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Abstract 

Skeletal muscle is an adaptive tissue with the ability to regenerate in response to exercise 

training. Cross-sectional area (CSA) quantification, as a main parameter to assess muscle 

regeneration capability, is highly tedious and time-consuming, necessitating an accurate and 

automated approach to analysis. Although several excellent programs are available to automate 

analysis of muscle histology, they fail to efficiently and accurately measure CSA in regenerating 

myofibers in response to exercise training. Here, we have developed a novel fully-automated 

image segmentation method based on neutrosophic set algorithms to analyse whole skeletal 

muscle cross sections in exercise-induced regenerating myofibers, referred as MyoView, 

designed to obtain accurate fiber size and distribution measurements. MyoView provides 

relatively efficient, accurate, and reliable measurements for detecting different myofibers and 

CSA quantification in response to the post-exercise regenerating process. We showed that 

MyoView is comparable with manual quantification. We also showed that MyoView is more 

accurate and efficient to measure CSA in post-exercise regenerating myofibers as compared with 

Open-CSAM, MuscleJ, SMASH and MyoVision. Furthermore, we demonstrated that to obtain 

an accurate CSA quantification of exercise-induced regenerating myofibers, whole muscle cross-

section analysis is an essential part, especially for the measurement of different fiber-types. We 

present MyoView as a new tool for CSA quantification in skeletal muscle from any experimental 

condition including exercise-induced regenerating myofibers. 

Keywords: Skeletal muscle, Cross-sectional area, image analysis, Neutrosophic Sets, Fully-

automated Analysis, mdx mouse, muscle regeneration, High intensity interval training. 
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1. Introduction 

Skeletal muscle is an exceptionally regenerative tissue with the ability to undergoes extensive 

adaptation by changing its fiber type composition and cross-sectional area (CSA) upon external 

stimuli1,2. Exercise training is a unique physiologicall-hypertrophy stimulus with the capability to 

induce muscle regeneration machinery throw increasing myofiber CSA to overcome 

corresponding skeletal muscle demands. Moreover, during physical inactivity, aging and some 

metabolic disorders, skeletal muscle losses in mass due to atrophy of individual myofibers3. 

Among different cellular, molecular and structural components, CSA quantification of myofibers 

in microscopic images is widely used since it reflects the regenerative capability of the muscle as 

a final results of activating, proliferating, differentiating and fusing of muscle stem cells1. 

Currently, CSA quantification is commonly performed method to delineate individual myofibers 

using immunohistochemical approaches targeting laminin or dystrophin in the basal lamina or 

inside of the sarcolemma, respectively4,5. Image quantification is highly time-consuming and 

labor intensive part of this process and may susceptible to both inter-individual and inter-

laboratory variabilities. This is why some laboratories have developed their own automated 

programs to limit the experimenter bias and save time4-8.  

Most of current available softwares were developed to measure myofiber CSA in normal muscle 

or under conditions targeting muscle regeneration including synergist ablation or cardiotoxin 

injection4,8. While, these strategies induce prominent regenerating capability, there are questions 

about their physiological relevance due to invasive nature and the potential to damage the 

skeletal muscle9. In addition, the shape of the cells in normal muscle is characterized by 

polygonal and angular myofibers with keeping their contact with each other, while in 

regenerating myofibers they are round-shaped, highly variable in size, and smallest ones do not 
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regularly contact surrounding fibers. Moreover, image acquisition and reconstitution of the 

whole muscle section in order to CSA quantification in different fiber types is almost impossible 

in current available softwares. Depending on the researchers’ decision, different multiple subsets 

of the whole images will be analysed to find CSAs in different fiber types and it may expose the 

overall results to bias.  

We therefore sought to develop a fully-automated software to quantify CSA in exercise-induced 

regenerating myofibers. We utilized a high intensity interval training (HIIT) protocol which led 

to progressive hypertrophy thereby inducing muscle regeneration machinery. Here, we present a 

fully-automated CSA quantification method for skeletal muscle images applicable to any type of 

muscle and under exercise-induced regenerating muscle condition. The proposed method; named 

as MyoView; is based on neutrosophic set algorithms designed to automatically quantify CSA on 

immunofluorescent picture of the whole skeletal muscle section. In addition, it allows the 

analysis of the CSAs of different myofibers on the whole muscle cross-section, which we show 

here to be essential to obtain an accurate CSA quantification.  
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2. Methods 

2.1. Mice and muscle tissue preparation 

All experiments involving animals were performed in accordance with approved guidelines and 

ethical approval from Lorestan University’s Institutional Animal Care and Use Committee (as 

registered under the code: LU.ECRA.2017.12). Further, the present study was carried out in 

compliance with the ARRIVE guidelines. C57BL/6J (n = 18) and mdx (n = 3) mice were 

purchased from Lorestan University of Medical Sciences Laboratories. At the end of the 

treatment periods, all mice were anesthetized with inhalation of isoflurane. Gastrocnemius 

muscles from 16- to 18-week-old C57BL/6 mature mice and mdx mice were dissected in optimal 

cutting temperature (OCT) medium, mounted on pieces of cork, secured with tragacanth gum, 

frozen in liquid nitrogen-cooled isopentane and stored at − 80 °C. Moreover, samples from 

regenerating muscles were provided at several time points after exercise training program (day 

28 and day 56). Muscle samples were frozen in isopentane cooled by liquid nitrogen and further 

stored at −80 °C. 10 µm-thick cryosections were prepared and processed for immunostaining and 

used to test the program’s ability to recognize variability in myofiber morphology. 

2.2. High-intensity interval training (HIIT) protocol  

First, mice were acclimated on the treadmill (5day/week, 10 m/min for 10 minute with no 

incline) and then subjected to HIIT program for 8 weeks (3 sessions/week). Each training session 

consisted of a warm-up stage (5 min at 10 m/min), eight exercise intervals at the prescribed 

speed and angle of inclination for 3–5 min, and a 1 min rest interval at 10 m/min was considered 

between each interval. The angle of inclination was gradually increased from 10˚ in the first 

week to 15˚ in the second week, 20˚ in the third week, 25˚ in the fourth week, and it was 
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maintained at 25˚ from weeks 4 to 8. The treadmill speed was maintained consistent (15 m/min) 

for the first 4 weeks and from weeks 5–8 was gradually increased by 1-2 m/min weekly (Model 

T510E, Diagnostic and Research, Taoyuan, Taiwan)9.  

2.3. Immunofluorescent staining 

Immunohistochemical procedures were carried out according to our previous study10. In 

summary, for fiber typing, sections (10 µm-thick) were incubated with antibodies specific to 

myosin heavy chain (MyHC) types I, IIa, and IIb (BA-D5, SC-71, and BF-F3, respectively, 

University of Iowa Developmental Studies Hybridoma Bank, Iowa City, IA), supplemented with 

rabbit polyclonal anti-laminin antibody (L9393; Sigma-Aldrich, St. Louis, MO). MyHC IIx 

expression was judged from unstained myofibers. Secondary antibodies coupled to Alexa Fluor 

405, 488 and 546 were used to detect MyHC types I, IIa, and IIb, respectively (Molecular 

Probes, Thermo Fisher Scientific, Waltham, MA, USA). Moreover, anti-rabbit IgG Cy3-labeled 

secondary antibody (Jackson Immunoresearch Labs, West Grove, PA, USA) was used to detect 

laminin.  

2.4. Image Acquisition and Quantification 

All images were captured at ×10 magnification using a Carl Zeiss AxioImager fluorescent 

microscope (Carl Zeiss, Jena, Germany). Consecutive fields from whole muscle sections were 

automatically acquired in multiple channels using the mosaic function in Image M1 Software.   

2.5. Development of MyoView 

MyoView has been implemented in MATLAB 2017b on a machine with 2.26 GHz Corei7 CPU 

and 8 GB of RAM.  It is very fast, simple and efficient with low time complexity to analyze 

skeletal muscle cross sections.  The primary version of source codes is undergoing verification to 
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be publicly available with MIT license at Code Ocean platform in 

https://codeocean.com/capsule/4910024/tree which generates a standard, secure, and executable 

research package called a Capsule. Capsule format is open, exportable, reproducible, and 

interoperable. This capsule is versioned and contains code, data, environment, and associated 

results of MyoView. 

2.6. Manual analysis for comparison to MyoView 

For manual quantification of fiber-type and CSA, images from various experimental conditions 

were analyzed in FIJI using the free hand tool to encircle individual myofibers. Manual 

quantification of CSA and fiber-type were performed for all images used in this present study. 

Accuracy of MyoView and programs examined in this study was based on comparison between 

program-derived results and manually acquired results as described8. Additionally, Open-CSAM, 

MuscleJ, SMASH, and MyoVision analyses were performed as described4,6-8.  

2.7. Statistical analyses 

Reported data represent mean ± S.E.M. Statistical analysis was performed using the Graph-Pad 

Prism statistics software (Graph-Pad Software Inc., San Diego, La Jolla CA, USA free demo 

version 5.04, www.graphpad.com). One-way ANOVA followed by Tukey's post hoc test was 

performed for inter-user reliability comparisons. Paired, two-tailed Student’s t-tests were 

performed for comparing MyoView with manual quantification data. Repeated-measures two-

way ANOVA followed by Bonferroni multiple-comparisons tests were performed for CSA 

changes with HIIT program and fiber counting accuracy and efficiency measurements. Spearman 

correlation coefficient was computed to assess the correlation analyses.
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3. Results 

3.1. Proposed cell segmentation models  

3.1.1. Model cell images in neutrosophic sets and neutrosophic images 

Interactions between neutralities as well as their scope and nature are modeled in neutrosophy as 

a branch of philosophy. Neutrosophic logic and neutrosophic set (NS) stem from neutrosophy. 

Suppose that N is a universal set in the neutrosophic domain and a set X is included in N. Each 

member x in X is described with three real standard or nonstandard subsets of [0, 1] named as 

True(T), Indeterminacy(I), and False(F) which have these properties: Sup_T=t_sup, inf_T=t_inf, 

Sup_I=i_sup, inf_I=i_inf, Sup_F=f_sup, inf_F=f_inf, n-sup=t_sup+i_sup+f_sup and n-

inf=t_inf+i_inf+f_inf. Therefore, element x in set X is expressed as x(t,i,f), where t, i and f  varies 

in T, I and F respectively. x(t,i,f) could be interpreted as it is t% true, i% indeterminacy, and f% 

false that x belongs to A. T, I and F could be considered as membership sets [7]. 

NS can be used in image processing domain. The main contribution of the proposed NS 

segmentation method is to separate, count and compute sum area of blue, green, black, and red 

cells in skeletal muscle cross sections. For this task, an image is transformed into the 

neutrosophic domain. The method of transformation is completely depending on the image 

processing application. In cell segmentation, image C with the dimension of m×n and L gray 

levels and k channels are considered. Here images with 3 channels Red, Green and Blue (RGB), 

each channel with the dimension of 5751x7600 for each channel and 256 gray levels are used for 

automated segmentation. Since all neutrosophic sets are in the range of [0 1], in the first step, C 

is normalized to interval [0 1] as follows: 

���, �, �� �  ���,�,��    	�������  

�������	�������
       (1) 
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where �
����� and �
�
��� represent minimum and maximum values of pixels in cell image C 

in channel k, respectively. C is mapped into three sets T (true subset), I (indeterminate subset) 

and F (false subset). Therefore, the pixel p(i,j) in C is transformed into PNS(i, j) = {T(i, j), I(i, j), 

F(i, j)}) or PNS (t, i, f) in neutrosophic domain. T, I and F are dedicatedly defined for each type 

of cells.  

3.1.2. Cell counting and area computation for all types of cells 

For gray-scale image in Fig. 1A, region of interest is selected and shown in Fig. 1B. The 

proposed method for cell counting and area computation is explained for this image. In the first 

step, boundary regions between cells are modeled in true set T and cell regions are considered in 

False set F. Proposed definitions of neutrosophic sets are as follows: 


���, �� � ����, �, ��� 
 ����, �, max �3 � �, 1�� 
 ����, �, ��� 
 max�3 � �, 1����     (2) 

���� � � �  ;            � � 3
� � 2 ;        � � 3�                (3) 

����, �� �  ����,��   	   �����

�����   	    �����
                 (4) 

��
��, �� � |	
 ���, �, 
�� � 
���, �, ��� �3 � 
, 1�� � ��
�, �, ��
 � ����3 � 
, 1����� � ���, �, 
������������|     (5) 
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�
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� 
�
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�	 
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&���, �� � 1 � ����, ��                       (8) 

where k is channel number which can be 1, 2 or 3. min and max indexes are minimum and 

maximum values in the whole matrix, respectively. Matrix 
� computes eligibility of pixels to be 

assigned to cell k, is based on normalized value of pixels in channel k associated with this cell 

and inverse values in other channels with respect to maximum value 1. True component T is 

achieved by 
 normalization. If a pixel has a high value in channel k and low values in other 

channels simultaneously, a high percent is assigned to this pixel to be a member of cell index k. 

Indeterminacy matrix is calculated by difference of pixels in channel k from mean of local 

neighbor pixels in this channel. Therefore, pixels close to local mean of a channel receive low 

indeterminacy, means a high confidence of assignment is considered for those pixels. 

Therefore, in binarized version of True and False sets, boundary and cell pixels are illustrated in 

light and dark regions, respectively (Fig. 1C). In the next step, true and false sets are converted to 

each other to place cell pixels in true set as shown in Fig. 1D. In error correction steps, small 

regions and holes are corrected in Fig. 1E. Finally, true set T is placed in input image and 

boundaries are illustrated with blue color for better visualization as shown in Fig. 1F.  Binarized 

version of detected all cell types in the whole image is depicted in Figs. 1G-H. In this step, all 

connected components are found by iteratively 8-neighbor correlated pixels. Components are 

counted, area of each component is calculated, then number of components, sum and average of 

areas are reported as outputs. 
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(A) Input gray-level image of 
all cell types 

(B)  Region of interest selected 
from gray-level image of all 
cell types 

(C) Boundary and cell pixels in 
binarized true and false sets in 
neutrosophic domain 

   

(D) Converting true and false 
sets to each other 

(E) Error correction in 
binarized true and false sets 

(F) Final segmentation of all 
cell types 

 

  

(G) Input gray-level image of 
all cell types 

(H) Binarized version of 
detected all cell types 

 

Figure 1. MyoView workflow for all cell types. (A) When the MyoView software starts, a window automatically

opens to select the image to be analyzed (here muscle cryosections immunostained for laminin in white). (B)

Represents zoom-in example of a specific area. (C-F) Represent MyoView different steps for segmentation process

of all cell types. (G-H) Represent the segmentation process of all cell types in the whole image. Bars = 25 μm. 
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3.1.3. Cell counting and area computation for color cells 

 For red, green and blue cells with k indexes of 1,2 and 3, respectively, PNS (t, i, f) means that 

this pixel is %t percent true to be a member of cell with index k, confidence of this decision is %i 

and %f percent true that this pixel does not belong to cell k. T, I and F for cell index k are 

computed as follows: 


���, �� �  ���, �, �� 
 �1 � ���, �, max �3 � �, 1�� 
 �1 � ���, �, ��� 
 max �3 � �, 1���      (9)  

'���, �� � |���, �, �� � ��), *, ��+++++++++++|     (10) 

���, �, �� �  �

��
   ∑      ∑    ��� 
 �, � 
 ,, ���� 

�

�

��	 
�

�


� 
�

�


�	 
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        (11) 

For black cells, Eq. (9) for 
� computation is rewritten as: 
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It can be interpreted by this fact that: the lower values of a pixel in all channels, the higher 

membership degree to black cells is assigned. Consider input image shown in Fig. 2A to apply 

the proposed segmentation method. For better visualization of details, a region of interest (ROI) 

is selected and illustrated in Fig. 2B.  
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For each pixel in neutrosophic domain, two conditions are considered to assign high membership 

degree for that pixel to cell index k. The first one is high value of True matrix and the second one 

is low indeterminacy, means there is a high confidence to decide that pixel has a high 

membership degree to True set T. These conditions are combined with “AND” relation by 

pixelwise product of True and Indeterminacy sets as follows:  

-���, �� � ����, �� . �1 � %���, ���   (15) 

The result of matrix M; still in neuromorphic domain; for blue cells (k=2) is shown in Fig. 2C. It 

is clear that pixels in blue cells have higher membership degrees (in lighter gray levels) in 

comparison with pixels in other cells (darker pixels). Matrix M in neuromorphic domain is 

binarized with a strict threshold as shown in Fig. 2D. 

3.1.3.1. Error correction 

In binarization process of image M in neutrosophic domain, some extra regions are appeared 

which are incorrectly assigned to blue regions (Fig. 2D). Therefore, these errors should be 

corrected. Error correction is done automatically. Connected components for true image T in 

neutrosophic domain are found iteratively by connecting all 8-neighbor pixels in Supplementary 

Fig. S1 and labeling connected pixels upon there is no unlabeled pixel. Average area of all 

components is computed and small components under 20% of average area are ignored as shown 

in Fig. 2E.  

Pixels inside blue cells are located inside a distribution of blue color in channel 3 with a mean 

and standard deviation. Blue pixels close to the mean of this distribution are strongly assigned to 

blue cells since high values of T and I matrixes leads to a high value of M for such pixels. Pixels 

which are far from the mean of distribution are weakly assigned to blue class since their 
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indeterminacy I is high and their true membership is low. Therefore, their values in matrix M are 

low. It is worth mentioning that such pixels although have low membership degrees blue cells, 

they are located inside blue regions and should be assigned to blue cells. These errors are 

corrected by filling holes inside connected components as illustrated in Fig. 2F.  

3.1.3.2. Final segmentation of cells 

After finalizing matrix M in neutrosophic domain, edge pixels are detected by canny edge 

detector as shown in Fig. 2G. For better visualization of cell boarders, thickness of edges is 

increased by image dilation operator with a disk structure element depicted in Fig. 2H. Final 

edges are placed in input image which lead to high-accuracy segmentation of blue cells in Fig. 

2I. Finally, blue cells are separated from input image and shown in an image with black 

background as illustrated in Fig. 2J. The same scenario is applied to segment red, green and 

black cells results in detected cells in Figs. 2K-P.  Segmented cells in the whole images are 

shown in Figs. 2Q-U. 
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(A) Input image for cell 
segmentation 

(B) Region of interest 
for analysis 

(C) Matrix M in 
neuromorphic domain 

(D) Binarization of 
matrix M 

    

(E) Small objects 
removal 

(F) Filling holes inside 
connected components 

(G) Detecting edges of 
matrix M  

(H) Increase edge 
thickness 

    
(I) Placing blue edges 
in input image 

(J) Separating blue 
cells from input image 

(K) Placing green edges 
in input image 

(L) Separating green 
cells from input image 

 
  

 

(M) Placing black 
edges in input image 

(N) Separating black 
cells from input image 

(O) Placing red edges 
in input image 

(P) Separating red cells 
from input image 

 

 

   

(Q) Input image  (R) ROI for MyHC I (S) ROI for MyHC IIa (T) ROI for MyHC IIx (U) ROI for MyHC
 

Figure 2. MyoView workflow for different cell types. (A) When the MyoView software starts, a window

automatically opens to select the image to be analyzed (here muscle cryosections immunostained for laminin

(white), MyHC I (blue), MyHC IIa (green), and MyHC IIb (red)). (B) Represents zoom-in example of a specific

 

HC IIb 
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area. (C) MyoView computes matrix M in neuromorphic domain from input image. (D-H) After binarization of 

matrix M, removing small objects, and filling holes inside the connected components, then the software detects 

edges of matrix M and for better visualization increases edge thickness. (I) To dabble-check the detecting process, 

the software places edges in input image. (J) Finally, the software separate edges from input image and finalize the 

analyzing process (here for MyHC I myofibers in blue color). (K-l) Represent the same process for MyHC IIa 

myofibers in green color.   (M-N) Represent the same process for MyHC IIx myofibers in black color. (O-P) 

Represent the same process for MyHC IIb myofibers in red color. (Q-U) Represent the segmentation process of 

different myofibers in the whole image. Bars = 25 μm. 

3.2. MyoView is a reliable software for measuring CSA in response to the post-exercise 

regenerating situation 

In order to test the reliability of MyoView, its performance was compared with some other 

common software including: Open-CSAM, MuscleJ, SMASH, and MyoVision (Fig. 3). We 

analyzed gastrocnemius muscle from various conditions, including normal muscle, regenerating 

muscles at several time points after exercise training (D28 and D56) in mature mice, and a model 

of fibrotic dystrophy (mdx) using anti-laminin antibody. Open-CSAM produced significantly 

lower mean CSA values as compared with manual quantification on D0, D28 and D56 (Fig. 3A, 

-6.6, -7.3 and -10.9%, respectively). Mean CSA values obtained with MuscleJ were similar to the 

manual quantification for normal muscles in D0. However, it gave higher mean CSA values in 

D28 and D56 post-exercise regenerating muscles (Fig. 3A, between 4.5% to 5.9% of increment). 

Mean CSA values obtained with SMASH were very close to the manual quantification in normal 

muscles in D0. However, SMASH produced higher mean CSA values in D28 and D56 post-

exercise regenerating muscles (+5.8% and +9.9%, respectively). MyoVision produced similar 

CSA values to the manual quantification for normal muscles in D0. However, it gave higher 

mean CSA values in D28 and D56 post-exercise regenerating muscles as compared with manual 
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quantification (Fig. 3A, +9.1% and +8%, respectively). On the other hand, MyoView gave mean 

CSA values close to those obtained manually in D0, D28 and D56, with a very slight 

underestimation (Fig. 3A, -1.8%, -1.4% and -1.3%, respectively). In the case of mdx muscle, all 

of the softwares produced similar CSA values to the manual quantification except MuscleJ and 

MyoVision which they produced higher values (+4.8% and +9.1%, respectively).   

Despite an increased CSA values obtained using MuscleJ, SMASH, and MyoVision and 

decreased values for Open-CSAM, the correlation between them and manual quantifications 

were strong in normal muscles in D0, as well as in days 28 and 56 post-exercise regenerating 

muscles (Fig. 3B, R2 > 0.85), suggesting that in these conditions, CSA overestimation by 

MuscleJ, SMASH, and MyoVision as well as CSA underestimation by Open-CSAM were 

similar to all the pictures and did not introduce a specific bias. Overall correlation between 

Open-CSAM and manual quantification was very strong in normal muscles in D0 (Fig. 3B, R2 = 

0.9854). Although this correlation was lower in days 28 and 56 post-exercise regenerating 

muscles as well as on fibrotic muscles (R2 = 0.9047, R2 = 0.9180, and R2 = 0.9429, respectively). 

Similarly, overall correlation between MuscleJ, SMASH, and MyoVision and manual 

quantification were very strong in normal muscles in D0 (Fig. 3B, R2 = 0.9707, R2 = 0.9978, and 

R2 = 0.9755, respectively). Although these correlations were lower in D28 (Fig. 3B, R2 = 0.9536, 

R2 = 0.8959, and R2 = 0.9390, respectively) and D56 post-exercise regenerating muscles (Fig. 

3B, R2 = 0.8605, R2 = 0.8570, and R2 = 0.9435, respectively) as well as on fibrotic muscles (R2 = 

0.8872, R2 = 0.9626, and R2 = 0.9368, respectively). Although, the correlation between 

MyoView and manual quantification was very strong in normal muscles in D0 (Fig. 3B, R2 = 

0.9799), there was no difference between this correlation and the corresponding values for other 

software. However, the correlation between MyoView and manual quantification was better than 
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Open-CSAM, MuscleJ, SMASH, and MyoVision in 28 and 56 days’ post-exercise regenerating 

muscles. This suggests that MyoView performance was better in response to the post-exercise 

regenerating process. 
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Figure 3. MyoView comparison with Open-CSAM, MuscleJ, SMASH, and MyoVision softwares. The same 

pictures were analyzed either by manual measurement or using MyoView, Open-CSAM, MuscleJ, SMASH, and 

MyoVision softwares. (A) Mean cross-section area (CSA) obtained on various gastrocnemius muscles. Muscles 

were isolated from 16- to 18-week-old C57BL/6 mice in (D0) or 28 days (D28), and 56 days (D56) post-HIIT 

program, and from dystrophic mice (mdx). Results are mean ± SEM of 10 images from 5 muscles in each 

conditions. (B) Correlation between manual measurement (X axis) and MyoView, Open-CSAM, MuscleJ, SMASH, 

and MyoVision softwares (Y axis) measurements performed on the same images used in (A). (C) Representative 

images measured by MyoView on days 0, 28, and 56 post-HIIT program, and from dystrophic mice (mdx). Bars = 

25 μm. **p < 0.01 as compared with manual quantification. 

 

3.3. MyoView is an efficient and accurate software for measuring CSA  

In order to examine MyoView efficiency in detecting myofibers and the time spent on CSA 

analysis as well as its accuracy, we next compared MyoView performance with manual 

quantification, Open-CSAM, MuscleJ, SMASH, and MyoVision softwares (Fig. 4). Figure 4B 

shows that there was no difference between the number of fibers counted by MyoView and the 

number counted by manual quantification, which corresponds to an accuracy of 98.1% ± 0.9 

(Fig. 4D). In contrast, Open-CSAM, MuscleJ, SMASH, and MyoVision identified lower 

myofibers and spent much more time to analyse CSA from various experimental conditions (Fig. 

4C, P > 0.001). Moreover, as compared with manual quantification, the accuracy of MyoView in 

analysing CSA was 98.2% ± 1.4, (Fig. 4E), while Open-CSAM, MuscleJ, SMASH, and 

MyoVision have been less accurate in analysing CSA (P > 0.001). Taken together, these results 

suggest that MyoView is an efficient and accurate software for detecting myofibers and 

measuring CSA in response to the post-exercise regeneration process. 
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Figure 4. Comparison of MyoView, Open-CSAM, MuscleJ, SMASH, and MyoVision CSA quantification on whole 

muscle sections. (A) Representative images measured by MyoView, Open-CSAM, MuscleJ, SMASH, and 

MyoVision on gastrocnemius muscle images obtained from 16- to 18-week-old C57BL/6 mice. Segmentation errors 

are labeled as missed fibers (green), mis-segmented fibers (red). (B) Number of fibers identified by the softwares. 
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(C) Total analysis time required by the different softwares. (D) Fiber number accuracy by the different softwares. 

(E) Mean CSA accuracy by the different softwares. Results are mean ± SEM of 10 images from 5 muscles in each 

condition. **p < 0.01 as compared with manual or MyoView quantification. 

 

3.4. MyoView performance in different fiber-types is comparable to manual quantification 

We next wanted to determine how does effective MyoView work as a tool for analysing different 

myofiber size and type in entire cross-section of gastrocnemius muscle. Three experienced 

researchers used the free hand tool in Fiji to encircle individual myofibers from six images from 

16- to 18-week-old C57BL/6 mice in 56 days (D56) post-HIIT program to obtain CSA values. 

We then ran the same images through the MyoView program and obtained a distribution of CSA 

across the images. The mean CSAs and distributions did not differ significantly between manual 

and MyoView analysis (Fig 5A-B). Next, we tested the accuracy of fiber typing using MyoView. 

Fiber type analysis was manually performed by 3 experienced researchers on six images (2 

images per person). We then used MyoView to obtain mean data for blue, green, black, and red 

channels across these six images for fiber typing. The relative proportion of each fiber type was 

strongly correlated between MyoView and manual analysis (R2 > 0.97) (Fig 5C-D). 

Additionally, MyoView fiber type classification results in CSA were linearly and positively 

correlated to manual counts (R2 > 0.98), and there was no statistically significant difference 

between the CSAs of each fiber type measured by hand and by MyoView. The accuracy of 

MyoView fiber type analysis is estimated to be 98.5 ± 0.7% compared with manual 

quantification. Taken together, the results from this part implicate that MyoView performance in 

different fiber-types is comparable to manual quantification in regenerating myofibers in 

response to HIIT program. 
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Figure 5. MyoView is comparable to manual quantification for analysing different myofibers. (A-B) Myofiber 

CSAs and distributions were not different when determined with MyoView or by manual quantification (p>0.92). 

Results of manual analysis of 6 images from 3 investigators are shown. (C) Proportions determined manually are on 

the y-axis and proportions determined by MyoView are on the x-axis. (D) MyHC I fibers indicated by blue symbols, 

MyHC IIa indicated by green symbols, MyHC IIx indicated by black symbols, and MyHC IIb indicated by red. Bar 

= 25 μm. 

 

3.5. Inter-user reliability of MyoView 

To assess the ease and accuracy of analyses with MyoView, we asked five individuals in the 

laboratory to analyze the CSAs of whole muscle cross-section and different fiber-types from a 
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single image from gastrocnemius muscle from D28 after exercise training. The analyses of the 

CSA of whole muscle cross-section, MyHC I, IIa, IIx, and IIb fibers were similar among the five 

users (Fig. 6). This further demonstrates the reliability of the image outputs of the analyses taken 

by MyoView to analyses the CSAs of whole muscle cross-section and different fiber-types in 

regenerating myofibers in response to HIIT program. 
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Figure 6. Inter-user reliability. Independent analyses of mean CSA as a function of fiber type by 5 users. Data from 

whole gastrocnemius muscle images obtained from 16- to 18-week-old C57BL/6 mice on 56 days (D56) post-HIIT 

program. (A) Representative image measured by MyoView for measuring different fiber types. (B) Mean CSA of 

whole muscle fibers. (C) Mean CSA of MyHC I fibers. (D) Mean CSA of MyHC IIa fibers. (E) Mean CSA of 

MyHC IIx fibers. (F) Mean CSA of MyHC IIb fibers. Bar = 25 μm. 
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3.6. Whole muscle cross-section analysis for fiber type determination is essential for best 

accuracy   

CSA determination of the of various fiber types is usually performed on a subset of images 

randomly taken throughout the muscle section. Depending on the researchers’ decision, a variety 

of different number of images and thus myofibers can be qualified for fiber type analysis. This 

may expose the evaluation process to the possibility of selection bias as myofiber size is quite 

heterogeneous through the whole muscle cross-section. Figure 7A shows an example of an entire 

reconstituted muscle picture. We measured CSAs of different myofibers on individual images 

from 5 mice on 56 days post-HIIT program, calculated the mean CSAs on 12 subsets of images, 

and compared the results with the CSAs obtained on the whole muscle section by MyoView. 

When the measurement was made only using a 12 subset of pictures, there was no significant 

different in fiber type distribution as compared with whole muscle cross-section analysis (Fig. 

7B, P > 0.8). Given that about eighty percent of gastrocnemius muscle fibers are type IIb, 

measuring fewer number of these fibers on 12 subsets of pictures (Fig. 7C, P = 0.015) was led to 

underestimation of CSA of IIb fibers as compared with whole muscle cross-section analysis (Fig. 

7D, P > 0.8). Moreover, compared with whole muscle cross-section analysis, significant reduced 

CSA of type IIx fibers was observed in analyzing of 12 subsets of pictures (Fig. 7D, P = 0.04). 

Additionally, we particularly observed that compared with whole muscle cross-section analysis, 

mean CSA was underestimated when 12 subsets of pictures were measured (Fig. 7C, P = 0.015). 

Taken together, these results indicate that the whole muscle cross-section should be analyzed 

when measuring CSA of exercise-induced regenerating muscle in order to obtain an unbiased 

data.  
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Figure 7. Whole muscle analysis for different myofiber types by MyoView. (A) Whole reconstitution of a MyHC I, 

IIa, IIx, and IIb -stained cryosection of a gastrocnemius muscle from 5 mice on 56 days post-HIIT program (12 

pictures were automatically recorded and assembled by MetaMorph software). The position of each individual 

image is highlighted by the yellow lines. (B) MyHC distribution obtained after various subsettings of pictures in (A) 

as compared with whole muscle analysis by MyoView. (C) Number of fibers obtained after various subsettings of 

pictures in in (A) as compared with whole muscle analysis by MyoView. (B) Mean cross-section area obtained after 

various subsettings of pictures in in (A) as compared with whole muscle analysis by MyoView. Bar = 250 μm.  
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4. Discussion  

Skeletal muscle fibers are extremely sensitive to exercise training stimuli, with individual 

myofibers capable to increase in size9,10. Due to this adaptive characteristic, exercise 

physiologists have long acknowledged the importance of accurately quantifying muscle CSA in 

their experiments8. However, there are various strategies to analyze images and CSA 

quantification that can give highly heterogeneous results among different laboratories and teams. 

On the other hand, no automated program has been developed to provides the possibility for 

CSA quantification in exercise-induced regenerating myofibers especially in whole muscle 

cross-section. In the present study, we presented MyoView software to automatically process 

immunofluorescence images of the whole muscle cross-sections stained with laminin α2 and 

antibodies specific to MyHC types I, IIa, and IIb (BA-D5, SC-71, and BF-F3, respectively) in 

order to facilitate the determination of different individual myofibers on D0, D28 and D56 post-

exercise training. The parallel comparison between MyoView and manual quantification showed 

that MyoView can provide relatively efficient, accurate, and reliable measurements for detecting 

different myofibers and measuring CSA in response to the post-exercise regeneration process. 

MyoView is based on neutrosophic set algorithms. It is a fully-automated method for color cell 

segmentation based on neutrosophic sets. To the best of our knowledge, this is the first method 

which is proposed for neutrosophic cell segmentation. The main benefit behind using 

neutrosophic set is that: it has been applied in many applications; including segmentation of 

fluid/cyst regions in diabetic macular edema and exudative age-related macular degeneration 

patients11-13, unsupervised color–texture image segmentation14, automatic segmentation of 

choroid layer in retinal images15, content-based image retrieval16,17, and promising results were 

achieved. In this research, first, color cells have been modeled as neutrosophic sets with three 
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components and then each component is used to increase the confidence of each pixel to its 

corresponding cell type. Therefore, a high-confidence assignment of pixels to cell regions is 

achieved. 

Several other semi and fully-automated softwares have been developed4-8,18-25. Among them, we 

have attempt to test and compare Open-CSAM, MuscleJ, SMASH, and MyoVision with 

MyoView and found MyoView is relatively easy to implement and more accurate for CSA 

quantification, especially in post-exercise regenerating muscles. We did not test all available 

softwares as they are either not available online or purchase is required. Open-CSAM, MuscleJ, 

SMASH, and MyoVision are well-designed software packages that act as free versions of 

commercially available image analysis tools, but they require varying amounts of manual 

corrections to ensure accuracy, especially when it comes to analysing different fiber type across 

the muscle section. The primary goal of MyoView was to develop an accurate fully-automated 

software for whole muscle cross-section that is user friendly and requires minimal post-analysis 

corrections. The accuracy in the CSA quantification and identifying different fiber types are 

enhanced by MyoView, especially in regenerating muscles in response to exercise training 

stimuli.  

There are several limitations for the current version of our MyoView software. First, the 

accuracy of CSA quantification depends on the quality of the immunostaing procedures. In this 

case, we recommend performing a new immunostaing rather than trying to analyze poor quality 

images. Second, MyoView does not allow to manually correct the wrongly identified muscle 

fibers. However, our initial study with the 100 mages showed that MyoView error for myofiber 

identification was less than 3% which it does not appear to affect the conclusion of CSA 

quantification. Finally, in the current version of MyoView we have not provided the possibility 
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to count and analyze myonuclei, vessels, and satellite cells. Future improvements can be made to 

develop these functions in MyoView. 

We present a new fully-automated image analysis program, MyoView, for analyses of whole 

muscle cross-sectional area and fiber-type distribution in exercise-induced regenerating 

myofibers. MyoView allows rapid and accurate analysis of whole muscle cross-sectional 

immunofluorescence images. Additionally, MyoView rapidly identifies different myofibers 

based on the expression of myosin heavy chain isoforms in skeletal muscle from any 

experimental condition including exercise-induced regenerating myofibers.  
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