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Abstract

Motiviation:  The function of most genes is unknown. The best results in gene function

prediction are obtained with machine learning-based methods that combine multiple data sources,

typically sequence derived features,  protein structure and interaction data.  Even though there is

ample evidence showing that a gene’s function is not independent of its location, the few available

examples of gene function prediction based on gene location relay on sequence identity between

genes of different organisms and are thus subjected to the limitations of the relationship between

sequence and function.

Results:  Here we predict thousands of gene functions in five eukaryotes (Saccharomyces

cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus  and Homo sapiens)

using machine learning models  trained with features derived from the location of genes  in  the

genomes to which they belong. To the best of our knowledge this is the first work in which gene

function prediction is successfully achieved in eukaryotic genomes using predictive features derived

exclusively from the relative location of the genes.

Contact: fpazos@iibce.edu.uy

Supplementary information: http://gfpml.bnd.edu.uy 

1. INTRODUCTION

We witness a growing gap between the number of assembled genomes and the number of

genes  with  known  functions.  Less  than  1%  of  the  protein  sequences  in  UniProtKB

(UniProt Consortium 2018) have  an  experimental  Gene  Ontology  annotation  (Ashburner  et  al.

2000) and even in  well  studied  organisms,  the majority of  known genes  have yet  no assigned

function (Zerbino et al. 2018). Furthermore, well studied genes have frequently been assigned more

than one function so less studied genes, for which only one function is known, have probably more

functions  to  be  discovered  (Rubin  and Green 2013).  It  would  take  centuries  to  experimentally

confirm the functions of the already known genes, hence the need to improve automatic functional

prediction (AFP) (Bernardes and Pedreira 2013; Libbrecht and Noble 2015; Zhou et al. 2019; Zhao

et al. 2020; Bonetta and Valentino 2020).

The Critical Assessment of protein Function Annotation algorithms (CAFA) is a series of

experiments designed to provide a large-scale assessment of computational methods dedicated to

automatic function prediction (AFP) (Radivojac et al. 2013; Jiang et al. 2016; Zhou et al. 2019). In

all  CAFA editions  so  far,  the  best  results  were  obtained with  machine  learning-based methods
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combining multiple data sources, typically including sequence derived features, protein structure

and molecular interaction data. The performance of the methods evaluated by the CAFA challenges

improved dramatically between the first (2013) and the second (2016) edition but this improvement

slowed  down between  the  second  and  the  third  edition  (2019).  The  authors  hypothesized  that

including more varied sources of data will lead to additional large improvements in AFP (Zhou et

al. 2019).

Thus, finding new ways to extract relevant biological information from the available data is

key to improve AFP. For around 99% of all known proteins, the only available information is the

sequence encoded in the corresponding genome, highlighting the importance of sequence-based

AFP (Shehu et al. 2016). But AFP based on sequence similarity is hindered by a highly variable

correlation between sequence identity and gene function (Duan et al. 2006) and by the evolutionary

distance of many genomes to the closest  well-characterized genome  (Blaby-Haas and Merchant

2019).  Here  we  explore  the  hypothesis  that  the  relative  location  of  a  gene,  a  feature  that  is

independent of sequence and can be directly extracted from any genome, is sufficient to perform

AFP.

Functionally related genes may be constrained to remain close to each other due to natural

selection, forming conserved gene clusters  (Ling et al. 2009). Local clusters of co-expressed, co-

regulated  or  functionally  related  genes  have  been  documented  in  a  wide  range  of  organisms,

including prokariotes, yeast, insects, vertebrates and plants  (Eisen et al. 1998; Niehrs and Pollet

1999; Cohen et al. 2000; Boutanaev et al. 2002; Hurst et al. 2002; Lee and Sonnhammer 2003;

Hurst et al. 2004; Michalak 2008).  

Equating  conserved  co-locality  with  co-functionality  have  been  a  fruitful  approach  for

predicting gene functions in prokaryotes for more than 20 years (Overbeek et al. 1999; Huynen et

al. 2000; Wolf et al. 2001; Yanai et al. 2002; Zheng et al. 2002; Ling et al. 2009). On the contrary,

there are very few examples (Mihelčić et al. 2019; Blaby-Haas and Merchant 2019) of the use of

this  approach in  eukaryotic  organisms, although also in eukaryotic genomes functions are non-

randomly distributed  (Lee and Sonnhammer 2003).  However,  these AFP studies were based on

conserved gene neighborhoods, thus subjected to the limitations mentioned above regarding the

relationship between sequence and function.

Here we performed AFP based exclusively on the relative location of genes. We test the

predictive power of a feature which represents the spatial organization of genes with respect to their

functions, which we term "functional landscape arrays" (FLAs). A FLA is an array associated to

each gene that contains the enrichment in a set of Gene Ontology terms (GO terms) found around

the  gene,  considering  different  window  sizes.  These  arrays  contain  information  which  is
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independent of sequence similarity between genes and that can be automatically extracted from any

annotated genome. 

We predicted associations  between genes  of  five  eukaryotes  (Saccharomyces  cerevisiae,

Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and  Homo sapiens) and terms

from the  three  ontologies  of  the  Gene  Ontology (Biological  Process,  Cellular  Component  and

Molecular  Function)  training  a  set  of  hierarchical  multi-label  classifiers  with  FLAs.  Then  we

compared the results of our 15 models, one for each pair organism/ontology, with equivalent models

that  randomly  assign  functions  to  genes.  We  found  that  our  models,  trained  exclusively  with

location-derived features, performed several times better than chance, showing that gene location is

sufficient to obtain informative functional predictions.

2. SYSTEMS and METHODS

2.1 General procedure to predict associations between genes and GO terms 

For each genome,  

- Model as a string of protein coding genes.

- Random split in sets T and E, containing 80% and 20% of the genes respectively.

For each Ontology,

- Train a binary classifier for each GO term X associated with at least 40 genes in T 

and 10 genes in E

- Training set: genes in T annotated with GO term X (as positives) and 

its siblings (as negatives)

- Predictive feature: a FLA for each gene, including enrichment in GO 

term X, its siblings and its ancestors

- Hyper-parameters set by grid search & cross validation

- Combine all the binary classifications into one hierarchical multi-label 

classifier using the node interaction method.

- Evaluate calculating the hF1 score over the test set E

- Using the classification threshold that maximizes hF1 over E, predict new 

associations between GO terms and genes in E. 

2.2 Genome modeling

We model the genome as a collection of segments (the chromosomal arms) in which the

protein coding genes -the only elements we considered- are located one next to the other, without

intergenic regions or superpositions  (Pazos Obregón et al. 2018). In this model, the position of a
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gene is defined by the location of its transcription starting point and the distance between two genes

is the number of other genes located between them. The number of protein-coding genes considered

in each genome is shown in Table 1.

2.3 Gene Ontology

Gene  Ontology (GO)  is  an  attempt  to  describe  all  the  knowledge  about  the  biological

functions of genes with three ontologies: Molecular Function, Cellular Component and Biological

Process, each one representing different aspects of the biology of a gene product and organized as a

directed acyclic graph  (Ashburner et al. 2000). Each “GO term” is a node of these graphs, with

precise definition and relationships with other terms. A GO annotation occurs when an association

between  a  gene  product  and  a  GO  term  is  established.  We  used  a  version  of  the  ontology

downloaded on November 2018. To fulfill the true path rule (Valentini 2011), given the annotations

of an organism within a given ontology, we up-propagated all the annotations, meaning that if a

gene was annotated with a given GO term we associated that gene with all the ancestor terms up to

the root of the graph.

2.4 Local enrichment analysis

Enrichment analysis  is a method frequently used to determine if a given gene feature is

overrepresented in a list of genes (Boyle et al. 2004). It assesses if the genes of a list associated with

a given feature are more frequent than what should be expected in a list of genes of the same size

but randomly picked from the same background list.

Given a gene of interest j, we define the Local Enrichment in the GO term x for the gene j

and a window w centered in  j as:  Ejxw = ((k/n) / (M/N)), where  N is the number of genes in the

chromosomal arm, M is the number of genes in the chromosomal arm associated with GO term x, n

is the number of genes in the window and k is the number of genes in the window associated with

GO term x (see Figure 1). In other words, Ejxw assess if the genes annotated with the GO term x are

located in the surroundings of gene j more frequently than what could be expected by chance. This

approach  was  successfully  used  to  look  for  clusters  of  GO terms  along  the  genome of  seven

eukaryotes (Tiirikka et al. 2014).

2.5 Functional Landscape Arrays and Functional Enrichment Maps

To functionally characterize the surrounding of a gene we calculated its local enrichment in

various  GO terms.  We considered  a  window  w, centered in  the gene under  consideration,  that

includes 5, 10, 20, 50 or 100 genes to each side of the gene. The window was moved stepwise one

gene at a time until the entire chromosome was covered   (see Figure 1). Then, for each gene we
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defined a Functional Landscape Array (FLA): an array with a row for each window size and a

column for each GO term whose enrichment was evaluated. Because of computational limitations,

in the work we are reporting here, the GO terms included in each FLA depend on the GO term to be

classified: we only included the enrichment found in that GO term, its father, its siblings and all its

descendants.

Figure 1. Local enrichment analysis and Functional Landscape Arrays. k is the number of genes in

the window associated with GO term x, n is the number of genes in the window, M is the number of

genes (squares) in the chromosomal arm (strip) associated with GO term x, and N is the total

number of genes in the chromosomal arm.

Importantly: to train our models we did not consider the annotations of the genes in the set

E,  that  was  reserved  for  the  evaluation  of  the  models.  This  procedure  guarantees  an  unbiased

evaluation of the classifiers, in which the features used in training are not extracted from examples

used  in  testing.  Nevertheless,  because  it  is  a  useful  result  by  itself,  we  also  performed  Local

Enrichment Analysis along each genome considering all its current annotations. We calculated the

local enrichment around all the genes in each genome using the same set of window sizes and for all

those GO terms associated with at least 20 genes and obtained what we call "functional enrichment

maps". The functional enrichment map of a given GO term shows which regions of a genome are

enriched in that GO term, for various windows sizes. 

2.6 Implementation of hierarchical multi label classifiers

We implemented a hierarchical multi label classifier for each pair organism / ontology using,

with  some  modifications,  the  algorithm proposed  in  (Feng  et  al.  2017,  2018).  This  is  a  local

approach, since a binary classifier is trained for each GO term. Due to computational limitations, for

the binary classification at each node, instead of a Support Vector Machine, we used a Random

Forest classifier (Breiman 2001), that have comparable performance in gene function prediction but
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with lower computational cost. For the same reason we did not used SMOTE (Chawla et al. 2002),

a technique used to artificially generate new labeled data when training sets are too small- Depth,

number of trees and measure of impurity for each classifier were set by grid search and 3-fold cross

validation.

First we randomly split the genome into two sets: T and E. Set T includes 80% of the genes

and was used to define the training sets and to obtain the FLAs. Set E includes the remaining 20%

of the genes and was used to evaluate the models. We trained a binary classifier for each GO term

that was associated with at least 40 genes in T and at least 10 genes in E. Table 2 shows the amount

of GO terms meeting these conditions in each organism and ontology, i.e. the GO terms that could

be predicted.

To define the training set for each classifier we applied the siblings policy (Silla and Freitas

2011). We included as positive cases those genes associated with the GO term under consideration

and as negative cases those genes associated with the siblings or uncles terms of the GO term under

consideration and not to that term. Importantly, to construct the FLA associated to each gene, to be

used as predictive feature, we only considered the annotations of the genes that belonged to T.

With  each  trained  classifier  we  classified  the  genes  in  E and  then  post-processed  the

predictions using the node interaction method (Feng et al. 2018), to respect the restrictions imposed

by the hierarchy of the ontology. Finally, we evaluated the performance of each hierarchical multi-

label classifier using the hierarchical version of the F1 score. All calculations were carried out using

ClusterUY (site: https://cluster.uy).

2.7 Evaluation of the models

To evaluate the performance of each trained model we used the complete set of annotations

of the genes in  E, that were not used in training. As evaluation metric we used the hierarchical

version  of  the  F1  score  (hF1)  proposed  in  (Kiritchenko  et  al.  2006) and  used  in  the  CAFA

competitions. If we denote the true and false positives as TP and FN and the true and false negatives

as TN and FN, Precision (Pre) and Recall (Rec) are defined as:

Pre=
TP

TP+FN
Rec=

TP
TP+FN

and their hierarchical versions, which we term hPre and hRec, are defined as:

hPrec(θ)=
∑
i=1

n

|Pi(θ)∩Ti|

∑
i=1

n

|Pi (θ)|
 hRec (θ)=

∑
i=1

n

|Pi (θ)∩Ti|

∑
i=1

n

|Ti|

where θ  [0,1] is the classification threshold, n is the number of genes, T∈ i is the set of GO terms

truly associated to gene i and Pi(θ) is the set of GO terms predicted for gene i with the classification
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threshold set at θ. We assumed that the root of each ontology always is in Pi(θ). The hF1 score is the

harmonic mean of hPre and the hRec and is defined as: 

 hF 1(θ)=
2∗hPrec(θ)∗hRec (θ)

hPrec(θ)+hRec (θ)

2.8 Comparison with random models

As a way to assess how far from randomness is the distribution of gene functions along the

genome, we compared the hF1 of each of our trained models with the hF1 reached by an equivalent

model that randomly assigns GO terms to genes. In these "random models", the probabilities of

association between each gene of the corresponding genome and each GO term for which a binary

classifier was trained are randomly selected from a uniform distribution. For each organism and

ontology, we obtained the ratio between the hF1 of the trained model and the hF1 of its random

version.

3. IMPLEMENTATION

3.1 Functional enrichment maps in 5 model eukaryotes

We performed Local Enrichment Analysis around each gene of a given genome considering

windows of various sizes (See Methods). Local Enrichment Analysis of a given gene assess if the

genes in the surroundings are annotated with any GO term more frequently than what could be

expected by chance. Given a GO term, its functional enrichment map shows which regions of a

genome  are  enriched  in  that  GO  term,  considering  various  windows  sizes.  We  obtained  the

functional enrichment map of all those GO terms associated with at least 20 genes in each of the

five considered organisms. As an example, Figure 2 shows the functional enrichment maps in  D.

melanogaster of  three  GO  terms  that  belong  to  the  same  branch  of  the  Cellular  Component

ontology.  The  data  to  generate  all  the  functional  enrichment  maps  is  available  at:

https://github.com/IIBCE-BND/gfpml-datasets/tree/master/lea
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Figure 2. Functional enrichment map of the GO term "Golgi membrane" (GO:0000139) in the

genome of D. melanogaster. There are 50 Drosophila genes annotated with this GO term that

belongs to the Cellular Component ontology. The chromosomal position is represented in the x axis

and the corresponding local enrichment at each position is shown in the y axis. Each light gray

block corresponds to a chromosome (only chromosomes 2, 3 and X are shown) and the vertical

dark gray lines mark the position of the centromeres, which divide the chromosome 2 into arms 2L

and 2R and chromosome 3 into arms 3L and 3R. The enrichment found using different windows is

shown with the colors indicated in the figure.

3.2 Implementation of hierarchical multi label classifiers

We  trained  fifteen  hierarchical  multi  label  classifiers, one  for  each  possible  pair

organism/ontology. As detailed in Methods, we randomly split each genome into two sets:  T, that

includes 80% of the genes and was used for training, and E, that includes the remaining 20% of the

genes and was used for evaluation. Each model assigned probabilities of association between the

genes of the set E and those GO terms associated with at least 40 genes of the set T and 10 genes of

the set E. Table 1 shows, for each organism and each ontology, the number of GO terms fulfilling

these conditions and for which we implemented a binary classifier.
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Table 1. First column shows the assembly version used for each organism. Second column shows

the number of protein coding genes in each genome. Third column indicates the Ontology. Fourth

column shows the number of GO terms associated with at least one gene for that organism and

ontology.  Fifth column shows the number of GO terms associated with at least 40 genes in the set T

(used for training) and 10 genes in the set E (used for e valuation). These are the GO terms for

which a binary classifier was trained and tested. For each organism and ontology, we implemented

a hierarchical multilabel classifier combining these binary classifiers. The hierarchical precision,

recall and F-max reached by each of these models are shown in columns sixth, seventh and eighth. 

3.3 Evaluation of the models

We evaluated the performance of our models using the hierarchical version of the F1 score

(hF1). Figure 3 shows the hF1 reached by each trained model over the test set E, as well as the hF1

of the corresponding random model, as a function of the classification threshold. 

Organism Ontology hPrec hRec hF-max

5,892

BP 5,074 525 0.24 0.23 0.24

CC 1,035 137 0.51 0.52 0.52

MF 2,323 137 0.69 0.19 0.30

7,356

BP 5,661 551 0.09 0.15 0.11

CC 1,110 117 0.19 0.33 0.25

MF 2,226 151 0.25 0.14 0.17

11,122

BP 7,416 880 0.17 0.20 0.18

CC 1,277 176 0.41 0.37 0.39

MF 2,599 212 0.47 0.22 0.30

20,809

BP 15,318 1040 0.22 0.21 0.21

CC 1,953 285 0.46 0.42 0.44

MF 4,269 364 0.63 0.25 0.36

17,276

BP 13,816 1212 0.21 0.20 0.20

CC 1,818 338 0.44 0.42 0.43

MF 4,244 369 0.47 0.27 0.35

Proetin coding 
genes

Total GO 
terms

Considered 
GO terms

S. cerevisiae 
(R64)

C. elegans 
(WBcel235)

D. melanogaster  
(BDGP6)

M. musculus  
(GRCm38.p6)

H. sapiens  
(GRCh38.p13)
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Figure 3. Hierarchical F1 over the test set for each model as a function of the classification

threshold. In each plot the classification threshold, ranging from 0 to 1, is depicted in the x axis and

the hF1, also ranging from 0 to 1, is depicted in the y axis. Trained models are repreesnted by solid

lines and random models by dotted lines. Each column of the panel corresponds to an organism and

each row to an ontology (BP: Biological Process, CC: Cellular Component, MF: Molecular

Function).

The hF-max is the highest hF1 score that the model reaches when varying the classification

threshold. hF-max is a measure of the overall performance of the model and the corresponding

classification threshold was used to predict new associations between GO terms and genes. Table 1

shows the hF-max for each model along with the corresponding precision and recall. 

3.4 Comparison with random models

To assess how far from randomness is the linear organization of the genes along the genome

with respect to its functions we calculated the ratio between the hF-max of the trained model and

the hF-max of an equivalent random model,  i.e. a model that randomly assigns probabilities of

association between the same set of GO terms and the same genes (see Methods). Figures 4 and 5
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show how this ratio varies with the classification threshold in each organism and ontology. Table 2

shows the hF-max reached by each model over the test  set  E.  The trained models consistently

performed better than the random models.

Table 2. Ratio between the hF-max reached by the trained model and the hF-max reached by the

corresponding random model over the set E for each possible pair organism/ontology.

Figure 4. Ratio between the hF1 score of the trained model and the hF1 score of the corresponding

random model as function of the classification threshold. Each graph shows the results for a given

ontology, representing each organism with a different color.

Organism BP CC MF Mean

S. cerevisiae 1.74 2.02 1.34 1.70

C. elegans 1.76 2.08 1.15 1.66

D. melanogaster 2.14 2.22 1.83 2.06

M. musculus 2.78 2.87 2.33 2.66

H. sapiens 2.43 2.46 2.57 2.49

Mean 2.17 2.33 1.84
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Figure 5. Ratio between the hF1 score of the trained model and the hF1 score of the corresponding

random model as function of the classification threshold. Each graph shows the results for a given

organism, representing each Ontology with a different color. 

3.5 Prediction of new associations between genes and GO terms

We classified the genes in set E using the trained models and the classification threshold that

maximizes the hF1 score (see Methods). We obtained the probability of association between each

gene and each GO term associated with at least 40 genes in T and 10 genes in E. The complete set

of  predicted  associations  with  a  probability  above  the  threshold  is  available  at:

http://gfpml.bnd.edu.uy. In this site, the user can browse and download all the predictions, searching

by organism, ontology, chromosomal position, gene or GO term. Figure 6 shows a screenshot. 

Figure 6. Screenshot of http://gfpml.bnd.edu.uy. At this website all the associations between genes

and GO terms predicted by our models are available. Once an organism and an ontology is chosen,

the hFmax reached by the corresponding model as well as the list of predicted associations are

shown. 
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4. DISCUSSION

For the majority of the known genes, the only available information is their DNA sequence

(Shehu et al. 2016). AFP based on DNA sequence similarity is a common approach, since its known

that two genes with very similar sequences probably share function. But the contrary is not always

true. A thorough study of the correlation between similarity in protein sequence and function in

yeast  (Duan et al. 2006) found that the majority of the sequences of proteins annotated with the

same GO term were  non-similar.  In  general,  within  one branch of  an  ontology tree,  the  more

specific a GO term is, the more similar the sequences of the genes annotated with that term are, but

the degree of similarity is highly variable and is significant only for specific GO terms. When using

orthology between genes, these methods face another limitation: the evolutionary distance of many

genomes to the closest well-characterized genome. For example, only 25–50% of the proteins in

any given algal genome have detectable sequence similarity to any defined domain in the Pfam

database (Blaby-Haas and Merchant 2019).

Spatial  organization  of  genes (i.e.  their  localization  along  the  genome) provides  an

alternative and complementary source of information that is independent of primary sequence (Ling

et al. 2009). Genomic context-based methods, including gene neighborhoods, gene-order and gene-

teams based methods, are a way to make use of this information (Shehu et al. 2016). These methods

rely on orthology between genes and thus are subject to the above exposed limitations. Probably

because  these  limitations,  the  few  examples  of  genomic  context-based  AFP in  eukaryotes  are

limited to a small proportion of the genes of the organism being considered (Mihelčić et al. 2019;

Foflonker and Blaby-Haas 2020).

There is plenty of evidence pointing to the existence of distinctive patterns in the way in

which functionally related genes distribute along eukaryotic genomes. If such patterns exist and are

biologically relevant, it should be possible, at least in some cases, to predict the functions of a gene

using as predictive feature its relative position with respect to other genes of known function in the

same genome. As far as we know, here we have performed this task for the first time, using a new

way to represent the information contained in these patterns: the Functional Landscape Arrays. This

feature  can  be  automatically  extracted  from  any  annotated  genome  and  does  not  depend  on

orthology relations with other organisms. Using FLAs as the only predictive feature, we trained a

set  of  hierarchical  multi  label  classifiers  that  reached good predictive  performance.  With  these

trained classifiers we obtained thousands of new associations between genes and GO terms in five

eukaryotes. 

The  relevance  of  our  results  stems  from the  fact  that  the  performance  of  our  models,

assessed  by standard  metrics,  shows  that  AFP exclusively  based  on  features  derived  from the

relative location of genes can be successfully performed on eukaryotic genomes. Even though in
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AFP is usual to integrate multiple types of information, information derived from gene location is

rarely taken into account. Furthermore, according to the CAFA organizers, new improvements in

gene function prediction should be expected from the incorporation of new kinds of predictive

features (Zhou et al. 2019). We believe that including FLAs as predictive feature could significantly

improve the performance of AFP models.

Our  results  are  interesting  from another  point  of  view.  The  existence  in  eukaryotes  of

distribution patterns of functionally related genes so well defined as to allow good AFP points to

levels of organization thought to be exclusive of prokaryotic genomes and its characteristic operons

(Diament and Tuller 2016) Diament and Tuller performed a comparative study of the organization

of several genomes, analyzing the location of functionally related genes. Their results revealed that

the prokaryote Escherichia coli exhibits a higher level of genomic organization than the eukaryote

S.  cerevisiae,  as  one  would  expect  given  its  operon-based  genomic  organization.  But  when

considering  a  higher  order  of  genomic  organization,  analyzing  the  co-localization  of  pairs  of

different functional gene groups, the authors found that the genome of  S. cerevisiae is markedly

more organized than that of E. coli. Our results are consistent with this trend. To estimate how far

from randomness is the linear organization of different genomes we used the hF-max ratio, i.e. the

ratio between the hF-max reached by the trained model and the hF-max reached by the random

model. Table 2 and Figure 4 show that although the relationship between the complexity of the

organism and its hF-max ratio is not linear, simpler organisms reach lower hF-max ratios than more

complex organisms. 

In sum, Functional Landscape Arrays have the potential to improve AFP, as they can be

easily integrated into any model, can be automatically extracted from any annotated genome and are

independent from sequence identity. To the best of our knowledge this is the first work in which

only features derived from the relative gene location of the genes within a genome are used to

successfully predict gene function in eukaryotes. 
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