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Abstract  12 

 13 

Cold temperature is prevalent across the biosphere and slows the rates of chemical 14 

reactions. Increased catalysis has been predicted to be a general adaptive trait of enzymes to 15 

reduced temperature, and this expectation has informed physical models for enzyme catalysis and 16 

influenced bioprospecting strategies. To broadly test rate as an adaptive trait to cold, we paired 17 

kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature 18 

(TGrowth) and analyzed trends of rate as a function of TGrowth. These data do not support a prevalent 19 

increase in rate in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there was 20 

prior evidence for temperature adaptation from a change in an active site residue that results in a 21 

tradeoff between activity and stability. Here, we found that little of the overall rate variation for 22 

20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, 23 

we observed a correlation between stability and TGrowth across 433 proteins. These results suggest 24 

that temperature exerts a weaker selection pressure on enzyme rate than stability and that 25 

evolutionary forces other than temperature are responsible for the majority of enzymatic rate 26 

variation.  27 
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Introduction 28 

  29 

Temperature is a ubiquitous environmental property and physical factor that affects the 30 

evolution of organisms and the properties and function of the molecules within them. As reaction 31 

rates are reduced at lower temperatures (Arrhenius, 1889; Wolfenden et al., 1999), the maintenance 32 

of enzyme rates has been suggested to be a universal challenge for organisms at colder 33 

temperatures that do not regulate their internal temperature (D’Amico et al., 2003; Fields et al., 34 

2015; Siddiqui and Cavicchioli, 2006; Zecchinon et al., 2001). According to the rate compensation 35 

model of temperature adaptation, this challenge is met by cold-adapted enzyme variants providing 36 

more rate enhancement than the corresponding warm-adapted variants (Figure 1A). This model 37 

predicts that cold-adapted variants are faster than warm-adapted variants when assayed at a 38 

common temperature (Figure 1B). Indeed, this behavior has been reported for diverse enzymes, 39 

and these observations have been taken as support for this model (Figure 1C, Figure 1D) (Collins 40 

and Gerday, 2017; Feller and Gerday, 1997; Siddiqui and Cavicchioli, 2006; Smalås et al., 2000). 41 

The observed rate effects (Figure 1C, Figure 1D) have also led to proposals of general 42 

physical models for cold adaptation linked to flexibility, as outlined in Supplementary file 1 43 

(Åqvist et al., 2017; Arcus et al., 2016; Nguyen et al., 2017; Saavedra et al., 2018). Further, features 44 

identified in comparative structural analyses of cold and warm-adapted enzymes, such as fewer 45 

surface hydrogen bonds and salt bridges (Cai et al., 2018), have been suggested to increase 46 

flexibility and thus increase catalysis (Mandelman et al., 2019; H. J. Park et al., 2018; S.-H. Park 47 

et al., 2018). Correspondingly, the study of cold adaptation may have the potential to provide 48 

generalizable insights into physical properties of enzymes that make them better catalysts, a 49 

longstanding challenge in the field (Blow, 2000; Hammes et al., 2011; Kraut et al., 2003; Ringe 50 

and Petsko, 2008). From a practical perspective, the prediction of enhanced catalysis by cold-51 

adapted enzymes has motivated low-temperature bioprospecting for biocatalysts to use in 52 

industrial processes (Bhatia et al., 2021; Bruno et al., 2019; Kuddus, 2018; Santiago et al., 2016).  53 

Given the theoretical and practical implications of the proposed relationship between 54 

enzyme rate and organism growth temperature, we sought to test the generality of the rate 55 

compensation model of temperature adaptation. We collated enzyme rate data (Chang et al., 2021) 56 

and organism optimal growth temperature (TGrowth) (Engqvist, 2018) for 2223 reactions using 57 

public databases. The results revealed no enrichment of faster reactions with colder growth 58 
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temperatures, and thus did not support increased rate with decreasing environmental temperature 59 

as a prevalent adaptation in nature. Further, we found that most rate variation for the enzyme 60 

ketosteroid isomerase (KSI) is not accounted for by TGrowth despite strong prior evidence for 61 

temperature adaptation within its active site (Pinney et al., 2021). In contrast, a similar broad 62 

analysis revealed that stability correlates with TGrowth, as expected. Our results suggest that 63 

temperature exerts a weaker selection pressure on enzyme rate than stability and that other 64 

evolutionary forces are responsible for most enzymatic rate variation. 65 

 66 

Results  67 

 68 

Broadly testing the rate compensation model 69 

To investigate temperature adaptation of enzyme rate, we paired rate data from the 70 

BRENDA database (Chang et al., 2021) to organism growth temperatures. We simplified organism 71 

temperatures that may span changing conditions (Doblin and van Sebille, 2016) by matching the 72 

species name associated with the enzyme variant with the organism optimal growth temperature 73 

(TGrowth) (Engqvist, 2018). Of 76,083 kcat values in BRENDA, we found that 49,314 were for wild-74 

type enzymes. Of these data, 16,543 values matched to microorganisms with known TGrowth values. 75 

We selected reactions in the database with variants from more than one organism, spanning 7086 76 

kcat values for 2223 reactions across 815 organisms with at least two variants per reaction (Figure 77 

2A). These reactions spanned a temperature range of 1˚C to 83˚C (Figure 2B).  78 

For each enzyme reaction, we first calculated the rate ratio (kcold/kwarm) between the rate of 79 

the variant from the lowest growth temperature organism and the rate of the variant from the 80 

highest growth temperature organism. We observed rate ratios greater than one (1142 reactions) 81 

as predicted by rate compensation, but nearly the same number of rate ratios of less than one (1082 82 

reactions) (Figure 2C, cf. Figure 1D), providing no support for widespread or predominant rate 83 

compensation. 84 

We also considered the distributions of rate ratios separated by assay temperature (25˚C or 85 

37˚C; Figure 2—figure supplement 1A, 1B) and for wider TGrowth ranges (>∆20˚C or >∆60˚C; 86 

Figure 2—figure supplement 1C, 1D) to assess whether trends were obscured by mixed assay 87 

temperatures or narrow TGrowth ranges. However, no temperature-dependent trends emerged, 88 

supporting the above conclusion of an absence of widespread rate compensation.  89 
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To derive a control distribution, we compared enzyme variant rates originating from 90 

different organisms with identical TGrowth values. We found 615 reactions with more than one 91 

variant assigned the same TGrowth, and we calculated the rate ratio and its reciprocal (kmax/kmin and 92 

kmin/kmax) for each reaction. This control distribution (dashed line, Figure 2D) was indistinguishable 93 

from the data distribution of rate ratios across TGrowth (solid line, Figure 2D; p = 0.21, Mann–94 

Whitney U test, two-sided). Analogous analyses  of kcat/KM values lead to the same conclusions 95 

(Figure 2—figure supplement 2). 96 

As it is not possible to prove the absence of a relationship (Altman and Bland, 1995), we 97 

examined the slope (mrate) of kcat values vs. TGrowth for each of the 951 reactions with >2 variants 98 

(Figure 2D, Figure 2E, Figure 2—figure supplement 3) to address whether there might be a limited 99 

set of enzyme reactions exhibiting significant cold adaptation through a mechanism of enhanced 100 

rate. We found two reactions (triose-phosphate isomerase with glyceraldehyde 3-phosphate and 101 

cutinase with 4-nitrophenyl butyrate) significantly but positively associated with TGrowth 102 

(Bonferroni correction; p-value < 5.3 × 10-5, n = 951).  103 

In summary, the data provide no indication of rate increase as a consequence of decreasing 104 

TGrowth. These results suggest that rate compensation is not a universal or prevalent consequence 105 

of temperature adaptation. 106 

 107 

Testing the rate compensation model for the enzyme ketosteroid isomerase (KSI) 108 

To probe rate compensation in greater depth, we turned to the enzyme KSI for which recent 109 

data has demonstrated rate compensation (Pinney et al. 2021). Specifically, the change of a single 110 

active site residue at position 103 from serine (S103, prevalently found in warm-adapted KSI 111 

variants) to protonated aspartic acid (D103, prevalently found in mesophilic KSI variants) 112 

provided improved activity from a stronger hydrogen bond while also sacrificing stability by 113 

introducing an unfavorable protonation coupled to folding. We therefore used KSI to more deeply 114 

investigate the potential for rate compensation by assaying 20 variants that vary in sequence and 115 

TGrowth (Figure 3A). 116 

KSI catalyzes the double bond isomerization of steroid substrates (Figure 3B) and is 117 

predicted to be part of a pathway that enables degradation of steroids for energy and carbon 118 

metabolism in bacteria (Horinouchi et al., 2010). KSI variants were identified by sequence 119 

relatedness to known KSIs. The 20 selected KSI variants ranged between 20–75% percent 120 
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sequence identity to each other (Figure 3—figure supplement 1) and were selected from bacteria 121 

originating from environments spanning glaciers, ocean floor, soil, and wastewater with reported 122 

TGrowth values from 15°C to 46°C (Figure 3—source data 1). Each purified KSI demonstrated 123 

similar circular dichroism spectra at 5°C and 25°C, suggesting that variants were not unfolding at 124 

the 25°C assay temperature (Figure 3—figure supplement 2). All putative KSI variants exhibited 125 

isomerase activity on the steroid substrate 5(10)-estrene-3,17-dione (5(10)-EST) (Figure 3C). 126 

 We observed that the KSIs with the prevalent cold-adapted residue (D103 and the similar 127 

residue E103, P. putida numbering) were not uniformly faster than other KSIs in kcat (Figure 3C) 128 

or kcat/KM (Figure 3—figure supplement 3). The observation that one of the fastest variants 129 

contained serine at this position suggests that there are additional factors that influence its rate 130 

(Figure 3C & see Discussion). 131 

For KSI, the value of kcat decreased as a function of TGrowth, but the shallow slope (mrate 132 

= -0.006, p = 0.02) (Figure 3D) and the small coefficient of determination (R2 = 0.01) of this 133 

relationship indicate that TGrowth accounts for little of the observed 80-fold rate variation. Similar 134 

activity trends were observed at an assay temperature of 15°C (Figure 3—figure supplement 3). 135 

 136 

Testing stability compensation using literature data 137 

The absence of evidence for rate compensation led us to reinvestigate the widely accepted 138 

relationship between stability and growth temperature. Prior work has shown that temperature 139 

optima for observed enzyme rates correlate well with organism TGrowth  (r = 0.75, (Engqvist, 140 

2018)), but enzyme temperature optima reflect a combination of rate and stability effects. To 141 

isolate stability, we surveyed the relationship between stability and TGrowth using the ProThermDB, 142 

a collection of experimental data of protein and mutant stability (Nikam et al., 2021). Across 433 143 

wild-type variants present in this database, we observed a significant relationship between Tm and 144 

TGrowth (Figure 4A, R2 = 0.43, p = 2 x 10-54). For the 43 protein families with more than one reported 145 

variant, 39 had a higher melting temperature than their cold-adapted counterpart (Figure 4B). 146 

  147 
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Discussion 148 

 149 

Enzymes have been widely posited to adapt to reduced temperature by increasing rate 150 

(Figure 1) (Collins and Gerday, 2017; D’Amico et al., 2003; Siddiqui and Cavicchioli, 2006; 151 

Zecchinon et al., 2001). Our results do not support this intuitive and common model as we found 152 

that cold-adapted enzyme variants are not generally faster than their warm-adapted counterparts. 153 

Even though there was prior evidence for temperature adaptation of the enzyme KSI that is 154 

accompanied by rate effects, we found that little of its overall rate variation was accounted for by 155 

organismal TGrowth, suggesting instead that stability is the dominant driving force underlying the 156 

previously identified changes. Our observations suggest that enzyme rate is unlikely to be the 157 

primary trait selected for during adaptation to colder environmental temperatures, broadly and in 158 

the model system KSI. 159 

Perhaps implicit in the expectation that catalysis will increase in cold adaption is the 160 

perspective that faster enzymes are better enzymes, with enzymes reacting at the diffusional limit 161 

denoted as “perfect” (Knowles and Albery, 1977). However, most enzymes operate well below 162 

the diffusional limit (Bar-Even et al., 2011), underscoring that an optimal reaction rate may be 163 

different than the maximal enzyme rate. There are multiple reasons why optimal or observed 164 

enzyme rates may differ from maximal rates. Rate optimization in vivo may be accomplished by 165 

altering gene expression (Somero, 2004), isoform expression (Somero, 1995), or cellular pH and 166 

osmolytes (Hochachka and Lewis, 1971; Yancey and Somero, 1979). Alternatively, the optimal 167 

enzyme rate may be lower than the maximal rate to channel metabolites and coordinate 168 

metabolism. Further, models of enzyme-metabolite pathway evolution predict that the subset of 169 

enzymes that govern pathway flux through rate-limiting steps are under strong rate selection 170 

(Noda-Garcia et al., 2018), and it is also possible that maximal enzyme rates are not evolutionarily 171 

accessible (Obolski et al., 2018). We speculate that rate compensation may be more probable for 172 

highly-related species that live in similar environments, such as marine species that live at different 173 

latitudes or depths but otherwise experience little environmental difference (Dong and Somero, 174 

2009). 175 

In contrast to our findings with rate, we observed strong evidence for stability 176 

compensation. The temperature dependence of protein unfolding (Becktel and Schellman, 1987) 177 

may exert a larger driving force on adaptation than the temperature dependence of rate. There may 178 
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be an additional strong selection pressure to avoid unfolded states, as misfolded protein has been 179 

demonstrated to have deleterious fitness effects (Geiler-Samerotte et al., 2011) and cells expend 180 

considerable energy to clear misfolded variants using chaperones and degradation pathways 181 

(Clague and Urbé, 2010; Hartl et al., 2011; Lund, 2001). Additionally, adaptive paths towards 182 

stability may be more abundant and more accessible than analogous paths towards rate 183 

enhancement, given that each protein may be stabilized individually through a wide variety of 184 

mechanisms (Hart et al., 2014) and less constrained by biological context than an enzyme evolving 185 

synergistically with complex metabolic networks. The recent discovery of 158,184 positions from 186 

1005 enzyme families that vary with growth temperature may further expand our understanding 187 

of the molecular strategies that underlie protein stabilization (Pinney et al., 2021).  188 

The observation that one of the fastest KSIs contains the stabilizing but slowing active site 189 

residue, S103 (msKSI, Figure 3C), may illustrate some of the evolutionary complexity alluded to 190 

above. As observed with other KSIs, the S103D mutation in msKSI increases activity and 191 

decreases stability. However, in msKSI, the decreased stability from the S103D mutation renders 192 

it partially unfolded even in the absence of denaturants (Pinney et al., 2021). This result suggests 193 

a model where drift or other factors have led to an overall destabilized scaffold, such that msKSI 194 

cannot accommodate the activating S103D change (without unfolding) and has made other as yet 195 

unidentified amino acid changes that increase activity. 196 

Flexibility has been posited to mechanistically link rate and stability, with multiple 197 

underlying interconnections discussed (see Supplementary file 1) (Åqvist et al., 2017; Arcus et al., 198 

2016; D’Amico et al., 2003; Nguyen et al., 2017; Saavedra et al., 2018). Nevertheless, there are 199 

many degrees of freedom in an enzyme and most motions are not expected to be coupled to the 200 

enzyme reaction coordinate. Our observation of the absence of widespread rate compensation to 201 

temperature in contrast to observed stability compensation is consistent with this perspective, as 202 

are prior examples of enzyme stabilization in the absence of detrimental rate effects (Minges et al., 203 

2020; Miyazaki et al., 2000; Siddiqui, 2017; Wintrode and Arnold, 2001; Zhao and Feng, 2018). 204 

A more complex relationship between these traits seems likely and underscores the need to relate 205 

individual and coupled atomic motions to overall flexibility, catalysis, and stability to unravel their 206 

intricate interconnections. 207 

To understand why enzyme properties such as rate and stability measured with purified 208 

enzymes vary across organisms, we will need to determine their effects on fitness across biological 209 
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and environmental contexts. Such studies may synergistically deepen our understanding of enzyme 210 

function, organismal evolution, and ecosystems.  211 
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Materials and Methods  222 

 223 

Literature Enzyme Rate Analysis 224 

To capture enzyme rates reported throughout the literature, the BRENDA database was 225 

accessed using SOAP July 2021 (Chang et al., 2021) (www.brenda-enzymes.org) and the kcat and 226 

kcat/KM database entries retrieved by Enzyme Commission (E.C.) number were parsed for 227 

measurement value, substrate, rate, assay temperature, and variant (wild-type or mutant) status 228 

(Source Code 1). Microbial optimum growth temperature (Engqvist 2018) values from median 229 

organism optimal growth temperatures for microbes in culture (TGrowth) were matched by organism 230 

name to rate entries. Rate data were filtered for kcat and kcat/KM values of wild type enzymes. 231 

Reactions are defined by E.C. number–substrate pair. The median value was taken in the case of 232 

multiple measurements of the same enzyme variant with the same substrate. 233 

The rate ratio kcold/kwarm per reaction was determined by dividing rate of the enzyme from 234 

the organism with the minimum TGrowth by the rate of the enzyme from organism with the 235 

maximum TGrowth. If a maximum or minimum TGrowth was shared between enzyme variants, then 236 

the median rate of the two variants was used in the rate ratio calculation. To account for enzyme 237 

rate variation arising independently of temperature, a control distribution from reactions with 238 

variants of the same TGrowth was derived. The fold change of the maximum value over the minimum 239 

value kmax/kmin and its reciprocal kmin/kmax was calculated for each reaction from the same TGrowth 240 

with at least two variants. To compare the rate ratio distribution of the data to the rate ratio control, 241 

the nonparametric two-sided Mann–Whitney U test was used with a significance threshold of p < 242 

0.05. As no temperature-dependent trends emerged when data were restricted to measurements 243 

made at 25˚C or 37˚C  or when the TGrowth range was limited to >∆20˚C and >∆60˚C, we used all 244 

data in the main analysis. We determined confidence intervals of the median parameters of the rate 245 

ratio distributions by bootstrap analysis (boot package in R, 10,000 replications) (Canty and 246 

Ripley, 2021; Davison and Hinkley, 1997). The mrate values (slopes) per reaction were calculated 247 

by performing a linear regression relating the log10(rate) vs. organism TGrowth. Significance 248 

threshold, corrected for multiple tests, was p < 5.33 × 10−5 (Bonferroni correction; p < 0.05/951). 249 

    250 

  251 
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KSI Variant Identification, Cloning, Expression, and Purification 252 

Putative ketosteroid isomerases (KSI) variants were identified by sequence relatedness to 253 

known KSI variants. Selection of variants was guided by associating putative KSI sequences with 254 

TGrowth by species (Engqvist, 2018). Seventeen variants were synthesized (GenScript or Twist 255 

Biosciences) and cloned (Gibson Assembly Protocol, New England Biolabs or Twist Biosciences) 256 

into pET-21(+) vectors. KSI variants were aligned using default parameters of Clustal Omega 257 

(Madeira et al., 2019) and the maximum likelihood tree was constructed using IQ-TREE with 258 

default parameters (Hoang et al., 2018; Nguyen et al., 2015). The constructs were expressed in E. 259 

coli BL21(DE3) cells and purified as previously described (Kraut et al., 2010).  260 

 261 

KSI Kinetic Measurements 262 

The KSI substrate 5(10)-estrene-3,17-dione (5(10)EST) was purchased from Steraloids 263 

(Newport, RI). Reactions of purified KSIs with 5(10)EST were monitored continuously at 248 nm 264 

using a Perkin Elmer Lambda 25 UV/Vis spectrometer with an attached VWR digital temperature 265 

controlled circulating water bath (Pinney et al., 2021). Temperatures within the cuvettes were 266 

measured post-reaction using a platinum electrode thermistor (Omega Engineering) and the 267 

temperature of the circulating water bath was modified to maintain a constant internal cuvette 268 

temperature between reactions. Reactions were conducted in 40 mM potassium phosphate buffer, 269 

pH 7.2, 1 mM disodium EDTA, with 2% DMSO as a co-solvent to maintain substrate solubility. 270 

The kinetic parameters kcat and KM were determined by fitting the observed initial velocity of each 271 

reaction as a function of 5(10)EST concentration (9–600 µM; 6–7 different substrate 272 

concentrations per experiment) to the Michaelis–Menten equation. Reported values of kcat and KM 273 

are the average of 3–9 independent experiments with at least two different enzyme concentrations 274 

varied by at least 5-fold. Reported errors are the standard deviations of these values.  275 

 276 

KSI Circular Dichroism (CD) 277 

CD spectra were collected for each KSI variant in 40 mM potassium phosphate buffer, pH 278 

7.2, 1mM EDTA, at enzyme concentration 20 µM at 5°C and 25°C. Measurements were made on 279 

a J-815 Jasco Spectrophotometer between 190-250 nm at 1 nm bandwidth and 50 nm/min scanning 280 

speed in a 0.1 cm cuvette (Hellma Analytics). 281 

 282 
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Literature Stability Analysis 283 

Wild-type mutation type stability data were downloaded from ProThermDB (Nikam et al., 284 

2021) with the following fields: protein information (entry, source, mutation, E.C. number), 285 

experimental conditions (pH, T, measure, method), thermodynamic parameters (Tm, state, 286 

reversibility), and literature (PubMed ID, key words, reference, author). Wild type protein data 287 

were matched by species name to microbial optimal growth temperatures TGrowth (Engqvist, 2018).  288 

289 
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 453 
 454 
Figure 1: The rate compensation model of cold adaptation predicts that cold-adapted enzymes exhibit greater 455 
catalysis and are faster at a common temperature than their warm-adapted counterparts. (A) According to the 456 
rate compensation model of cold adaptation, a cold-adapted variant (blue circle) has larger rate enhancement than a 457 
warm-adapted variant (red circle).  The dashed line represents the uncatalyzed reaction, the solid line represents the 458 
catalyzed reaction, and the arrows represent the rate enhancement at the respective organism TGrowth. (B) When variants 459 
are assayed at a common temperature, rate compensation predicts a faster reaction for the enzyme from the cold-460 
adapted organism, corresponding to a rate ratio (kcold/kwarm) of greater than one and a negative slope of rate vs. TGrowth 461 
(mrate). (C, D) Rate comparisons of warm-adapted and cold-adapted enzyme variants made at identical temperatures 462 
from cold adaptation literature spanning indicated reactions with substrate specified in parentheses (Collins and 463 
Gerday, 2017; Feller and Gerday, 1997; Siddiqui and Cavicchioli, 2006; Smalås et al., 2000). The black vertical lines 464 
represents no rate change with temperature (i.e., rate ratio = 1).   465 
Figure 1—source data 1: Figure1_SourceData1.csv  466 
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  467 
 468 
Figure 2: Enzyme rate data (kcat) do not indicate general rate compensation.  (A) Enzyme variants per reaction 469 
of wild-type enzyme kcat values (n = 11480 reactions) matched to TGrowth. (B) Reactions with more than one enzyme 470 
variant (n = 2223 reactions). (C) Rate ratio distribution of the rate at the coldest TGrowth (kcold) divided by the rate of 471 
the variant from the warmest TGrowth (kwarm) (median = 1.1 fold, 95% CI [1.00, 1.22], n = 2223 reactions). Vertical line 472 
at rate ratio = 1. For clarity, only data with rate ratios between 10-3 and 103 are shown (>95% of the reactions). (D) 473 
Rate ratio (kcold/kwarm) data (solid line, n = 2223 from panel C) compared to fold change control distribution (same 474 
TGrowth; dashed line, median = 1.0 fold, 95% CI [0.89, 1.13], n = 615 reactions; p = 0.21, Mann–Whitney U test, two-475 
sided). The black vertical line represents no rate change with temperature (i.e., rate ratio = 1).  (E, F) The significance 476 
and magnitude of the linear fit of reaction rate as a function of TGrowth for negative slopes (E, n = 487) and positive 477 
slopes (F, n = 464) in log space. E.C. number and (substrate) indicated for reactions significantly associated with 478 
temperature (Bonferroni correction; p-value < 5.3 × 10-5, n = 951). Dotted horizontal lines at p = -log10(5.3 × 10-5). 479 
5.3.1.1: triose-phosphate isomerase; G3P: glyceraldehyde 3-phosphate; 3.1.1.74: cutinase; 4-NPB: 4-nitrophenyl 480 
butyrate. 481 
Figure 2—source data 1: Figure2_SourceData1.csv 482 
Figure 2—source data 2: Figure2_SourceData2.csv 483 
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 484 
 485 
Figure 3: Ketosteroid isomerase (KSI) rates do not indicate rate compensation. (A) Unrooted maximum 486 
likelihood phylogenetic tree of KSI variants. Closed circles represent bootstrap values of >70%; open circles represent 487 
bootstrap values of 40-70%. (B) The mechanism of isomerization of the steroid 5(10)-estrene-3,17-dione by KSI. 488 
5(10)-EST was used to allow direct measurement of the rate-limiting chemical step kcat (Pollack et al., 1986) (C) 489 
Activity of KSI variants (kcat) at a common assay temperature of 25°C. Error bars represent standard deviation of at 490 
least two different experimental replicates varying [E] at least five-fold. KSI variants with D103 are represented in 491 
blue, S103 in red, and E103 in grey (P. putida numbering throughout). (D) Activity (log10(kcat)) of KSI variants at a 492 
common assay temperature (25°C) vs. organism growth temperature (TGrowth) (n = 20, mrate = -0.006, R2 = 0.01, p = 493 
0.02).   494 
Figure 3—source data 1: KSI origins and organism growth temperatures 495 
Figure 3—source data 2: Kinetic measurement of KSIs at 25˚C with substrate 5(10)-estrene-3,17-dione. 496 
Figure 3—source data 3: Kinetic measurement of KSIs at 15˚C with substrate 5(10)-estrene-3,17-dione. 497 
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 498 
Figure 4: Protein stability data display stability compensation. (A) Wild-type Tm stability data from ProThermDB 499 
as a function of organism TGrowth. Dashed black line represents a linear fit (n = 433, R2 = 0.43). (B) Fold change (Tm 500 
cold/Tm warm) of wild-type protein variants (n = 43, median = 0.81, 95% [0.70, 0.85]. The black vertical line 501 
represents no change (i.e., fold change = 1).   502 
Figure 4—source data 1: Figure4_SourceData1.csv 503 
Figure 4—source data 2: Figure4_SourceData2.csv 504 
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 1 
 2 
Figure 2—figure supplement 1: Specifying assay temperature and organism optimal growth temperature 3 
range per reaction does not alter conclusions. 4 
(A) Distribution of kcat rate ratio values including only measurements made at 25˚C and (B) 37˚C. (C) Distribution 5 
of rate ratios with TGrowth range > ∆20˚C and (D) TGrowth range > 60˚C. Reported p-values from two-sided Mann–6 
Whitney U test comparing filtered data (solid line) and the control data (dotted line, see Materials & Methods). 7 
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 8 
Figure 2—figure supplement 2:  Enzyme rate data for kcat/KM do not indicate rate compensation, supporting 9 
the conclusions from the kcat analysis in the main text. 10 
(A) Variants per reaction of wild-type enzyme kcat values (n = 5598 reactions) matched to TGrowth. (B) Number of 11 
reactions spanning the specified TGrowth range (n = 953 reactions with >1 variant). (C) kcat/KM rate ratio (kcold/kwarm) 12 
distribution (median = 0.93 fold, 95% CI [0.78, 1.12], n = 953 reactions). Grey vertical line at rate ratio = 1.  (D) 13 
kcat/KM rate ratio (kcold/kwarm) data (black line, n = 953 reactions) with kcat/KM rate ratio control (grey line, median = 14 
1.00 fold, 95% CI [0.82, 1.21], n = 307 reactions) determined in the same way as the kcat rate ratio control in the 15 
main text (see Materials & Methods) (p = 0.80, Mann–Whitney U test, two-sided). For clarity, only data with rate 16 
ratios between 10-3 and 103 are shown, representing >90% rate ratio data in (C) and >83% of rate ratio control values 17 
in (D). Black vertical line represents no rate change with temperature (i.e., rate ratio = 1). 18 
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 19 
Figure 2—figure supplement 3:  Example mrate plots (9 of 951 reactions shown). 20 
Reactions with the rate of constituent variants in order of mrate p-value (for all reactions shown, p < 5.2 × 10-3). mrate 21 
is the slope of log10(kcat) vs. TGrowth. Note different scales for the axes. 5.3.1.1: triose-phosphate isomerase; 3.1.174: 22 
cutinase; 2.4.1.25: 4-alpha-glucanotransferase; 1.1.1.86: ketol-acid reductoisomerase; 3.5.1.19: nicotinamidase; 23 
6.3.2.2: glutamate-cysteine ligase; 1.3.1.9: enoyl-[acyl-carrier-protein] reductase (NADH); 1.1.1.1: alcohol 24 
dehydrogenase; 2.3.1.57: diamine N-acetyltransferase.25 
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 26 
Figure 3—figure supplement 1: KSI variant similarity.  27 
The primary sequence variation of each KSI variant ranges from 20-75% amino acid identity.  28 
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 29 
Figure 3—figure supplement 2: KSI variant circular dichroism spectra are similar at cold and warm 30 
temperature. 31 
Far ultraviolet circular dichroism (CD) spectra at 5°C (blue) and 25°C (red) are indistinguishable. Measurements for 32 
each variant were made at an enzyme concentration of 20 µM. 33 
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 34 
 35 
Figure 3—figure supplement 3: Ketosteroid isomerase rates vary with organism growth temperature in kcat 36 
and in kcat/KM. 37 
(A) Rate of KSI variants (kcat/KM) at a common assay temperature (TAssay) of 25°C. KSI variants with D103 are 38 
represented in blue, S103 in red, and E103 in grey (P. putida numbering). (B) Rates (kcat/KM) of KSI variants at 39 
25°C assay temperature (TAssay) vs. organism growth temperature (TGrowth) (n = 20, mrate = 0.01, R2 = 0.01, p = 4 ×10-40 
7). (C) Rates (kcat/KM) of KSI variants at 15°C assay temperature (TAssay) vs. organism growth temperature (TGrowth) 41 
(n = 20, mrate = 0.003, R2 = 0.001, p = 3 ×10-7). (D) Rates (kcat) of KSI variants at 15°C assay temperature (TAssay) vs. 42 
organism growth temperature (TGrowth) (n = 20, mrate = -0.01, R2 = 0.02,  p = -0.11). Error bars represent standard 43 
deviation of at least two different experimental measurements varying [E] at least five-fold (25˚C) or two-fold 44 
(15˚C).  45 
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Variant Organism Isolation Origin TGrowtha Reference 
bbKSI Brevibacillus borstelensis Soil 34°C (Shida et al., 1996)  
tKSI Comamonas testosteroni Soil 29°C (Marcus and Talalay, 1956)  

mbKSI Mycobacterium botniense Streamwater 46°C (Torkko et al., 2000) 

mhKSI Mycobacterium hassiacum Urine 37°Cb (Schröder et al., 1997)  

miKSI Mycobacterium mantenii Lymph node 37°C (van Ingen et al., 2009)  

mmKSI Mycobacterium marinum Fish tubercles 31°C (Aronson, 1926)  

mpKSI Mycobacterium parmense Cervical lymph node 37°C (Fanti et al., 2004)  

msKSI Mycobacterium simiae Rhesus monkey 37°C (Karassova et al., 1965)  

mtKSI Mycobacterium thermoresistibile Soil 39°C (Tsukamura, 1966)  

naKSI Nocardia alba Soil 29°C (Li et al., 2004)  

ntKSI Nocardia thailandica Pus 29°C (Kageyama et al., 2004)  

npKSI Nocardioides psychrotolerans Glacier 20°C (Liu et al., 2013)  

oiKSI Oceanobacillus iheyensis Marine sediment 29°C (Lu et al., 2001)  

psKSI Paenibacillus antarcticus Antarctic sediment 15°C (Montes et al., 2004)  

pgKSI Polaromonas glacialis Glacier 20°C (Margesin et al., 2012)  

paKSI Pseudomonas aeruginosa Sliced boiled potatoes 34°C (Hugh and Leifson, 1964)  

pKSI Pseudomonas putida Soil and water 28°C (Timmis, 2002)  

rmKSI Rhodococcus marinonascens Marine sediment 18°C (Helmke and Weyland, 1984) 

ssKSI Shewanella halifaxensis Marine sediment 16°C (Zhao et al., 2006) 

spKSI Simplicispira psychrophilia Antarctic mosses 20°C (Terasaki, 1979)  
 46 
Figure 3—source data 1: KSI origins and organism growth temperatures. 47 
a (Engqvist, 2018) 48 
b Alternatively reported to grow optimally at 65°C (Schröder et al., 1997). For consistency, curated values from 49 
(Engqvist, 2018) are used in this work.   50 
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Variant  TGrowtha [E] TAssay (°C)b kcat (s-1)c KM (μM)c kcat/KM (s-1 M-1)c 

bbKSI 34°C 25-500nM 24.7 ± 0.5 1.7 ± 0.2 134 ± 54 (1.5 ± 0.9) × 104 
tKSI 29°C 0.5-5nM 26.0 ± 1.6 24.9 ± 12.2 40 ± 16 (6.1 ± 1.1) × 105 
mbKSI 46°C 5-50nM 25.1 ± 0.1 6.9 ± 0.6 40.5 ± 12 (1.8 ± 0.4) × 105 
mhKSI 37°C 10-500nM 25.2 ± 0.2 1.3 ± 0.1 92 ± 20 (1.5 ± 0.2) × 104 
miKSI 37°C 5-100nM 24.7 ± 0.8 1.6 ± 0.5 65 ± 37 (2.7 ± 0.9) × 104 
mmKSI 31°C 0.25-5nM 25.6 ± 1.3 106.3 ± 21.0 45 ± 21 (3.3 ± 2.7) × 106 
mpKSI 37°C 10-50nM 25.9 ± 1.4 3.4 ± 0.5 76 ± 28 (4.7 ± 1.0) × 104 
msKSI 37°C 5-50nM 25.0 ± 0.1 29.2 ± 7.7 80 ± 12 (3.7 ± 1.1) × 105 
mtKSI 39°C 0.5-25nM 26.0 ± 1.3 44.3 ± 7.7 47 ± 4 (9.6 ± 2.1) × 105 
naKSI 29°C 10-50nM 27.1± 0.6 15.9 ± 3.1 144 ± 52 (1.2 ± 0.2) × 105 
ntKSI 29°C 10-100nM 26.5 ± 1.2 4.8 ± 1.1 104 ± 49 (5.0 ± 1.0) × 104 
npKSI 20°C 25-250nM 24.8 ± 0.4 6.8 ± 2.0 368 ± 31 (1.8 ± 0.4) × 104 
oiKSI 29°C 1-40nM 25.9 ± 0.9 19.2 ± 7.6 107 ± 41 (2.6 ± 1.4) × 105 
psKSI 15°C 50-500nM 25.0 ± 0.0 1.7 ± 0.0 411 ± 30 (4.1 ± 0.3) × 103 
pgKSI 20°C 0.5-25nM 26.3 ± 0.9 18.1 ± 8.2 109 ± 86 (2.6 ± 2.2) × 105 
paKSI 34°C 0.5-15nM 26.8 ± 0.5 9.4 ± 2.3 21 ± 18 (7.7 ± 5.9) × 105 
pKSI 28°C 1.5-15nM 25.7 ± 1.1 11.2 ± 3.1 25 ± 13 (5.5 ± 2.7) × 105 
rmKSI 18°C 5-50nM 25.0 ± 0.0 10.3 ± 2.7 125 ± 13 (8.2 ± 1.2) × 104 
ssKSI 16°C 5-50nM 24.6 ± 0.6 8.7 ± 2.5 19 ± 3 (4.4 ± 0.7) × 105 
spKSI 20°C 0.5-10nM 26.4 ± 0.4 70.1 ± 21.6 77 ± 27 (9.8 ± 3.4) × 105 
 51 
Figure 3—source data 2: Kinetic measurement of KSIs at 25˚C with substrate 5(10)-estrene-3,17-dione. 52 
a (Engqvist, 2018) 53 
b Reported assay temperatures are the average of at least three measurements per experiment.  54 
c average ± standard deviation from 2–9 independent experiments with enzyme concentration varied by at least 5-55 
fold. Values measured with substrate concentrations from 9-600 µM. Value of kcat/KM are less than 107 M -1  s-1 and 56 
thus unlikely to be limited by substrate binding. Reported assay temperatures are the average of at least 3 57 
measurements per experiment.   58 
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Variant TGrowtha [E] TAssay (°C)b kcat (s-1)c KM (μM)c kcat/KM (s-1 M-1)c  

bbKSI 34°C 250-500nM 14.9 ± 0.2 0.27 ± 0.23 115 ± 77 (2.2 ± 0.6) × 103 
tKSI 29°C 5-100nM 15.3 ± 0.6 4.9 ± 0.3 35 ± 1 (1.4 ± 0.1) × 105 
mbKSI 46°C 50-100nM 15.3 ± 0.0 2.8 ± 0.2 52 ± 5 (5.3 ± 0.1) × 104 
mhKSI 37°C 250-500nM 14.9 ± 0.2 0.6 ± 0.3 160 ± 102 (3.8 ± 0.9) × 103 
miKSI 37°C 50-100nM 14.7 ± 0.1 0.42 ± 0.05 10.6 ± 0.9 (4.0 ± 0.8) × 104 
mmKSI 31°C 2.5-5nM 15.0 ± 0.3 47.1 ± 7.6 21.2 ± 7.3 (2.5 ± 1.1) × 106 
mpKSI 37°C 25-50nM 15.0 ± 0.0 1.16 ± 0.02 77 ± 30 (1.6 ± 0.6) × 104 
msKSI 37°C 25-50nM 15.0 ± 0.1 8.2 ± 3.2 62 ± 39 (1.4 ± 0.3) × 105 
mtKSI 39°C 5-15nM 15.2 ± 0.2 14.1 ± 1.6 53 ± 29 (3.2 ± 2.1) × 105 

naKSI 29°C 25-50nM 14.9 ± 0.0 6.5 ± 1.0 116 ± 16 (5.6 ± 0.1) × 104 
ntKSI 29°C 5-250nM 15.5 ± 0.6 1.9 ± 0.2 120 ± 21 (1.6 ± 0.1) × 104 
npKSI 20°C 100-250nM 14.9 ± 0.2 3.2 ± 1.0 446 ± 116 (7.2 ± 0.4) × 103 
oiKSI 29°C 1-50nM 15.3 ± 0.4 6.6 ± 0.4 73 ± 25 (9.9 ± 3.8) × 104 
psKSI 15°C 250-500nM 15.3 ± 0.0 0.7 ± 0.1 500 ± 62 (1.5 ± 0.1) × 103 
pgKSI 20°C 2.5-50nM 15.3 ± 0.8 6.8 ± 1.5 43 ± 9 (1.7 ± 0.7) × 105 
paKSI 34°C 5-20nM 15.2 ± 0.3 1.3 ± 1.1 11 ± 5 (1.5 ± 1.5) × 105 
pKSI 28°C 5-25nM 14.4 ± 1.0 4.9 ± 2.1 20 ± 13 (3.4 ± 2.1) × 105 
rmKSI 18°C 25-50nM 15.4 ± 0.1 4.4 ± 0.8 147 ± 28 (3.0 ± 0.0) × 104 
ssKSI 16°C 25-50nM 15.7 ± 0.2 2.5 ± 0.4 10 ± 1 (2.6 ± 0.2) × 105 
spKSI 20°C 5-10nM 15.3 ± 0.3 20.2 ± 11.0 42 ± 8 (5.1 ± 3.7) × 105 
 59 
Figure 3—source data 3: Kinetic measurement of KSIs at 15˚C with substrate 5(10)-estrene-3,17-dione. 60 
a (Engqvist, 2018) 61 
b Reported assay temperatures are the average of at least three measurements per experiment.  62 
c average ± standard deviation from 2–4 independent experiments with enzyme concentration varied by at least 2-63 
fold. Values measured with substrate concentrations from 9-600 µM.  64 
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 30 

Trait Model Highlighted experimental observations References 

Flexibility (general) Higher flexibility 
overcomes reduced 
motion at lower 
temperature, allowing 
enhanced catalysis.  

Fish lactate dehydrogenase rate (kcat) 
correlates with average body temperature. 
Mollusk cytosolic malate dehydrogenase 
substrate affinity (KM) correlates with 
habitat temperature. Psychrophile α-
amylase variant is faster than mesophilic 
and thermophilic variants. Chitobiase 
engineering stabilizes and reduces activity 
of psychrophilic enzyme.   

(Feller and 
Gerday, 
2003; Fields 
et al., 2015) 

Flexibility (specific) Surface flexibility 
decreases enthalpy 
and entropy 
activation terms, 
reducing temperature 
dependence of 
reaction.  

Computational methods including 
molecular dynamics and empirical valence 
bond simulations of diverse enzyme 
systems, with specific focus on citrate 
synthase and trypsin variants, suggest 
importance of flexibility of surface 
residues in cold adaptation.   

(Åqvist et al., 
2017) 

Heat capacity modulation Altered temperature 
dependence of 
reaction reduces rate 
decrease as 
temperature is 
lowered  

More negative ΔCp‡ has been observed in 
psychrophilic isopropylmalate 
dehydrogenase and α-glucosidase. In 
contrast, more negative ΔCp‡ has also been 
suggested as a driver of adaptation to 
higher temperature in reconstructed 
ancestral adenylate kinase sequences.  

(Arcus et al., 
2016; 
Nguyen et 
al., 2017) 

Dynamic allostery Partial unfolding 
arising from 
conformational 
entropy-enhancing 
mutation can affect 
kcat and KM 

Dynamics-based regulation arising from 
mutations distal to the active site of 
mesophilic adenylate kinase affect 
substrate affinity and turnover, suggesting 
a mechanism of cold adaptation.  

(Saavedra et 
al., 2018) 

 65 
Supplementary file 1—Overview of proposed molecular models of cold adaptation.  66 
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Variant Species TGrowth* Pos. 
16 

Pos. 
103 

Pos. 
40 

Pos. 
86 

Pos. 
120 

Pos. 
57 

Pos. 
32 

Sequence  

pKSI Pseudomonas 
putida 

28 Y D D F W Y Y MNLPTAQEVQGLMARYIELVD
VGDIEAIVQMYADDATVEDPF
GQPPIHGREQIAAFYRQGLGGG
KVRACLTGPVRASHNGCGAM
PFRVEMVWNGQPCALDVIDV
MRFDEHGRIQTMQAYWSEVN
LSVREPQ 

tKSI  Comamonas 
testosteroni 

29 Y D D F F Y F MNTPEHMTAVVQRYVAALNA
GDLDGIVALFADDATVEDPVG
SEPRSGTAAIREFYANSLKLPL
AVELTQEVRAVANEAAFAFTV
SFEYQGRKTVVAPIDHFRFNGA
GKVVSMRALFGEKNIHAGA 

mhKSI  Mycobacterium 
hassiacum  

37 Y S D W W Y Y MSTPQDNANTVHRYLEFVAKG
QPDEIAALYADDATVEDPVGS
EVHIGRQAIRGFYGNLENVQSR
TEVKTLRALGHEVAFYWTLSI
GGDEGGMTMDIISVMTFNDDG
RIKSMKAYWTPENITQR 

mtKSI  Mycobacterium 
thermoresistibile 

39 Y D D F W Y Y MTTVPDKTAAITDTVHRYLEL
VAQGRADEITELYADDATVED
PVGSDVHVGRQSIRKFYGNIEN
IKARTELLTLRVCGNEAAFLFR
LEMDLGDNTMTIEPIDVMVFD
ADGRIASMKAYWN 

oiKSI  Oceanobacillus 
iheyensis  

29 Y D D F W F F MPTEQEMKASLQKYLEGFNEG
NSEKVISLFAEDARVEDPVGSE
PLKGKASITTFFQQAIPSVKRLE
LAAPIRGSHGNAAAMAFNIYV
EMEGKGAVIRCIDVMTFNDDG
FIIDMKAYWGPEDVQS 

spKSI  Simplicispira 
psychrophilia  

20 Y D D F F Y Y MPTPEHMQAAVRAYIAALNA
GDIDAIVALYAEDATVEDPVG
ATPQRGLAEIRRFYSASLQMQL
QVVLEGPVRAVANEAAFAFSV
ALVMDGQRLTIRPIDVMRFDD
AGRITAMRAFFGPSNISHG 

pgKSI  Polaromonas 
glacialis 

20 Y D D F F Y Y MPTPEHMQATVEAYVRALNA
SDLDAIVALYADDAVVEDPVG
TAPKRGLAEIRAFYAGSLKLKL
RVELEGQIRAVASEAAFAFSVS
FEVKGQRTTIRPIDLFRFDDAG
RIVQMRAFFGPANISAD 

paKSI  Pseudomonas 
aeruginosa 

34 Y D D F W Y Y MISPQQVQEIMTRYVELVDAC
DIDGILALYARDALVEDPVGSP
PHVGIEAVGRFYRNGLGRANA
RARRTGPVSASHAGSGAVPFC
VDLEWNGRACSIQVIDVMEFD
AGGLICSMKAYWGEANVVGR
DAP 

bbKSI  Brevibacillus 
borstelensis 

34 Y D D F W F F MNNSPMMKQALLAYVDAFNA
GDAERLLALFAEEATVEDPVG
LEPKRGRAEFEQFFRYAISGGA
KLELVAPPRASFSNHAAVTFIV
HTEMEGRAVGIHVTDVMTFDE
NGKIVHMRAFWGQDDVRTAD
SPNA 

msKSI  Mycobacterium 
simiae 

37 Y S  D W W Y Y MPSPEAITQTVNSYLTLLAKGA
TDEIVNLYTTDATIEDPIGADVL
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RGHDAVRAFYTAIQDAKKETE
LAEIRIGGNEAAFLWHLTLDAG
DSRTRISPISVMTFDDQARVAS
MRAFWSPSDVRVL 

miKSI  Mycobacterium 
mantenii 

37 Y S D W W Y Y MPSPEAITETVNRYLALVATGT
ADEIVTLYAADATIEDPIGSDIR
RGHDAIRGFYAGFQDAKKDTE
LAELRISGSEAAFLWHLTLDAG
DSRTRISPISTMSFDGDAKITSM
RAFWSPADVQVL 

mmKSI
  

Mycobacterium 
marinum 

31 Y E** D F W Y Y MPNSAERSQAITETVNRYMSV
LADGDADDLVGFYADDATLE
DPVGGEVHIGTRAIHGFYSAIA
GLTRECELVSLRVCGNEAAFQ
FRLTVTSGDSKMRVEPIEVMVF
DRSGKVAAMKAYWSAADVTH
L 

mpKSI  Mycobacterium 
parmense 

37 Y D D F W Y Y MRNAADRVQAITDTVNRYIEL
VAKGSADDLVELYADDATVE
DPVGGEVHIGRQAIHGFYSAV
DGVARECELVSLRVAGNEAAF
LFRLTVTAGDHRMVIEPIDVM
VFDDRGKVTAMKAYWSAANV
TQG 

npKSI  Nocardioides 
psychrotolerans 

20 Y E** D F W Y Y MVAPNADIRSTVQRYLDLVAD
GTSTEIVALYAPDATLEDPVGS
EVLRGREAIGGFYAGLDGLAM
TTNLVTLRVCAGHAAFHFEVV
TDTGGMKFKMAPLEVMTFDG
DGLITSMRAFWSDEDLVVDA 

naKSI  Nocardia alba 29 Y D D F W Y Y MASADDIRATVRKYVEAVGSG
TAADVVALYREDATVEDPVGT
EPHVGHAAITKFYENIEPLQRS
TELFSVRVAGDSAAFSFRVVTT
FGEQTFTLDPIDVMTFDEDARI
VSMRAFWSQDDMVVG 

ntKSI  Nocardia 
thailandica 

29 Y D D L** W Y Y MASPDDIRATVRRYVELVGTG
TAADIAALYTEDATVEDPVGS
APHTGRAAIEKFYGALDGTTR
HTELLTVRVAGDNAAFGLRVV
TRAGDKTITIEPIDVMTFDADA
RITGMRAFWSASDIAFG 

mbKSI  Mycobacterium 
botniense 

46 Y D D F W Y Y MRSAPERTQAITNAVHRYLGL
LANGSVDDLVEMYAADATVE
DPVGGEVHIGRQAIRSFYSALD
GAERDCELVSLRVAGNEAAFQ
FRLTVATGGSVVRIEPIDVMAF
ADDGKVTAMKAYWSAADVT
QLGSGDEAVRSGPGQSG 

ssKSI  Shewanella 
halifaxensis 

16 Y D D F W Y Y MITEQFGLGVVSSYIEFLNNGN
FEGIASLYSKNAIIEDPIGSDKII
GRTAIQDFYRQAVLGVHQVNQ
LGEVRVASNEIAFPFEVVLAKD
PNLAISVIDIFKINAEGEIDSMR
AFWGPGNVKSVSKPAPITA 

psKSI  Paenibacillus 
antarcticus 

15 Y E** D I** W Y F MLEQPEIKQAMQQYIDHFNAN
DLESLLGLFSETASLEDPVGSIP
IEGTEPIRQFYSKVVNGDTKIKL
MTPICGSHSHSGAMAIEIETNA
KGEKVVIQAIEIMSFDEFGKIM
NLQVYWGKEDLNFS 
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rmKSI  Rhodococcus 
marinonascens 

18 Y D D F W Y Y MAPSAADIRKIVERYVAAVAT
GTADDVLSLYAEGATVEDPVG
TEPRTSVDSLREFYSVLEPMKQ
TGELLTLRIAGNSAAFHFSLVT
DLGEQKFEIAPIDVMTFDDDGK
ITSMKAYWGQDDMITRAD 

 
(*) From Engqvist 
2018 

         

 
(**) Novel active 
site feature not 
described in 
characterized KSIs 
previously (P. 
putida) numbering 

         

 67 
Supplementary File 2—KSI sequences.68 
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