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Self-organizing cerebral organoids grown from pluripotent
stem cells combined with single-cell genomic technologies pro-
vide opportunities to explore gene regulatory networks (GRNs)
underlying human brain development. Here we acquire single-
cell transcriptome and accessible chromatin profiling data over
a dense time course covering multiple phases of organoid devel-
opment including neuroepithelial formation, patterning, brain
regionalization, and neurogenesis. We identify temporally dy-
namic and brain region-specific regulatory regions, and cell in-
teraction analysis reveals emergent patterning centers associ-
ated with regionalization. We develop Pando, a flexible lin-
ear model-based framework that incorporates multi-omic data
and transcription binding site predictions to infer a global GRN
describing organoid development. We use pooled genetic per-
turbation with single-cell transcriptome readout to assess tran-
scription factor requirement for cell fate and state regulation in
organoid. We find that certain factors regulate the abundance
of cell fates, whereas other factors impact neuronal cell states
after differentiation. We show that the zinc finger protein GLI3
is required for cortical fate establishment in humans, recapitu-
lating previous work performed in mammalian model systems.
We measure transcriptome and chromatin accessibility in nor-
mal or GLI3-perturbed cells and identify a regulome central to
the dorsoventral telencephalic fate decision. This regulome sug-
gests that Notch effectors HES4/5 are direct GLI3 targets, which
together coordinate cortex and ganglionic eminence diversifica-
tion. Altogether, we provide a framework for how multi-brain
region model systems and single-cell technologies can be lever-
aged to reconstruct human brain developmental biology.
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Main text
The ability to generate complex brain-like tissue in con-
trolled culture environments from human stem cells offers
great promise to understand mechanisms underlying human
brain development. Cerebral or brain organoids develop from
pluripotent stem cells (PSCs) into a three-dimensional neu-
roepithelium that self-patterns, regionalizes, and ultimately
forms neurons of the different brain regions (1–3). The
fate and state of each cell is orchestrated through complex
circuits of transcription factors (TFs) converging at regula-
tory elements to enable precise control of gene expression.
Single-cell sequencing approaches allow the profiling of gene

expression and chromatin accessibility in individual cells,
which opens up new opportunities to survey the set of regula-
tory control features in any given cell fate or state (so-called
regulomes). Direct comparisons between organoids and pri-
mary counterparts in mouse and human have quantified a re-
markable similarity between the neural progenitor and neu-
ronal transcriptome profiles (4–6). Cerebral organoids have
been used to successfully model microcephaly (2), periven-
tricular heterotopia (7), autism (8) and other neurodevelop-
mental disorders (9, 10) that may have differential effects on
the various human brain regions. However, there is no de-
tailed description of the gene regulatory networks (GRNs)
that coordinate early human brain development.
Research in model systems have identified core signaling fac-
tors and gene regulatory programs that orchestrate brain re-
gion formation in vertebrates. Initially, extrinsic signals es-
tablish an anterior-posterior axis, which triggers additional
localized gradients downstream to segment the neural tube
into distinct brain regions. Combinatorial activities of mor-
phogens including SHH, WNTs, BMPs, FGFs, NOTCH,
Neuregulins and R-spondins converge on transcription fac-
tors to execute regionalization. The Sonic hedgehog (Shh)
signalling pathway is a prominent component of this sys-
tem that coordinates dorsoventral telencephalon specifica-
tion. GLI3 belongs to the C2H2-type zinc finger proteins sub-
class of the Gli family, and is a terminal effector in the SHH
pathway. In mice, loss of function mutations in GLI3 result
in failure of the cortex to form, and expansion of ventral te-
lencephalon neuronal identities into dorsal locations within
the developing brain (11, 12). Conditional knock-out experi-
ments have shown that GLI3 also plays an active role in reg-
ulating the onset of cortical neurogenesis by controlling cell
cycle dynamics (13). Much of what is known about SHH,
GLI3, and other pathways regulating brain morphogenesis
have been explored in zebrafish and mouse model systems,
and it remains unclear how human brain development has di-
verged from our mammalian ancestors. In humans, mutations
in GLI3 have been associated with Greig cephalopolysyn-
dactyly syndrome and Pallister Hall syndrome, in which pa-
tients have variable presentations of brain malformations de-
pending on the particular mutations (14).
New single-cell genomic methods enable high-throughput
and quantitative analysis of single-cell transcriptomes and ac-

Fleck, Jansen et al. | bioRχiv | August 24, 2021 | 1–33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Gene expression and chromatin accessibility dynamics during early human cerebral organoid development. (A) Schematic of the experimental design and
data integration strategy. Organoids from four different iPSC lines were dissociated for scRNA-seq and scATAC-seq at timepoints spanning the critical patterning window.
Data was demultiplexed using SNV information and modalities can be integrated using minimum-cost, maximum-flow (MCMF) bipartite matching in CCA space. The resulting
metacells with RNA and ATAC components are integrated using CSS (21). (B) UMAP embedding of the full integrated dataset. (C) Distribution of iPSC lines on the UMAP
embedding. (D) Gene expression (left), gene accessibility (middle) and binding motif enrichment (right) for stage-specific transcription factors. (E) Scatter plot showing
the Pearson correlation between gene accessibility and gene expression versus the number of peaks in gene body and promoter regions. (F) Hierarchical clustering of
pseudotemporal bins revealing regulatory transitions. Violin plots show the total length of accessible chromatin per bin, top side bars show stage (grey scale) and proportion
of cells at each time point (stacked plot) per bin. Heatmap shows accessibility of stage-specific peak clusters for each pseudotime bin. Representative GREAT enrichments
are shown for each stage. (G) Examples of loci that have differential access during cerebral organoid development from pluripotency.

cessible chromatin profiles. These features can also be mea-
sured within an individual cell in a multi-omic measurement,
providing insight into gene expression and regulation in the
same cell state. Furthermore, CRISPR-Cas gene editing cou-
pled with single-cell transcriptome readouts (15–17) allows
pooled genetic perturbation experiments in vivo (18). These
strategies and vector systems, combined with functionaliza-
tion of human PSCs with inducible Cas9 systems, provide an
opportunity to perturb gene function in cerebral organoids,
and systematically assess the effects across human brain re-
gions.
Here we have used a multimodal approach to explore hu-
man brain regionalization. We first build a regulome from
single-cell transcriptome and chromatin profiling data across
a cerebral organoid developmental time course. We then per-
turb this regulome using multiplexed in organoid perturba-
tion experiments, and identify effects on regional fate deci-
sions as well as effects on cell states after fate acquisition.
We show that multi-ome analysis of a critical period of brain
region formation in isogenic control and GLI3 knock-out
organoids distinguishes direct and indirect targets of this tran-
scription regulator and reveals regulatory disruption of telen-
cephalon development. Altogether, we establish a regulome-
perspective to understand and explore early human brain de-
velopment.

Single-cell multiomic reconstruction of cerebral
organoid development.
To explore mechanisms underlying human brain develop-
ment, we generated single-cell transcriptome and single-cell
accessible chromatin profiling data over a time course of
cerebral organoid development (Fig. 1A, Fig. S1A and
data S1). The dataset incorporates 11 time points from
four human PSC lines covering two months of development
spanning embryoid body (EB) formation, neuroectoderm
induction, neuroepithelialization, neural progenitor pattern-
ing, and neurogenesis. At each time point, tissues from
the four lines were dissociated separately and combined
into one single-cell suspension for both scRNA-seq and
scATAC-seq pipelines (10X Genomics). The sequencing
data was demultiplexed using single nucleotide variants
(SNVs) specific to each individual and the two modalities
for each line and time point were integrated using canonical
correlation analysis (CCA) (19) (fig. S1, B to D). We
constructed ‘multi-omic metacells’ containing information
on both transcriptome and chromatin accessibility using
minimum-cost, maximum-flow (MCMF) bipartite matching
(20) within the CCA space (Fig. 1A). The metacells were
integrated using cluster similarity spectrum (CSS) (21), and
the integrated data was visualized using a Uniform Manifold
Approximation and Projection (UMAP) embedding (fig. S1,
E and F, and data S2). This revealed a relatively continuous
distribution of cell states through the entire time course (Fig.

2 | bioRχiv Fleck, Jansen et al. | Inferring and perturbing cell fate regulomes in human cerebral organoids

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Resolving cerebral organoid patterning and regional fate trajecto-
ries. (A) UMAP embedding of subsetted neural progenitor cells colored by Lou-
vain clusters, time point and velocity pseudotime. (B) UMAP embedding colored
by the correlation to developing mouse brain organizers. (C) Heatmap showing
the normalized expression of cluster marker genes related to brain patterning. (D)
Schematic of branch-inference strategy. High-resolution clusters were assigned to
branches based on terminal fate transition probabilities calculated based on RNA
velocity. (E) Branch visualization in a force-directed layout, with circles representing
high-resolution clusters with both RNA and access features colored by assignment
(Neuroepithelium, grey; Non-telencephalon progenitors, teal; Telencephalon pro-
genitors, plum; Dorsal telencephalon, orange; Ventral telencephalon, purple). (F)
Graph representation of regional branches colored by NFIA gene expression (left)
and binding motif enrichment (right) (G) Signal tracks showing normalized accessi-
bility at the transcription start site of NFIA in the different branches. (H) Heatmap
showing stage- and branch-specific gene expression and motif enrichment.

1, B to D, and fig. S1, G and H). Organoid development
proceeds from pluripotency (e.g. POU5F1) via a neural
progenitor cell state (e.g. PAX6, VIM1) to progenitor
and neuron cell states of the dorsal telencephalon (e.g.
EMX1, NEUROD6), the ventral telencephalon (e.g. DLX5,
ISL1, GAD1) as well as of non-telencephalic regions (e.g.
TCF7L2, LHX9), with cells from the different lines largely

intermixed. The high-dimensionality of the data could be
used to identify marker genes and gene regulatory regions
for the different cell states, as well as promoter accessibility
and binding motif enrichment for stage-specific transcription
factors (TFs) (Fig. 1, D and E, and data S3). We observed a
pseudotemporal cascade of chromatin accessibility changes
over the developmental time course associated with genes
involved in stem cell maintenance, neural tube patterning,
morphogenesis, neural precursor proliferation, neuron fate
specification, and other relevant biological processes (Fig.
1, F and G, fig. S1I, and data S4). Generally, the genome
showed highest accessibility in early states associated
with pluripotency and the transition to neuroepithelium,
whereas it progressively restricted in later stages of organoid
development.
We next wanted to reconstruct how regional heterogeneity
emerges during cerebral organoid development. Towards
this aim, we sub-clustered early portions of the trajectory
and identified molecular heterogeneity (Fig. 2A and fig. S2).
In the initial stages (day 7-9), we observed a predominant
neuroectodermal population (VIM, SIX3, CDH2, SOX3,
HES5) and a minor population of cells expressing non-neural
ectoderm markers (DLX5, TFAP2A) (22) (17, 23) (fig. S2,
A to C). In the neuroepithelium (day 12-18), expression gra-
dients emerged associated with patterning centers including
the antihem (PTX3, DLX2, GSX2), floor plate (RAX, SIX3,
SIX6) and roof plate (LMX1A, MSX1, DMRT3, WNT3A)
(fig. S2, D and E). We compared these organoid patterns to
a scRNA-seq map of the developing mouse brain (24), and
found similarity to populations that organize dorsoventral
and anterior-posterior gradients (Fig. 2B and fig. S2, F and
G). Over time, states associated with these centers further
diverged into neural progenitor cells (NPCs) expressing
either telencephalic and non-telencephalic markers, followed
by a second divergence into dorsal and ventral telencephalic
NPCs (Fig. 2C and fig. S2, H to K). Intriguingly, we
identified clusters within the early neuroepithelium that
have a significant enrichment of receptor-ligand interactions
with multiple other clusters, suggesting the presence of
organizing centers within the developing organoid (fig. S3).
These data extend previous work showing that patterning
centers emerge in the neuroepithelium, which coordinate to
regionalize the developing organoid (25).
From the regionalized NPCs, we next sought to reconstruct
the neurogenic differentiation trajectories for each brain
region. We used RNA velocity (26, 27) and CellRank (28)
to generate a terminal fate transition probability matrix
based on transcriptomes, which we used to construct a
differentiation graph of high-resolution metacell clusters
and assign branch identities (Fig. 2D, and figs. S2J and S4,
A to E). The graph, presented by a force-directed layout,
reveals an early bifurcation into anterior telencephalic and
posterior non-telencephalic cell states and later branching of
telencephalic progenitors into dorsal excitatory and ventral
inhibitory neuronal trajectories, respectively (Fig. 2E). Tran-
scriptional and regulatory dynamics can be explored along
each neurogenic trajectory, revealing regional specificity of
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Fig. 3. Gene regulatory network underlying human cerebral organoid formation. (A) Schematic of the Pando GRN-inference framework. Candidate regions are
identified through intersection of non-exonic accessible peaks with cis-Regulatory Elements (cREs) or conserved elements. Predicted TFs are selected for each candidate
region through binding motif matching. A linear model explains the relationship between TF-binding site pairs and expression of target genes. (B) UMAP embedding of the
inferred gene modules based on co-expression and inferred interaction strength between TFs. Color and size represent expression weighted pseudotime of TF regulator
and pagerank centrality of each module. (C) UMAP embedding shaded by module features. (D) Variation of module activity explained by branch, pseudotime, or branch
and pseudotime. Circles represent individual modules. (E) Branch and pseudotime specific modules in the GRN. Colors represent the branch with highest average module
activity. Modules where the TF motif was not experimentally validated are shown in grey. (F-G) Branch specific gene and regulatory modules for the telencephalon / non-
telencephalon split (F) for the ventral / dorsal telencephalon split (G). (H) Signal tracks showing normalized accessibility at the transcription start site of EMX1 in the different
branches and inferred regulatory regions for various transcription factors. Line color represents the sign of the interaction and box color (greyscale) represents the FDR of the
most significant interaction for this region. (I) Graph representation of regional branches showing the expression of EMX1 as well as gene and regulatory module activity for
NEUROD6. (J) Interactions between dorsal and ventral telencephalon-specific transcription factors ordered by expression pseudotime.

gene expression and chromatin accessibility (Fig. 2, F to H,
and fig. S4, F and G). As examples, we highlighted NFIA
as regulator of neurogenesis in the dorsal telencephalon,
and also identified a telencephalic progenitor state prior
to dorsoventral divergence marked by the expression of
DCT, DIO3 and SIX6, and characterized by transient ac-
cessible chromatin regions. Altogether, this data provides a
multi-omic developmental atlas spanning the course of brain
organoid regionalization and neurogenesis.

A gene regulatory network view of human cerebral
organoid formation.
Next we wanted to harness our multi-omic single-cell data
to infer the gene regulatory network (GRN) underlying hu-
man cerebral organoid development. We developed an al-
gorithm called Pando (Fig. 3A, see Methods), which incor-
porates scATAC-seq data to identify conserved non-exonic
regions and candidate cis-regulatory elements (29) (cCREs)

that are accessible across the organoid time course (candidate
regions, fig. S5, A and B). TF binding sites are predicted for
each candidate region (fig. S5, C to E), and the relationship
between TF expression and expression of the potential tar-
get genes with binding sites within nearby regions is inferred
using a linear model (fig. S5F). As a consequence, Pando
jointly infers sets of positively or negatively regulated target
genes (gene modules) as well as regulatory genomic regions
(regulatory modules) for each TF (fig. S5, G and H). We visu-
alized the GRN using a UMAP embedding, which revealed
groups of TFs that are involved in different phases of cere-
bral organoid development, broadly representing the pseu-
dotemporal order of cell state transitions (Fig. 3B and fig.
S5I). A series of TFs tracked transitions from pluripotency
(e.g. POU5F1, LIN28A) to neuroepithelium induction (e.g.
SOX2, HES1), with additional module neighborhoods linked
to brain regional NPC specification and neuron differentia-
tion (Fig. 3C). Nodes associated with initializing (pluripo-
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tency) and terminal states (regionalized neurons) had a high
degree of centrality, reflecting the high number of correlated
expressed genes for these states. Globally, this GRN shows
that regulatory region accessibility and TF expression track
with stages of organoid development and segregate during
brain regionalization.
We next sought to better understand neuronal trajectory re-
lationships within the GRN. We analyzed the variance ex-
plained by brain region (branch) and by general developmen-
tal pseudotime for all TF modules in the GRN (Fig. 3, D
and E). We found that certain TF modules (e.g. SP9, SCRT1)
were highly pseudotime dependent, and were correlated with
neurodevelopmental dynamics in multiple brain regions. In
contrast, other TF modules were specific to a brain region but
were not dynamic along the neurogenic pseudotemporal tra-
jectory (e.g. EMX1, NR1D1 in dorsal telencephalon; IRX5
in non-telencephalon). Another set of TFs had strong vari-
ance explained by both pseudotime and branch and these TF
modules represent maturation state- and fate-specific features
within the developing organoid (e.g. NEUROD6, dorsal te-
lencephalon neurons; EOMES in dorsal telencephalon inter-
mediate progenitors). Indeed, we could use the GRN to re-
veal gene regulatory programs that diverge upon specification
of progenitors and differentiation of neurons into organoid
brain regional fates (Fig. 3, F and G). For instance, gene
and regulatory modules for NFIB, NEUROD1 and EMX1
are specific to the dorsal telencephalon and characterize the
regulatory changes tracking the specification of this develop-
mental trajectory. As a representative example, we show the
EMX1 locus and highlight predicted TF regulators such as
NEUROD1 within accessible chromatin regions (Fig. 3, H
and I). More broadly, we could infer TF modules that distin-
guish dorsoventral neuron fate specification and differentia-
tion in the telencephalon (Fig. 3J). Altogether, these analyses
provide a rich resource for future work to understand the gene
regulatory programs controlling human brain regionalization
and cell programming.

In organoid single-cell genomic perturbation screen.
To begin to understand the mechanisms regulating cell fate
and state during human brain development, we employed a
pooled perturbation screen (17) in mosaic organoids (Fig.
4A). We designed gRNAs targeting 20 TFs expressed in both
the organoid and primary developing human cortex (4) (Fig.
4B and fig. S6, A and B), and generated a pooled lentivi-
ral library. We infected induced pluripotent stem cells (iP-
SCs) harboring an inducible Cas9 cassette with the lentivi-
ral gRNA library, and sorted and expanded vector positive
iPSCs based on fluorescence (fig. S6C). We induced Cas9
expression in the infected iPSCs, and generated mosaic cere-
bral organoids containing a multitude of wild-type (WT) and
knock-out (KO) genotypes (fig. S6B and C). Fluorescence
was maintained throughout organoid development, and bulk
amplicon sequencing revealed relatively homogenous detec-
tion of the gRNAs (figs. S6D and S7A). At day 60, we
sequenced single-cell transcriptomes and guide cDNA am-
plicons and recovered 22,449 cells with an assigned gRNA
(Fig. 4C, and fig. S7, B to D). Each gRNA for all 20 tar-

gets was detected with an average of 1 gRNA detected per
cell (fig. S7, D to F). We generated a UMAP embedding,
analyzed cell type heterogeneity, and annotated NPCs, inter-
mediate progenitors, and neurons in the dorsal telencephalon,
the ventral telencephalon, as well as in non-telencephalic de-
veloping brain regions (Fig. 4C, and fig. S7, G to I). To
determine the effect of TF perturbation on cell fate, we first
tested the association of gRNA detection with cell type abun-
dance. We hierarchically clustered all Louvain clusters on
the basis of gRNA abundance and observed grouping based
on brain region identity (fig. S7J). This showed that different
brain regions exhibited unique gRNA compositions suggest-
ing region specific effects of TF KOs. Next, we stratified the
detected gRNAs using a log odds ratio (p-value based on a
Cochran–Mantel–Haenszel test) and the consistency of the
effect across organoids and gRNAs (see Methods), and visu-
alized these metrics across the different brain region fates in
a ‘lollipop plot’ (Fig. 4D, and data S5). Based on these met-
rics, we found that for 8 TFs there was a consistent enrich-
ment (support from at least 2 gRNAs) in the ventral telen-
cephalon branch with corresponding depletion in the other
regions, including the cortex (Fig. 4E). Among these, we
highlight TBR1 and GLI3, two strong effect genes with con-
sistent depletion in the dorsal telencephalon and enrichment
in the ventral telencephalon (Fig. 4F). Both genes are known
regulators of mouse cortical development (30, 31), and are as-
sociated with neurodevelopmental disorders in humans (14,
32).
We next performed differential gene expression analysis to
determine perturbation effects on gene expression in dorsal
and ventral telencephalic neurons (Fig. 4G, and data S6). In-
terestingly, for both neuron types we detected the most differ-
entially expressed genes (DEGs) for E2F2, a crucial cell cy-
cle regulator (33) that has enriched expression in intermediate
progenitors. These E2F2-related changes in the two neuron
types were distinct but correlated (Fig. 4H and fig. S8, A and
B), and some of the DEGs were specific to E2F2 when com-
pared to effects from other targets (fig. S8, C and D). Func-
tional enrichment analysis suggests that E2F2 DEGs are sig-
nificantly related to neuron development and neuron-related
function (Fig. 4I, fig. S8E, and data S7). This suggests that
misregulation of cell cycle exit during the transition from a
progenitor to neuron state has a large effect on the neuronal
transcriptome state. For all targeted genes, we compared the
number of DEGs with the extent of composition changes and
did not observe substantial correlation, implying independent
mechanisms involved in the two types of changes (Fig. 4J).
Altogether, our data provides one of the first implementations
of an in organoid multiplexed perturbation experiment to sys-
tematically understand the effect of putative gene KO on hu-
man brain cell fate and state development.

GLI3 regulates the dorsoventral fate decision in the
human telencephalon.
Mosaic perturbations suggested that GLI3 is involved in
dorsoventral neuronal fate specification in the human telen-
cephalon. To confirm this result, and to explore the underly-
ing developmental mechanisms, we used CRISPR/Cas9 gene
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Fig. 4. In organoid single-cell genomic perturbation of cortical transcription factors. (A) Schematic of single-cell perturbation experiment using the CROP-seq method
and data analysis. (B) Heatmap showing average expression of targeted genes in neural progenitor cells (NPC), intermediate progenitors (IP) and neurons of the primary
and organoid cortex. Targeted TF nodes are highlighted on the GRN. (C) UMAP embedding with cells colored based on the detected gRNA, organoid sample and branch
assignment. (D) Lollipop plot showing the impact of each gRNA on cell type abundance in dorsal and ventral telencephalic neurons. (E) Heatmap showing effect of gRNAs on
abundance of regional branches. Sidebar shows the number of gRNAs that were consistent and circles represent consistent and statistically significant (FDR<0.01) effects on
composition. (F) UMAP embedding colored by detected gRNAs for selected genes that had strong effect on fate regulation. (G) Lollipop plots showing number of differentially
expressed genes (DEG) for targeted genes in the dorsal and ventral telencephalic neurons. (H) Heatmap of E2F2 DEGs in the dorsal and ventral neuron. (I) Examples of
functional enrichment for E2F2 DEGs in dorsal and ventral neurons. (J) Differential gene expression analysis was performed to identify potential effects on cell state. Plot
shows the effect of cell composition change and the number of differentially expressed genes (DEGs).

editing to generate two isogenic GLI3 KO iPSCs and con-
trol cells (WT) that went through the editing process (Fig.
5A, and fig. S9, A to D). We generated KO and WT cere-
bral organoids and confirmed that the GLI3 protein is not
detected in the KO organoids (fig. S9, C and E, and data
S8). We performed scRNA-seq on KO and WT organoids
at day 45, a time point of early neurogenesis, and analyzed
cell heterogeneity (Fig. 5, B and C). We observed a strik-
ing effect in that the isogenic KO cells were fully depleted
in the dorsal telencephalon, with a strong enrichment in the
ventral telencephalon (Fig. 5D), consistent with the mosaic
perturbation experiment. We analyzed the effect of GLI3 KO
on ventral telencephalic cell states using differential expres-
sion analysis, and found strong correspondence in the results
from the isogenic and mosaic perturbation experiments (Fig.
5E, and data S9). Interestingly, we found that in both cases
the TF MEIS2, which is also a marker of lateral/caudal gan-
glionic eminence (LGE/CGE) relative to medial ganglionic

eminence (MGE) was strongly down-regulated in GLI3 KO
conditions (Fig. 5E). Further analysis on the ventral telen-
cephalic neuron heterogeneity identified distinct LGE/CGE-
like and MGE-like neuronal populations with GLI3 KO cells
strongly enriched in MGE neurons (Fig. 5F, and fig. S9F).
Interestingly, we observed expression alterations in GLI3 KO
LGE-like neurons compared to the WT LGE state with genes
involved in dorsoventral patterning (PAX6, MEIS2, DLK1)
being differentially expressed (fig. S9G). These data con-
firm that GLI3 is required for cortical fate establishment in
humans, and its absence impacts development of the ventral
telencephalon by promoting the emergence of MGE neurons
consistent with a role as repressor of the MGE fate (34) and
by altering the state of LGE neurons (Fig. 5G).

GLI3 is a mediator between SHH, NOTCH and WNT
signaling pathways.
To identify gene regulatory mechanisms controlling
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Fig. 5. GLI3 regulates the dorsoventral telencephalic fate decision in humans.
(A) Schematic of GLI3 loss of function experiment (knock-out, KO; wild-type, WT)
using the iCRISPR nickase system. (B) UMAP embedding showing trajectories
from neural progenitor cells (NPCs) to neurons colored by different clusters as-
signed to branches (dorsal, ventral, and non-telencephalon), with inset colored by
genetic condition. (C) Feature plots colored by expression of cell type markers.
(D) Stacked barplots showing distribution of cluster assignment per organoid for
each condition, colored by cluster. (E) Differential expression (DE) in ventral te-
lencephalic neurons for GLI3 isogenic KO and GLI3 CROP-seq data. X and y
axes indicate coefficients of the linear model. Colors indicate whether the gene
was significant (FDR<10-4) in CROP-seq, isogenic KO, or both. (F) Sub-clustering
ventral telencephalic GLI3 KO neurons reveals medial ganglionic eminence (MGE)
and lateral/caudal ganglionic eminence (LGE/CGE) populations. UMAPs colored
by genetic condition, GE population, and marker expression level. (G) Schematic of
observed effect of GLI3 loss of function on dorsoventral telencephalic fate decisions.

dorsoventral fate decisions in the human telencephalon
and to further illuminate the role of GLI3 in this process,
we generated single-cell multiome data (10X genomics)
measuring both transcriptome and chromatin accessibility
from the same single cells derived from 3 week old WT and
GLI3 KO organoids (Fig. 6, A and B, and fig. S10, A to C).
This time point was chosen based on our previous analysis
showing that cell states were present in the organoids
that surround the dorsoventral bifurcation decision. The
multiome data revealed strong transcriptomic differences
between KO and WT particularly in the early telencephalic
progenitor population (cluster 0, Fig. 6, B and C, fig.
S10D, and data S10). Examining the expression of ligands,
receptors, and target genes of several important signaling
pathways suggested substantial changes on the cell-cell
communication landscape in the GLI3 KO organoids,
including the significant differential expression of Notch
targets HES1 (up-regulated) and HES5 (down-regulated)
in the telencephalic progenitor population (cluster 0 and 2,
Figure 6D). Interestingly, promotion of dorsal telencephalic
fate emergence by HES1 was observed in the CROP-seq
experiment (Fig. 4E), in contrast to depletion of the dorsal
telencephalic fate in the GLI3 KO. Some of the observed
DEGs in NPCs containing HES1 gRNAs in the CROP-seq
experiment were also observed in the GLI3 KO telencephalic
progenitor population (SOX4, SOX11), further implying
crosstalk between the pathways (fig. S10E). Differential

ligand-receptor pairing analysis highlighted the same popu-
lation of early telencephalic progenitors (cluster 0, 2, 6 and
12) for its strengthened role as a signaling source in the GLI3
KO organoids (fig. S10, F to K).
To better understand how the observed changes were reg-
ulated by GLI3 loss of function, we used the global GRN
to distinguish direct from indirect effects of GLI3 and to
construct a mechanistic model of the perturbation signature
in telencephalic progenitors (Fig. 6E, and fig. S10, L and
M). We tested whether the effects observed in the KO were
consistent with the previously inferred regulatory network
and found that DEGs were highly enriched among direct
and indirect targets of GLI3 (Fig. 6F). 76% of the DEGs
were indirect targets of GLI3, but downstream of other TFs
directly regulated by GLI3 such as HES4, HES5, OTX2 and
PAX6. Moreover, for the most highly differential genes,
the GRN could predict the directionality of the interaction
with an accuracy of up to 80% for direct and up to 74% for
indirect interactions (Fig. 6G). Interestingly, both the direct
and indirect transcriptomic changes correlated positively
with transition probabilities to ventral telencephalon and
negatively with transition probabilities to dorsal telen-
cephalon (fig. S10N), consistent with the disrupted cortical
fate establishment and ventralization of the telencephalon in
GLI3 KO organoids. We identified differentially accessible
(DA) peaks between WT and GLI3 KO organoids, and
found substantial KO-induced alterations in chromatin state
in the genomic vicinity of DEGs (Fig. 6H, and data S11).
GREAT enrichment analysis (35) revealed an association
of differentially accessible regulatory regions with neuron
differentiation, the WNT pathway and regionalization (Fig.
6I, and data S12). Altogether, this data suggests that GLI3
is a mediator between SHH, NOTCH and WNT signaling
pathways.

Discussion
The human brain has unique features that distinguish it from
other species. It has been a major challenge to study the
mechanisms that control brain development due to difficulty
in obtaining tissue across a time window spanning the differ-
ent stages of development, and the lack of methods to system-
atically manipulate gene function. Here we have integrated
transcriptome, chromatin accessibility, and genetic perturba-
tion datasets to provide insight into the mechanisms underly-
ing human brain regionalization. In a broad sense, we find
that the programs identified in mouse and other non-human
model systems are well conserved in humans, and the extent
that stem cell-derived cerebral tissues recapitulate these pro-
grams is remarkable. As a proof of principle, we focused
on GLI3 as a well-studied transcription factor controlling
dorsoventral fate specification in the rodent telencephalon.
We find clear and striking evidence that this same transcrip-
tional program is conserved in humans. More importantly,
this data provides strong evidence that multi-region human
cerebral organoids can be predictive model systems.
We established the Pando GRN inference framework which
incorporates features of the regulatory genome that have not
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Fig. 6. Telencephalic dysfunction of WNT and NOTCH regulomes in the absence of GLI3. (A) Schematic of the experiment where transcriptome and chromatin access
was measured in the same cell at 19 days of cerebral organoid development. (B) UMAP embedding colored by cluster, and labeled by projected cell fate. Inset UMAP colored
by genetic state. (C) Lollipop plot showing number of DEGs of control (Ctrl.) versus GLI3 KO cells in the different clusters. Circle color and size indicate cluster and number
of cells, respectively. (D) Heatmap showing DE associated with various signaling pathways. Genes are classified as ligand (L), receptor (R) and target (T). (E) Subgraph of
the GRN, showing direct and second-order indirect GLI3 targets whose inferred regulatory interaction is consistent with the observed DE. Circles are genes with all TFs being
labelled. Edge interactions are colored based on positive (teal) or negative (maroon) regulation by the TF. (F) Accuracy of GRN predicted directionality of GLI3 effect for direct
and indirect interactions at different false discovery rate (FDR) thresholds. (G) Enrichment of DE genes in the direct and indirect neighborhood of GLI3 in the GRN graph. (H)
Signal tracks showing differentially accessible (DA) peaks in cluster 0 and 2 nearby genes that are differentially expressed between GLI3 KO and WT conditions. (I) GREAT
enrichment analysis of DA peaks in cluster 0 and 2, with box area proportional to FDR and colored by ontology category. Representative genes near DA peaks are shown for
each category.

been previously utilized for global analysis of developmen-
tal programs. Pando combines transcriptome, chromatin ac-
cessibility, an expanded TF family motif reference, known
cis-regulatory elements, and evolutionary conservation into
a flexible, linear model-based framework. The package im-
plements the full GRN inference strategy including candidate
region selection, motif matching, model fitting and discovery
of gene and regulatory modules. We have highlighted inter-
esting aspects of the network, such as TF modules involved
in the transition from pluripotency via neuroectoderm to a
neuroepithelium, as well as the modules associated with re-
gionalized brain states. The latter modules will be interesting
to explore in experiments designed to program specific neu-
ronal states, or to systematically perturb human organoids.
We validated the critical role of GLI3 in dorsal telen-
cephalic cell fate specification in humans, and further iden-
tified the contribution of GLI3 during specification of MGE
and LGE/CGE neurons. The integration of the single-cell
multiome data from GLI3 KO organoids and the global GRN
allowed us to propose a model in which GLI3 becomes in-
duced in early telencephalic NPCs through SHH signaling
during neuroepithelial regionalization. GLI3 then regulates
downstream targets, activating cortical fate acquisition and
inhibiting the MGE induction program, through differential
activity of Notch target genes HES5, HES4 and HES1. No-
tably, HES1 knockout leads to an enrichment of dorsal te-
lencephalic cell states, providing further evidence for ex-
tensive crosstalk between the WNT and NOTCH pathways
during human brain regionalization and neurogenesis. More
broadly, our data reveals the extraordinary potential of multi-
modal single-cell genomic and organoid technologies to un-
derstand gene regulatory programs of human brain develop-
ment.

There are advantages and limitations to the protocol that we
used for in organoid genetic perturbations. On the positive
side, inducible Cas9 iPSCs enable the temporal control of
genetic manipulation. In this project, we perturbed genes at
the iPSC stage, however KO can in principle be induced at
any stage of organoid development. The vector system we
used contained a single gRNA, and other approaches with
cloning sites for 2 gRNAs may enhance KO efficiencies. Fur-
ther modifications to the vector system that enable simulta-
neous genetic perturbation and lineage recording could be
used to provide additional modalities to the measurements
(36). We utilized the propensity of different human iPSC
lines to give rise to a spectrum of human brain regions using
the same cerebral organoid protocol in order to identify pat-
terning and region-specific regulomes. However, it is a ma-
jor challenge to use the current multi-region brain organoid
protocols due to batch, line and clone heterogeneity. Strate-
gies to generate defined brain regions have advantages to dis-
ease modeling and screening, however the brain is ultimately
multi-regional. Novel enhancements and engineering innova-
tions are required to generate stereotyped multi-region brain
organoids. Nonetheless, current protocols provide a new in-
road to infer and perturb cell fate regulomes in human cere-
bral tissue.
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DATA AVAILABILITY
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The Pando R package is available on GitHub (https://github.com/
quadbiolab/Pando). Other custom code used in the analyses is also deposited
on GitHub (https://github.com/quadbiolab/organoid_regulomes).
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Methods
Experimental methods.

Stem cell and organoid culture. We used 3 human induced pluripotent stem cell (iPSC) lines (Hoik1, Wibj2 from the
HipSci resource (37); 409B2 from the RIKEN BRC cell bank) and one human ES cell line (H9, WiCell). Stem cell lines
were cultured in mTESR1 (Stem Cell Technologies, 05851) with mTeSR1 supplement (Stem Cell Technologies, 05852) and
supplemented with penicillin/streptomycin (P/S, 1:200, Gibco, 15140122) on matrigel-coated plates (Corning, 354277). Cells
were passaged 1-2 times per week after dissociation with TryplE (Gibco, 12605010) or EDTA in DPBS (final concentration
0.5mM) (Gibco, 12605010). Media was supplemented with Rho-associated protein kinase (ROCK) inhibitor Y-27632 (final
concentration 5µM, STEMCELL, 72302) the first day after passage. Cells were tested for mycoplasma infection regularly using
PCR validation (Venor GeM Classic, Minerva Biolabs) and found to be negative. 4,500 - 5000 cells were plated in ultra low
attachments plates (Corning, CLS7007) to generate cerebral organoids using a whole brain organoid differentiation protocol
(2). The use of human ESCs for the generation of cerebral organoids was approved by the ethics committee of northwest and
central Switzerland (2019-01016) and the Swiss federal office of public health.

Single cell RNA and ATACseq for the developmental time course. Cerebral organoids were generated from four different
stem cell lines (H9, 409B2, Wibj2, Hoik1) simultaneously. Cerebral organoids of the same batch were dissociated at multiple
timepoints of the course of cerebral organoids development. We collected these single cell suspensions from an EB time point
(day 4), the time points of neuronal induction (day 7, 9 and 11) and after embedding in matrigel and starting the neuronal
differentiation process (day 12, 16, 18, 21, 26, 31 and 61). Organoids of the four different cell lines were pooled based
on size and dissociated together and cell lines were later demultiplexed based on the single nucleotide polymorphism (SNP)
information. Multiple organoids of each line were pooled together to obtain a sufficient number of cells. For the early time
points 15 organoids per cell line were pooled, decreasing this number to minimally 3 organoids for the later time points (Data
S1). Organoids were cut in halves and washed three times with HBSS without Ca2+/Mg2+ (STEMCELL technologies, 37250).
Single cell suspensions were acquired by dissociation of the organoids with a papain-based dissociation (MACS Miltenyi
Biotech 130-092-628). 2 ml of pre-warmed papain solution was added to the organoids and incubated for 15 minutes at 37 °C.
Enzyme mix A was added before the tissue pieces were triturated 5-10 times with a 1000 wide-bore and p1000 pipette tips. The
tissue pieces were incubated two times for 10 min at 37 °C with trituration steps in between and after with 200 and 1000p pipette
tips. Cells were filtered with consecutively 30 µm and 20 µm pre-separation filters and centrifuged. Cells were resuspended and
viability and cell count were assessed with a Trypan Blue assay on the automated cell counter Countess (Thermo Fisher). Cell
suspensions were split in two and resuspended in CryoStor CS10 (STEMCELL technologies 07952) and cryopreserved at -80
°C. The next day cryotubes were transferred to liquid nitrogen for storage until the scRNA-seq and scATAC-seq experiments
were performed. The cryopreserved single cell suspensions of each time point were thawed by warming up the cryo for 1-2
minutes in a water bath at 37°C and directly centrifuged in 10ml prewarmed DMEM with 10% FBS. Cells were washed twice
with PBS + 0.04% BSA and filtered through a 40µm cell strainer (Flomi). For scATAC-seq, nuclei were isolated according
to the protocol provided by 10x genomics (Demonstrated protocol CG000169 Rev D) using the low input protocol and a lysis
time of 3 min. Nuclei were loaded in a concentration that would result in a recovery of 10,000 nuclei. In case of less nuclei
recovered, the maximum number of nuclei was targeted. Single cell ATACseq libraries were generated with the Chromium
Single Cell ATAC V1 Library & Gel Bead Kit. Prior to sequencing an additional clean-up step was performed to enrich
shorter fragments by applying a double sided (1.2-0.75x) cleanup with AMPureXP beads (Beckman Coulter) and Illumina Free
Adapter Blocking Reagent was used to reduce potential index hopping. The libraries were sequenced on Illumina’s NovaSeq
platform. For sc-RNAseq, cells were put in a concentration after counting and viability checking that allowed targeting 10,000
cells and in case the cell number was not sufficient all cells were loaded. Single cell RNAseq libraries were generated with
the Chromium Single Cell 3’ V3 Library & Gel Bead Kit. Single cell encapsulation and library preparation were performed
according to the manufacturer’s protocol. Libraries were pooled, FAB treated and sequenced on Illumina’s NovaSeq platform.
A summary of all single-cell experiments can be found in Data S1.

Doxycycline-inducible Cas9 nuclease and nickase cell line. The human iPSC line 409B2 was used to create an iCRISPR-
Cas9 nickase (Cas9n) and an iCRISPR-Cas9 line as described (38). The doxycycline-inducible Cas9 expressing cell line
was generated by introducing two transcription activator-like effector nucleases (TALENs) targeting the AAVS1 locus, which
has shown to be effective for sustained transgene expression, and two TALEN constructs with donor plasmids. One of the
donor plasmids contained a constitutive reverse tetracycline transactivator (AAVS1-Neo-M2rtTA) and the other one contained
a doxycycline-inducible expression cassette (Puro-Cas9). A D10A mutation was introduced by site-directed mutagenesis of the
original Puro-Cas9 donor with the Q5 mutagenesis kit (New England Biolabs, E0554S) to generate the Cas9n. The cell lines
used were tested for the proper expression of pluripotency markers SOX2, OCT-4, TRA1-60, and SSEA, quantitative PCR
confirmed the doxycycline-inducible Cas9n and digital PCR was used to exclude off-target integration (39). Both cell lines
showed normal karyotypes upon generation, but the iCRISPR-Cas9 line acquired a common stem cell abnormality over time.
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55% percent of the cells showed a derivative chromosome 2 with a long arm of chromosome 1 (bands q11q44) attached to the
long arm of one chromosome 2 (band q37).

Vector and lentivirus preparation for perturbation experiment. The perturbation experiment was performed according
to the CROP-seq protocol as described (17) with some minor alterations. The experiment was performed in organoids derived
from the inducible Cas9 nuclease line which contains a Puro selection marker. To be able to select for cells that received
the CROP-seq vector, Puro was exchanged for EGFP to isolate cells by fluorescence. Three gRNA per targeted gene were
designed by Applied Biological Materials Inc. (abm) and synthesized by IDT as 74 base oligonucleotides with 19 and 35 bases
of homology to the hU6 promoter and guide RNA backbone, respectively. Oligonucleotides were pooled in equal amounts and
were assembled in the vector backbone by Gibson’s isothermal assembly. The plasmid library was sequenced to validate the
complexity of the pooled plasmid library. 10ng of plasmid library was used for generating a sequencing library with a single
PCR reaction. Illumina i7 and i5 indices were added by PCR and the library was sequenced on Illumina’s MiSeq platform.
Upon validation, lentiviruses were generated by the Viral Core Facility of Charité Universitätsmedizin Berlin.

Generation of mosaic organoids for perturbation experiment. The iCRISPR-Cas9 line was cultured on matrigel in
mTesr1 supplemented with P/S (1:200) and Cas9 was induced 2 days prior to lentiviral transduction by adding 2µg/ml doxy-
cycline. 24 hours later cells were dissociated into single cells with TrypLE and 300.000 cells of the iCRISPR-Cas9 cells were
plated in at least 12 wells of matrigel-coated 6-well plates in mTesr1 supplemented with P/S (1:200), Y-27632 (final concentra-
tion 5µM) and 2µg/ml doxycycline. 24 hours later cells were transduced with a low multiplicity of infection (MOI) where less
than 30% of the cells were GFP+ to ensure that the majority GFP+ cells only received one lentivirus per cells. The viral particles
were added to the culture media (mTesr1 supplemented with P/S, Y-27632 and 2µg/ml doxycycline). 24h later, media was ex-
changed for mTesr1 supplemented with P/S and 2µg/ml doxycycline until 70% confluency was reached. Cells were then sorted
for GFP-positive to enrich for CROP-seq-vector-positive cells and plated on matrigel-coated plates in mTesr1supplemented
with 100 µg/ml Primocin (InvivoGen, ant-pm-1) and Y-27632 (final concentration 5µM). When cells reached 70% confluency,
whole brain organoids were generated as mentioned previously.

Preparation of single-cell transcriptomes from mosaic perturbed organoids. After 2 months, single organoids and
pools of multiple organoids were dissociated with a papain-based dissociation kit (MACS Miltenyi Biotech, cat. No. 130-092-
628) as described previously. Cells were sorted using fluorescence. Cell viability and number was assessed using the Trypan
Blue assay and automated cell counter Countess (Thermo Fisher). Finally, cells were diluted to an appropriate concentration to
obtain approximately 7,000 cells per lane of the 10x microfluidic chip. Single cell RNAseq libraries were generated with the
Chromium Single Cell 3’ V3 Library & Gel Bead Kit. The expression libraries were FAB treated and sequenced on Illumina’s
NovaSeq platform.

gRNA detection from single cell cDNA. gRNA were amplified from 60ng of cDNA remaining from scRNA-seq preparation
with three separate PCR reactions similar to reactions as described (40). First, cDNA was amplified via PCR broadly targeting
the outer part of the U6 promoter. Subsequently, the inner portion of the U6 promoter adjacent to the guide sequence and a
TruSeq Illumina i5 adapter. Lastly, we added Illumina sequencing i7 adaptors. PCRs were monitored by qPCR to avoid over-
ampliciation and following every PCR reaction the samples were purified using SPRI beads (Beckman Coulter) and libraries
were sequenced at 1:10 proportion of the transcriptome library on Illumina’s NovaSeq.

gRNA detection from gDNA. Cells from different stages of the organoid protocol were collected (iPSC, embryoid body,
embedded organoids and organoids day 30). QuickExtract 30-60 µl (Epicentre, QE0905T) was added to the cell pellets or
organoids and the suspension was incubated at 65°C for 10 min, 68°C for 5 min and 98 °C for 5 minutes to extract DNA. The
same PCR was done as used to validate the library complexity plasmid library (17). The PCR was performed with the KAPA2G
Robust PCR Kit (Peqlab, 07-KK5532-03) using the supplied buffer B and 5 µl isolated DNA. The following program was used:
95°C 3 min; 35 ×(95°C 15s, 65 °C 15s, 72 °C 15s); 72°C 60s. Libraries were sequenced on with Illumina’s MiSeq (Nano kit).

Isogenic GLI3 knock-out line generation. Two days prior to lipofection, iPSC media was supplemented with 2µg/ml doxy-
cycline (Clontech, 631311) to induce Cas9n expression. Two guides were designed using the Broad Institute’s CRISPR de-
sign tool (http://crispr.mit.edu/). The following guide pair was selected: ACAGAGGGCTCCGCCACGTGTGG,
CCGCGGGACGGTGTTTGCCATGG. The Alt-R CRISPR-Cas9 System (IDT) was used for guide delivery with lipofection
according to the manufacturer’s protocol. To form the crRNA:tracrRNA complex in a 3 µM final concentration for each guide
complex, 1.5 µl of each guide crRNA was combined with 3 µl tracrRNA and 44 µl nuclease-free water. For the reverse trans-
fection, 1.5µl of the crRNA:tracr complex mix and 0.75µl RNAiMAX (Invitrogen, 13778075) were diluted in 47.75 µl OPTI-
MEM (Gibco, 1985-062) for each replicate and incubated for 20 minutes at RT in a well of 96-well plate coated with Matrigel
(Corning, 35248). During incubation, ~70% confluent cells were detached with TryplE (Gibco, 12605010), centrifuged and
resuspended in 1ml mTeSR with 1:1000 Y-27632 (STEMCELL, 72302). After complex incubation, cells were diluted 30 or
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60 times in 100 µl mTeSR with 1:1000 Y-27632 (STEMCELL, 72302) and 2µg/ml doxycycline (Clontech, 631311) and the
cell suspension was added to a well containing the transfection complexes. After 24h media was replaced with mTeSR1 media
and cells were allowed to recover for 72h. 70% confluent wells were used for further processing after 72 hours. Cells were
passaged as single cells in a Matrigel-coated (Corning, 35248) 6-well plate in mTeSR media with 1:200 P/S (Gibco, 15140122)
and 1:1000 Y-27632 (STEMCELL, 72302). Low amounts of cells were plated per well to avoid the fusion of colonies. Media
was changed daily and Y-27632 was added for the first 72 hours to prevent apoptosis of the single cells. When colonies were
apparent, single colonies were picked by scraping with a 10 microliter pipette tip. 2/3 of the cell suspension was plated in a
single well of a Matrigel-coated 96-well plate in mTeSR1 supplemented with 1:200 P/S and 1:1000 Y-27632. The other por-
tion of the cell suspension was pelleted and used for validation of frameshift mutations by sequencing. Validated clones were
expanded, cryopreserved and karyotyped. The three selected lines, one WT and 2 KO lines, showed a normal karyotype.

Validation of KO lines by sequencing. The cell pellets of picked colonies were resuspended in 10 µl QuickExtract (Epi-
centre, QE0905T) and the suspension was incubated at 65 °C for 10 min, 68° C for 5 min and 98 °C for 5 minutes to extract
DNA. A PCR was performed with primers containing Illumina sequencing adapters for the targeted locus of the GLI3 gene.
Amplification was performed with the KAPA2G Robust PCR Kit (Peqlab, 07-KK5532-03) using the supplied buffer B and 2 µl
of extracted DNA. The following program was used: 95 °C 3 min; 35 ×(95°C 15s, 65 °C 15s, 72 °C 15s); 72°C 60s. Unique P5
and P7 Illumina indices were added to 0.5 µl of the previous PCR product with a second PCR program (98°C 30s; 25 ×(98°C
10s, 58°C 10s, 72°C 20s); 72°C 5 min), with the Phusion HF MasterMix (Thermo Scientific, F-531L). The double-indexed
libraries were pooled and purified with SPRI beads. Purified libraries were sequenced on the MiSeq (Illumina) resulting in
pair-end sequences of 2 x 150 bp. LeeHom (41) was used to trim the adapters after base calling with Bustard (Illumina).

Western blot. GLI3 WT and KO organoids of day 15 were collected into Laemmli-Buffer, homogenized with a pestle (Fisher-
brand 12-141-368) and sonicated with 15 cycles with the Bioruptor Plus. Subsequently, two high and low amounts of protein
extractions and ladder (Thermo Scientific 26620) were run on 8% SDS-PAGE (BioRad System) and transferred to PVDF mem-
brane using Wet-Blot. After blocking for 20 min with 4% milk powder in PBS+0.1% Tween, the primary antibody (1:1000,
stock 0.5 µg/µl, R&D systems, AF3690) was incubated overnight at 4°C. After washing 3 times for 7 min at RT in PBS+0.1%
Tween on a shaker, the secondary Goat IgG HRP-conjugated antibody (1:7000, R&D systems HAF017) diluted 1:5000 in 4%
milk and PBS+0.1% was incubated for 2h. The enhanced chemiluminescence signal was recorded using ChemiDoc. The load-
ing control Beta-Catenin (Primary antibody: stock 1:10.000, Cell Signalling technologies L54E2; Secondary antibody: stock
0.8 µg/µl 1:7000, Jackson ImmunoResearch 115-035-003) was probed on the same membrane and loading was also controlled
by ponceau staining. Raw images are provided in Data S8.

Generation of single cell transcriptome and multiome of GLI3 KO and WT organoids. Organoids of GLI3 WT and KO
iPSCs were generated simultaneously and dissociated with a papain-based dissociation kit (MACS Miltenyi Biotech, cat. No.
130-092-628) as described earlier. ScRNAseq was performed on day 45 of organoid development for both KO lines and the
WT line for two independent organoid batches. After dissociation, cell viability was checked, cells were counted and 7000 cells
were targeted per lane of the 10x microfluidic chip. Libraries were generated with the Chromium Single Cell 3’ V2 Library &
Gel Bead Kit and sequenced on Illumina’s HiSeq platform. Combined scRNA-seq and scATAC-seq were generated with the
Chromium Single Cell Multiome ATAC + Gene Expression kit. Prior to nuclei isolation, day 19 organoids were dissociated
with the papain-based dissociation. Nuclei were isolated according to the protocol provided by 10x genomics (Demonstrated
protocol CG000365, Rev B) with a lysis time of 3 min. The gene expression and accessibility libraries were FAB treated and
sequenced on Illumina’s NovaSeq platform.

Data analysis methods.

Preprocessing of single-cell RNA-sequencing data from the organoid time course. We used Cell Ranger (version
3.0.2) with default parameters to obtain transcript count matrices by aligning the sequencing reads to the human genome and
transcriptome (hg38, provided by 10x Genomics, version 3.0.0). Count matrices were further preprocessed using the Seurat R
package (version 3.2) (19). First, cells were filtered based on unique molecular identifier (UMI) counts, the number of detected
genes, and the fraction of mitochondrial genes. The threshold of mitochondrial gene fraction was held constant across datasets
(<0.2). Since sequencing depth varied between timepoints, the threshold of UMI count and number of detected genes was set
individually for each sample as follows:

• Day 4&7: #UMI: >10000, <80000; #features: >3000, <8000

• Day 11: #UMI: >10000, <60000; #features: >3000, <8000

• Day 12: #UMI: >2500, <40000; #features: >1000, <6000

• Day 16: #UMI: >10000, <60000; #features: >3000, <8000
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• Day 18&21: #UMI: >2500, <60000; #features: >1500, <8000

• Day 26: #UMI: >2500, <60000; #features: >2000, <8000

• Day 31: #UMI: >2500, <50000; #features: >2400, <7500

• Day 61: #UMI: >1000, <60000; #features: >1000, <8000

Transcript counts were normalized by the total number of counts for that cell, multiplied by a scaling factor of 10000 and
subsequently natural-log transformed (NormalizeData()).

Preprocessing of single-cell ATAC-sequencing data from the organoid time course. We used Cell Ranger ATAC
(version 1.1.0) with default parameters to obtain fragment files by aligning the sequencing reads to the human genome and
transcriptome (hg38, provided by 10x Genomics, version 1.1.0). Peaks were called from the fragment file using MACS2
(version 2.2.6). Both the fragment files and the peak count matrices were further preprocessed using Seurat (version 3.2) (19)
and Signac (version 1.1) (42). First, peaks were filtered by width (<10000 bp, >20 bp) to retain only high-quality peaks.
Further, the following quality control metrics were computed using Signac: A transcription start site (TSS) enrichment score
(TSSEnrichment()), nucleosome signal (NucleosomeSignal()), the percentage of reads in peaks, and the ratio of
reads in genomic blacklist regions. Subsequently, cells were filtered based on the following metrics:

• Percentage of reads in peaks > 30%

• # peak region fragments > 5000

• Blacklist ratio < 0.003

• Nucleosome signal < 5

• # TSS fragments > 5000

• TSS enrichment score > 2

We then created a unified set of peaks from the union of peaks from all samples by merging overlapping and adjacent peaks.
The unified set of peaks was requantified for each sample using the fragment file (FeatureMatrix()). Peak counts were
normalized by term frequency–inverse document frequency (tf-idf) normalization using the Signac functions RunTFIDF().

Demultiplexing of different lines based on SNV information. Cells pooled from different stem cell lines were demulti-
plexed using demuxlet (43). Genotyping information was called using bcftools based on DNA-seq data (H9 and 409B2) (44)
or downloaded from the HipSci website. All files were merged using bcftools and sites with the same genotypes in all samples
were filtered out. Demuxlet was run with default settings. Cells with ambiguous or doublet assignments were removed from
the data. For all other cells the best singlet assignment was considered the line label.

Integration of transcriptome and chromatin accessibility data. To create a shared feature space between the two
modalities, gene activities were calculated from chromatin accessibility data using the Signac function GeneActivity()
with default parameters and subsequently log-normalized. For each time point and line separately, we performed Canon-
ical Correlation Analysis (CCA) on gene activities and gene expression data using the Seurat function RunCCA()
based on 2000 features, which were selected using the Seurat function SelectIntegrationFeatures(). In CCA
space, we performed minimum-cost maximum-flow (MCMF) bipartite matching between the modalities as described (20)
(https://github.com/ratschlab/scim). The function get_cost_knn_graph() was used with knn_k=10,
null_cost_percentile=99, capacity_method=’uniform’ and otherwise default parameters. Based on the bi-
partite matches, matched cells were summarized to metacells containing measurements from both modalities. If multiple cells
from one modality were included in a metacell, the arithmetic mean between cells was calculated.

Removal of cells with glycolysis signature. An additional quality control step was applied on the level of metacells to
remove cells with transcriptomic signatures of glycolysis upregulation. This was based on primary cell-type predictions by
using public human fetal brain scRNA-seq data (Nowakowski dataset) (45) . We fit a multinomial logistic regression model
with lasso regularization penalty (alpha=1), using gene-expression ranks of the Nowakowski dataset as the training set, to
predict the cell-type identity of metacells in the organoid developmental time course. Metacells which were predicted to be
of ‘glycolysis’ identity were excluded from the dataset. To fit the logistic regression model and automatically determine the
regularization parameter lambda through cross-validation, we used the function cv.glmnet() from the glmnet R package.

14 | bioRχiv Fleck, Jansen et al. | Inferring and perturbing cell fate regulomes in human cerebral organoids

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://github.com/ratschlab/scim
https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Integration of different lines and timepoints. Integration of lines and timepoints was performed using the log-normalized
gene expression data of metacells. To select a set of features suitable for integration of all lines and timepoints, we selected
the union of the 100 most variable genes for each timepoint separately (local) as well as across the full dataset (global).
Analogously, we selected the union of locally and globally variable transcription factors (Data S2). We used the union of the
selected genes and TFs and further excluded cell cycle related genes (46) from the set. Next, we computed cell cycle scores
using the Seurat function CellCycleScoring(). Subsequently the data was z-scaled, cell cycle scores were regressed
out (ScaleData()) and Principal Component Analysis (PCA) was performed using the Seurat function RunPCA(). We
used the first 10 principal components (PCs) to integrate the different timepoints in the dataset using the Cluster Similarity
Spectrum method (CSS) (21). To remove any remaining signal cell cycle signal for any downstream tasks, we again regressed
out the cell cycle scores from the integrated CSS matrix. To obtain a two-dimensional representation of the data we performed
Uniform Manifold Approximation and Projection (UMAP) (47) using RunUMAP() with spread=0.5, min.dist=0.2
and otherwise default parameters.

Calculation of motif enrichment scores. Position weight matrices (PWM) of human TF binding motifs were obtained
from the CORE collection of JASPAR2020 (48). Motif positions in accessible chromatin regions were determined using the
R package motifmatchr (version 1.14) (https://doi.org/10.18129/B9.bioc.motifmatchr) through the Signac
function FindMotifs(). Enrichment scores of motifs in accessible regions were calculated for each metacell using chrom-
VAR (49) through the Signac function RunChromVAR().

RNA velocity calculation. To obtain count matrices for the spliced and unspliced transcriptome, we used kallisto
(version 0.46.0) (50) by running the command line tool loompy fromfastq from the python package loompy (ver-
sion 3.0.6)(https://linnarssonlab.org/loompy/). Spliced and unspliced transcriptomes were summarized
to metacell level as described above. RNA velocity was subsequently calculated using scVelo (version 0.2.2) (27)
and further analyzed using scanpy (version 1.7.0) (51). First, 2000 highly variable features were selected using
the function scanpy.pp.highly_variable_genes(). Cell cycle genes (46) were excluded from this fea-
ture set and the dataset was subsetted to the resulting gene set. Subsequently, moments were computed in CSS
space using the function scvelo.pp.moments() with n_neighbors=30. RNA velocity was calculated us-
ing the function scvelo.tl.velocity() with mode=’stochastic’ and a velocity graph was constructed us-
ing scvelo.tl.velocity_graph() with default parameters. To order cells in the developmental trajectory, a
root cell was chosen randomly from cells of the first time point (day 4) and velocity pseudotime was computed with
scvelo.tl.velocity_pseudotime(). The obtained velocity pseudotime was further rank-transformed and divided
by the total number of metacells in the dataset.

Annotation of organoid developmental stages. To annotate different organoid developmental stages, we first divided the
dataset in 20 bins based on quantiles of velocity pseudotime. For each bin, we computed the average gene expression and peak
accessibility across metacells and computed the pairwise Pearson correlation between log-normal gene expression values of
each bin. From the correlation coefficient r, we defined a distance metric as 1-rand used it to perform hierarchical clustering
using the ward.D2 method as implemented in the stats R package (hclust()). Based on the resulting clusters, bins were
manually annotated as pluripotent (PSC), neuroectoderm, neuroepithelium, neural progenitor (NPC) or neuron.

Identification of stage-specific chromatin access. To find sets of peaks with stage-specific accessibility, we computed for
each stage the percentage of metacells in which each peak was detected. We then computed a specificity score through dividing
the detection percentage for each stage by the detection percentage of all other metacells. We filtered peaks with in-stage
detection percentage of > 15% and a stage specificity of >1.5. From these peaks we selected the top 5000 peaks with the highest
specificity score. Using these specific peak sets for each stage, we used GREAT (35) with the GRCh38 genome assembly and
otherwise default parameters to obtain functional enrichment results. We reported GO Biological Process enrichments with
FDR < 0.01 and that were supported by >30 foreground regions.

Correlation with organizer populations in the developing mouse brain. To assess if certain populations in the organoid
developmental time course resembled potential organizer populations, we compared the cell populations arising in the data with
organizer populations from a developmental mouse brain atlas (24). The gene expression data data was obtained from http:
//mousebrain.org/ and subset to annotated organizer populations. To perform comparisons to human transcriptomics
data, we converted gene names (official gene symbols) to the names of the human homolog, using homology annotations
from the Mouse Genome Informatics database (http://informatics.jax.org). We selected organizer-specific genes
by performing differential expression between organizer populations (Wilcoxon rank-sum test, FDR < 0.01) and selecting
the top 30 genes with the highest fold change for each organizer (organizer markers, Data S2). We then subset our dataset
into different, partially overlapping stages, representing interesting transition points (neuroectoderm emergence: day 7-11;
neuroepithelium emergence: day 12-21; branching stage: > day 11, between 15% and 85% pseudotime quantile). To better
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resolve potential organizer populations each subset was re-integrated by performing CSS as described above based on the union
of variable features (100 for neuroectoderm and neuroepithelium, 400 for branching stage, Data S2) and organizer markers.
Each subset was clustered using the Louvain algorithm (52) in CSS space with a resolution of 0.8 using the Seurat function
FindClusters(). We calculated the average log-normal expression values for each cluster and mouse organizer and then
computed the Peason correlation between cluster and organizer transcriptomes based on organizer markers.

Cell-cell communication analysis. To investigate ligand-receptor mediated cell-cell communications in developing cerebral
organoids, we focused on the branching stage subset of neural progenitor cells as described above. CellPhoneDB (version
2.0) (53) with default setting was applied to the single-cell transcriptomic profiles and the Louvain clustering results described
above (14 clusters in total). This analysis identified ligand-receptor (LR) pairs which significantly co-expressed in pairs of
cell clusters, and therefore potentially mediated the communications between cell populations (permutation test, P<0.05). For
each significant LR pair between one cell cluster pair, the cell cluster expressing the ligand gene was considered as the signal
source, and the one expressing the receptor gene was considered as the signal target. To identify groups of ligand-receptor pairs
mediating similar cell-cell communications, a hierarchical clustering was applied to the identified significant LR pairs using
COMUNET (54), based on their signaling patterns in different cell cluster pairs.

Inference of regional cell-fate trajectories. To resolve the regional cell fate branches we relied on CellRank (version 1.3.0)
(28) to compute transition probabilities into terminal cell states and PAGA (55) to obtain a graph abstraction of the transcrip-
tomic manifold. First, terminal neuronal states were annotated manually using VoxHunt (version 1.0.0) (5) based on the top 20
structure markers. To resolve the developmental trajectories leading up to the emergence of neurons with distinct regional iden-
tities, transition probabilities to each of the terminal states were computed for each cell using CellRank. A transition matrix was
constructed by combining a velocity kernel (VelocityKernel()) and a connectivity kernel (ConnectivityKernel())
with weights of 0.5 each. Absorption probabilities for each of the predefined terminal states were computed using the GPCCA
estimator. From these probabilities, we computed a transition score by ranking the absorption probabilities and normaliz-
ing by dividing by the total number of metacells. We then constructed a graph abstraction of the dataset by high-resolution
clustering using the Louvain algorithm (52) with a resolution of 20. We used PAGA to compute the connectivities between
clusters (scvelo.tl.paga()) and summarized transition scores for each of the clusters. To find branch points at which the
transition probabilities into different fates diverge, we then constructed a nearest-neighbor graph between the high-resolution
clusters based on their transition scores (k=30). We further pruned the graph to only retain edges between nodes with a con-
nectivity score of > 0.2 and edges going forward in pseudotime, i.e. from a node with a lower velocity pseudotime to a node
with a higher velocity pseudotime. The resulting graph is directed with respect to pseudotemporal progression and represents
a coarse-grained abstraction of the fate trajectory, connecting groups of cells with both similar transition probabilities to the
different lineages and high connectivities on the transcriptomic manifold. To assign fate identities to each branch in the graph,
we first selected the nodes with the highest transition probability and pseudotime for each of the terminal states as tips. We
then performed 10000 random walks with 200 steps from each tip along edges backwards in pseudotime using the igraph R
package (version 1.2.6) (https://igraph.org/). Next, we computed for each node the visitation frequency from each of
the terminal states. We then assigned branch identities to each node based on the visitation frequencies as follows: If a node’s
visitation frequency from one tip was more than 100x higher than from the next highest tip, it was unambiguously assigned the
identity of this tip. If the visitation frequencies from multiple tips were within 100x of each other, then the node was assigned
the identity of all of such tips. Nodes that were assigned both the dorsal telencephalic and ventral telencephalic identity were
relabelled as ‘telencephalon’. Nodes that were assigned all three identities were labelled as ‘early’ to indicate that their fate
was not yet committed. Nodes that could not be reached through this procedure were assigned the identity of the node with
the highest connectivity score. The final labelled graph was visualized using the Fruchterman-Reingold layout algorithm as
implemented in the igraph R package.

Gene regulatory network inference with Pando. We developed Pando to infer gene regulatory networks while taking
advantage of multi-modal single-cell measurements, where both the RNA and the ATAC components are either measured for
each cell or integrated to obtain metacells or clusters with both modalities. The core GRN inference algorithm in Pando can be
summarized in four main steps:

1. Selecting candidate regulatory genomic regions

2. Scanning regions for transcription factor binding motifs

3. Selecting region-TF pairs for each target gene

4. Constructing a linear model with region-TF pairs as independent variables and the expression of the target gene as the
response variable

The coefficients of this linear model can now be seen as a measure of interaction between the region-TF pair and the downstream
gene, resulting in a regulatory graph. In the following, we will describe these steps in more detail.
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Selection of candidate regions for GRN inference. To narrow the set of genomic regions that are taken into account for
each target gene when constructing the model, we can take advantage of prior knowledge about the potential importance of
these regions. Genomic sequence conservation is one such criterion that indicates the relevance of a stretch of DNA, as it has
been maintained by natural selection. Thus, we first intersected the peak regions in the ATAC-seq data with the set of PhastCons
conserved elements (56) from an alignment of 30 mammals (obtained from https://genome.ucsc.edu/). As exonic
regions tend to be conserved regardless of their regulatory relevance, we further excluded exonic regions from this set. Further,
we considered candidate cis-regulatory elements (cCREs) derived from the ENCODE project (29). For this, we obtained the
set of all human cCREs from https://screen.encodeproject.org/ (GRCh38) and intersected it with peak regions.
The union of the resulting conserved and cCRE regions was carried forward as the set of candidate regions for GRN inference.

Construction of an extended motif database for GRN inference. Because TFs need to be matched with potential binding
sites, the availability of a binding motif is required for a TF to be included in the GRN. Therefore, we aimed to gather motif
information for all TFs relevant in our dataset. First, we selected the union of the 4000 most variable genes in each individual
time point (Data S2). All TFs in this set were considered relevant. We then obtained binding motifs from JASPAR (2020
release) (48) taking into account the CORE and the UNVALIDATED collection. For TFs where no binding motif was available
in JASPAR, we further considered the CIS-BP database (57). Where possible, motifs with direct experimental evidence were
prioritized over inferred motifs and motifs that were inferred based on other JASPAR motifs were prioritized over the rest.
For all relevant TFs that were also not covered by CIS-BP, motifs were inferred based on protein sequence similarity to other
TFs from the same family. Family information and protein sequences for all TFs were obtained from AnimalTFDB (58)
and pairwise multiple sequence alignments were performed using the Needleman-Wunsch algorithm (59) as implemented in
needle from the EMBOSS software suite (version 6.5.7) (60). For each query TF, we considered all TFs from the same
family with a global sequence similarity of at least 20% and selected the motifs from the 3 most similar TFs. TF motifs from
all sources were combined into one database and motif positions in accessible chromatin regions were determined using the
R package motifmatchr (version 1.14) (https://doi.org/10.18129/B9.bioc.motifmatchr) through the Signac
function FindMotifs().

Coarse-graining expression and chromatin accessibility data. Before inferring the GRN, we coarse-grained the data
to denoise and remove sparsity. First, we summarized the expression and chromatin accessibility of close cells using the
pseudocell algorithm outlined in (44). In brief, we randomly selected 30% of all cells in the dataset as the seed cells and
constructed a territory for each seed with the 10 nearest neighbors based on euclidean distances using the top 20 PCs. If one
cell was assigned to multiple territories, one was randomly chosen. For all cells contained in a territory, gene expression data
was summarized using the arithmetic mean. For chromatin accessibility data, an accessibility probability for each territory was
computed by averaging binarized read counts. We further performed Latent Semantic Indexing (LSI) on the peak counts of each
territory using the Signac functions RunTFIDF() followed by RunSVD(). Based on the top 20 LSI components we further
performed high-resolution clustering using the Louvain algorithm with a resolution of 100 and accessibility probabilities were
further summarized to a cluster level by computing the arithmetic mean so that each cell in the cluster was represented by the
same vector.

Linear model-based GRN inference. Pando used a linear model-based approach to infer the regulatory interactions be-
tween TF-binding site pairs and the corresponding gene. Genomic coordinates for all genes were obtained via the R package
EnsDb.Hsapiens.v86 (https://doi.org/10.18129/B9.bioc.EnsDb.Hsapiens.v86). For each gene, we con-
sidered a regulatory region encompassing the gene body and 100 kb upstream of the transcription start site (TSS). We then
define a linear model on the (log-normalized) expression Y of the gene i based on all TF-binding site interactions in this region:

Ŷi =
∑
j

βjejaj +ε

Where ej is the log-normalized expression of transcription factor j, aj is the accessibility probability of the peak that overlaps
its binding region, βj is the fitted coefficient for this interaction and ε is the intercept. The fitted coefficients can then be
interpreted as the regulatory effect of TF-binding site pairs on the downstream genes. To fit the linear model, we use the
function glm() from the stats R package using gaussian noise and an identity link function.

Peak and gene module construction. To prune the network and retain only significant interactions, the fitted coefficients
were tested for statistical significance using ANOVA. We corrected for multiple testing using the Benjamini-Hochberg method
to obtain an FDR-adjusted p value, to which a significance threshold of 0.05 was applied. The remaining connections were
further summarized to extract sets of negatively (coefficient < 0) and positively (coefficient > 0) regulated target genes and
regulatory regions for each transcription factor.
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Pando implementation details. Pando was implemented as an R package and is available on GitHub (https://github.
com/quadbiolab/Pando). Pando was designed for easy use and integrates smoothly with widely used single-cell analysis
tools in R, namely Seurat and Signac. Its core functionality is implemented in four main functions:
initiate_grn() selects candidate regions from the dataset and initiates the object for GRN inference. The user can flexibly
define custom sets of candidate regions to be taken into account by Pando.
find_motifs() scans candidate regions for transcription factor motifs. The motif database constructed in this work is
included in the pando package, but can also be manually supplied.
infer_grn() selects regulatory regions for each target gene and performs the linear model fitting. We implemented support
for all generalized linear models provided by the stats R package as well as regularized linear models provided by the glmnet
R package (version 4.0).
find_modules() constructs gene and regulatory modules for each transcription factor.
The implementation is flexible and allows the user to apply the Pando framework to a wide range of use-cases.

Visualization of the GRN. We sought to visualize the inferred transcription factor network based on both co-expression and
regulatory relationships between transcription factors. First, we computed the Pearson correlation between log-normalized
expression of all transcription factors in the network across all metacells in the atlas. From the correlation value r and estimated
model coefficient ß between all transcription factors i and j, we then computed a combined score s as

sij = rij ∗
√
|βij |+1

resulting in a TF by TF matrix. We performed PCA on this matrix and used top 20 PCs as an input for UMAP as implemented
in the uwot R package (https://github.com/jlmelville/uwot) with default parameters.

Selecting transcription factors with region-specific expression. We used a discriminative learning approach to select
transcription factors whose expression was specific to a regional branch. Using the dataset with 2 month old organoids (44),
we fit a multinomial logistic regression model with elastic net regularization (alpha=0.5) to distinguish the different regional
branches based on log-normalized gene expression. Genes with non-zero coefficients for a given branch were considered
region-specific.

Calculation of module activity and analysis of module branch specificity. Based on the GRN inferred by Pando, the
activity of a transcription factor can be represented by the expression of the set of genes it regulates (gene modules) or by the
accessibility of its set of regulatory regions (regulatory modules). To calculate the activity of gene modules we used the Seurat
function AddModuleScore() with all genes included in GRN inference as the background (pool). For regulatory modules,
we used the R package chromVAR (version 1.14) (49) to obtain a set of background peaks (getBackgroundPeaks()). We
then computed deviations in accessibility from the background for each regulatory module (computeDeviations()). Next,
we assessed how the activity of positively regulated gene modules varied during neurogenesis over pseudotime and between
branches. For this analysis we excluded all cells from the PSC and neuroectoderm stage. We fit three gaussian linear models
for each gene i module with module activity (Y) as the response variable and branch assignment and/or velocity pseudotime as
the independent variables:

(1) Yi ∼ branch

(2) Yi ∼ pseudotime

(3) Yi ∼ branch+pseudotime

We used the R2 value of these models as the fraction of variance explained by branch (1), pseudotime (2) or branch and
pseudotime (3). We further tested for differential module activity between the branches for each branch point separately using a
Wilcoxon rank-sum test as implemented in the R package presto (61). For the comparison of dorsal and ventral telencephalon,
we only considered cells in the top 30% pseudotime quantile (NPC and Neuron stages). To visualize dorsal and ventral
telencephalon-specific transcription factor networks, we first selected positively regulated gene modules of transcription factors
with branch-specific expression (described above). For each branch, we then selected the top 15 modules whose module activity
was significantly upregulated (FDR<0.05) based on the mean difference of module activity between the branches.

Preprocessing, integration and annotation of CROP-seq single-cell RNA-sequencing data. As with the organoid time
course, count matrices were obtained with Cell Ranger (version 3.0.2) and further preprocessed using the Seurat R package
(version 3.2) (19). First, cells were filtered based on unique molecular identifier (UMI) counts (>500, <30000), the num-
ber of detected genes (>500, <6000) and the fraction of mitochondrial genes (<0.1). Transcript counts were normalized by
the total number of counts for that cell, multiplied by a scaling factor of 10000 and subsequently natural-log transformed
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(NormalizeData()). The different samples were integrated using RSS (44) based on the 2000 most variable features
(FindVariableFeatures()). In RSS space, we performed Louvain clustering with a resolution of 3. Regional identi-
ties as well as NPC/Neuron identities were assigned to Louvain clusters using a combination of VoxHunt similarity maps and
canonical marker genes. Cells annotated as off-target cell types such as mesenchyme and choroid plexus were removed from
all downstream analyses.

Assignment of gRNA labels to cells. To assign gRNA labels to cells, reads obtained from amplicon sequencing were
first aligned to the human genome and transcriptome (hg38, provided by 10x Genomics), which was extended with artificial
chromosomes representing the CROP-seq-Guide-GFP construct (17), using Cell Ranger. We observed that read counts of
gRNA UMIs followed a bimodal distribution, with the lower peak likely representing sequencing or amplification artifacts. To
extract the higher peak, we first fit a Gaussian Mixture Model with two components on natural log-transformed read counts
using the function GaussianMixture() from the scikit-learn python package (https://scikit-learn.org/). We
then used a probability cutoff of 0.5 to extract the mixture component with higher average read counts. From these gRNA
UMIs we constructed a cell x guide count matrix, which was further binarized to obtain the final cell-to-gRNA assignments.

Inference of perturbation probability. To account for a potential mixture of unperturbed and perturbed cells in the popula-
tion, we inferred probabilities of a gRNA having a phenotypic effect on the cell using the strategy previously proposed (15).
Here, a Bayesian approach is used to obtain the probability of a cell being perturbed given the observed transcriptome. To this
end, a regression model is fit with the gene expression matrix as the response Y and the native gRNA assignments, cell and
sample covariates as independent variables (X):

Ŷ =Xβ

After fitting the model, the model fit is re-evaluated for each cell with the gRNA assignment set to 0 (X0).The difference of the
squared errors of the two fits can then be transformed into a probability with:

P (Xj = 1) = logistic

(∑
i[Yij−X0βi]2− [Yij− Ŷij ]2

2σ2

)
where logistic(x) = 1

1+e−x

As in the original publication, we used linear regression model with elastic net regularization (alpha=0.5) using gaussian
noise and an identity link function to fit the model on Y=X based on 500 most variable features. The regularization parameter
lambda was automatically determined through cross-validation as implemented in the function cv.glmnet() from the glmnet R
package. Models were fit for each gene i on log-normalized transcript counts Y with binary assignments X for each gRNA j as
well as celltype, sample and number of detected genes as covariates:

Yi ∼ n_features+sample+ cell_type+
∑
j

Xj

After computing the above described perturbation probabilities for each cell and gRNA, they were further summarized to a
target gene level by taking the maximum probability among the three gRNAs targeting the same gene.

Determination of transcriptomic knock-out (KO) effects in the CROP-seq screen. To determine how gene KOs affect
the transcriptomic state of neuronal populations arising in brain organoids we used a linear model-based approach (15). For
each neuronal type, we inferred perturbation probabilities p for each target gene j as mentioned above and fit a linear model on
log-normal transcript counts (Y) for each gene i as follows:

Yi ∼ n_features+sample+
∑
j

pj

To determine KO effects in neural NPCs, we additionally used cell cycle phase as a covariate. For this we inferred the cell cycle
phase with the Seurat function CellCycleScoring() and then constructed the linear model as follows:

Yi ∼ n_features+sample+ cc_phase+
∑
j

pj

To determine the KO effects across all neurons, we inferred global perturbation probabilities on the full dataset and then fit a
linear model across neuronal populations on log-normal transcript counts for each gene y as follows:

Yi ∼ n_features+sample+neuron_type+
∑
j

pj
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The coefficients for each target gene were tested using ANOVA and multiple-testing correction was performed using the
Benjamini-Hochberg method to obtain a FDR-adjusted p value. Genes for which the coefficient of a target gene were sig-
nificant (FDR < 10-4) were treated as differentially expressed genes for this target gene.

Determination of composition changes in the CROP-seq screen. To assess the degree to which the knock-out of a
target gene changes the regional composition of the organoid, we first tested the enrichment of each gRNA in each regional
branch. To control for confounding effects through differential gRNA abundance in different organoids, we used a Cochran-
Mantel-Haenzel (CMH) test stratified by organoid. Additionally, we performed a Fisher’s exact test to test for enrichment for
each organoid individually. Multiple-testing correction was performed using the Benjamini-Hochberg method. To account
for other potential within-sample confounders such as clonal heritage, we first required for each gRNA that the enrichment
was significant (FDR < 0.05) in more than one individual organoid and that the direction of each significant enrichment was
consistent across organoids. All gRNAs for which this was not the case were removed. In a second step, we further required
for remaining gRNAs that the same significant effect (FDR < 0.01) was observed for at least one other gRNAs targeting the
same gene. For the remaining gRNAs we summarized the assignments for each target gene i and calculated the log odds ratio
of the enrichment in each regional branch j with

LORij = log
Ng=i;b=j/Ng=i;b 6=j
Ng 6=i;g=j/Ng 6=i;b 6=j

where N a matrix of cell counts for each target gene in each branch. For each target gene, the maximum log odds ratio across
the three branches was treated as a measure of composition change.

Preprocessing and integration of single-cell. RNA-sequencing data from the GLI3 knock-out experiment Transcript count
matrices were obtained with Cell Ranger (version 3.0.2) and further preprocessed using the Seurat R package (version 3.2)
(19). First, cells were filtered based on unique molecular identifier (UMI) counts (>200, <60000), the number of detected genes
(>200, <6000) and the fraction of mitochondrial genes (<0.1). Transcript counts were normalized by the total number of counts
for that cell, multiplied by a scaling factor of 10000 and subsequently natural-log transformed (NormalizeData()). From
all protein coding, non-mitochondrial and non-ribosomal genes we selected the 200 most variable based on the vst method
(FindVariableFeatures()). PCA was performed based on the z-scaled expression of these features. Different samples
were integrated using CSS (21) based on the top 20 PCs with default parameters. To visualize the dataset in two dimensions,
we used UMAP on the CSS coordinates with spread=0.5, min.dist=0.2.

CRISPResso analysis and protein sequence prediction. To find clones with a frame-shift mutation, CRISPResso was
used to analyse the sequencing data (62). This tool aligned the amplicons to the wild-type gene sequence to call inframe
and frameshift indels. Analyses were performed with the following parameters: -w20, -min_indentity_score70, and
-ignore_substitutions. Substitutions were ignored, only sequences with a minimum of 70% similarity were used and
only indels present in a window of 20 base pairs from each of the gRNAs were called. Cell lines were considered as KO when
> 98% of the reads were considered as a non-homologous end-joining event, the indels caused a frameshift, not more than
two different indels were seen and were present in a 50:50 distribution. The predicted protein sequence was obtained with the
Biopython python package (63).

Preprocessing and integration of multiome data from the GLI3 knock-out experiment. Initial transcript count and
peak accessibility matrices were obtained with Cell Ranger Arc (version 1.0.0) and further preprocessed using the Seurat
(version 3.2) (19) and Signac (version 1.1) (42) R packages. Peaks were called from the fragment file using MACS2 (version
2.2.6) and combined in a common peak set before merging. Cells were filtered based on transcript (UMI) counts (>1000,
<25000), mitochondrial transcript percentage (<30%), peak fragment counts (>5000, <700000) and TSS enrichment score
(>1). Transcript counts were normalized by the total number of counts for that cell, multiplied by a scaling factor of 10000
and subsequently natural-log transformed (NormalizeData()). Principal Component Analysis (PCA) was performed using
the Seurat function RunPCA(). Different samples were integrated based on the top 20 PCs with Harmony (64) using the
function RunHarmony() from the R package SeuratWrappers (version 0.3.0)(https://github.com/satijalab/
seurat-wrappers) with max.iter.harmony=50 and otherwise default parameters.

Annotation of cells from the GLI3 knock-out experiment. To annotate the cell states from both the scRNA and the mul-
tiome experiments, we made use of the annotations of the annotated multi-omic atlas of organoid development that was pre-
viously generated. We transferred the regional branch labels using the method implemented in Seurat using the functions
FindTransferAnchors() and TransferData(). We then performed Louvain clustering with a resolution 1 for the
scRNA data and 0.8 for the multiome data. Clusters were manually assigned to branch identities based on the transferred labels
as well as marker gene expression. In case of the multiome data, we identified populations of mesenchymal and non-neural
ectoderm cells, which were excluded from the downstream analysis.
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Differential expression analysis for the GLI3 knock-out experiment. To assess the transcriptomic effects of the GLI3
knock-out in ventral telencephalon neurons, we performed differential expression analysis using a linear model-based approach
analogous to the approach used in the CROP-seq screen. We fit a linear model on log-normal transcript counts Y for each gene
i with the knock-out label and number of detected features as independent variables:

Yi ∼ n_features+KO_label

The coefficient of the knock-out label was tested using ANOVA. To perform differential expression of knock-out versus control
in the multiome data, we performed a Wilcoxon rank-sum test in each Louvain cluster separately using the presto R package
(version 1.0.0) (61). Multiple-testing correction was applied to all results using the Benjamini-Hochberg method to obtain
FDR-adjusted p values.

Differential cell-cell communication analysis for the GLI3 knock-out experiment. To study how the cell-cell communi-
cation patterns were changed in the GLI3 KO organoids, CellPhoneDB (version 2)(53) with the default setting was applied to
the single-cell gene expression in the single-cell multiome data of the three-week GLI3 KO and control organoids separately,
given the integrated clustering results, to identify LR pairs significantly co-expressed in pairs of cell clusters (permutation test,
P<0.05). For each of the source-target cluster pairs, the number of significant LR pairs was counted and compared between
the two conditions. LR pairs with significant co-expression in at least one source-target cluster pair in both conditions were
identified. COMUNET (54) was then applied to calculate expression pattern dissimilarities of the shared LR pairs between
the two conditions. Shared LR pairs with dissimilarity > 0.8 were considered as changed LR pairs. Based on the shared LR
pairs,ΔDegree was calculated for each cluster, as the difference between out-degree (summed strength of LR pairs with ligand
secreted from the cluster) and in-degree (summed strength of LR pairs with receptors presented in the cluster).

Differential accessibility analysis for the GLI3 knock-out experiment. To find peaks with differential accessibility be-
tween GLI3 knock-out and control, we fit a generalized linear model with binomial noise and logit link for each peak i on
binarized peak counts Y with the total number of fragments per cell and the knock-out label as the independent variables:

Yi ∼ n_fragments+KO_label

In addition, we fit a null model, where the knock-out label was omitted:

Yi ∼ n_fragments

We then used a likelihood ratio test to compare the goodness of fit of the two models using the lmtest R package (version
0.9) (https://cran.r-project.org/web/packages/lmtest/index.html). Multiple testing correction was
performed using the Benjamini-Hochberg method.

Comparison of perturbation effects with gene regulatory network. Before using the GRN to interpret the DE results,
we first sought to assess the degree to which the transcriptomic effects of the GLI3 knock-out are consistent with the inferred
GRN. We tested the enrichment of DE genes in the first (direct) and second order (indirect) neighborhood of GLI3 in the GRN
graph using a fisher exact test. Further, we computed the shortest path from GLI3 to every DE gene in the GRN graph. To test
how accurately the GRN can be used to predict the directionality of the DE, we computed the combined direction of each path
as the product of the signs of all individual edges. We then determined the overall predicted effect of GLI3 on each DE gene by
computing the mode of the directions of all shortest paths leading to that gene. We defined accuracy as the fraction of genes for
which the DE direction was the inverse of the predicted overall effect. Next, we further filtered the paths so that all paths were
composed only of DE genes and the direction of each path and subpath was consistent with the DE direction. To visualize this
subgraph, we further pruned the graph by only retaining the path with the lowest average log10 p value for each DE gene.

Functional annotation of differentially accessible genomic regions. To better functionally assess the epigenomic effects
of the GLI3 knock-out, we performed functional enrichment analysis with GREAT (35). We performed differential accessibility
analysis in clusters 0 and 2 (early telencephalon) and applied a FDR threshold of 10-4. From all differentially expressed peaks,
we selected the top 5000 peaks with lowest (most negative) linear model coefficient (depleted in the KO). We further selected
all peaks that were accessible in at least 1% of cells in these clusters as the set of background peaks. Using these two peak sets,
we used GREAT with the GRCh38 genome assembly and otherwise default parameters to obtain functional enrichment results.
We reported GO Biological Process enrichments with FDR < 0.01 and that were supported by >100 foreground regions.
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Fig. S1. Supplemental analysis of cerebral organoid developmental multiome data. (A) Phase contrast (stem cells to day 15)
and bright field (day 31 and day 60) showing examples of different stages of organoid development for four different stem cell lines.
Scale bar is 200 µm. (B) Histogram of scRNA-seq and scATAC-seq quality control metrics for every time point. (C) Histograms showing
counts of the first and second iPSC line assigned for each cell after demultiplexing based on single nucleotide variants. (D) Bar plot
of number of cells for each timepoint (top) and stacked barplot showing proportion of cell lines (bottom) at different time points of
scRNA-seq and scATAC-seq datasets. (E) Pseudo temporal expression patterns of stem cell (top), neuronal progenitor cell (middle)
and neuronal (bottom) markers for each line. (F) Bar plots showing number of cells that were matched and unmatched with minimum-
cost, maximum-flow (MCMF) bipartite matching in CCA space. (G) Histogram showing the number of cells that were matched per
scRNA-seq/sc-ATACseq metacell for each cell line. (H) UMAP embedding colored by selected marker genes. (I) Barplots showing the
results of the functional enrichment analysis of stage specific peak sets with GREAT. Significant (FDR < 0.01) GO Biological Process
terms with highest fold enrichment are shown. Terms shown in Figure 1 are highlighted in bold.
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Fig. S2. Heterogeneity analysis in different stages of organoid development. (A) UMAP embedding of a subset of the organoid
trajectory surrounding neuroectoderm cells colored by time point, velocity pseudotime, cell line and Louvain clusters. (B) Heatmap
showing averaged cluster expression of cluster markers. (C) UMAP embedding colored by cluster identities, expression patterns of
cluster markers. Volcano plot shows differentially expressed (DE) genes of cluster 5 relative to other clusters. (D) UMAP embedding
of a subset of the organoid trajectory surrounding neuroepithelial cells colored by time point, velocity pseudotime, cell line, branch
prediction and lovain clusters. (E) Heatmap showing averaged cluster expression of cluster markers and manually selected marker
genes of mouse developing brain organizer populations (24) (bold). (F) Heatmap showing correlation of different clusters to mouse
developing brain organizers (24). (G) UMAP embedding colored by the correlation to developing mouse brain organizers. (H) UMAP
embedding of a subset of the organoid trajectory colored by time point, velocity pseudotime, cell line, branch prediction and lovain
clusters. (I) Heatmap showing averaged cluster expression of cluster markers. (J) UMAP embedding colored by rank-transformed
CellRank transition probability to non-telencephalon, ventral telencephalon and dorsal telencephalon. (K) UMAP embedding colored
expression of selected transcription factors.

24 | bioRχiv Fleck, Jansen et al. | Inferring and perturbing cell fate regulomes in human cerebral organoids

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fleck, Jansen et al. | Inferring and perturbing cell fate regulomes in human cerebral organoids bioRχiv | 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S3. Receptor-ligand pairing analysis of cerebral organoid patterning. (A) UMAP embedding of a subset of neural progenitor
cells (see Figure 2A) colored by Louvain clusters (top left) and normalized expression of signaling molecules. (B) Distribution of
pseudotime position (top), proportion in each brain region (middle), and proportion at each time point (bottom) are shown for cells in
each Louvain cluster. (C) Heatmap shows normalized expression of genes from different signaling pathways in each cluster, annotated
as receptor, ligang, or transcription factor target. (D) Heatmap shows relative number of ligand (from) and receptor (to) pairs between
each cluster identified using an interaction analysis (CellPhoneDB). (E) Barplot shows the number of edges from the interaction analysis
that include a ligand (left) or receptor (right) for each cluster. (F) Heatmap showing similarities between different ligand-receptor pairs
estimated by COMUNET, based on their inferred signaling strengths and directions between different cell clusters. (G) Barplot shows
the number of edges from the interaction analysis that include a ligand for each cluster separated out by PSC line. (I) UMAP colored
by cells at the day 21 time point (left) and barplot showing the number of ligand edges at this time point (right). (J) Heatmap showing
correlation of different clusters to mouse developing brain organizers (left) with a schematic representation of the mouse neural tube
marking the localization of organizers (right). Colors group early organizers by ventralizing (yellow), dorsalizing (purple) and boundary-
inducing (cyan) activity. Late organizers are in pink. Adapted from (24).
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Fig. S4. Trajectory reconstruction in the multi-omic developmental atlas. (A-B) Time course UMAP embedding colored by neuron
types (A) or RNA velocity pseudotime (B). (C) Voxhunt plots showing expression similarity of neuron subtypes in cerebral organoids
to voxels in five example sections of the developing mouse brain (embryonic day 13.5), as well as the structural annotation of the
sections. (D) UMAP embedding colored by ranked transition probabilities. (E) Scatter plot showing transition probabilities as computed
by CellRank versus velocity pseudotime. Each dot represents one high-resolution cluster. (F) UMAP embedding of the integrated time
course and graph embedding colored by gene expression (top) and gene accessibility (bottom) for selected marker genes. (G) UMAP
and graph representation colored by transcription factor motif enrichment for selected motifs.

Fleck, Jansen et al. | Inferring and perturbing cell fate regulomes in human cerebral organoids bioRχiv | 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.24.457460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457460
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S5. Gene regulatory network features of cerebral organoid development. (A) Numbers of chromatin access peaks in non-
protein coding conserved regions (Cons.), previously annotated cis regulatory regions (cRE), or protein coding regions (exons). (B)
Representative loci showing chromatin access (top) overlaying peak, cRE, conserved element coordinates, and exon coordinates.
(C) Barplot showing the number of motifs used in GRN construction from two curated databases (JASPAR, CIS-BP), as well as motifs
assigned through TF amino acid sequence similarity (Seq-similarity). (D) Histogram showing sequence similarity distribution of assigned
TFs to query TF. (E) Examples of 3 TFs that have no motif annotation that were assigned motifs of other TFs based on amino acid
sequence similarity. (F) Density scatter plot and histograms show the relationship between and distributions of explained variance
(x) and number of variables (y) in the fitted models for GRN construction. (G) Violin plots show the distribution of peaks (left) and
TFs assigned per gene (middle), and number of genes assigned per TF (right). (H) UMAP representation of time course colored by
gene expression and module activity (rows) that can be extracted from the GRN for representative TFs (columns). (I) Representative
loci showing average chromatin access signal tracks at different branches (PSC/Neuroectoderm, grey; Telencephalon progenitors, dark
purple; Dorsal telencephalon, plum; Ventral telencephalon, purple) overlaying inferred transcription factor binding sites within regulatory
regions.
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Fig. S6. Target selection and experimental details for the single-cell in organoid perturbation experiment. (A) Averaged expres-
sion of genes targeted in the single-cell genomic perturbation experiment in neuronal progenitors (NP), intermediate progenitors (IP)
and neurons in the primary human and organoid developing cortex, as well as in induced pluripotent stem cells (IPSC), the embryoid
body (EB), ventral telencephalic NPCs, inhibitory neurons of the medial ganglionic eminence (MGE in.), lateral ganglionic eminence
(LGE in.), non-telencephalic NPCs, diencephalic excitatory neurons (Dien. ex.) and inhibitory neurons (Dien. in.) and mesencephalic
excitatory neurons (Mesen. ex.) and inhibitory neurons (Mesen. in.). (B) UMAP embedding colored by the expression of all targeted
genes. (C) Exemplary Fluorescence-activated cell sorting plots of the sorting scheme used to isolate CROP-seq vector positive induced
pluripotent stem cells (iPSCs). (D) Phase contrast and CROP-seq vector positive (GFP) imaging during cerebral organoid development.
Scale Bar is 500 µm.
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Fig. S7. Guide detection and celltype annotation in the single-cell in organoid perturbation experiment. (A) Barplot showing
number of cells with detected guide RNA (gRNA) for each targeted gene and stacked barplot showing the distribution of the different
gRNAs targeting the same gene. (B) Histogram showing the distribution of read counts for gRNA UMIs after amplicon sequencing
for one organoid. UMIs marked in red were selected for downstream analyses. (C) Density histograms showing the distribution of
inferred KO probabilities for gRNAs of 3 different target genes. (D) Barplot showing cell number and proportion of gRNAs for all target
genes. (E) Barplot showing the number of guides detected in sequenced cells. (F) Barplot showing the proportion of cells with each
perturbation for all organoids (G) UMAP embedding colored by annotated neuron subtypes. (H) Voxhunt plots showing expression
similarity of neuron subtypes in cerebral organoids to voxels in five example sections of the developing mouse brain (embryonic day
13.5), as well as the structural annotation of the sections (left). (I) UMAP embedding colored by expression of non-telencephalic (top),
ventral (middle) and dorsal (bottom) neuron markers. (J) Hierarchical clustering of Louvain clusters based on the composition of gRNAs
targeting different genes. Cell type and branch annotations are shown as side bars. Compositions of organoids and composition of
cells with gRNAs targeting different genes are shown below as stacked bar plots.
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Fig. S8. Differential expression of dorsal and ventral telencephalic neurons with E2F2 targeting gRNAs. (A) Scatter plot shows
expression changes between neurons with E2F2 targeting gRNAs and other neurons in dorsal (x-axis) and ventral (y-axis) telencephalic
neurons, with each dot representing one gene. Colors of dots represent the neuron types where differential expression is detected.
Lines show the correlation of expression changes in the two neuron types, with DE genes in both types and DE genes in only one type
shown separately. (B) Scatter plot shows detection rates of genes in dorsal (x-axis) and ventral (y-axis) telencephalic neurons, colored
by the neuron types where differential expression is detected. (C) DE specificity of the identified E2F2 DEGs in dorsal (left) and ventral
(right) telencephalic neurons, relative to the differential expression detected in cells with other targeting gRNAs. Dark bars show DE
genes with specificity > 2.5 and are considered to show E2F2-specific effect. (D) Stacked bar plot shows numbers of DE genes with
increased or decreasing in the two neuron types. The dark bars show DEGs with E2F2-specific effects. (E) Examples of functional
enrichment for E2F2 DEGs in dorsal and ventral neurons with DAVID. Grey bars show enriched terms of all E2F2 DEGs, and dark bars
show enriched terms of DEGs with E2F2-specific effects.
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Fig. S9. Characterization of GLI3 knock-out organoids. (A) Quantification of editing frequency as determined by the percentage and
number of sequencing reads showing unmodified and modified alleles for the control and both KO cell lines. (B) Frequency of frameshift
of coding sequence reads as a result of the modifications seen in both KO lines. (C) Western blot showing expression of Gli3-repressor
(83kDA) in the control cell line. Catenin beta-1 and Ponceau were used a s loading control. (D) Sequences of the coding strand of the
different indels of the different KO lines. The reference sequence is corresponding with the control line. The position of the gRNAs with
the protospacer adjacent motif (PAM)-sequence is depicted above and underneath the sequence. Reference protein sequence with
the protein sequences of each KO line of the altered protein sequences caused by the frame-shift. (E) Brightfield images of cerebral
organoid development with control and both KO cell lines. Scale bar is 2 mm. (F) UMAP embedding of ventral telencephalic GLI3
KO neurons showing medial ganglionic eminence (MGE) and lateral/caudal ganglionic eminence (LGE/CGE) neuronal populations
(top). Feature plots show selected marker gene expression on the UMAP embedding. (G) Volcano plot showing differential expression
analysis in LGE neurons for GLI3 WT versus KO cells.
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Fig. S10. GLI3 KO induced changes in telencephalic progenitors in cerebral organoids. (A) Heatmap showing the expression
of top marker genes for unbiased Louvain clusters. (B) UMAP colored by the expression of selected genes marking pluripotency
(POU5F1, APOE), early non-telencephalic progenitors (WLS, PAX3, WNT4) and early telencephalic progenitors (FOXG1, FGF8, GLI3,
HES5). (C) UMAP embedding colored by Louvain clusters and by regional branch labels predicted by label transfer from the organoid
developmental time course atlas. (D) Volcano plot showing the differential expression of genes in telencephalic progenitors upon GLI3
KO. (E) Scatter plot showing differential gene expression in neural progenitor cells (NPCs). (F) Heatmap showing the changed numbers
of ligand (from) and receptor (to) pairs between each cluster identified using an interaction analysis (CellPhoneDB) between GLI3 KO
and control cells. (G) Heatmap showing the number of ligand (from) and receptor (to) pairs between each cluster in control (upper)
and GLI KO (lower) cells. (H) Venn diagram showing number of identified LR pairs in each of the two conditions as well as their shared
ones. (I) Histogram showing the distribution of COMUNET-based dissimilarities of the shared LR pairs between the control and GLI3 KO
conditions. (J) Examples of the changed LR pairs between the two conditions. (K) Bar plot showing ∆Degree of each cluster, calculated
based on the changed LR pairs. Positive ∆Degrees represent clusters sending signals, and negative ones represent clusters receiving
signals. (L) Barplot showing the number of all DE genes present in the GRN (DEG in GRN), all DE genes that are reachable from
GLI3 in the GRN graph (Reachable), DE genes where the overall direction predicted by the GRN was consistent with the DE result
(Overall) and DE genes for which all subpaths on the shortest path from GLI3 were individually consistent with the DE result (Full path).
(M) Barplot showing the fraction of DE genes directly and indirectly regulated by GLI3. (N) Boxplot showing the spearman correlation
of the expression of directly and indirectly regulated DE genes with transition probabilities to dorsal telencephalon (top) and ventral
telencephalon neurons (bottom). The x-axis indicates the inferred direction of regulation from GLI3, which is consistent with the DE.
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