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Abstract   

In smallholder farming systems, traditional farmer varieties of neglected and underutilized crops species 

(NUS) support the livelihoods of millions of growers and consumers. NUS combine cultural and 

agronomic value with local adaptation, and call for transdisciplinary methods to evaluate their breeding 

potential. Here, we combined farmers’ traditional knowledge, genomics, and climate science to 

characterize 366 Ethiopian teff (Eragrostis tef) farmer varieties and breeding materials. We found that 

teff genetic diversity in Ethiopia could be organized in six genetic clusters associated to climate variation 

on the landscape. A participatory evaluation conducted in collaboration with local farmers could 

consistently identify best performing varieties and inform a genome wide association study to identify 

candidate genes for farmers’ appreciation, phenology, yield, and local adaptation. By modelling the 

genomic adaptation of teff to current and projected climates, we identified an area around lake Tana 

where teff cropping will be most vulnerable to climate change. Our results show that transdisciplinary 

approaches may efficiently propel untapped NUS farmer varieties into modern breeding to foster more 

resilient and sustainable cropping systems 
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Main 

Large-scale, high-yielding cropping systems rely on a remarkable small set of crops. Approximately half 

of the global farming land is devoted to maize, wheat, rice, and soybean1, and the overall composition of 

food systems is uniform worldwide2. Yet, hundreds of neglected or underutilized crop species (NUS) are 

actively cultivated in highly diversified, small-scale cropping systems, where they support the livelihoods 

of millions of people3,4. NUS are species that experienced scant research and breeding improvement. 

Not only NUS diversity is a proxy of pedoclimatic diversification of cropping systems, but it is also a 

telling of socioeconomic diversity and cultural heritage of local farmers5. Rich NUS agrobiodiversity is 

conserved in situ in smallholder agriculture systems, where the selection and cultivation conducted by 

local farmers resulted in the development of farmer varieties largely untapped by breeding. A 

comprehensive, transdisciplinary characterization of NUS farmer varieties that takes into consideration 

diversity, adaptation, and farmer-consumer preferences may thus unlock the potential of NUS towards 

the sustainable intensification of farming systems, both in challenging cropping environments and in 

large-scale agricultural systems and associated markets3,6,7. 

The research community can now leverage the big data revolution to bridge the gap between NUS and 

21st century agriculture6,8. Genomic tools allow us to rapidly characterize large germplasm collections 

and to identify genetic factors responsible for traits of agronomic interest9,10, unlocking desirable 

agrobiodiversity to breeding11 and enabling genomic selection to accelerate genetic gains12. Genomic 

data can be put in relation with increasingly precise current and projected climatic data and derive 

information not only on locus-specific adaptation13, but also on genomic vulnerability under climate 

change scenarios14–16. Data-driven methods can also be applied to characterize the socioeconomic 

contexts in which crops are grown17, generating information that is critical to understand cropping 

dynamics in smallholder farming systems18,19. Participatory varietal selection approaches, which harness 

farmers’ experience on local agricultural diversity and agronomic potential, directly involve farmers in 

the evaluation of breeding materials20,21, and can be combined with genomic data to identify genomic 

loci responsible for farmers’ appreciation22 and model local crop performance in farmer fields23. 

The Ethiopian farming system is a paradigm of challenging agricultural ecosystems where NUS farmer 

varieties are widely cultivated, and where an untapped potential for sustainable food systems and 

agricultural intensification of local agriculture. In Ethiopia, 85 million people live in rural areas, most of 

which are subsistence-based smallholder farmers that are responsible for about 90% of the cultivated 

land and agricultural output24. Teff (Eragrostis tef), a tetraploid NUS belonging to the Chloridoideae 
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subfamily, is a staple crop in the whole horn of Africa, where it has been cultivated for millennia and 

used for traditional preparations including enjera and tella, and is increasingly prized as super food in 

western markets25,26. Research in teff is rapidly evolving; a draft genome sequence27and a high quality 

genome sequence28recently brought it to the international genomics research spotlight. Breeding efforts 

have been underway since decades, and segregant and mutagenized populations are also available29,30. 

Yet, the full potential of teff is still undisclosed, and teff yields remain still much lower than potentially 

attainable and substantially lower than those of other cereals grown in the region31–33. However, 

thousands of locally adapted teff landraces show enormous potential in environmental adaptation and 

phenotypic diversity34. Combining data-driven research approaches in a transdisciplinary 

characterization may accelerate teff breeding efforts to unlock its full potential. 

Here, we report a transdisciplinary data-driven approach to characterize NUS genetic, agronomic, and 

climatic diversity, using teff as a case study. We selected and genotyped 321 teff farmer varieties 

derived from landraces and 45 teff improved lines with high-density molecular markers, and we 

characterized their agronomic performance in two locations in Ethiopia. Fifteen women and twenty men 

experienced teff farmers were asked to evaluate the teff genotypes, providing quantitative information 

that could allow to prioritize genetic materials that are best adapted to local environments and that are 

able to meet local agricultural needs. We derived current and projected climate data at the sampling 

locations of teff accessions and used them to estimate genetic offset under climate change scenarios. 

We combined all sources of information in a genome-wide association study framework to identify 

genomic loci with relevance for adaptation, performance, and farmers’ preferences, and we discuss 

candidate genes for teff improvement. We conclude discussing the potential of data-driven participatory 

approaches to characterize NUS diversity valorizing their heritage and potential for the sustainable 

intensification of farming systems. 

 

Results and Discussion 

Teff farmer varieties harness broad genetic diversity 

We assembled a representative collection of teff cultivated in Ethiopia, hereafter named Ethiopian Teff 

Diversity Panel (EtDP). The EtDP comprises farmer varieties purified from landraces spanning the entire 

geographical and agroecological range of teff cultivation in Ethiopia, from the sub-moist lowlands of 

Tigray in the North to the moist lowlands of Oromia in the South, and from the sub-humid lowlands of 
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Benishangul and Gumuz in the West to the sub-humid mid-highlands of Oromia in the East 

(Supplementary Figure 1, Supplementary Table 1). The genomic diversity of the EtDP was assessed using 

12,153 high-quality, genome wide single nucleotide polymorphisms (SNPs) derived from the DNA 

sequencing of individual accessions, followed by filtering for variant call quality and linkage 

disequilibrium (LD) pruning. The EtDP genomes could be grouped in 1,240 haplotype blocks 

(Supplementary Table 2). Chromosomes showed consistently higher pericentromeric LD, with localized 

LD peaks in telomeric regions (Supplementary Figure 2). The A and B sub genomes showed comparable 

yet different LD profiles, possibly due to their specificity in terms of dominance, content of transposable 

elements, and overall limited homoeologous exchange28. 

The internal administrative borders of Ethiopia are markers of cultural and historical diversity, and this is 

reflected in the genetic diversity of teff landraces cultivated by local farmers. Teff accessions from 

Tigray, in the north of Ethiopia, were markedly separated from the rest (Supplementary Figure 3a). 

Although teff breeding lines could be put in relation with landraces sampled from across the country, 

they had a relatively narrow genetic base that failed to sample the broad diversity available in the EtDP 

(Supplementary Figure 3b). EtDP accessions showed varying degrees of genetic admixture (Fig. 1a) and 

could be grouped in 6 non-overlapping clusters (Supplementary Figure 4). About 15% of the genetic 

variability in the teff panel could be explained by the first three principal components (PCs) of SNP data, 

which neatly separated cluster 1 from cluster 2 and cluster 4 (Fig. 1b-c).  

Genetic clusters are a proxy of teff landraces diversity and may support breeding efforts by improving 

the identification of parent lines for genomic selection to counter the depletion of allelic diversity35, or 

establishing breeding groups to explore heterosis potential in teff36. The preservation and valorization of 

gene pools supports the capacity to respond to future needs and priorities in the face climate change 

and the dynamic consumers preferences. Currently, teff improved lines predominantly come from 

genetic clusters 2, 4, and 5. A group of accessions sampled in North-Eastern Tigray was very different 

from the rest of the collection (Fig. 1d), and mostly belonged to genetic cluster 1. EtDP genetic clusters 

may also support teff germplasm conservation efforts. We found that altitude and agroecological zones 

could tell apart genetic clusters, with different ancestries succeeding one another from hot and dry 

areas to cold and humid areas (Fig. 1e-f). Teff is mostly grown in areas characterized by relatively low 

humidity34. Although it shows lower water requirements than other cereals such as barley, teff has a 

moderately sensitive response to water stress and is likely to provide higher yields when water supply is 

optimal37. 
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Figure 1. Genetic diversity of teff in Ethiopia. (a) ADMIXTURE results for the pruned SNPs dataset at values of K 
ranging from 2 to 10 (b,c) Principal Component Analysis of genome-wide SNPs. Taxa are colored according to their 
relative genetic cluster computed using the Discriminant Analysis of Principal Components (DAPC). About 10.98% 
of the genetic diversity in the panel can be explained by the first two principal components, which clearly separate 
cluster 1 from clusters 2 and 4. (d) Distribution of EtDP georeferenced landraces (N=314) across the altitudinal map 
of Ethiopia, color coded as in panel b. (e) Altitudinal distribution of genetic clusters, shown by color, with letters on 
top of boxplots denoting significance levels with a pairwise Wilcoxon rank sum test with Bonferroni correction for 
multiple testing. (f) Genetic cluster composition of agroecological zones of Ethiopia, with color coding as in panel 
b. SM2, warm sub-moist lowlands; SM3, tepid sub-moist mid-highlands; SM4, cool sub-moist mid-highlands; M2, 
warm moist lowlands; M3, tepid moist mid-highlands; M4, cool moist mid-highlands; SH2, warm sub-humid 
lowlands; SH3, tepid sup-humid mid-highlands; SH4, cool sub-humid mid-highlands; H3, tepid humid mid-
highlands; H4, cool humid mid-highlands. 
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The distribution of teff genetic variation is associated with geographic and environmental factors 

Landraces evolve at the interface of natural and anthropogenic selection38, hence we hypothesized that 

teff genetic clusters might be associated with local environmental conditions. High levels of admixture 

indicated limited population stratification (Supplementary Figure 5), yet significant associations could be 

observed between genetic clusters and agroecological zones of Ethiopia (Chi-square test, p-value < 2.2e-

16; Supplementary Figure 6). Climatic indicators could be summarized by PCs computed from bioclimatic 

variables, identifying precipitation and temperature gradients as well as seasonal patterns (Fig. 2a-b). 

Genetic cluster 1 was mainly distributed in warmer and drier climates, while cluster 5 and 6 came from 

colder and wetter areas (Supplementary Figure 7). Extant landraces diversity is not only contributed by 

climate, but also by seed circulation. Smallholder farmers are connected in formal and informal seed 

exchange networks39 which are drivers of genetic diversity40,41. The district of sampling of teff landraces 

in the EtDP, a proxy of geography and ethnicity in Ethiopia, was used to aggregate accessions and 

calculate genetic distances as a measure of fixation index (Fst). Fst values were significantly associated 

with geographic distance (Mantel r = 0.31; p = 9e-04) and environmental distance (Mantel r =0.352; p 

=0.0137), showing that a combination of isolation by distance and environmental adaptation might have 

shaped teff genetic diversity (Fig. 2c-d). Accessions from East Tigray (Misraquawi) showed the highest 

separation from the collection, followed by East Oromia (Misraq Harerge) and West Amhara (Agew Awi) 

(Fig. 2e). Tigray is believed to be the center of teff domestication, as earlier reports identified there 

much of its diversity42 and archaeobotanical excavations reported its cultivation since the Pre Aksumite 

period (before I Century CE)26. However, limited archeological information is available from other parts 

of the country, which may disclose other sites of early domestication of teff. When integrating the 

putative teff wild relatives Eragrostis curvula and Eragrostis pilosa in our teff landraces’ phylogeny, we 

found that they grouped near to genetic cluster 3 (Supplementary Figure 8a), lacking a precise 

geographic provenance (Supplementary Figure 8b) but being more frequent in cool moist mid-highlands 

(Supplementary Figure 6). 
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Figure 2. Teff diversity on the landscape.(a) Principal Component Analysis of bioclimatic diversity in the EtDP. 

Dots represent teff landraces colored according to genetic clusters, as in legend. Vectors represent the scale, verse, 
and direction of bioclimatic drivers of teff differentiation. (b) Correlation between derived bioclimatic PCs and 
original bioclimatic variables, colored according to legend. (c) Evolution of Fst values in relation to geographic 
distance between teff accessions grouped by sub-regional administrative borders of Ethiopia. (d)Evolution of Fst 
values in relation to environmental distance of teff accessions grouped by sub-regional administrative borders of 
Ethiopia. (e) Pairwise Fst values between teff accessions grouped by sub-regional administrative borders of 
Ethiopia. Sub-regional groups of samples are ordered by administrative regions according to legend.  
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Participatory evaluation of the teff diversity prioritizes genetic materials for breeding 

The EtDP was phenotyped for agronomic and farmer appreciation traits during the main cropping 

season in two locations in Ethiopia (Fig. 1d) representing high potential for teff cultivation. Men and 

women farmers expert teff growers evaluated individual plots, while researchers collected metric traits. 

Farmer evaluations were highly repeatable and had a strong genetic basis. The overall appreciation 

provided by farmers across genders and across locations had a broad sense heritability (H2) of 0.81 

(Supplementary Table 3). H2 of grain yield combined across the same two locations was of 0.42 

(Supplementary Table 4). Farmers’ appreciation of teff genotypes was positively correlated with yield 

and yield components, most notably panicle traits, biomass, and grain filling rate (Fig. 3a, 

Supplementary Figure 9). Previous studies showed that farmers’ appreciation is genetically determined, 

and may be used to perform genomic prediction23 and identify genomic associations22. The high H2 

achieved by farmers’ overall appreciation may be due to the fact that farmers, in providing their overall 

evaluation, not only consider yield but also yield component traits with high heritability. 

The top ranking teff accessions according to men and women farmers captured different genetic 

backgrounds (Fig. 3b), but the same trait combinations (Fig. 3c), indicating that farmers were 

consistently preferring the same teff types regardless of genetic background and geographic 

provenance, i.e. high yielding, high-biomass and fast maturing landraces. Teff improved varieties 

showed high performance for farmers’ overall appreciation (OA) as well as for agronomic traits (Fig. 3d-

e). This is not a surprise since the evaluation was conducted in high potential areas, which are optimal 

environment for most teff breeding materials. Men and women farmers could efficiently identify most 

desirable varieties with high consistency, regardless of gender and location (Fig.3f). This is in line with 

previous literature, that shown that smallholder farmers’ preference of men and women alike are 

quantitative and repeatable22,43. Several landraces from different genetic backgrounds recorded similar, 

at times superior, performances than improved lines (Fig. 3g). Accessions belonging to genetic clusters 

2, 4 and 5 display longer days to heading and days to maturity, higher plant heights and panicle lengths, 

greater number of total tillers and higher yields (Supplementary Figure 10). By selecting landraces that 

outperform improved varieties’ performances in target traits for breeding, it is possible to prioritize 

landrace accessions for teff improvement (Fig. 3e) or even immediately make these landraces available 

to farmers, as suggested by previous experiences in wheat44. Short maturation time is paramount to 

achieve harvestable yield in areas exposed to terminal drought45, and it is expectedly a major 

component of farmers’ OA (Fig. 3a). The time of maturation is therefore an obvious target trait for teff 
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breeding, although challenging to be combined with elevated potential yield. We found that many 

landraces had a shorter grain filling period than most improved lines, and that landrace EBI 9551 

combined this trait with superior yield and farmers’ appreciation (Fig. 3g).  

 

 

Fig. 3. Phenotypic diversity in the EtDP. (a) Pearson’s correlations between agronomic traits (y axis) and 

farmer preference traits (x axis) in the teff collection. Correlation values are expressed in color shades according to 

the legend to the right. (b,c) Top ranking genotypes (90th percentile of the OA distribution) selected by man (blue) 

and women (purple) farmers, overlaid to the EtDP diversity reported by a Principal Components Analysis 

summarizing either SNP molecular markers (b) or phenotypes (c). Genotypes not selected are reported as gray 
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dots. Due to partial transparency of coloring, when men and women select the same genotype, the corresponding 

point appears in dark violet. (d,e) Trait distribution by genetic cluster, for overall appreciation (d) and panicle 

length (e). Landraces are represented by dots; improved lines are represented by squares with colors according to 

legend. (f) Alluvial plot reporting the consistency of farmers’ choice by quartiles of the overall appreciation 

distribution.  Each vertical bar represents a combination of location (Adet, Akaki) and gender (M, W). EtDP 

accessions are ordered on the y axis according to their OA score in each combination. Alluvial flows are colored 

according to OA quartiles combined across gender and across location according to the legend (q1, q2, q3, q4).(g) 

Venn diagram reporting landraces having values superior to the 75th percentile of the trait distribution of improved 

varieties (lower than the 25th percentile in the case of GFP). Each area of the Venn diagram reports the 

corresponding number of landraces according to legend. The red star mark highlights a landrace bearing a 

desirable combination of overall appreciation, panicle appreciation, grain filling period, and grain yield. DH, days to 

heading; DM, days to maturity; PH, plant height; PL, panicle length; PBPM, number of primary branches per main 

shoot panicle; TT, total tillers; CLF, first culm length; CDF, first culm diameter; PW, panicle weight; PY, panicle yield; 

GY, grain yield; BY, biomass yield; HI, harvest index; GFP, grain filling period; GFR, grain filling rate; BPR, biomass 

production rate; OA, overall appreciation; PA, panicle appreciation. 

 

Participatory, climatic, and agronomic diversity identify candidate loci for teff breeding 

The data deriving from the transdisciplinary characterization of the EtDP can be integrated to highlight 

interactions and emerging properties in the collection, identifying genomic loci associated with 

agronomic performance, local adaptation, and farmer preferences. This can be achieved in a genome 

wide association study (GWAS) framework to establish a lasting toolbox to support teff improvement via 

either marker assisted selection, genomic selection, or new breeding technologies. A GWAS led to the 

identification of a total of 193 unique quantitative trait nucleotides (QTNs) (Supplementary Table 5). A 

hundred and one unique QTNs were associated with bioclimatic indicators at sampling sites. Seventeen 

more QTN were associated with farmers’ appreciation. 115 QTNs could be grouped in 59 haplotype 

blocks marking the co-inheritance of contiguous SNPs. This information could be used to guide marker 

assisted breeding via allele pyramiding, but the recent teff genome annotation28 allows to identify 

suggestive candidate genes underlying teff phenotypes. We focused on these LD blocks to identify 

sequence homology of predicted teff proteins with protein sequences of Arabidopsis thaliana and Zea 

mays (Supplementary Table 6). 

We identified two loci on chromosome 6B associated with overall appreciation and panicle length 

(lcl|6B-7907481, lcl|6B-7907767). The corresponding LD block includes 24 gene models, some of which 

have predicted products with sequence homology with proteins with known phenotypes. Et_6B_049642 

encodes for a putative phosphoinositide phosphatase with strong homology with the product of A. 

thaliana AT3G51460. In Arabidopsis, knockout mutants of this gene show defective root hair 

development46. The product of Et_6B_050159, in the same LD block, shows sequence homology with 
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that of the Zea mays O-methyltransferase ZRP4 gene, which has been reported to accumulate in roots 

and contribute to suberin biosynthesis47,48. We identified a locus on chromosome 2A that was associated 

with grain yield, grain filling rate and overall appreciation (lcl|2A-14415768). The LD region targeted by 

this QTN harbors 39 gene models including two 60s ribosomal subunits and several homologs of maize 

genes with suggestive function. Et_2A_015515, also in the block, is a homolog of a maize 

Serine/threonine protein kinase 3, belonging to abroad class of proteins that was associated with 

inflorescence development49 and grain yield50 in maize. 

 

Teff cultivation is vulnerable to climate change 

The extant genomic diversity of teff may be ill adapted to future climate scenarios. We used a gradient 

forest (GF) machine learning algorithm to calculate the importance of environmental gradients on 

genomic variation across the landscape and to estimate the genomic offset of teff under projected 

climates. Teff allele frequencies turnover across the cropping area was best predicted by the geographic 

distribution of accessions (through Moran’s eigenvector map variables, MEM) and by precipitation 

indicators, particularly precipitation of the coldest quarter (bio19) and precipitation of the wettest 

month (bio13) (Supplementary Figure 11). This is in agreement with observed Fst patterns (Fig. 2c-d). The 

GF allowed to model the interaction of historical climate data with current teff allelic frequencies, 

identifying climate-driven genomic variation patterns across the landscape (Fig. 4a-b). Approximately a 

quarter of the SNPs (3,049 in 521 LD blocks) had predictive power towards the GF: of these, 176 showed 

Fst values in the 99th percentile of the distribution (Supplementary Table 7). 

The GF could be linked to GWAS to identify genomic loci associated to climate, agronomic performance, 

farmers’ preference, and adaptive potential of teff (Supplementary Figure 12). Not surprisingly, LD 

blocks containing QTNs for days to maturity are associated with the GF model, supporting the 

importance of phenology in teff adaptation and geographic distribution34. On chromosome 1A at 32.3 

Mb, three QTNs for days to maturity colocalized with a large significance peak for precipitation of driest 

month (bio14) and PC2 of bioclimatic variables, representing seasonality. This LD block harbors 176 gene 

models among which four produce proteins with high homology with maize and Arabidopsis proteins 

(Supplementary Table 6). The predicted product of Et_1A_007229 shows a remarkable similarity with a 

phosphatidylinositol kinase that is involved in flower development and has been shown to influence 

floral transition in condition of abiotic stress51. Days to maturity was also associated with a LD block at 
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20.8 Mb on chromosome 6A that was predicted by the GF model. In this block, nine predicted gene 

products share homology with Arabidopsis and maize (Supplementary Table 6). The protein encoded by 

Et_6A_046800 has high homology with that produced byAT4G02680, an ETO1-like protein involved in 

the regulation of ethylene synthesis52. Ethylene is a key plant hormone that has been shown to be 

related to spike development and senescence53,54. 

These candidate genes are not yet validated. With increasing availability of teff information, 

corroborated by reverse genetic approaches enabled by mutagenized populations55, it will be possible to 

validate candidate genes underlying traits of interest. Teff breeding could then fully benefit of targeted 

editing56 to speed up the development of new varieties with improved yield, local adaptation and 

adherence to local preferences.  

The teff adaptive potential across the landscape varied in magnitude and distribution according to 

different predicted climate scenarios for 2070 (Supplementary Figure 13). We then computed the 

genomic-adaptive offset between current and future climate scenarios to identify vulnerable areas (Fig. 

4c, Supplementary Figure 14). In all representative concentration pathways, the highest offset was 

predicted in the north-western highlands of the Amhara region, south of lake Tana. Compared to other 

regions of the country, we found a decreasing trend of rainfall change in this region across all emission 

scenarios (Supplementary Figure 15). In this area hot nights are projected to increase more quickly than 

hot days, with the most marked increases expected to be experienced in the July, August, September 

season (Supplementary Figure 16). Decreasing trends of rainfall during the main growing season are 

predicted in all projected scenarios, suggesting the possibility of a season shifting that might be 

especially critical for teff development stages (Supplementary Figure 17).  

A valid adaptation strategy could be the assisted migration of teff genotypes from areas of higher 

vulnerability to areas of lower vulnerability14, although crop migration and varietal replacement 

strategies need to take into account ecological and socio-economic factors, including the impacts on 

existing ecosystems and on farmers’ adoption of migrated varieties57. Collating genetic, climatic, and 

participatory data, teff breeding efforts may effectively anticipate what lies ahead.  
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Figure 4. Teff genomic offset. (a-b) Measures of genetic differentiation of teff by either geographic distance (a) or 

climatic distance (b) between groups of samples. (c-d) Contribution to the GF model accuracy by measures of 

spatial structure (c, MEM) and by measures of climatic variation (d). Blue bars represent variables related to 

rainfall, red bars represent variables related to temperature. (e) Geographic distribution of climate-driven allelic 

variation under current climates across the teff cropping area, with colors representing the three PC dimensions 

reported in panel (f). (g) Genomic vulnerability across the teff cropping area based on the RCP 8.5 climate 

projections. The color scale indicates the magnitude of the mismatch between current and projected climate-

driven turnover in allele frequencies according to legend. Phenotyping locations are shown with yellow diamonds 

 

Conclusion 

A comprehensive interpretation of crop performance is the key to a sustainable intensification that 

embraces cultural and agricultural diversity of cropping systems. While significant successes and even a 

plateau might have been reached in optimal growing environments where most common crops are 

cultivated, there is ample opportunity to enhance productivity in marginal growing environments58. The 

success of crop varieties is not only determined by yield performance, but also by adaptation to local 

agricultural needs and growing conditions59,60. The integration of genomic, climatic, and phenotyping 

diversity in a participatory framework may help tailoring varietal development for local adaptation. The 

involvement of farmers in varietal evaluation is increasingly utilized in a quantitative framework to guide 

breeding choices in combination with genomic data23,61. Here, farmers’ knowledge is integrated in a 

broader picture considering climatic adaptation. Transdisciplinary methods may support the integration 

of smallholder farmers in modern breeding and agricultural value chains. Modern data-driven research 
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may efficiently harness the diversity produced by the incessant selection with which farmers shaped 

current agrobiodiversity. The combination of this information with that produced by genomics and 

climate reanalysis provides breeding with additional information that can be projected to broader 

temporal and spatial scales62, enabling predictive varietal improvement.  

The IPCC reports indicate that East Africa will experience an increase in aridity and agricultural droughts, 

with a substantially higher frequency of 'hot' days and nights63. Temperature increases are also expected 

to result in more intense heat waves and higher evapotranspiration rates, which coupled with the 

projected alteration of rainfall patterns will affect multiple aspects of local economic development and 

agricultural productivity. Enhancing NUS farmer varieties offers promising opportunities to tackle food 

insecurity resulting from climate change in smallholder farming settings and beyond. NUS have 

enormous untapped potential for improvement that is hampered by lack of tools and knowledge64, but 

our analysis show that their characterization is at hand. Teff is rapidly emerging from the NUS status and 

is projected towards modern breeding approaches. The same fate is being followed by other NUS 

including fonio65, proso millet66, Amaranthus67. Genebank genomics can unlock the rapid 

characterization of ex situ NUS agrobiodiveristy10, which in teff could be indicative of even more 

diversity yet to be sampled in farmer fields34. Decentralized varietal evaluation approaches may then 

greatly accelerate the systematic testing of these genetic resources21,23 to produce new varieties with 

higher local adaptation resulting in higher farmers’ varietal adoption68.  

The characterization of larger diversity panels, coupled with improved genomic tools, is needed to fully 

support next generation breeding technologies69 and large-scale genomic selection11 to produce new 

and improved modern varieties. The teff genome annotation is yet to be fully refined and integrated in 

comparative genomics databases, but increasing interest in the crop will soon further enrich the teff 

breeding toolbox. As NUS proceed towards mainstream breeding, the collaborative effort of scientists, 

breeders, and farmers will unlock their full potential for sustainable intensification of farming systems. 

 

Materials and Methods   

Plant materials and DNA extraction 

The E. teff diversity panel (EtDP) used in this study was derived from a larger teff collection of 3,850 

accessions held at the Ethiopian Biodiversity Institute (EBI) (Addis Abeba, Ethiopia), which represents the 

world's largest active teff collection and was amplified and characterized by Woldeyohannes et al34. 
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Landraces from the EBI were purified selecting and reproducing one single panicle representative of 

each accession. For the scope of this paper, we define farmer varieties the uniform genotypes derived 

from the purification of ex-situ accessions (i.e. landraces). Farmer varieties are a proxy of landraces 

originally collected in farmer fields, and are discussed as such. The EtDP includes 321 landraces which 

are a representative sample of the larger EBI collection in terms of geographic distribution and 

phenotypic diversity. EtDP landraces are sided by all 45 E. teff improved varieties released since the 

beginning of teff breeding program and until the selection of the EtDP. Improved varieties were 

obtained by a selection conducted by Ethiopian agricultural research centers. Seven accessions of teff 

wild relatives E. pilosa and E. curvula were also included in the collection (Supplementary Table 1). Seeds 

of the EtDP were germinated in pots at the EBI in 2018, and at least three seedlings were harvested and 

pooled per accession. Genomic DNA was extracted from pooled seedlings at the EBI laboratories using 

the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis, MO, USA) following the 

manufacturer’s instructions. DNA quality was checked by electrophoresis on 1% agarose gel and using a 

NanoDrop ND-1000 spectrophotometer and sent to IGATech (Udine, Italy) for sequencing. 

Sequencing and variant calling 

Genomic libraries were produced using SphI and MboI restriction enzymes in a custom protocol for the 

production of double digestion restriction site-associated DNA markers (ddRAD)70. ddRAD libraries were 

sequenced with V4 chemistry on Illumina HiSeq2500 sequencer (Illumina, San Diego, CA) with 125 cycles 

in a paired-end mode. Reads were demultiplexed using the process_radtags utility included in Stacks 

v2.071 and analyzed for quality control with the FastQC tool (v.0.11.5). High-quality paired-end reads of 

each individual were mapped against the Eragrostis tef reference genome (version 3, available from 

CoGe under ID 50954)28with BWA (Burrows-Weeler-Aligner v.0.7.12) using the MEM algorithm with 

standard parameters72. Alignments were sorted and indexed with PicardTools 

(http://broadinstitute.github.io/picard/) and samtools73.  

Single nucleotide variants were identified with GATK74HaplotypeCaller algorithm (version 4.2.0), run in 

per-sample mode followed by a joint genotyping step completed by GenotypeVCFstool.  Raw variants 

were filtered out using the VariantFiltration and SelectVariants GATK functions with the following 

criteria: monomorphic or multiallelic sites, QUAL < 30; QD < 2.0; MQ < 40.0; AF < 0.01; DP < 580; SNP 

clusters defined as three or more variants located within windows of 5 bp. For each accession, SNPs with 

a total read count of <3 were set to NA. Variants were discarded if located on unanchored contigs, 
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InDels, missing data >20%, heterozygosity >15%. Accessions having more than 20% of missing data were 

discarded. Statistics were calculated with vcftools75.   

Spatial and bioclimatic characterization 

GPS coordinates of EtDP teff landraces were derived from EBI passport data and projected onto the map 

of Ethiopia using the R/raster76. Altitudes were assigned to each landrace based on GPS coordinates, 

using the CGIAR SRTM database at 90 m resolution77. GPS coordinates were projected onto the 

agroecological-zones map of Ethiopia provided by the Ethiopian Institute of Agricultural Research 

(EIAR)78, which subdivides Ethiopia into different zones according to altitudinal ranges and temperature 

and rainfall patterns. Teff accessions were mapped into the regional administrative boundaries of 

Ethiopia using the data downloaded from the database of global administrative boundaries79. Current 

climate data (1970-2000 averages) and climate projections relative to teff landraces’ sampling sites were 

retrieved from the WorldClim 2 database of global interpolated climate data80 at the highest available 

spatial resolution, using R/raster. Nineteen bioclimatic indicators representing annual trends, 

seasonality and extremes or limiting environmental factors were considered. Collinearity among 

historical bioclimatic variables was previously checked with the ensemble.VIF() function in 

R/BiodiversityR81. Only variables with a variation inflation factor (VIF) below 10 were retained, namely 

bio2, bio3, bio4, bio9, bio13, bio14, bio15, bio18 and bio19. The Hadley Centre Global Environmental 

Model 2-Earth System (HadGEM2-ES)82 under the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5) protocols simulations was used to retrieve future climate scenarios at the following 

representative concentration pathways (RCPs): RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5. 

Participatory evaluation and phenotyping 

The EtDP was phenotyped in common garden experiments in two high potential teff growing locations 

in Ethiopia, Adet (Amhara, 11° 16′32″ N, 37° 29′30″ E) and Akaki (Oromia, 8°50'07.6"N, 38°49'58.3"E), 

under rainfed conditions during the main cropping season of 2018 (July-November). Accessions were 

planted in two replications per site using alpha lattice designs, in plots consisting of three rows of 1m in 

length and 0.2m inter-row distance. Three phenological traits, days to 50% heading (DH), days to 90% 

maturity (DM), and grain filling period (GFP) were recorded on whole plots in each environment. The 

following morphology and agronomic traits were recorded from five randomly selected teff plants per 

plot: plant height (PH, cm), panicle length (PL, in cm), number of primary branches per main shoot 

panicle (PBPM), number of total tillers (TT), first culm length (CLF, in cm), first culm internode diameter 
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(CDF, in mm), panicle weight (PW, in grams), panicle yield (PY, in grams), grain yield (GY, ton/ha), 

biomass yield (BY, ton/ha), harvest index (HI), grain yield filling rate (GFR,  kg/ha/day), and biomass 

production rate (BPR, kg/ha/days). Qualitative data was sourced from the characterization performed by 

Woldeyohannes and collaborators34. 

A participatory variety selection (PVS) was conducted in the two locations, involving 35 experienced teff 

farmers: 15 men and 10 women in Adet, five men and five women in Akaki. Farmers were engaged in 

focus group discussions prior to the PVS to discuss most relevant traits in teff and to attend training on 

the PVS. During the evaluation, farmers were divided in gender-homogeneous groups with five people 

each. Groups were conducted across the field from random entry point and asked to evaluate two teff 

traits: panicle appreciation (PA) and overall appreciation (OA). PVS traits were given on a Likert scale 

from 1 (poor) to 5 (excellent), in a way answering a question in the form of: “how much do you like the 

[trait] of this plot from one to five?”. Farmers provided their scores simultaneously so that within-group 

scoring bias was reduced. Each farmers’ score was recorded individually. PVS was conducted close to 

physiological maturity in each location so to maximize variation between plots.  

Genetic diversity analyses  

Phylogenetic relationships in the EtDP were assessed on a pruned set of SNP markers with MAF > 0.05. 

Pruning was performed with the PLINK83indep-pairwise function on a 100 SNPs window moving in 10 

SNP steps with a linkage disequilibrium (LD) r2 threshold of 0.3. Pairwise identity by descent (IBS) was 

calculated by PLINK and visualized with custom scripts in R84. A neighbor joining (NJ) tree was developed 

computing genetic distances using the Tajima-Nei method85, performing 500 bootstrap resampling, 

using MEGA X 86. Different NJ tree visualizations were produced using R/ggtree87. A principal component 

analysis (PCA) and a discriminant analysis of principal components (DAPC) were performed with 

R/adegenet88. The optimal number of clusters (K) for the DAPC was identified using 

adegenet::find.cluster(). Bayesian Information Criterion (BIC) statistics were computed at increasing 

values of K to measure the goodness of fit at each K using 365 PCs and default settings. Admixture89 was 

run testing 2 to 25 K clusters using the default termination criterion. Each iteration was run using 

different random seeds, and parameter standard errors were estimated using 2,000 bootstrap 

replicates. A 5-fold cross-validation procedure was used to identify the most likely value of K. The 

correlation of the residual difference between the true genotypes and the genotypes predicted by the 

model was estimated using EvalAdmix90.  
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LD analyses were performed on SNPs with MAF > 0.05. Average pairwise r2 for all markers within a 

window of ±5 Mb was estimated using R/Ldheatmap91. The LD was plotted against physical positions, 

averaging pairwise r2values for each chromosome over sliding window considering portions equal to 5% 

of each chromosome’s physical length. LD decay was then estimated for each of the 20 chromosomes 

according to the Hill and Weir92 equation using a threshold of r2 = 0.3. Haplotype blocks were estimated 

using the PLINK --blocks function with default settings and following the interpretation of Gabriel and 

colleagues93. 

Genotypic data of putative teff wild relatives Eragrostis curvula and Eragrostis Pilosa was integrated in 

the NJ phylogeny. A set of putative SNPs shared between wild relatives and cultivated teff was derived 

as previously described in sequencing and variant calling section. 

Phenotypic diversity analyses 

Best linear unbiased predictions (BLUP) of agronomic and PVS traits were computed with R/ASReml94. 

BLUPs for agronomic traits were derived from the general model in Eq. (1): 

𝑦𝑖𝑗𝑘𝑛 =  𝜇 +  𝑔𝑖 + 𝑙𝑘 + 𝑔𝑙𝑖𝑘 +  𝑒        Eq. (1) 

Where the observed phenotypic value is 𝑦𝑖𝑘, 𝜇is the overall mean of the population, 𝑔𝑖is the random 

effect for the ith genotype g, 𝑙𝑘 is the fixed effect for the kth location, 𝑔𝑙𝑖𝑘 is the random effect interaction 

between genotype and location, and 𝑒is the error. For calculation of BLUPs with a single location, the 

data was sub-set by location and the model in Eq. (1) was simplified accordingly. Broad-sense heritability 

(H2) of agronomic traits was derived from the variance component estimates deriving from Eq. (1) as 

follows: 

𝐻2 =
𝜎𝑔

(𝜎𝑔+
𝜎𝑔𝑙

𝑛𝑙𝑜𝑐
 + 

𝜎𝑒
𝑛𝑟𝑒𝑝∗ 𝑛𝑙𝑜𝑐

)
         Eq. (2) 

In Eq. (2), 𝜎𝑔 is the variance component of genotypes,𝜎𝑔𝑙 is the genotype by location variance, and 𝜎𝑒 is 

the error variance. 𝑛𝑙𝑜𝑐𝑛𝑟𝑒𝑝are the number of locations and replications, respectively. For calculation of 

H2 within locations (i.e. repeatability), Eq. (2) was simplified accordingly. 

The derivation of PVS BLUPs and H2 was like that used for agronomic traits except for the fact that 

gender of farmers was considered. BLUPs for PVS were obtained from the model in Eq. (3): 

𝑦𝑖𝑘𝑚 =  𝜇 +  𝑔𝑖 + 𝑙𝑘 + 𝑝𝑚 +  𝑔𝑙𝑖𝑘 + 𝑔𝑝𝑖𝑚 + 𝑝𝑙𝑚𝑘 +  𝑒      Eq. (3) 
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Where 𝑦𝑖𝑘𝑚 is the observed PVS score, and 𝜇, 𝑔𝑖, 𝑙𝑘, and 𝑔𝑙𝑖𝑘  are as in Eq. (1) and 𝑝𝑚 is the random 

effect for farmer gender. Accordingly, 𝑔𝑝𝑖𝑚is the random effect of the interaction between genotype 

and gender and𝑝𝑙𝑚𝑘 is the random interaction between gender m and the kth location. For calculation of 

BLUPs specific for gender, location and gender by locations, Eq. (3) was simplified accordingly. H2for PVS 

traits was derived from the following formula: 

 

𝐻2 =
𝜎𝑔

(𝜎𝑔+
𝜎𝑔𝑙

𝑛𝑙𝑜𝑐
+

𝜎𝑔𝑚

𝑛𝑔𝑒𝑛𝑑𝑒𝑟
+ 

𝜎𝑒
𝑛𝑟𝑒𝑝∗ 𝑛𝑙𝑜𝑐∗ 𝑛𝑔𝑒𝑛𝑑𝑒𝑟∗ 𝑛𝑓𝑎𝑟𝑚𝑒𝑟

)

      Eq. (4) 

 

In Eq. (4), 𝜎𝑔 is the variance component of genotypes, 𝜎𝑔𝑙 is the genotype by location variance, 𝜎𝑔𝑚is 

the genotype by gender variance, and 𝜎𝑒 is the error variance. 𝑛𝑙𝑜𝑐, 𝑛𝑔𝑒𝑛𝑑𝑒𝑟, and 𝑛𝑟𝑒𝑝are the number of 

locations, genders and replications, respectively. For calculation of H2 (i.e. repeatability) by gender and 

by location, Eq. (4) was simplified accordingly. The 90th percentile of the OA distribution was considered 

to identify top ranking accessions for men and women. Landraces were benchmarked with the fourth 

quartile of the distribution of improved lines for all scored traits. 

Climatic diversity analyses 

Agroecological and bioclimatic variation analyses were performed on georeferenced materials of the 

EtDP. The distribution of the DAPC genetic clusters across agroecological zones was mapped via 

R/raster. The teff cropping area was defined by the union of all polygons representing agroecological 

zones in which at least two teff landraces were sampled. Significant associations between genetic 

clusters and agroecological zones and administrative regions were assessed using Pearson’s Chi-squared 

test of independence. Pairwise Wilcoxon rank sum test was used to test the significance (p < 0.05) of 

differences in bioclimatic variables among DAPC clusters. After aggregating teff georeferenced 

accessions in Ethiopian administrative regions at the second level (districts), pairwise Fst
95was calculated 

across all SNP markers for all areas accounting at least 5 individuals. Centroid coordinates of the 

accessions within each district were used to estimate geographic distances, while environmental 

distances were calculated by averaging the value of non-correlated historical bioclimatic variables and 

altitude. A measure of environmental distance between each accession was thus calculated as pairwise 

Euclidean differences between locations. A Mantel test with a Monte Carlo method (9,999 replications) 
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was implemented in R/ade496 to check associations between linearized Fst (Fst/1-Fst) and geographic and 

environmental distances. 

A gradient forest (GF) machine-learning approach implemented in R/gradientForest97,98, was used to 

map the turnover in allele frequencies using non-linear functions of environmental gradients with 

historical and projected climates. The GF was developed using historical non-collinear bioclimatic 

variables and Moran’s Eigenvector Map (MEM) variables representing climatic and geographic diversity 

in the sample, respectively. MEM variables were derived from geographic coordinates at sampling 

locations of the landraces in the EtDP99,100 and were calculated with dbmem() in R/adespatial101. A 

function was built for each response variable (SNPs) using 500 regression trees. An aggregate function 

was created for all SNPs, whereas the bioclimatic variables and MEMs were used as predictors. The 

model was then run to predict teff genetic-geographic-climatic distribution on the teff cultivation range 

in Ethiopia. The GF model was also run using and projected climate data under different RCP scenarios. 

The Euclidean distance between the allelic turnover under the historical and future climates was used to 

estimate genomic offset, also referred to as genomic vulnerability, to identify areas exposed to teff 

cultivation depletion pending current teff genetic diversity. Climate projections for areas of interest 

were analyzed to assess trends in rainfall and temperature. The twelve models best performing in the 

East Africa region according to IPCC63 were used to develop and ensemble projection of rainfall and 

temperature indices with Climate Data Operators (CDO)102 and custom R scripts. Projected data was 

compared with historical data to derive indices change in the interannual variability for the regions of 

interest.  

Genome-Wide Association Studies and candidate gene analysis 

Quantitative trait nucleotides (QTNs) were mapped in a genome wide association study (GWAS). GWAS 

was performed with R/rMVP103using the Fixed and random model Circulating Probability Unification 

(FarmCPU) method104 that incorporates corrections for population cryptic relatedness (Kinship). The first 

10 genetic PCs were used as covariates. The Kinship was estimated using the method implemented by 

VanRaden105. Both kinship and PCA were calculated using the subset of LD-pruned markers used for 

population genetics analysis. GWAS was run on bioclimatic variables, agronomic traits, and PVS traits. 

QTN were called when association surpassed a multiple testing correction with False Discovery Rate 

(FDR) of 5% using the R/q-value106. QTNs were assigned to the previously defined haplotype blocks. 

Blocks were extended by the chromosome-specific LD decay distance upstream and downstream and 

used as windows to search for candidate genes. The LD blocks thus obtained were combined with Fst 
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and GF results to identify intersections across methods.  Teff gene annotations were retrieved from 

CoGe under id5095428. Nucleotide sequences of putative candidate genes were translated into the 

corresponding proteins and used as queries against Araport11107and the Maize reference proteome, 

available from UniProt (https://www.uniprot.org/) under the ID UP000007305. E-value of 10-20 and 

percentage of identity of 50% were used as threshold to retain blast hits on Arabidopsis and maize. 
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