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Abstract 1 

With the ever-increasing amount of single-cell multi-omics data accumulated during the past years, 2 

effective and efficient computational integration is becoming a serious challenge. One major obstacle 3 

of unpaired multi-omics integration is the feature discrepancies among omics layers. Here, we 4 

propose a computational framework called GLUE (graph-linked unified embedding), which utilizes 5 

accessible prior knowledge about regulatory interactions to bridge the gaps between feature spaces. 6 

Systematic benchmarks demonstrated that GLUE is accurate, robust and scalable. We further 7 

employed GLUE for various challenging tasks, including triple-omics integration, model-based 8 

regulatory inference and multi-omics human cell atlas construction (over millions of cells) and found 9 

that GLUE achieved superior performance for each task. As a generalizable framework, GLUE 10 

features a modular design that can be flexibly extended and enhanced for new analysis tasks. The full 11 

package is available online at https://github.com/gao-lab/GLUE for the community.12 
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Introduction 1 

Recent technological advances in single-cell sequencing have enabled the probing of regulatory 2 

maps through multiple omics layers, such as chromatin accessibility (scATAC-seq1, 2), DNA 3 

methylation (snmC-seq3, sci-MET4) and the transcriptome (scRNA-seq5, 6), offering a unique 4 

opportunity to unveil the underlying regulatory bases for the functionalities of diverse cell types7. 5 

While simultaneous assays are emerging recently8-11, different omics are usually measured 6 

independently and produce unpaired data, which calls for effective and efficient in silico multi-omics 7 

integration12, 13. 8 

 9 

Computationally, one major obstacle faced when integrating unpaired multi-omics data is the distinct 10 

feature spaces of different modalities (e.g., accessible chromatin regions in scATAC-seq vs. genes in 11 

scRNA-seq)14. A quick fix is to convert multimodality data into one common feature space based on 12 

prior information and apply single-omics data integration methods15-17. Such explicit “feature 13 

conversion” is straightforward, but has been reported to result in significant information loss18. 14 

Algorithms based on coupled matrix factorization circumvent explicit conversion but hardly handle 15 

more than two omics layers19, 20. An alternative option is to match cells from different omics layers 16 

via nonlinear manifold alignment, which removes the requirement of prior knowledge completely 17 

and could reduce inter-modality information loss in theory21, 22; however, this technique has mostly 18 

been applied to continuous, trajectory-like manifolds rather than atlases. 19 

 20 

The ever-increasing volume of data is another serious challenge23. Recently developed technologies 21 

can routinely generate datasets at the scale of millions of cells24-26, whereas current integration 22 

methods have only been applied to datasets with much smaller volumes15, 17, 19-22. To catch up with 23 

the growth in data throughput, computational integration methods should be designed with 24 

scalability in mind. 25 

 26 

Hereby, we introduce GLUE (graph-linked unified embedding), a modular framework for integrating 27 

unpaired single-cell multi-omics data and inferring regulatory interactions simultaneously. By 28 

modeling the regulatory interactions across omics layers explicitly, GLUE bridges the gaps between 29 

various omics-specific feature spaces in a biologically intuitive manner. Systematic benchmarks and 30 

case studies demonstrate that GLUE is accurate, robust and scalable for heterogeneous single-cell 31 

multi-omics data. Furthermore, GLUE is designed as a generalizable framework that allows for easy 32 
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 4 

extension and quick adoption to particular scenarios in a modular manner. GLUE is publicly 1 

accessible at https://github.com/gao-lab/GLUE. 2 

 3 

Results 4 

Integrating unpaired single-cell multi-omics data via graph-guided embeddings 5 

Inspired by previous works, we model cell states as low-dimensional cell embeddings learned 6 

through variational autoencoders27, 28. Given their intrinsic differences in biological nature and assay 7 

technology, each omics layer is equipped with a separate autoencoder that uses a probabilistic 8 

generative model tailored to the layer-specific feature space (Fig. 1, Methods). 9 

 10 

 11 

Fig. 1 Architecture of the GLUE framework. 12 
GLUE employs omics-specific variational autoencoders to learn low-dimensional cell embeddings from each omics 13 
layer. The data dimensionality and generative distribution can differ across omics layers, but the cell embedding 14 
dimensions are shared. A graph variational autoencoder is used to learn feature embeddings from the prior 15 
knowledge-based guidance graph; these embeddings are then used as data decoder parameters. The feature 16 
embeddings effectively link the omics-specific autoencoders to ensure a consistent embedding orientation. Last, an 17 
omics discriminator is employed to align the cell embeddings of different omics layers via adversarial learning. 18 
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 5 

Taking advantage of prior biological knowledge, we propose the use of a knowledge-based graph 1 

(“guidance graph”) that explicitly models cross-layer regulatory interactions for linking layer-2 

specific feature spaces; the vertices in the graph correspond to the features of different omics layers, 3 

and edges represent signed regulatory interactions. For example, when integrating scRNA-seq and 4 

scATAC-seq data, the vertices are genes and accessible chromatin regions (i.e., ATAC peaks), and a 5 

positive edge can be connected between an accessible region and its putative downstream gene. 6 

Then, adversarial multimodal alignment is performed as an iterative optimization procedure, guided 7 

by feature embeddings encoded from the graph29 (Fig. 1, Methods). Notably, when the iterative 8 

process converges, the graph can be refined with inputs from the alignment procedure and used for 9 

data-oriented regulatory inference (see below for more details). 10 

 11 

Systematic benchmarks demonstrate superior alignment accuracy and robustness over existing 12 

methods 13 

We first benchmarked GLUE against multiple popular unpaired multi-omics integration methods15-17, 14 
21, 30 using gold-standard datasets generated by recent simultaneous scRNA-seq and scATAC-seq 15 

technologies8, 9, 31. 16 

 17 

At the cell type level, an integration method should match the corresponding cell types from 18 

different omics layers, producing cell embeddings where the cell types are clearly distinguishable 19 

and the omics layers are well mixed. Compared to other methods, GLUE achieved overall the 20 

highest cell type resolution (as quantified by mean average precision) and layer mixing (as quantified 21 

by the Seurat alignment score32) simultaneously (Fig. 2a); these results were also validated by 22 

UMAP visualization of the aligned cell embeddings (Supplementary Fig. 1-3). 23 

 24 

An optimal integration method should produce accurate alignments not only at the cell type level but 25 

also at finer scales. Exploiting the ground truth cell-to-cell correspondence between scRNA-seq and 26 

scATAC-seq, we further quantified single-cell level alignment error via the FOSCTTM (fraction of 27 

samples closer than the true match) metric33. On all three datasets, GLUE achieved the lowest 28 

FOSCTTM, decreasing the alignment error by large margins compared to the second-best method on 29 

each dataset (Fig. 2b, the decreases were 3.6-fold for SNARE-seq, 1.7-fold for SHARE-seq, and 1.4-30 

fold for 10x Multiome). 31 

 32 
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 1 

Fig. 2 Systematic benchmarks on gold-standard datasets. 2 
a, Cell type resolution (quantified by mean average precision) vs. omics layer mixing (quantified by Seurat alignment 3 
score) for different integration methods. FiG (fragments in genes) is an alternative feature conversion method 4 
recommended by online iNMF and LIGER (Methods). Online iNMF and LIGER could not run with FiG conversion 5 
on the SNARE-seq data because the raw ATAC fragment file was not available. UnionCom failed to run on the 6 
SHARE-seq dataset due to memory overflow. b, Single-cell level alignment error (quantified by FOSCTTM) of 7 
different integration methods. c, Increases in FOSCTTM at different prior knowledge corruption rates for integration 8 
methods that rely on prior feature interactions. d, FOSCTTM values of different integration methods on subsampled 9 
datasets. The error bars indicate mean ± s.d. 10 

During the evaluation described above, we adopted a standard schema (ATAC peaks were linked to 11 

RNA genes if they overlapped in the gene body or proximal promoter regions) to construct the 12 

guidance graph for GLUE and to perform feature conversion for other conversion-based methods. 13 

Given that our current knowledge about the regulatory interactions is still far from prefect, a useful 14 

integration method must be robust to such inaccuracies. Thus, we further assessed the methods’ 15 

robustness to corruption of regulatory interactions by randomly replacing varying fractions of 16 

existing interactions with nonexistent ones. For all three datasets, GLUE exhibited the smallest 17 

performance changes even at high corruption rates (Fig. 2c), suggesting its superior robustness. 18 

 19 

Given its neural network-based nature, GLUE may suffer from undertraining when working with 20 

small datasets. Thus, we repeated the evaluations using subsampled datasets of various sizes. GLUE 21 

remained the top-ranking method with as few as 2,000 cells, but the alignment error increased more 22 

steeply when the data volume decreased to less than 1,000 cells (Fig. 2d). Additionally, we also 23 

noted that the performance of GLUE was robust for a wide range of hyperparameter settings 24 

(Supplementary Fig. 4). 25 

 26 
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 7 

GLUE enables effective triple-omics integration 1 

Benefitting from a modular design and scalable adversarial alignment, GLUE readily extends to 2 

more than two omics layers. As a case study, we used GLUE to integrate three distinct omics layers 3 

of neuronal cells in the adult mouse cortex, including gene expression34, chromatin accessibility35, 4 

and DNA methylation3. 5 

 6 

Unlike chromatin accessibility, gene body DNA methylation generally shows a negative correlation 7 

with gene expression in neuronal cells36. GLUE natively supports the mixture of regulatory effects 8 

by modeling edge signs in the guidance graph. Such a strategy avoids data inversion, which is 9 

required by previous methods16, 17 and can break data sparsity and the underlying distribution. For 10 

the triple-omics guidance graph, we linked gene body mCH and mCG levels to genes via negative 11 

edges, while the positive edges between accessible regions and genes remained the same. 12 

 13 

The GLUE alignment successfully revealed a shared manifold of cell states across the three omics 14 

layers (Fig. 3a-d). We observed highly significant marker overlap (Fig. 3e, three-way Fisher’s exact 15 

test37, FDR < 2×10-15) for 12 out of the 14 mapped cell types (Supplementary Fig. 5, 6, Methods), 16 

indicating reliable alignment. Interestingly, we found that GLUE alignment helped improve the 17 

effects of cell typing in all omics layers, including the further partitioning of the scRNA-seq “MGE” 18 

cluster into Pvalb+ (“mPv”) and Sst+ (“mSst”) subtypes (highlighted with green circles/flows in Fig. 19 

3, Supplementary Fig. 5), the partitioning of the scRNA-seq “CGE” cluster and scATAC-seq “Vip” 20 

cluster into Vip+ (“mVip”) and Ndnf+ (“mNdnf”) subtypes (highlighted with dark blue circles/flows 21 

in Fig. 3, Supplementary Fig. 5), and the identification of snmC-seq “mDL-3” cells and a subset of 22 

scATAC-seq “L6 IT” cells as claustrum cells (highlighted with light blue circles/flows in Fig. 3, 23 

Supplementary Fig. 5). 24 

 25 
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 1 

Fig. 3 Triple-omics integration of the mouse cortex. 2 
a-c, UMAP visualizations of the integrated cell embeddings for a, scRNA-seq, b, snmC-seq, and c, scATAC-seq, 3 
colored by the original cell types. Cells aligning with “mPv” and “mSst” are highlighted with green circles. Cells 4 
aligning with “mNdnf” and “mVip” are highlighted with dark blue circles. Cells aligning with “mDL-3” are 5 
highlighted with light blue circles. d, UMAP visualizations of the integrated cell embeddings for all cells, colored by 6 
omics layers. e, Significance of marker gene overlap for each cell type across all three omics layers (three-way 7 
Fisher’s exact test37). The dashed vertical line indicates that FDR = 0.01. We observed highly significant marker 8 
overlap (FDR < 2×10-15) for 12 out of the 14 cell types, indicating reliable alignment. For the remaining 2 cell types, 9 
“mDL-1” had marginally significant marker overlap with FDR = 0.001, while the “mIn-1” cells in snmC-seq did not 10 
properly align with the scRNA-seq or scATAC-seq cells. f, Coefficient of determination (R2) for predicting gene 11 
expression based on each epigenetic layer as well as the combination of all layers. The box plots indicate the medians 12 
(centerlines), means (triangles), 1st and 3rd quartiles (hinges), and minima and maxima (whiskers). 13 

Such triple-omics integration also sheds light on the quantitative contributions of different epigenetic 14 

regulation mechanisms (Methods). Among mCH, mCG and chromatin accessibility, we found that 15 

the mCH level had the highest predictive power for gene expression in cortical neurons (average R2 16 

= 0.188). When all epigenetic layers were considered, the expression predictability increased further 17 

(average R2 = 0.238), suggesting the presence of nonredundant contributions (Fig. 3f). Among the 18 

neurons of different layers, DNA methylation (especially mCH) exhibited slightly higher 19 

predictability for gene expression in deeper layers than in superficial layers, whereas the reverse 20 

situation held for chromatin accessibility (Supplementary Fig. 7a). Across all genes, the 21 

predictability of gene expression was generally correlated among the different epigenetic layers 22 

(Supplementary Fig. 7b). We also observed varying associations with gene characteristics. For 23 

example, mCH had higher expression predictability for longer genes, which was consistent with 24 

previous studies17, 38, while chromatin accessibility contributed more to genes with higher expression 25 

variability (Supplementary Fig. 7c). 26 
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 9 

Model-based regulatory inference with GLUE 1 

The incorporation of a graph explicitly modeling regulatory interactions in GLUE further enables a 2 

Bayesian-like approach that combines prior knowledge and observed data for posterior regulatory 3 

inference. Specifically, since the feature embeddings are designed to reconstruct the knowledge-4 

based guidance graph and single-cell multi-omics data simultaneously (Fig. 1), their cosine 5 

similarities should reflect information from both aspects, which we adopt as “regulatory scores”. 6 

 7 

As a demonstration, we employed the official PBMC (peripheral blood mononuclear cell) Multiome 8 

dataset from 10x31 and fed it to GLUE as unpaired scRNA-seq and scATAC-seq data. To capture 9 

remote cis-regulatory interactions, we employed a long-range guidance graph connecting ATAC 10 

peaks and RNA genes within 150 kb windows weighted by a power-law function that models 11 

chromatin contact probability39, 40 (Methods). Visualization of cell embeddings confirmed that the 12 

GLUE alignment was correct and accurate (Supplementary Fig. 8a, b). As expected, we found that 13 

the regulatory score was negatively correlated with genomic distance (Fig. 4a) and positively 14 

correlated with the empirical peak-gene correlation (computed with paired cells, Fig. 4b), with 15 

robustness across different random seeds (Supplementary Fig. 8c). 16 

 17 

To further assess whether the score reflected actual cis-regulatory interactions, we compared it with 18 

external evidence, including pcHi-C41 and eQTL42. The GLUE regulatory score was higher for pcHi-19 

C-supported peak-gene pairs in all distance ranges (Fig. 4a) and was a better predictor of pcHi-C 20 

interactions than empirical peak-gene correlations (Fig. 4b, c), as well as Cicero40, the 21 

coaccessibility-based regulatory prediction method (Fig. 4c). The same held for eQTL 22 

(Supplementary Fig. 8d-f). 23 

 24 

The GLUE framework also allows additional regulatory evidence, such as pcHi-C, to be 25 

incorporated intuitively via the guidance graph. Thus, we further trained new models with a 26 

composite guidance graph containing distance-weighted interactions as well as pcHi-C- and eQTL-27 

supported interactions (Supplementary Fig. 9). While the multi-omics alignment was insensitive to 28 

these changes, the GLUE-derived TF-target gene network (Methods) showed more significant 29 

agreement with manually curated connections in the TRRUST v2 database43 than individual 30 

evidence-based networks (Supplementary Fig. 9e, Supplementary Fig. 10, Supplementary Table 3). 31 

 32 
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 1 

Fig. 4 Model-based regulatory inference in PBMC. 2 
a, GLUE regulatory scores for peak-gene pairs across different genomic ranges, grouped by whether they had pcHi-3 
C support. The box plots indicate the medians (centerlines), means (triangles), 1st and 3rd quartiles (hinges), and 4 
minima and maxima (whiskers). b, Comparison between the GLUE regulatory scores and the empirical peak-gene 5 
correlations computed on paired cells. Peak-gene pairs are colored by whether they had pcHi-C support. c, ROC 6 
(receiver operating characteristic) curves for predicting pcHi-C interactions based on different peak-gene association 7 
scores. d, e, GLUE-identified cis-regulatory interactions for d, NCF2, and e, CD83, along with individual regulatory 8 
evidence. SPI1 (highlighted with a green box) is a known regulator of NCF2. 9 

Interestingly, we noticed that the GLUE-inferred cis-regulatory interactions could provide new hints 10 

about the regulatory mechanisms of known TF-target pairs. For example, SPI1 is a known regulator 11 

of the NCF2 gene, and both are highly expressed in monocytes (Supplementary Fig. 11a, b). GLUE 12 

identified three remote regulatory peaks for NCF2 with various pieces of evidence, i.e., ~120 kb 13 

downstream, ~25 kb downstream, and ~20 kb upstream from the TSS (transcription start site) (Fig. 14 

4d), all of which were bound by SPI1. Meanwhile, most putative regulatory interactions were 15 

previously unknown. For example, CD83 was linked with two regulatory peaks (~25 kb upstream 16 

from the TSS), which were enriched for the binding of three TFs (BCL11A, PAX5, and RELB; Fig. 17 

4e). While CD83 was highly expressed in both monocytes and B cells, the inferred TFs showed more 18 

constrained expression patterns (Supplementary Fig. 11c-f), suggesting that its active regulators 19 

might differ per cell type. Supplementary Fig. 12 shows more examples of GLUE-inferred regulatory 20 

interactions. 21 
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 11 

Atlas-scale integration over millions of cells with GLUE 1 

As technologies continue to evolve, the throughput of single-cell experiments is constantly 2 

increasing. Recent studies have generated human cell atlases for gene expression25 and chromatin 3 

accessibility26 containing millions of cells. The integration of these atlases poses a significant 4 

challenge to computational methods due to the sheer volume of data, extensive heterogeneity, low 5 

coverage per cell, and unbalanced cell type compositions, and has yet to be accomplished at the 6 

single-cell level. 7 

 8 

Implemented as parametric neural networks with minibatch optimization, GLUE delivers superior 9 

scalability with a sublinear time cost, promising its applicability at the atlas scale (Supplementary 10 

Fig. 13a). Using an efficient multistage training strategy for GLUE (Methods), we successfully 11 

integrated the gene expression and chromatin accessibility data into a unified multi-omics human cell 12 

atlas (Fig. 5). 13 

 14 

 15 
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Fig. 5 Integration of a multi-omics human cell atlas. 1 
UMAP visualizations of the integrated cell embeddings, colored by a, omics layers, and b, cell types. The pink circles 2 
highlight cells labeled as “Excitatory neurons” in scRNA-seq but “Astrocytes” in scATAC-seq. The blue circles 3 
highlight cells labeled as “Astrocytes” in scRNA-seq but “Astrocytes/Oligodendrocytes” in scATAC-seq. The brown 4 
circles highlight cells labeled as “Oligodendrocytes” in scRNA-seq but “Astrocytes/Oligodendrocytes” in scATAC-5 
seq. 6 

While the aligned atlas was largely consistent with the original annotations26 (Supplementary Fig. 7 

13c-e), we also noticed several discrepancies. For example, cells originally annotated as 8 

“Astrocytes” in scATAC-seq were aligned to an “Excitatory neurons” cluster in scRNA-seq 9 

(highlighted with pink circles/flows in Supplementary Fig. 13). Further inspection revealed that 10 

canonical radial glial (RG) markers such as PAX6, HES1, and HOPX44, 45 were actively transcribed 11 

in this cluster, both in the RNA and ATAC domain (Supplementary Fig. 14), with chromatin 12 

priming9 also detected at both neuronal and glial markers (Supplementary Fig. 15-17), suggesting 13 

that the cluster consists of multipotent neural progenitors (likely RGs) rather than excitatory neurons 14 

or astrocytes as originally annotated. GLUE-based integration also resolved several scATAC-seq 15 

clusters that were ambiguously annotated. For example, the “Astrocytes/Oligodendrocytes” cluster 16 

was split into two halves and aligned to the “Astrocytes” and “Oligodendrocytes” clusters of scRNA-17 

seq (highlighted with blue and brown circles/flows in Supplementary Fig. 13, respectively), which 18 

was also supported by marker expression and accessibility (Supplementary Fig. 16, 17). These 19 

results demonstrate the unique value of atlas-scale multi-omics integration. 20 

 21 

Discussion 22 

Combining omics-specific autoencoders with graph-based coupling and adversarial alignment, we 23 

designed and implemented the GLUE framework for unpaired single-cell multi-omics data 24 

integration with superior accuracy and robustness. By modeling regulatory interactions across omics 25 

layers explicitly, GLUE uniquely supports model-based regulatory inference for unpaired multi-26 

omics datasets, exhibiting even higher reliability than regular correlation analysis on paired datasets 27 

(notably, in a Bayesian interpretation, the GLUE regulatory inference can be seen as a posterior 28 

estimate, which can be continuously refined upon the arrival of new data). Furthermore, benefitting 29 

from a neural network-based design, GLUE enables notable scalability for whole-atlas alignment 30 

over millions of unpaired cells, which remains a serious challenge for in silico integration. In fact, 31 

we also attempted to perform integration using online iNMF, which was the only other method 32 

capable of integrating the data at full scale, but the result was far from optimal (Supplementary Fig. 33 
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18a, b). Meanwhile, an attempt to integrate the data as aggregated metacells (Methods) via the 1 

popular Seurat v3 method also failed (Supplementary Fig. 18c, d). 2 

 3 

Unpaired multi-omics integration, also referred to as diagonal integration14, shares some conceptual 4 

similarities with batch effect correction46, as both call for the alignment of unpaired cells in certain 5 

data representations. Nonetheless, the former is significantly more challenging because of the 6 

distinct, omics-specific feature spaces. While completely unsupervised multi-omics integration has 7 

been proposed21, 22, such an approach is exceedingly difficult and has largely been limited to aligning 8 

continuous trajectories. For general-case multi-omics integration, additional prior knowledge is 9 

necessary. At the omics feature level, presumed feature interactions have been used via feature 10 

conversion15-17, 30 or coupled matrix factorization19, 20. While feature conversion may seem to be a 11 

straightforward solution, the inevitable information loss18 can have a detrimental effect on 12 

performance. Apart from the feature-converted data, Seurat v315 and bindSC30 also devised heuristic 13 

strategies to utilize information in the original feature space, which probably explains their improved 14 

performance than methods that do not16, 17. At the cell level, known cell types have also been used 15 

via (semi-)supervised learning47, 48, but this approach incurs substantial limitations in terms of 16 

applicability since such supervision is typically unavailable and in many cases serves as the purpose 17 

of multi-omics integration per se26. Notably, one of these methods was proposed with a similar 18 

autoencoder architecture and adversarial alignment48, but it relied on matched cell types or clusters to 19 

orient the alignment. In fact, GLUE shares more conceptual similarity with the coupled matrix 20 

factorization methods, but with superior accuracy, robustness and scalability, which mostly benefits 21 

from its deep generative model-based design. 22 

 23 

We note that the current framework also works for integrating omics layers with shared features, by 24 

using either the same vertex or connected surrogate vertices for each shared feature in the guidance 25 

graph. In particular, the integration between scRNA-seq and spatial transcriptomics49, 50 could be 26 

naturally implemented in this way. After the integration, genes not detected in the spatial 27 

transcriptome could be further imputed via cross-layer translation, through a combination of the 28 

spatial transcriptomics encoder and the scRNA-seq decoder. 29 

 30 

As a generalizable framework, GLUE features a modular design, where the data and graph 31 

autoencoders are independently configurable. 32 

l The data autoencoders in GLUE are customizable with appropriate generative models that 33 

conform to omics-specific data distributions. In the current work, we used the negative binomial 34 
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distribution for scRNA-seq and scATAC-seq, and the zero-inflated log-normal distribution for 1 

snmC-seq (Methods). Nevertheless, generative distributions can be easily reconfigured to 2 

accommodate other omics layers, such as protein abundance51 and histone modification52, and to 3 

adopt new advances in data modeling techniques53. 4 

l The guidance graphs used in GLUE have currently been limited to multipartite graphs, 5 

containing only edges between features of different layers. Nonetheless, graphs, as intuitive and 6 

flexible representations of regulatory knowledge, can embody more complex regulatory patterns, 7 

including within-modality interactions, non-feature vertices, and multi-relations. Beyond 8 

canonical graph convolution, more advanced graph neural network architectures54-56 may also be 9 

adopted to extract richer information from the regulatory graph. 10 

 11 

Recent advances in experimental multi-omics technologies have increased the availability of paired 12 

data8-11, 31. While most of the current simultaneous multi-omics protocols still suffer from lower data 13 

quality or throughput than that of single-omics methods57, paired cells can be highly informative in 14 

anchoring different omics layers and should be utilized in conjunction with unpaired cells whenever 15 

available. It is straightforward to extend the GLUE framework to incorporate such pairing 16 

information, e.g., by adding another loss term that penalizes the embedding distances between paired 17 

cells58. Such an extension may ultimately lead to a solution for the general case of mosaic 18 

integration14. 19 

 20 

Apart from multi-omics integration, we also note that the GLUE framework could be suitable for 21 

cross-species integration, especially when distal species are concerned and one-to-one orthologs are 22 

limited. Specifically, we may compile all orthologs into a GLUE guidance graph and perform 23 

integration without explicit ortholog conversion. Under that setting, the GLUE approach could also 24 

be conceptually connected to a recent work called SAMap59. 25 

 26 

We believe that GLUE, as a modular and generalizable framework, creates an unprecedented 27 

opportunity towards effectively delineating gene regulatory maps via large-scale multi-omics 28 

integration at single-cell resolution. The whole package of GLUE, along with tutorials and demo 29 

cases, is available online at https://github.com/gao-lab/GLUE for the community. 30 
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Methods 1 

The GLUE framework 2 

We assume that there are 𝐾 different omics layers to be integrated, each with a distinct feature set 3 

𝒱! , 𝑘 = 1,2, … , 𝐾. For example, in scRNA-seq, 𝒱! is the set of genes, while in scATAC-seq, 𝒱! is 4 

the set of chromatin regions. The data spaces of different omics layers are denoted as 𝒳! ⊆ ℝ|𝒱!| 5 

with varying dimensionalities. We use 𝐱!(%) ∈ 𝒳! , 𝑛 = 1,2, … , 𝑁' to denote cells from the 𝑘th omics 6 

layer and 𝐱!(
(%), 𝑖 ∈ 𝒱! to denote the observed value of feature 𝑖 of the 𝑘th layer in the 𝑛th cell. 𝑁' is 7 

the sample size of the 𝑘th layer. Notably, the cells from different omics layers are unpaired and can 8 

have different sample sizes. To avoid cluttering, we drop the superscript (𝑛) when referring to an 9 

arbitrary cell. 10 

 11 

We model the observed data from different omics layers as generated by a low-dimensional latent 12 

variable (i.e., cell embedding) 𝐮 ∈ ℝ): 13 

𝑝(𝐱!; 𝜃!) = 7𝑝(𝐱!|𝐮; 𝜃!)𝑝(𝐮)𝑑𝐮 Eq. 1 14 

where 𝑝(𝐮) is the prior distribution of the latent variable, 𝑝(𝐱!|𝐮; 𝜃!) are learnable generative 15 

distributions (i.e., data decoders), and 𝜃! denotes learnable parameters in the decoders. The cell 16 

latent variable 𝐮 is shared across different omics layers. In other words, 𝐮 represents the common 17 

cell states underlying all omics observations, while the observed data from each layer are generated 18 

by a specific type of measurement of the underlying cell states. 19 

 20 

With the introduction of variational posteriors 𝑞(𝐮|𝐱!; 𝜙!) (i.e., data encoders, where 𝜙! are 21 

learnable parameters in the encoders), model fitting can be efficiently performed by maximizing the 22 

following evidence lower bounds: 23 

ℒ𝒳!(𝜙! , 𝜓!) =
𝔼𝐱!∼-"#$#(𝐱!)B𝔼𝐮∼/(𝐮|𝐱!;1!) log 𝑝(𝐱!|𝐮; 𝜃!) − KLI𝑞(𝐮|𝐱!; 𝜙!) ∥ 𝑝(𝐮)KL

Eq. 2 24 

 25 

Since different autoencoders are independently parameterized and trained on separate data, the cell 26 

embeddings learned for different omics layers could have inconsistent semantic meanings unless 27 

they are linked properly. 28 

 29 
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To link the autoencoders, we propose a guidance graph 𝒢 = (𝒱, ℰ), which incorporates prior 1 

knowledge about the regulatory interactions among features at distinct omics layers, where	𝒱 =2 

⋃ 𝒱!'
!23  is the universal feature set and ℰ = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝒱} is the set of edges. Each edge is also 3 

associated with signs and weights, which are denoted as 𝑠(4 and	𝑤(4, respectively. We require that 4 

𝑤(4 ∈ (0,1], which can be interpreted as interaction credibility, and that 𝑠(4 ∈ {−1,1}, which 5 

specifies the sign of the regulatory interaction. For example, an ATAC peak located near the 6 

promoter of a gene is usually assumed to positively regulate its expression, so they can be connected 7 

with a positive edge (𝑠(4 = 1). Meanwhile, DNA methylation in the gene promoter is usually 8 

assumed to suppress expression, so they can be connected with a negative edge (𝑠(4 = −1). In 9 

addition to the connections between features, self-loops are also added for numerical stability, with 10 

𝑠(( = 1,𝑤(( = 1, ∀𝑖 ∈ 𝒱. 11 

 12 

We treat the guidance graph as observed variable and model it as generated by low-dimensional 13 

feature latent variables (i.e., feature embeddings) 𝐯( ∈ ℝ), 𝑖 ∈ 𝒱. Furthermore, differing from the 14 

previous model, we now model 𝐱! as generated by the combination of feature latent variables 𝐯( ∈15 

ℝ), 𝑖 ∈ 𝒱! and the cell latent variable 𝐮 ∈ ℝ). For convenience, we introduce the notation 𝐕 ∈16 

ℝ)×|𝒱|, which combines all feature embeddings into a single matrix. The model likelihood can thus 17 

be written as: 18 

𝑝I𝐱! , 𝒢; 𝜃! , 𝜃𝒢K = 7𝑝(𝐱!|𝐮, 𝐕; 𝜃!)𝑝I𝒢|𝐕; 𝜃𝒢K𝑝(𝐮)𝑝(𝐕)𝑑𝐮𝑑𝐕 Eq. 3 19 

where 𝑝(𝐱!|𝐮, 𝐕; 𝜃!) and 𝑝I𝒢|𝐕; 𝜃𝒢K are learnable generative distributions for the omics data (i.e., 20 

data decoders) and knowledge graph (i.e., graph decoder), respectively. 𝜃! and 𝜃𝒢 are learnable 21 

parameters in the decoders. 𝑝(𝐮) and 𝑝(𝐕) are the prior distributions of the cell latent variable and 22 

feature latent variables, respectively, which are fixed as standard normal distributions for simplicity: 23 

𝑝(𝐮) = 𝒩(𝐮; 𝟎, 𝐈)) Eq. 4 24 

𝑝(𝐯() = 𝒩(𝐯(; 𝟎, 𝐈)), 	 𝑝(𝐕) =`𝑝(𝐯()
(∈𝒱

Eq. 5 25 

though alternatives may also be used60. For convenience, we also introduce the notation 𝐕! ∈26 

ℝ)×|𝒱!|, which contains only feature embeddings in the 𝑘th omics layer, and 𝐮!, which emphasizes 27 

that the cell embedding is from a cell in the 𝑘th omics layer. 28 

 29 

The graph likelihood 𝑝I𝒢|𝐕; 𝜃𝒢K (i.e., graph decoder) is defined as: 30 
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𝑝I𝒢|𝐕; 𝜃𝒢K = 𝔼(,4∼-9(,4;:%&; b𝜎I𝑠(4 ⋅ 𝐯(
<𝐯4K ⋅ 𝔼4'∼-()94'|(; e1 − 𝜎I𝑠(4 ⋅ 𝐯(

<𝐯4'Kfg Eq. 6 1 

where 𝜎 is the sigmoid function and 𝑝=> is a negative sampling distribution61. In other words, we 2 

first sample the edges (𝑖, 𝑗) with probabilities proportional to the edge weights and then sample 3 

vertices 𝑗’ that are not connected to 𝑖 and treat them as if 𝑠(4' = 𝑠(4. When maximizing the graph 4 

likelihood, the inner products between features are maximized or minimized (per edge sign) based on 5 

the Bernoulli distribution. For example, ATAC peaks located near the promoter of a gene would be 6 

encouraged to have similar embeddings to that of the gene, while DNA methylation in the gene 7 

promoter would be encouraged to have a dissimilar embedding to that of the gene. 8 

 9 

The data likelihoods 𝑝(𝐱!|𝐮, 𝐕; 𝜃!) (i.e., data decoders) in Eq. 3 are built upon the inner product 10 

between the cell embedding 𝐮 and feature embeddings 𝐕!. Thus, analogous to the loading matrix in 11 

principal component analysis (PCA), the feature embeddings 𝐕! confer semantic meanings for the 12 

cell embedding space. As 𝐕! are modulated by interactions among omics features in the guidance 13 

graph, the semantic meanings become linked. The exact formulation of data likelihood depends on 14 

the omics data distribution. For example, for count-based scRNA-seq and scATAC-seq data, we 15 

used the negative binomial (NB) distribution: 16 

𝑝(𝐱!|𝐮, 𝐕; 𝜃!) = `NBI𝐱!(; 𝛍( , 𝛉(K
(∈𝒱!

Eq. 7 17 

NBI𝐱!(; 𝛍( , 𝛉(K =
ΓI𝐱!( + 𝛉(K

Γ(𝛉()ΓI𝐱!( + 1K
q

𝛍(
𝛉( + 𝛍(

r
𝐱!%
q

𝛉(
𝛉( + 𝛍(

r
𝛉%

Eq. 8 18 

𝛍( = Softmax((𝛂⨀𝐕!<𝒖 + 𝛃) ⋅ ~ 𝐱!4
4∈𝒱!

Eq. 9 19 

where 𝛍, 𝛉 ∈ ℝ@
|𝒱!| are the mean and dispersion of the NB distribution, respectively, and 𝛂 ∈20 

ℝ@
|𝒱!|, 𝛃 ∈ ℝ|𝒱!| are scaling and bias factors. ⨀ is the Hadamard product. Softmax( represents the 𝑖th 21 

dimension of the softmax output. The set of learnable parameters is 𝜃! = {𝛉, 𝛂, 𝛃}. Analogously, 22 

many other distributions can also be supported, as long as we can parameterize the means of the 23 

distributions by feature-cell inner products. 24 

 25 

For efficient inference and optimization, we introduce the following factorized variational posterior: 26 

𝑞I𝐮, 𝐕|𝐱! , 𝒢; 𝜙! , 𝜙𝒢K = 𝑞(𝐮|𝐱!; 𝜙!) ⋅ 𝑞I𝐕|𝒢; 𝜙𝒢K Eq. 10 27 

The graph variational posterior 𝑞I𝐕|𝒢; 𝜙𝒢K (i.e., graph encoder) is modeled as diagonal-covariance 28 

normal distributions parameterized by a graph convolutional network62: 29 
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𝑞I𝐕|𝒢; 𝜙𝒢K =`𝑞I𝐯(|𝒢; 𝜙𝒢K
(∈𝒱

Eq. 11 1 

𝑞I𝐯(|𝒢; 𝜙𝒢K = 𝒩 q𝐯(; GCN𝛍%I𝒢; 𝜙𝒢K, GCN𝛔%𝟐I𝒢; 𝜙𝒢Kr Eq. 12 2 

where 𝜙𝒢 represents the learnable parameters in the GCN encoder. 3 

 4 

The variational data posteriors 𝑞(𝐮|𝐱!; 𝜙!) (i.e., data encoders) are modeled as diagonal-covariance 5 

normal distributions parameterized by multilayer perceptron (MLP) neural networks: 6 

𝑞(𝐮|𝐱! , 𝐕!; 𝜙!) = 𝒩 e𝐮;MLP!,𝛍(𝐱!; 𝜙!),MLP!,𝝈+(𝐱!; 𝜙!)f Eq. 13 7 

where 𝜙! is the set of learnable parameters in the MLP encoder of the 𝑘th omics layer. 8 

 9 

Model fitting can then be performed by maximizing the following evidence lower bound: 10 

~𝔼𝐱!∼-"#$#(𝐱!) �
𝔼𝐮∼/(𝐮|𝐱!;1!),𝐕∼/9𝐕|𝒢;1𝒢;log 𝑝(𝐱!|𝐮, 𝐕; 𝜃!)𝑝I𝒢|𝐕; 𝜃𝒢K

−KL e𝑞(𝐮|𝐱!; 𝜙!)𝑞I𝐕|𝒢; 𝜙𝒢K ∥ 𝑝(𝐮)𝑝(𝐕)f
�

'

!23

Eq. 14 11 

which can be further rearranged into the following form: 12 

𝐾 ⋅ ℒ𝒢I𝜃𝒢 , 𝜙𝒢K +~ℒ𝒳!I𝜃! , 𝜙! , 𝜙𝒢K
'

!23

Eq. 15 13 

where we have 14 

ℒ𝒳!I𝜃! , 𝜙! , 𝜙𝒢K =

𝔼𝐱!∼-"#$#(𝐱!) b𝔼𝐮∼/(𝐮|𝐱!;1!),𝐕∼/9𝐕|𝒢;1𝒢; log 𝑝(𝐱!|𝐮, 𝐕; 𝜃!) − KLI𝑞(𝐮|𝐱!; 𝜙!) ∥ 𝑝(𝐮)Kg
Eq. 16 15 

ℒ𝒢I𝜃𝒢 , 𝜙𝒢K = 𝔼𝐕∼/9𝐕|𝒢;1𝒢;log 𝑝I𝒢|𝐕; 𝜃𝒢K − KL e𝑞I𝐕|𝒢; 𝜙𝒢K ∥ 𝑝(𝐕)f Eq. 17 16 

Below, for convenience, we denote the union of all encoder parameters as 𝜙 = (⋃ 𝜙!'
!23 ) ∪ 𝜙𝒢 and 17 

the union of all decoder parameters as 𝜃 = (⋃ 𝜃!'
!23 ) ∪ 𝜃𝒢. 18 

 19 

To ensure the proper alignment of different omics layers, we use the adversarial alignment strategy28, 20 
63. A discriminator D with a 𝐾-dimensional softmax output is introduced, which predicts the omics 21 

layers of cells based on their embeddings 𝐮. The discriminator D is trained by minimizing the 22 

multiclass classification cross entropy: 23 

ℒE(𝜙, 𝜓) = −
1
𝐾~𝔼𝐱!∼-"#$#(𝐱!)𝔼𝐮∼/(𝐮|𝐱!;1!) log D!(𝐮; 𝜓)

'

!23

Eq. 18 24 

where D! represents the 𝑘th dimension of the discriminator output and 𝜓 is the set of learnable 25 

parameters in the discriminator. The data encoders can then be trained in the opposite direction to 26 
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fool the discriminator, ultimately leading to the alignment of cell embeddings from different omics 1 

layers64. 2 

 3 

The overall training objective of GLUE thus consists of: 4 

min
F
𝜆E ⋅ ℒE(𝜙, 𝜓) Eq. 19 5 

max
G,1

𝜆E ⋅ ℒE(𝜙, 𝜓) + 𝜆𝒢𝐾 ⋅ ℒ𝒢I𝜃𝒢 , 𝜙𝒢K +~ℒ𝒳!I𝜃! , 𝜙! , 𝜙𝒢K
'

!23

Eq. 20 6 

The two hyperparameters 𝜆E and 𝜆𝒢 control the contributions of adversarial alignment and graph-7 

based feature embedding, respectively. We use stochastic gradient descent (SGD) to train the GLUE 8 

model. Each SGD iteration is divided into two steps. In the first step, the discriminator is updated 9 

according to objective Eq. 19. In the second step, the data and graph autoencoders are updated 10 

according to Eq. 20. The RMSprop optimizer with no momentum term is employed to ensure the 11 

stability of adversarial training. 12 

 13 

Implementation details 14 

We applied linear dimensionality reduction using canonical methods such as PCA (for scRNA-seq) 15 

or LSI (latent semantic indexing, for scATAC-seq) as the first transformation layers of the data 16 

encoders (note that the decoders were still fitted in the original feature spaces). This effectively 17 

reduced model size and enabled a modular input, so advanced dimensionality reduction or batch 18 

effect correction methods can also be used instead as preprocessing steps for GLUE integration. 19 

 20 

To ensure stable alignment, we used batch normalization in the data encoder layers and employed 21 

additive noise annealing. Specifically, noise 𝛜 ∼ 𝒩(𝛜; 𝟎, 𝜏 ⋅ 𝐈)) was added to the cell embeddings 𝐮 22 

before passing to the discriminator. The parameter 𝜏 controls the noise level, which starts at 𝜏 = 1 23 

and decreases linearly per epoch until reaching 0 (i.e., noise annealing). The number of annealing 24 

epochs was set automatically based on the data size and learning rate to match a learning progress 25 

equivalent to 4,000 iterations at a learning rate of 0.002. 26 

 27 

During model training, 10% of the cells were used as the validation set. In the final stage of training, 28 

the learning rate would be reduced by factors of 10 if the validation loss did not improve for 29 

consecutive epochs. Training would be terminated if the validation loss still did not improve for 30 

consecutive epochs. The patience for learning rate reduction, training termination, and the maximal 31 
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number of training epochs were automatically set based on the data size and learning rate to match a 1 

learning progress equivalent to 1,000, 2,000, and 16,000 iterations at a learning rate of 0.002, 2 

respectively. 3 

 4 

For all benchmarks and case studies with GLUE, we used the default hyperparameters unless 5 

explicitly stated. The set of default hyperparameters is presented in Supplementary Fig. 4. 6 

 7 

Systematic benchmarks 8 

UnionCom21 and GLUE were executed using the Python packages “unioncom” (v0.3.0) and “scglue” 9 

(v0.1.1), respectively. Online iNMF16, LIGER17, bindSC30, and Seurat v315 were executed using the 10 

R packages “rliger” (v1.0.0), “rliger” (v1.0.0), “bindSC” (v1.0.0), and “Seurat” (v4.0.2), 11 

respectively. For each method, we used the default hyperparameter settings and data preprocessing 12 

steps as recommended. For the scRNA-seq data, 2,000 highly variable genes were selected using the 13 

Seurat “vst” method. To construct the guidance graph, we connected ATAC peaks with RNA genes 14 

via positive edges if they overlapped in either the gene body or proximal promoter regions (defined 15 

as 2 kb upstream from the TSS). For the methods that require feature conversion (online iNMF, 16 

LIGER, bindSC, and Seurat v3), we converted the scATAC-seq data to gene-level activity scores by 17 

summing up counts in the ATAC peaks connected to specific genes in the guidance graph. Notably, 18 

online iNMF and LIGER also recommend an alternative way of ATAC feature conversion, i.e., 19 

directly counting ATAC fragments falling in gene body and promoter regions without resorting to 20 

ATAC peaks (https://htmlpreview.github.io/?https://github.com/welch-21 

lab/liger/blob/master/vignettes/Integrating_scRNA_and_scATAC_data.html), which we abbreviate 22 

as FiG (fragments in genes). We also tested the FiG feature conversion method with online iNMF 23 

and LIGER. 24 

 25 

MAP (mean average precision) was used to evaluate the cell type resolution. Supposing that the cell 26 

type of the ith cell is 𝑦(() and that the cell types of its 𝐾 ordered nearest neighbors are 27 

𝑦3
((), 𝑦H

((), … 𝑦'
((), the MAP is then defined as follows: 28 

MAP =
1
𝑁~AP(()

I

(23

Eq. 21 29 
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AP(() =

⎩
⎪
⎨

⎪
⎧∑ 𝟙J(%)2J! ⋅

∑ 𝟙J(%)2J&(%)
!
423

𝑘
'
!23

∑ 𝟙J(%)2J!
(%)

'
!23

, 	 if	~ 𝟙J(%)2J!(%)
'

!23

> 0

0, 	 otherwise

Eq. 22 1 

where 𝟙J(%)2J!(%)
 is an indicator function that equals 1 if 𝑦(() = 𝑦!

(() and 0 otherwise. For each cell, AP 2 

(average precision) computes the average cell type precision up to each cell type-matched neighbor, 3 

and MAP is the average AP across all cells. We set 𝐾 to 1% of the total number of cells in each 4 

dataset. MAP has a range of 0 − 1, and higher values indicate better cell type resolution. 5 

 6 

SAS (Seurat alignment score) was used to evaluate the extent of mixing among distinct omics layers 7 

and was computed as described in the original paper32: 8 

SAS = 1 −
𝑥̅ − 𝑘

𝑁
𝑘 − 𝑘

𝑁
Eq. 23 9 

where 𝑥̅ is the average number of cells from the same omics layer among the 𝑘 nearest neighbors 10 

(different layers were first subsampled to the same number of cells as the smallest layer), and 𝑁 is 11 

the number of omics layers. We set 𝑘 to 1% of the subsampled cell number. SAS has a range of 0 −12 

1, and higher values indicate better mixing. 13 

 14 

FOSCTTM (fraction of samples closer than the true match)33 was used to evaluate the single-cell 15 

level alignment accuracy. It was computed on two datasets with known cell-to-cell pairings. Suppose 16 

that each dataset contains 𝑁 cells, and that the cells are sorted in the same order, i.e., the 𝑖th cell in 17 

the first dataset is paired with the 𝑖th cell in the second dataset. Denote 𝐱 and 𝐲 as the cell 18 

embeddings of the first and second dataset, respectively. The FOSCTTM is then defined as: 19 

FOSCTTM =
1
2𝑁 ¢~

𝑛3
(()

𝑁

I

(23

+~
𝑛H
(()

𝑁

I

(23

£ Eq. 24 20 

𝑛3
(() = ¤¥𝑗|𝑑I𝐱4 , 𝐲(K < 𝑑(𝐱( , 𝐲()§¤ Eq. 25 21 

𝑛H
(() = ¤¥𝑗|𝑑I𝐱( , 𝐲4K < 𝑑(𝐱( , 𝐲()§¤ Eq. 26 22 

where 𝑛3
(() and 𝑛H

(() are the number of cells in the first and second dataset, respectively, that are closer 23 

to the 𝑖th cell than their true matches in the opposite dataset. 𝑑 is the Euclidean distance. 24 

 25 

For the baseline benchmark, each method was run 8 times with different random seeds, except for 26 

bindSC, which has a deterministic implementation and was run only once. For the guidance 27 
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corruption benchmark, we removed the specified proportions of existing peak-gene interactions and 1 

added equal numbers of nonexistent interactions, so the total number of interactions remained 2 

unchanged. Of note, feature conversion was also repeated using the corrupted guidance graphs. The 3 

corruption procedure was repeated 8 times with different random seeds. For the subsampling 4 

benchmark, the scRNA-seq and scATAC-seq cells were subsampled in pairs (so FOSCTTM could 5 

still be computed). The subsampling process was also repeated 8 times with different random seeds. 6 

 7 

For the systematic scalability test (Supplementary Fig. 13a), all methods were run on a Linux 8 

workstation with 40 CPU cores (two Intel Xeon Silver 4210 chips), 250 GB of RAM, and NVIDIA 9 

GeForce RTX 2080 Ti GPUs. Only a single GPU card was used when training GLUE. 10 

 11 

Triple-omics integration 12 

The scRNA-seq and scATAC-seq data were handled as previously described (see the section 13 

“Systematic benchmarks”). Due to low coverage per single-C site, the snmC-seq data were converted 14 

to average methylation levels in gene bodies. The mCH and mCG levels were quantified separately, 15 

resulting in 2 features per gene. The gene methylation levels were normalized by the global 16 

methylation level per cell. An initial dimensionality reduction was performed using PCA (see the 17 

section “Implementation details”). For the triple-omics guidance graph, the mCH and mCG levels 18 

were connected to the corresponding genes with negative edges. 19 

 20 

The normalized methylation levels were positive, with dropouts corresponding to the genes that were 21 

not covered in single cells. As such, we used the zero-inflated log-normal (ZILN) distribution for the 22 

data decoder: 23 

𝑝(𝐱!|𝐮, 𝐕; 𝜃!) = `ZILNI𝐱!(; 𝛍( , 𝛔( , 𝛅(K
(∈𝒱!

Eq. 27 24 

ZILNI𝐱!(; 𝛍( , 𝛔( , 𝛅(K = ¬
1 − 𝛅(

𝐱!(𝛔(√2𝜋
exp¢−

Ilog 𝐱!( − 𝛍(K
H

2𝛔(H
£ ,	 𝐱!( > 0

𝛅( , 	 𝐱!( = 0
Eq. 28 25 

𝛍( = 𝛂⨀𝐕!<𝒖 + 𝛃 Eq. 29 26 

where 𝛍 ∈ ℝ|𝒱!|, 𝛔 ∈ ℝ@
|𝒱!|, 𝛅 ∈ (0,1)|𝒱!| are the log-scale mean, log-scale standard deviation and 27 

zero-inflation parameters of the ZILN distribution, respectively, and 𝛂 ∈ ℝ@
|𝒱!|, 𝛃 ∈ ℝ|𝒱!| are scaling 28 

and bias factors. 29 
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 1 

To unify the cell type labels, we performed a nearest neighbor-based label transfer with the snmC-2 

seq dataset as a reference. The 5 nearest neighbors in snmC-seq were identified for each scRNA-seq 3 

and scATAC-seq cell in the aligned embedding space, and majority voting was used to determine the 4 

transferred label. To verify whether the alignment was correct, we tested for significant overlap in 5 

cell type marker genes. The features of all omics layers were first converted to genes. Then, for each 6 

omics layer, the cell type markers were identified using the one-vs.-rest Wilcoxon rank-sum test with 7 

the following criteria: FDR < 0.05 and log-fold change > 0 for scRNA-seq/scATAC-seq; FDR < 8 

0.05 and log-fold change < 0 for snmC-seq. The significance of marker overlap was determined by 9 

the three-way Fisher’s exact test37. 10 

 11 

To perform correlation and regression analysis after the integration, we clustered all cells from the 12 

three omics layers using fine-scale k-means (k = 200). Then, for each omics layer, the cells in each 13 

cluster were aggregated into a metacell by summing their expression/accessibility counts or 14 

averaging their DNA methylation levels. Therefore, the metacells were established as paired 15 

samples, based on which feature correlation and regression analyses could be conducted. 16 

 17 

Model-based cis-regulatory inference 18 

To ensure consistency of cell types, we first selected the overlapping cell types between the 10x 19 

Multiome and pcHi-C data. The remaining cell types included T cells, B cells and monocytes. The 20 

eQTL data were used as is, because they were not cell type-specific. For scRNA-seq, we selected 21 

6,000 highly variable genes. For the initial regulatory inference, the guidance graph was constructed 22 

by connecting RNA genes with ATAC peaks within 150 kb of the gene promoters (defined as 2 kb 23 

upstream from the TSS); the graph was weighted by a power-law function 𝑤 = (𝑑 + 1)KL.NO (𝑑 is 24 

the genomic distance in kb), which has been proposed to model the probability of chromatin 25 

contact39, 40. 26 

 27 

To incorporate the regulatory evidence of pcHi-C and eQTL, we anchored all evidence to that 28 

between the ATAC peaks and RNA genes. A peak-gene pair was considered supported by pcHi-C if 29 

(1) the gene promoter was within 1 kb of a bait fragment, (2) the peak was within 1 kb of an other-30 

end fragment, and (3) significant contact was identified between the bait and the other-end fragment 31 

in pcHi-C. The pcHi-C-supported peak-gene interactions were weighted by multiplying the 32 

promoter-to-bait and the peak-to-other-end power-law weights (see above). If a peak-gene pair was 33 
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supported by multiple pcHi-C contacts, the weights were summed and clipped at a maximum of 1. A 1 

peak-gene pair was considered supported by eQTL if (1) the peak overlapped an eQTL locus and (2) 2 

the locus was associated with the expression of the gene. The eQTL-supported peak-gene 3 

interactions were assigned weights of 1. The composite guidance graph was constructed by adding 4 

the pcHi-C- and eQTL-supported interactions to the previous distance-based interactions, allowing 5 

for multi-edges. 6 

 7 

For regulatory inference, only peak-gene pairs within 150 kb in distance were considered. The 8 

GLUE training process was repeated 4 times with different random seeds. For each repeat, the peak-9 

gene regulatory score was computed as the cosine similarity between the feature embeddings. The 10 

final regulatory inference was obtained by averaging the regulatory scores across the 4 repeats. 11 

 12 

TF-target gene regulatory inference 13 

We employed the SCENIC workflow65 to construct a TF-gene regulatory network from the inferred 14 

peak-gene regulatory interactions. Briefly, the SCENIC workflow first constructs a gene 15 

coexpression network based on the scRNA-seq data, and then uses external cis-regulatory evidence 16 

to filter out false positives. SCENIC accepts cis-regulatory evidence in the form of gene rankings per 17 

TF, i.e., genes with higher TF enrichment levels in their regulatory regions are ranked higher. To 18 

construct the rankings based on our inferred peak-gene interactions, we first overlapped the 19 

ENCODE TF ChIP peaks66 with the ATAC peaks and counted the number of ChIP peaks for each 20 

TF in each ATAC peak. Since different genes can have different numbers of connected ATAC 21 

peaks, and the ATAC peaks vary in length (longer peaks can contain more ChIP peaks by chance), 22 

we devised a sampling-based approach to evaluate TF enrichment. Specifically, for each gene, we 23 

randomly sampled 1,000 sets of ATAC peaks that matched the connected ATAC peaks in both 24 

number and length distribution. We counted the numbers of TF ChIP peaks in these random ATAC 25 

peaks as null distributions. For each TF in each gene, an empirical P value could then be computed 26 

by comparing the observed number of ChIP peaks to the null distribution. Finally, we ranked the 27 

genes by the empirical P values for each TF, producing the cis-regulatory rankings used by SCENIC. 28 

Since peak-gene-based inference is mainly focused on remote regulatory regions, proximal 29 

promoters could be missed. As such, we provided SCENIC with both the above peak-based and 30 

proximal promoter-based cis-regulatory rankings. 31 

 32 
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Integration for the human multi-omics atlas 1 

The scRNA-seq and scATAC-seq atlases have highly unbalanced cell type compositions, which is 2 

primarily caused by differences in organ sampling sizes (Supplementary Fig. 13b). Although cell 3 

types are unknown during real-world analyses, organ sources are typically available and can be 4 

utilized to help balance the integration process. To perform organ-balanced data preprocessing, we 5 

first subsampled each omics layer to match the organ compositions. For the scRNA-seq data, 4,000 6 

highly variable genes were selected using the organ-balanced subsample. Then, for the initial 7 

dimensionality reduction, we fitted PCA (scRNA-seq) and LSI (scATAC-seq) on the organ-balanced 8 

subsample and applied the projection to the full data. The PCA/LSI coordinates were used as the first 9 

transformation layer in the GLUE data encoders (see the section “Implementation details”), as well 10 

as for metacell aggregation (see below). The guidance graph was constructed as described previously 11 

(see the section “Systematic benchmarks”). 12 

 13 

The two atlases consist of large numbers of cells but with low coverage per cell. To alleviate dropout 14 

and increase the training speed simultaneously, we designed a multistage training strategy, where the 15 

GLUE model was pretrained on aggregated metacells and then fine-tuned on the original single cells. 16 

Specifically, in the first stage, we clustered the cells in each omics layer using fine-scaled k-means (k 17 

= 100,000 for scRNA-seq and k = 40,000 for scATAC-seq). To balance the organ compositions at 18 

the same time, k-means centroids were fitted on the previous organ-balanced subsample and then 19 

applied to the full data. The cells in each k-means cluster were aggregated into a metacell by 20 

summing their expression/accessibility counts and averaging their PCA/LSI coordinates. GLUE was 21 

then pretrained on the aggregated metacells without adversarial alignment, which roughly oriented 22 

the cell embeddings but did not actually align them. To better utilize the large data size, the hidden 23 

layer dimensionality was doubled to 512 from the default 256. 24 

 25 

In the second stage, GLUE was fine-tuned on the full single-cell data with weighted adversarial 26 

alignment (see below). As shown in previous work28, pure adversarial alignment amounts to 27 

minimizing a generalized form of Jensen–Shannon divergence among the cell embedding 28 

distributions of different omics layers: 29 

1
𝐾~KL¢𝑞!(𝐮)‖

1
𝐾~𝑞!(𝐮)

'

!23

£
'

!23

Eq. 30 30 

where 𝑞!(𝐮) = 𝔼𝐱!∼-"#$#(𝐱!)𝑞(𝐮|𝐱!; 𝜙!) represents the marginal cell embedding distribution of the 31 

kth layer. Without other loss terms, Eq. 30 converges at perfect alignment, i.e., when 𝑞((𝐮) =32 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.08.22.457275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.22.457275
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

𝑞4(𝐮), ∀𝑖 ≠ 𝑗. This can be problematic when cell type compositions differ dramatically across 1 

different layers, as was the case here. To address this issue, we added cell-specific weights 𝑤(%) to 2 

the discriminator loss in Eq. 18: 3 

ℒE(𝜙, 𝜓) = −
1
𝐾~

1
𝑊!

~𝑤(%) ⋅ 𝔼𝐮∼/P𝐮|𝐱!(/);1!Q
log D!(𝐮; 𝜓)

I!

%23

'

!23

Eq. 31 4 

where the normalizer 𝑊! = ∑ 𝑤(%)I!
%23 . The adversarial alignment still amounts to minimizing 5 

Eq. 30 but with weighted marginal cell embedding distributions 𝑞!(𝐮) =6 
3
R!
∑ 𝑤(%)𝑞e𝐮|𝐱!

(%); 𝜙!f
I!
%23 . By assigning appropriate weights to balance the cell distributions across 7 

different layers, the optimum of 𝑞((𝐮) = 𝑞4(𝐮), ∀𝑖 ≠ 𝑗 could be much closer to the desired 8 

alignment. For example, a viable choice for the cell weights is organ-balancing weights. Suppose 9 

that the organ proportions in scRNA-seq and scATAC-seq are 𝑓3, 𝑓H, … , 𝑓S and 𝑔3, 𝑔H, … , 𝑔S (𝑂 is 10 

the number of organs, ∑ 𝑓(S
(23 = 1, ∑ 𝑔(S

(23 = 1), respectively. We can weight the RNA cells in the 11 

ith organ by ¶𝑔(/𝑓( and weight the ATAC cells in the ith organ by ¶𝑓(/𝑔(, so that the ith organ has a 12 

balanced accumulative contribution of ¶𝑓(𝑔(, regardless of omics layers. However, in case there are 13 

major differences among the cell type compositions within the same organ, organ-level balancing 14 

can be insufficient. As such, we designed a method to compute cell type-level balancing weights in 15 

an unsupervised manner. For each omics layer, we clustered the cell embeddings using Louvain 16 

clustering and matched the clusters in different layers via cosine similarity. The population size of 17 

each cluster was distributed to its matched counterparts by cosine similarity. Subsequently, for each 18 

omics layer, we could obtain the proportion of each cluster 𝑓( and its effective proportion 𝑔( in the 19 

opposite layer (by normalizing the effective population size received from the opposite layer). 20 

Balancing weights could then be computed as above. The weight-balanced alignment proved 21 

effective in aligning the highly skewed data (Fig. 5). 22 

 23 

For a comparison with other integration methods, we also tried online iNMF and Seurat v3. Online 24 

iNMF was the only other method that could scale to millions of cells, so we applied it to the full 25 

dataset. On the other hand, Seurat v3 showed the second-best accuracy in our previous benchmark. 26 

We also managed to apply it to the aggregated data as used in the first stage of GLUE training, due 27 

to the fact that Seurat v3 could not scale to the full dataset (Supplementary Fig. 13a). 28 
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Data availability 1 

All datasets used in this study are already published and were obtained from public data repositories. 2 

See Supplementary Table 1 for detailed information, including access codes and URLs. All 3 

benchmark data are available in Supplementary Table 2. 4 

 5 

Code availability 6 

The GLUE framework was implemented in the “scglue” Python package, which is available at 7 

https://github.com/gao-lab/GLUE. For reproducibility, the scripts for all benchmarks and case 8 

studies were assembled using Snakemake, which is also available in the above repository. 9 

 10 
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