methods overview 

To understand the relationship between DNA methylation and TF binding, we began by retrieving and 

analyzing WGBS, ChIP-seq, and DNase-seq data from different TFs in several cell lines. We developed a method 

to jointly model these data sets to predict TF-specific binding, and benchmarked it on CTCF ChIP-seq data in 

HEK293 cells. We expanded our CTCF studies by obtaining differential binding sites of CTCF between different 

cell lines, and examined whether, using our method, we can predict differential binding that was caused by DNA 

methylation changes. Finally, we applied our method to a comprehensive collection of ChIP-seq data to 

systematically study the in vivo effect of DNA methylation on TF binding.  

ChIP-seq data processing, peak calling, and peak signal quantification  

We limited our analysis to ChIP-seq experiments performed in HepG2, K562, HEK293, GM12878 and 

HeLa-S3 cell lines, given the availability of WGBS and DNase-seq data for these cell lines. ChIP-seq and ChIP-

exo raw reads were retrieved from four main sources: ENCODE [22, 36], Najafabadi et al. [37], Schmitges et 

al. [20], and Imbeault et al. [27]. ENCODE data were downloaded from ENCODE project website 

(https://www.encodeproject.org/experiments/), while the other data were downloaded from GEO (accession 

numbers GSE58341, GSE76494, and  GSE78099). A total of 2677 ChIP-seq experiments were analyzed, 

covering 421 TFs and 5 cell lines. 

Raw reads were aligned to the human reference genome (GRCh38) with bowtie2 (version 2.3.4.1) using the 

“--very-sensitive-local” mode. Mapped reads with mapping quality score smaller than 30 were removed using 

samtools (version 1.9)[38].  ChIP-seq peaks were called using MACS (version 1.4) [39, 40] with a permissive p-

value threshold of 0.01. We used this permissive p-value to obtain a range of TF binding signals, which our 

method uses to quantitatively model TF binding strength. We also included negative peaks, i.e. peaks obtained 

by swapping the treatment with the control experiments, to enable proper modeling of the background signal. In 

the end, for each ChIP-seq experiment, this process resulted in a list of peaks covering a wide range of pulldown 

or control (background) signal strengths, along with their associated read counts. 

WGBS data processing and DNase-seq data retrieval 

Raw reads from Whole-Genome Bisulfite Sequencing (WGBS) of six cell lines were retrieved from 

ENCODE and GEO (see Supplementary Table 1 for accession numbers). Raw reads were trimmed based on 

their quality (phred33 ≥ 20) with TrimGalore (version 0.6.4) [41]. Paired reads were aligned to the human 

reference genome hg38 [42] using bismark (bowtie2 mode, version 0.22.2), allowing one mismatch during 

alignment. Reads were deduplicated by removing those that aligned to the same genomic position 
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(bismark:deduplicate_bismark). Methylation calls were then extracted, ignoring the first 2 bps from the 5' end 

of read 2 (bismark:bismark_methylation_extractor). A genome-wide coverage report with methylated and 

unmethylated read counts was then generated (bismark:coverage2cytosine). Finally, a bigwig file was generated 

for unmethylated and methylated counts (bedGraphToBigWig)[43]. 

For DNase-seq data, read depth-normalized bigwig files representing DNase-seq signal were retrieved from 

ENCODE (see Supplementary Table 1 for accession numbers). 

Formatting and preprocessing of data for JAMS 

To retrieve the sequence, DNA accessibility, and DNA methylation to train our model, we focused on the 

positive and negative ChIP-seq peak regions that did not fall within endogenous repeat elements, since the 

homology of repeat elements can confound the modeling of ChIP-seq data based on sequence [37]. This was 

done by removing peaks that overlapped any repeat regions, as defined by RepeatMasker [42, 44]. 

To model the effect of sequence and epigenetic factors on TF binding using our method, it is necessary to 

align the peaks based on the position of the most likely TF binding site. To do so, we used the known motif of 

each TF, in the form of position frequency matrices (PFMs), to search for the most likely TFBS within the 100 

bp range of the peak summit. PFMs were obtained from CIS-BP [45], and were augmented by de novo motifs 

identified by RCADE2 [46, 47] for the C2H2-ZF family of TFs as described in later sections. CISP-BP contains 

more than one PFMs per TF, as they are derived from different experimental techniques. We selected PFMs 

exclusively derived from in vitro experiments, in order to avoid the confounding effects present in vivo. We 

prioritized, in descending order, PFMs from SELEX, Selective microfluidics-based ligand enrichment followed 

by sequencing (SMiLE-seq), and Protein-Binding Microarrays (PBM). We used AffiMx [48] to identify the best 

motif match in each peak sequence. This process was uniformly applied to all peaks, including the negative 

ChIP-seq peak set. 

 Once the best motif hit in each peak was identified, we extracted the sequence and nucleotide-resolution 

methylation profile at the motif hit as well as the flanking regions (20 bp) around the motif hit. Sequences were 

retrieved from the reference genome hg38 using bedtools:getfasta [42, 49]. Methylated and unmethylated read 

counts at each position were retrieved from the WGBS bigwig files using bwtool [50]. 

 Similarly, normalized DNA accessibility was extracted from the motif hit region and 500 bp upstream 

and downstream of the motif hit from the DNase-seq bigwig files. ChIP-seq read counts were extracted from the 

control and pull-down experiments for the +/- 400bp region surrounding the motif match using bedtools:multicov 

(MAPQ score > 30). (Fig. 4C, bottom) [49]. 

We emphasize that while a known motif of each TF was used to identify an offset for each peak and align 

the peak regions, this process is not expected to confound the sequence features learned by JAMS, since it is 

uniformly applied to all peaks regardless of the signal strength. The TF motifs themselves were also not used by 
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JAMS, and the sequence features that are predictive of ChIP-seq signal were learned de novo from the aligned 

peaks. 

Implementation of JAMS 

Our method creates a joint accessibility-methylation-sequence model (JAMS model) for each ChIP-seq 

experiment, in which the ChIP-seq signal of each peak is explained as a function of accessibility, methylation, 

and sequence at that peak. Consider the k×m matrix X, which represents the value of m predictive features at k 

genomic positions (i.e. peaks). These m features include those related to accessibility (A), methylation (M), and 

sequence (S): 

𝑿 = [𝑿!𝑿"𝑿#] 

JAMS models the logarithm of TF binding strength at each of the k peaks as a linear function of the matrix 

X: 

log 𝝁$ = 𝑿 × 𝜷$ 

Here, μf is the vector of the binding strength for transcription factor f across k peaks, X is the k×m feature 

matrix described above, and βf is the vector of m coefficients that describe the effect of each of the m features 

on the TF binding strength (matrices are denoted with bold capital letters, and vectors with bold lower-case 

letters). 

Similarly, the background ChIP-seq signal across the peaks is also modeled as a function of X: 

log 𝝁% = 𝑿 × 𝜷% 

Here, μb represents the background signal strength across k peaks, and βb is the vector of m coefficients that 

describe the effect of each of the m features on the background signal. 

In a ChIP-seq experiment, the expected control (background) read counts at each peak is a function of the 

background signal multiplied by the library size. Therefore, the logarithm of control reads can be modeled as: 

log 𝝀& = log𝝁% + 𝑠& = 𝑿 × 𝜷% + 𝑠& 

Here, λc is the vector of expected (average) control read counts across the k peaks, and sc is an experiment-

specific size factor that can be interpreted as the logarithm of sequencing depth for the control library. 

The expected pull-down read counts in a ChIP-seq experiment, however, are a function of both the 

background signal and the TF binding strength, multiplied by the library size. Therefore: 

log 𝝀' = log𝝁% + log𝝁$ + 𝑠' = 𝑿 × 𝜷% + 𝑿 × 𝜷$ + 𝑠' 

Here, λp is the vector of expected pulldown read counts across the k peaks, and sp can be interpreted as the 

logarithm of sequencing depth for the pulldown library. 
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While these equations describe the expected control and pulldown read counts, the actual observed read 

counts are probabilistic observations that may deviate from these expected values. Here, we model the read 

counts as observations from negative binomial distributions [51] whose mean is given by the equations above, 

with a shared dispersion parameter across the peaks: 

𝒏& = 𝑁𝐵(𝝀& , 𝜑) 

𝒏' = 𝑁𝐵5𝝀', 𝜑6 

Here, nc and np are the vectors of observed control and pulldown read counts across the k peaks, respectively, 

and φ is the dispersion parameter. The equations above allow us to jointly model the control and pulldown 

experiments as a function of X. We use the glm.nb function in R for this purpose and fit a model of the form 

n~XX+t+XX:t, where n is an R vector that concatenates the observed control and pulldown read counts (with 

length 2k), XX is the result of duplicating matrix X, i.e. XX=rbind(X,X), and t is a binary vector of length 2k 

indicating whether the observed read count comes from the control experiment (0) or from the pulldown 

experiment (1). The coefficients returned by the glm.nb function for XX correspond to βb in the equations above, 

and the coefficients for XX:t correspond to βf. The glm.nb also returns the standard error of mean and a p-value 

for each of these coefficients, which we use to determine the statistical significance. 

Constructing the matrix X: Sequence, DNA methylation and DNA accessibility are used as the predictor 

variables, which are included in the matrix X. We used one-hot encoding for the sequence over the TFBS. 

Methylated and unmethylated read counts over the motif were used to calculate the methylation percentage at 

each position. If the average coverage of methylation and unmethylated reads over the motif is less than 10 

counts, the peak is removed. Average DNA accessibility was calculated for bins of 100 bp (10 bins) plus one 

bin for the TFBS region itself, and then logarithm of DNA accessibility was calculated; a pseudocount equivalent 

of 1% of the smallest value was used to allow for log transformation of the data. Average methylation percentage 

and sequence composition of the flanking regions were also used as predictors. 

JAMS is available at https://github.com/csglab/JAMS. 

Differential binding analysis 

To calculate differential TF binding between cell lines, we first identified CTCF ChIP-seq experiments from 

ENCODE that had at least two biological replicates per cell line (Supplementary Table 1), and retrieved the 

pull-down and control experiment data. After aligning and peak calling, we defined a unified list of peaks that 

were present in at least one sample. Peaks that were present in more than one sample and had summits within 

100 bp of each other were merged, as they likely represent the same CTCF binding site. Then, the best motif 

match within 100 bp of each summit was identified [48]. We extracted ChIP-seq read counts present within a 

400bp range from the motif hit in the pull-down and control experiments and created a count matrix. 
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We used DESeq2 [52] to compare the pulldown-to-control ratio between pairs of cell lines. The 

DESeqDataSetFromMatrix function from DESeq2 was used to create a DESeqDataSet object, followed by 

fitting a model of the form ~s+c:t, where s is a categorical variable representing the sample/replicate (shared 

between pairs of control and pulldown experiments), c is a binary variable representing the two different cell 

lines, and t is a binary variable denoting whether the read count corresponds to the control experiment (0) or the 

pulldown experiment (1). After fitting the DESeq2 model, the coefficient for c:t corresponds to the log2 fold 

changes. Significant differentially bound peaks (FDR < 0.1) were identified for every pair of cell lines, excluding 

cell line pairs whose ChIP-seq experiments were done in different laboratories. The pair of cell lines (GM12878 

and HeLa-S3) with the highest number of significantly bound peaks were selected for further analysis. 

Inference of PFMs for C2H2-ZF proteins using RCADE2 

We inferred position frequency matrices (PFMs) for canonical C2H2 zinc finger proteins using RCADE2  

[46, 47]. RCADE2 uses the protein sequence, the DNA sequence of the ChIP-seq peaks, and a previously 

computed machine learning-based recognition code to predict the DNA-binding preferences of C2H2-ZFPs. The 

protein sequences for these TFs were retrieved from UniProt [53]. We focused on the top 500 ChIP-seq peaks 

(sorted by p-value) that did not fall within endogenous repeat elements (EREs) [42, 44]. The DNA sequence of 

the +/- 250 region around the peak summits for the top 500 non-ERE peaks along with the protein sequence was 

provided as input to RCADE2, and the optimized motif was used to augment the CIS-BP motifs. 
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