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Abstract: Cardiovascular and cerebrovascular diseases are leading causes of death worldwide,
accounting for more than 40% of all deaths in China. Acute myocardial infarction (AMI) is a
common cardiovascular disease and traditionally divided into ST-segment (STEMI) and
non-ST-segment elevation myocardial infarction (NSTEMI), which are known with different
prognoses and treatment strategies. However, key regulatory genes and pathways involved in AMI
that may be used as potential biomarker for prognosis are unknown. In this study, we constructed
weighted gene co-expression networks for differential expressed genes between STEMI and
NSTEMI patients based on whole-blood RNA-seq transcriptomics. Network topological attributes
(e.g., node degree, betweenness) were analyzed to identify key genes involved in different functional
network modules. Furthermore, we used single-cell RNA-seq data to construct multilayer signaling
network to infer regulatory mechanisms of the above key genes. PLAUR (receptor for urokinase
plasminogen activator) was found to play a vital role in transducing inter-cellular signals from
endothelial cells and fibroblast cells to intra-cellular pathways of myocardial cells, leading to gene
expression involved in cellular response to hypoxia. Our study sheds lights on identifying molecular
biomarkers for diagnosis and prognosis of AMI, and provides candidate key regulatory genes for
further experimental validation.  

Keywords: Acute myocardial infarction; Multilayer network; Single-cell RNA-seq data; network
analysis 
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1. Introduction  

The morbidity and mortality of acute myocardial infarction (AMI) is still substantial worldwide 
despite the widespread access to reperfusion therapy [1]. In 2017, about 10.6 million cases of 
myocardial infarction were reported worldwide contributing to hospitalization and mortality [2]. 

AMI is divided into ST elevation myocardial infarction (STEMI) and non-ST segment elevation 
myocardial infarction (NSTEMI). The clinical manifestations of acute myocardial infarction are 
chest tightness, chest pain, and dyspnea. The pathophysiological process of acute myocardial 
infarction involves lipid deposition, vascular endothelial dysfunction, plaque formation, arterial 
stenosis, plaque rupture, and thrombosis [3]. Major risk factors for atherosclerosis included age, 
hypertension, hyperlipidemia, diabetes, obesity, and lack of exercise. The acute myocardial infarction 
is a multi-stage and multi-step disease, and patients with AMI are of significant heterogeneity, which 
make it difficult for clinicians to identify biomarkers and targets for prognosis and therapy [4]. 

Previous studies have demonstrated that discovering and controlling specific proteins can 
effectively control atherosclerosis. It is well known that lipid deposition is a key factor in 
atherosclerosis. Many experimental studies have shown that PCSK9 was associated with the 
phenotype of familial hypercholesterolemia. Based on this finding, the PCSK9 inhibitors (alirocumab 
and evolocumab) could dramatically decrease plasma LDL-C levels, even in patients who are taking 
the maximum dose of statins. PCSK9 inhibitors bring long-term benefits to patients with coronary 
heart disease, especially patients with myocardial infarction [5]. These approaches allow for the 
identification of novel gene, specific antibody and efficient therapeutic strategies. Inflammation is 
another key pathophysiological mechanism in atherosclerosis. In the CANTOS clinical trial 
(Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), Canakinumab, an anti-IL-β 
monoclonal antibody significantly reduced the incidence of major adverse cardiovascular events 
(MACE) in the subjects with prior myocardial infarction [6].  

The vascular endothelium is a thin layer of cells acted as a barrier to prevent lipid infiltration. 
Endothelial dysfunction is an independent risk factor of atherosclerosis. Numerous molecular and 
signal pathways are involved in the process of endothelial dysfunction, such as Nuclear factor kappa 
B(NF-κB) [7], endothelial nitric oxide synthase(eNOS) [8], AMPK-mTOR (AMP-activated protein 
kinase-mechanistic target of rapamycin kinase) signaling pathway [9]. However, the absence of 
reliable markers has hampered our understanding of specific role of endothelial dysfunction in 
atherosclerosis, especially myocardial infarction.  

The cardiomyocytes (CM) were incapable of regeneration following injury in adult mammalian 
heart, but it can be regenerated for newborn mammalian heart. Several studies used RNA-sequencing 
to explore key molecular mechanisms of cardiomyocytes in myocardial infarction. Cui M et al. have 
recently described two factors, nuclear transcription factor Y subunit alpha (NFYa) and nuclear factor 
erythroid 2-like 1 (NFE2L1) transcription factors, that play a unique role in protecting against 
ischemic injury [10]. Ruiz-Villalba A et al. identified a unique subtype of cardiac fibroblasts (CF) 
that plays an essential role in ventricular remodeling process in response to cardiac damage [11]. The 
activated cardiac fibroblasts highly express collagen triple helix repeat containing 1 (Cthrc1) in the 
scar. Furthermore, it has been confirmed that the CTHRCI was a key regulator to heal scar process. 
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However, how different types of cells (e.g., endothelial cell (EC), CM and CF) interact with each 
other during the course of myocardial infarction are unclear. Furthermore, the key molecules 
involved in inter and intra-cellular signaling pathways between endothelial cell (EC), CM and CF 
remains poorly understood.   

In this paper, to identify key genes and regulatory pathways involved in different subtypes of 
AMI, we collected both bulk and single-cell RNA-seq (scRNA-seq) data to construct weighted gene 
co-expression networks and multilayer inter-/intra-cellular signaling networks. Network module 
analysis, topological attribute analysis, functional enrichment analysis and scRNA-seq data analysis 
were performed. The results revealed that PLAUR (receptor for urokinase plasminogen activator) 
plays a vital role in inter- and intra-cellular signaling transduction of myocardial cells. Our study 
provided potential biomarkers for diagnosis and prognosis of AMI.  

2. Materials and methods  

2.1. RNA-seq data analysis 

RNA-seq data was collected from Gene Expression Omnibus (GEO) database with accession 
number GSE103182 [12]. The RNA-seq data contained 30 samples of AMI patients, of which 15 
were STEMI and 15 were NSTEMI. The raw data were corrected for unnecessary confounding 
variables and analyzed for differential gene expression with R package RUVSeq [13] and edgeR [14], 
respectively [12]. 

Based on the FPKM standardized expression matrix, we constructed the co-expression network 
for differential expressed genes using WGCNA R package [15] (version: 1.70-3). The main steps to 
construct co-expression network were as follows: (1) cluster the samples, and remove outlines; (2) 
select the soft threshold β; (3) construct co-expression network by ‘blockwiseModules’ function, 
which is used to divide genes into modules. The parameter ‘minModuleSize’ was set to 30. Other 
parameters not mentioned were default parameters in the WGCNA package. 

For network visualization, we exported the co-expression network of gene modules (expect grep 
module), and then imported them into Cytoscape [16] software (version: 3.8.2), respectively. Also, 
we performed network topology properties analysis on every gene of every network by the ‘Analyze 
Network’ function in the Cytoscape software.  

2.2. scRNA-seq data analysis 

scRNA-seq dataset of heart tissue in human heart disease (coronary atherosclerotic heart disease 
and dilated cardiomyopathy) patients was derived from GEO database with accession number 
GSE121893 [17]. There were 25742 genes and 4933 cells in the data. Due to many missing values or 
dropouts in single-cell data usually, we made single-cell data imputation by scImpute [18] package 
before analysis. All parameters are default in the scImpute package. 

We imported the scRNA-seq data into R4.0.3, and performed data analysis by Seurat[19] 
package (version: 4.0.0). First, ‘CreateSeuratObject’ function was used to create Seurat object, and 
‘LogNormalize’ method in ‘NormalizeData’ function was used for data normalization. Then, we 
found 2000 highly variable genes through ‘FindVariableFeatures’ function. Next, we carried on 
dimensionality reduction by PCA method, based on the 2000 highly variable genes, which was 
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scaled by ‘ScaleData’ function. The top 15 PCs was applied in analysis of cell clustering, by 
‘FindNeighbors’ and ‘FindClusters’ function, whose resolution was set to 0.5. In addition, cell type 
classification was performed according to the marker genes described in the original literature[17]. 
Finally, UMAP method was used for visualization based on the first 15 PCs. Other parameters not 
mentioned were default parameters in the Seurat package. 

2.3. Multilayer network construction 

Based on the scRNA-seq data mentioned above, multilayer networks were constructed by our 
previously developed tool scMLnet [20] package (version: 0.2.0), which uses prior information and 
Fisher's exact test to construct intercellular communication and intracellular transcriptional 
regulation network. We constructed multilayer networks with CM as receptor cells, macrophages 
(MP), EC, fibroblasts (FB) and smooth muscle cells (SMC) as ligand cells. All parameters are default 
in the scMLnet package. 

2.4. Functional enrichment analysis 

For further study, clusterProfiler [21] package (version: 3.18.1) was used for functional 
enrichment analysis in both RNA-seq and scRNA-seq data. In the WGCNA analysis of RNA-seq, in 
order to study the functions involved in each gene module, we performed gene ontology (GO) 
enrichment analysis on all genes of every gene modules respectively. In the multilayer network 
analysis of scRNA-seq, we extracted sub-network of specific gene from multilayer network. And GO 
enrichment analysis was employed in the downstream genes (transcription factors and target genes) 
of the sub-network. All parameters were the default parameters in the clusterProfiler package. 

3. Results 

3.1. Gene co-expression networks 

Base on differential expression analysis, 323 differentially expressed genes (DEGs) were 
obtained, of which 180 genes were highly expressed in STEMI and 143 genes were highly expressed 
in NSTEMI (Figure 1) [12]. When clustering the samples, we found the sample 13003 was a outlier, 
thus we removed it from data for further analysis (Figure 2A-B). 

The key step to construct co-expression networks by WGCNA is to select soft threshold β 
which take the adjacency matrix between genes β pow. The soft threshold β is used to make the 
co-expression network conform to the distribution of scale-free network. Because biological network 
has the characteristics of scale-free network, which means that the degree of nodes in the network 
obeys power-law distribution. In other words, it meets the negative correlation between log (k) and 
log [P (k)], where k represents the degree of nodes and P (k) represents the frequency of nodes with 
degree k. The larger the correlation coefficient R^2 between log(k) and log [P (k)], the more 
significant the characteristics of the scale-free network.  

When β was 12, the correlation coefficient R^2 was greater than 0.9 (Figure 2C-D), and the 
network approached the distribution of scale-free network (Figure 2E-F). For reducing the operation 
time, we chose 12 as β, and then used ‘blockwiseModules’ function to construct co-expression 
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networks. Finally, 323 DEGs were divided into 4 modules, each corresponding to each color (Figure 
3A). Genes that didn’t belong to any of the four modules were classified into gray module. 

 

 

Figure 1. Heatmap of 323 DEGs between STEMI and NSTEMI. 

3.2. Network visualization and analysis  

We imported the co-expression network of each module into Cytoscape software for 
visualization (Figure 3B), and used the "Analyze Network" function to analyze the network topology 
attributes of all nodes of each network. Degree is a count of the number of edges directly connected 
to a node in the network, and betweenness is defined as the proportion of the number of paths 
passing through the node in the total number of shortest paths in the network. That the greater the 
degree and betweenness of a node, means that the node plays an important role in the network and 
might be of great biological significance. Base on them, we identified potentially important genes in 
the modules (Figure 4). In the blue module, TMEM229B and GIMAP6 were two genes with high 
degree and betweenness; In the brown module, CIRBP had the highest betweenness, but its degree 
was slightly lower. While the degree of ATP5L, NDUFB10 and ATP5J2 were higher, but the 
betweenness of them was relatively low; In the turquoise module, RNF149, SRGN and ABHD5 had 
relatively high degree and betweenness; In the yellow module, although DYNLT1 had the highest 
betweenness, its degree was relatively backward. In addition, PLAUR, RGL4, IVNS1ABP and 
FCAR had relatively high degree and betweenness. 

For further study of the biological processes involved in each gene module, we used the 
‘enrichGO’ function in the clusterProfiler package to perform GO enrichment analysis on all genes 
of each gene module (Figure 5). We used "FDR" as the correction method of multiple hypothesis test, 
0.05 as the threshold of P value and 0.2 as the threshold of Q value for enrichment analysis. The blue 
module was mainly significantly related to biological processes such as cell matrix adhesion and 
regulation of cell shape. Biological processes such as ATP metabolic process, RNA slicing and 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457775doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.26.457775
http://creativecommons.org/licenses/by-nc/4.0/


6 

Mathematical Biosciences and Engineering  Volume X, Issue X, 1-X Page. 

mRNA slicing were significantly enriched in the brown module. The yellow module was mainly 
significantly related to biological processes such as regulation of apoptotic signaling pathway, neural 
degradation and neural activation involved in immune response. However, no biological processes 
were significantly enriched in the turquoise module. 

 
Figure 2. Co-expression network construction. (A-B) Clustered sample, and removed outlier samples. (C-D) 

Selected soft threshold β. (E-F) Check scale-free network. 

3.3. Multilayer networks 

After data analysis of scRNA-seq, five cell types were identified, namely CM, MP, EC, FB and 
SMC (Figure 6). In addition, two clusters were not identified and were labeled as "UN1" and "UN2" 
respectively. 

Then, we used CM as receptor cells and MP, EC, FB and SMC as ligand cells to construct 
multilayer networks respectively (Table 1, Figure 7). We found that PLAUR as a receptor existed in 
the multilayer networks of EC-CM and FB-CM (Figure 8A-B). Moreover, the downstream genes 
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regulated by PLAUR receptor were the same in both networks. Therefore, we extracted the 
downstream genes regulated by PLAUR receptor for GO enrichment analysis (Figure 8C). We 
observed that downstream genes were significantly enriched in biological processes such as 
regulation endothelial cell proliferation, pri-miRNA transcription and cellular response to oxygen 
levels. 
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Figure 3. Co-expression networks visualization. (A) Cluster dendrogram and module division of genes. (B) 

Gene modules networks visualization by Cytoscape. 

 

Figure 4. Scatter diagram of degree-betweenness centrality. 

 

Table1. Result of multilayer networks. 
Receiver cell types MP EC FB SMC 
Sender cell types CM CM CM CM 

Number of 
pairs 

Ligand-Receptor pairs 13 150 188 63 
Receptor-TF pairs 352 2183 1891 1184 

TF-TG pairs 293 320 320 308 
Number of 
molecules 

Ligands 9 55 65 28 
Receptors 13 84 73 43 

TFs 85 99 99 95 
TGs 87 87 87 87 
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Figure 5. GO enrichment analysis for each gene module. 
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Figure 6. Cell-type clustering and identification 

 

 

Figure 7. Multilayer networks visualization. Multilayer networks of MP-CM (A), EC-CM (B), FB-CM (C)

and SMC-CM (D).  
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Figure 8. Visualization and analysis of PLAUR-related subnetworks. (A) PLAUR related subnetwork in the 

FB-CM multilayer networks. (B) PLAUR-related subnetwork in the EC-CM multilayer networks. (C) GO 

enrichment analysis for downstream genes regulated by PLAUR. 

4. Discussion 

Based on whole-blood RNA-seq transcriptomics, this study represents the weighted 
co-expression networks of differentially expressed genes between STEMI and NSTEMI patients. In 
addition to identify key genes involved in different network modules using network topological 
attributes, we revealed regulatory mechanisms of key genes by multilayer signaling network based 
on single-cell RNA-seq data. Furthermore, we identified PLAUR as a crucial receptor gene in 
transducing inter-cellular signals from endothelial cells and fibroblast cells to intra-cellular pathways 
of myocardial cells, leading to downstream gene expression involved in cellular response to hypoxia.  

We mainly analyzed four modules of the co-expression networks constructed by WGCNA. 
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According to GO enrichment analysis, those four modules were associated to some important 
biological processes, such as cell matrix adhesion, cell shape, apoptotic signaling pathway, neural 
degradation, neural activation, ATP metabolic process, RNA slicing and mRNA slicing. In the blue 
module, TMEM229B and GIMAP6 express highly. CIRBP, ATP5L, NDUFB10 and ATP5J2 had high 
betweenness centrality. RNF149, SRGN and ABHD5 were ranked as top genes in the turquoise 
module according to degree and betweenness centrality. In addition, PLAUR, RGL4, IVNS1ABP 
and FCAR were genes with relatively high degree and betweenness centrality in the yellow module, 
where although DYNLT1 had the highest betweenness centrality, its connectivity was relatively low. 
Previous study has proven that the process atherosclerosis involved in lipid metabolism, 
inflammatory, endothelial dysfunction, monocyte transendothelial migration and apoptosis. It has 
also been verified that TMEM229B is a novel gene which was highly expressed untreated islets and 
strongly suppressed by STZ. It means TMEN229b play a protective role in β-cell function [22]. 

In the multilayer networks of EC-CM and FB-CM, PLAUR was found as a crucial receptor that 
mediates inter-cellular and intra-cellular signaling pathways and regulates numerous downstream 
genes which are involved in endothelial cell proliferation, pri-miRNA transcription and cell response 
to oxygen levels. PLAUR is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein 
which is associated with cell signaling because it forms a multi-protein complex with neighboring 
tansmembrance receptors, such as EGFR [23]. Inhibition of PLAUR can inhibit tumor growth, 
invasion. PLAUR can be released into blood and be detected as a biomarker in small cell cancer [24], 
breast cancer [25]. In this study, we found that PLAUR had high degree and betweenness centrality, 
and involved in apoptosis signal pathway and immune response.  

Nowadays in clinical practical, the major biomarkers of myocardial infarction are creatine 
kinase-MB (CK-MB) and cardiac troponin (cTn). The measurement of CK-MB and cTn is superior 
because of the high sensitivity and specificity for myocardial damage [26]. However, the limitation 
of CK-MB and cTn is obviously. CK-MB and cTn will elevate in skeletal muscle injury, marathon 
runners, chronic renal failure and hypothyroidism [27]. We expect that the key genes identified in 
this study represent promising novel biomarkers for myocardial infarction. Such biomarkers may 
facilitate timely diagnosis of AMI and identification of successful reperfusion after thrombolysis. 
Moreover, more and more drugs targeting a single gene or protein will have a great impact on 
decreasing of MACE. Amon them are PCSK9 inhibitor and anti-IL-β monoclonal antibody. The 
above-mentioned genes may be explored as potential targets for myocardial infarction.  

In summary, in this study, we employed bulk and single-cell RNA-seq data to construct gene 
regulatory networks and cell-cell communication networks to identify key genes involved in AMI. 
Our study sheds lights on identifying molecular biomarkers for diagnosis and prognosis of AMI, and 
provides candidate key regulatory genes for further experimental validation. 

  

Data availability 

The gene expression datasets as well as clinical information of the patients were downloaded 
from the NCBI GEO database, as described in the main text. 
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