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Abstract 22 

Durum wheat (Triticum turgidum L. ssp. Durum) is largely grown in rainfed production 23 

systems around the world. New cultivars with improved adaptation to water-limited 24 

environments are required to sustain productivity in the face of climate change. Physiological 25 

traits related to canopy development underpin the production of biomass and yield, as they 26 

interact with solar radiation and affect the timing of water use throughout the growing season. 27 

Despite their importance, there is limited research on the relationship between canopy 28 

development and yield in durum wheat, in particular studies exploring temporal canopy 29 

dynamics under field conditions. This study reports the genetic dissection of canopy 30 

development in a durum wheat nested-association mapping population evaluated for 31 

longitudinal normalized difference vegetation index (NDVI) measurements. Association 32 

mapping was performed to identify quantitative trait loci (QTL) for time-point NDVI and 33 

spline-smoothed NDVI trajectory traits. Yield effects associated with QTL for canopy 34 

development were explored using data from four rainfed field trials. Four QTL were associated 35 

with yield in specific environments, and notably, were not associated with a yield penalty in 36 

any environment. Alleles associated with slow canopy closure increased yield. This was likely 37 

due to a combined effect of optimised timing of water-use and pleiotropic effects on yield 38 

component traits, including spike number and spike length. Overall, this study suggests that 39 

slower canopy closure is beneficial for durum wheat production in rainfed environments. 40 

Selection for traits or loci associated with canopy development may indirectly improve yield 41 

and support selection for more resilient and productive cultivars in water limited environments.  42 

Keywords: association mapping, drought, marker-environment interaction, NDVI, 43 

phenotyping, water stress  44 
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Abbreviations 45 

AUC area under the curve 

BLUE best linear unbiased estimate 

DAS days after sowing 

DTF days to flowering 

FDR false discovery rate  

FGCC fractional green canopy cover 

GS Zadoks’ growth stages  

MTA marker–trait associations 

NAM nested-association mapping 

NDVI normalised difference vegetation index 

PC principal component 

PCA principal component analysis 

PH plant height 

QTL quantitative trait loci 

SE stem elongation 

SL spike length 

SN spike number per unit area 

SNP single nucleotide polymorphism 

SS seedling stage 

TL tillering  

  46 
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Introduction 47 

Durum wheat, or pasta wheat (Triticum turgidum L. ssp. Durum; 2n = 4x = 28) is an ancient 48 

food crop and an important industry in Mediterranean and sub-tropical agricultural regions 49 

(Sall et al., 2019). Production is often constrained by drought, during and post anthesis (Loss 50 

and Siddique, 1994). This can greatly reduce yield potential by limiting grain number and 51 

weight (Gevrek and Atasoy, 2012; Royo et al., 2000). Therefore, traits with phenotypic 52 

plasticity are important for increasing crop productivity, as trait plasticity allows for adaptive 53 

potential in response to environmental variations (Borrell et al., 2014; Maccaferri et al., 2008; 54 

Matesanz et al., 2020; Shavrukov et al., 2017). Traditionally, durum wheat breeders have 55 

selected for earlier flowering (Bassi and Nachit, 2019; De Vita et al., 2007; Miralles et al., 56 

2002; Motzo et al., 2010) to minimise the impact of end-of-season drought on reproduction 57 

and grain-filling. 58 

In addition to optimising flowering time, canopy traits associated with improved water use 59 

efficiency can be targeted. For instance, changes in canopy development (e.g., reduction in leaf 60 

size or tillering) provide an advantage under terminal drought conditions by shifting water use 61 

from pre- to post-anthesis (Borrell et al., 2014; George-Jaeggli et al., 2017). Limited 62 

transpiration rate at high evaporative demand can also conserve water for critical stages later 63 

in crop development (Collins et al., 2021). There is a fine balance between water supply and 64 

demand in crops and as such, the timing of water availability must be matched with 65 

phenological development. Although rapid canopy development can increase light interception 66 

(Regan et al., 1997) and reduce soil evaporation (Lopez-Castaneda et al., 1995), if there is 67 

insufficient stored soil moisture or in-crop rainfall, excessive canopy size may prematurely 68 

deplete soil water and exacerbate terminal drought (Nuttall et al., 2012). Thus, crop 69 

performance under drought conditions depends on complex source-sink dynamics between 70 

carbohydrate and water balance, where there are trade-offs between stress resilience and yield 71 

(Collins et al., 2021; Rodrigues et al., 2019). Given the dynamic nature of the environment, 72 

understanding canopy development may help to identify integrative traits that support yield. 73 

Normalized difference vegetation index (NDVI) is used to characterise canopy attributes and 74 

is considered a good surrogate for biomass accumulation, canopy cover and plant vigour 75 

(Cabrera-Bosquet et al., 2011; Carlson and Ripley, 1997; Mullan and Reynolds, 2010; Xue and 76 

Su, 2017). NDVI, computed as the difference between near-infrared reflectance and red 77 

absorption divided by their sum, is influenced by leaf chlorophyll content and canopy 78 
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architecture (Gamon et al., 1995). NDVI can be measured in a non-subjective and efficient 79 

manner which facilitates its use at the field level. The generalized NDVI profile captured during 80 

the growing season includes: (1) the green-up phase before canopy closure, also known as the 81 

exponential phase; (2) the peak canopy cover phase; and (3) the decline phase as leaves senesce 82 

(Brown and de Beurs, 2008; Masialeti et al., 2010; Smith et al., 1995; Soltani and Galeshi, 83 

2002). Hereafter, the term canopy development refers to the green-up and maximum cover 84 

phases.  85 

While many studies have used NDVI to characterize canopy dynamics during the senescence 86 

phase (Christopher et al., 2016; Christopher et al., 2014; Lopes and Reynolds, 2012; Pinto et 87 

al., 2016), few have explored canopy development and assessed its impact on yield. In durum 88 

wheat, genetic studies have mapped quantitative trait loci (QTL) using NDVI captured at 89 

certain developmental stages or specific time-points (Condorelli et al., 2018; Shi et al., 2017). 90 

However, NDVI captured at a specific time point does not account for the temporal dynamics 91 

of canopy development. This is important to consider, as the correlation between NDVI 92 

captured at a specific time-point and yield is strongly dependent on the growth stage (Goodwin 93 

et al., 2018; Smith et al., 1995; Teal et al., 2006).  94 

Alternatively, NDVI time-series data can be modelled, and features of the growth curve used 95 

to study the underlying genetics. In bread wheat and maize, longitudinal growth data has 96 

successfully captured trait development over time to reinforce QTL mapping power (Kwak et 97 

al., 2016; Lyra et al., 2020; Miao et al., 2020; Muraya et al., 2017). Different parameters of 98 

the growth curve related to the time period of interest, may be used to describe temporal NDVI 99 

dynamics, such as curve threshold values, inflection points and integrals (Bustos-Korts et al., 100 

2019; Christopher et al., 2014; Lopes and Reynolds, 2012; Pinto et al., 2016). Considering the 101 

many environmental factors that can affect the canopy status, area under the respective curve 102 

summarises the cumulative changes and can provide a general assessment of canopy 103 

development. The approach is yet to be applied to study canopy development in durum wheat. 104 

Understanding the genetics of adaptive traits like canopy development, and their interaction 105 

with the environment, is critical to support the development of new cultivars with improved 106 

adaptation (Hammer et al., 2020). Using a nested-association mapping population, we reveal 107 

the genetic components of canopy development in durum wheat. To gain biological and 108 

physiological insights into NDVI time-sequential data, we first explored relationships between 109 

NDVI, phenology, canopy cover and features of the growth curve. Secondly, we performed 110 
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association mapping using both time-point NDVI and the area under the curve (AUC) for 111 

NDVI. Finally, markers associated with canopy development were used in a linear mixed 112 

model approach to investigate marker × environment interactions and yield effects across 113 

multiple rainfed environments in Australia.  114 

Materials and methods 115 

Plant materials and genotyping 116 

This study examined subsets of a durum wheat nested-association mapping (NAM) population 117 

developed at The University of Queensland, as described by Alahmad et al. (2019). The NAM 118 

population comprised 920 lines (10 families) generated by crossing eight elite lines from 119 

ICARDA Morocco (i.e. Fastoz2, Fastoz3, Fastoz6, Fastoz7, Fastoz8, Fastoz10, Outrob4 and 120 

Fadda98) as ‘founders’ to the Australian durum wheat cultivars Jandaroi and DBA Aurora, 121 

which served as ‘reference’ varieties. The founder lines were used as donors for drought 122 

adaptive attributes in durum wheat breeding programs in the Middle East and North Africa. 123 

The reference varieties are preferred by the pasta industry for their quality and therefore widely 124 

grown in Australia. The NAM population was genotyped using Diversity Arrays Technology 125 

genotyping-by-sequencing single nucleotide polymorphism (SNP) markers (Alahmad et al., 126 

2019). Allele coding used 0, 1, and 2, where 0 is the reference allele homozygote, 1 is the SNP 127 

allele homozygote and 2 is the heterozygote. 128 

Field trials 129 

A subset of the durum wheat NAM population and a selection of Australian durum wheat 130 

varieties were evaluated in four rainfed field trials conducted in Australia between 2017 and 131 

2020 (Table 1), namely “2017_RW” at Roseworthy (34.30 °S; 138.41 °E), South Australia; 132 

“2019_TS” at Tosari, near Tummaville (27.51 °S; 151.27 °E), Queensland; and “2017_WW” 133 

and “2020_WW” at Warwick (28.12 °S; 152.06 °E), Queensland. The trials adopted partially 134 

replicated row-column designs (Cullis et al., 2006), with the exception of 2017_RW which 135 

used a randomized complete block design with three replicates. The total number of genotypes 136 

ranged from 147 to 309 across the trials, with pairs of trials having between 51 and 146 137 

genotypes in common. For all trials, starting fertilizer was applied at sowing so that nutrients 138 

were not limited, and weeds and insects were controlled as required. Based on the nearest 139 
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weather station to each trial site, weather information was acquired from the Bureau of 140 

Meteorology (http://www.bom.gov.au/) and the SILO database (Jeffrey et al., 2001). 141 

To monitor soil moisture and estimate the impact of drought stress on yield in the 2020_WW 142 

trial, two check genotypes (DBA Aurora and Fadda98) were sown in dryland and irrigated 143 

blocks next to the main experiment. Both blocks were sown on the same day as the main trial. 144 

The rainfed block was adjacent to 2020_WW and the irrigation block was adjacent to the 145 

rainfed block (separated by buffer rows to prevent lateral movement of soil moisture across 146 

treatments). Plot size was consistent with the main trial and each treatment was sown in a 147 

completely randomized block design, using 12 replicates in the dryland treatment and 6 148 

replicates in the irrigation treatment. About 20 mm of water was applied through drip tape 149 

irrigation every 1-2 weeks to ensure a stress-free growing environment. To determine soil water 150 

availability, soil water content was measured for both dryland and irrigated blocks at one week 151 

pre-anthesis and at anthesis. In each strip, two soil cores were collected from DBA Aurora and 152 

Fadda98 plots in both treatments. Each core was divided into 20cm soil layers: 0–20, 20–40, 153 

40–60, 60–80, 80–100, and 100–120 cm. A subsample from each soil layer was immediately 154 

weighed to obtain fresh weight, and then dried to a constant weight at 105 °C. Soil water 155 

content for each layer was calculated as [(fresh weight-dry weight)/dry weight]×100%. 156 

Data collection 157 

The 2020_WW trial was subjected to intensive canopy phenotyping and resulting phenotypes 158 

were used for association mapping. The trial comprised 309 genotypes evaluated using a p-rep 159 

design (~38%) of 456 plots (6 m × 1.05 m, 4 rows) (Table 2). NDVI data was captured for each 160 

plot every 1-2 weeks, specifically 22, 29, 36, 43, 50, 63, 70, 78, 85, 91, 99 and 106 days after 161 

sowing (DAS) using a GreenSeekerTM handheld sensor (NTech Industries, Ukiah, CA, USA). 162 

Measurements were recorded on sunny and still days, by holding the sensor at approximately 163 

0.6 m height above the crop canopy of the central two rows while walking through the crop at 164 

a constant rate. Canopy cover images were also captured for all plots using a mobile phone 165 

camera (Apple iPhone10), at 29, 36, 43 and 50 DAS. The RGB images were processed using 166 

Canopeo in the Matlab environment, for calculating fractional green canopy cover (FGCC) that 167 

measures the canopy surface area (Patrignani and Ochsner, 2015). In each plot, the number of 168 

spikes was manually recorded for an inner row (1 m length) to determine spike number per unit 169 

area (SN) and spike length (SL) was recorded for six plants. Plant height (PH) of three random 170 

plants in each plot was measured at maturity from ground to the top of the spike, excluding the 171 
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awn length. Flowering time (DTF) was recorded as DAS to 50% flowering (Zadok’s growth 172 

stage 65) of all plants in a plot (Zadoks et al., 1974). The crop was harvested using a small-173 

plot machine harvester to obtain yield data. 174 

To investigate the relationship between NDVI and crop developmental stages in the 2020_WW 175 

trial, a small panel of lines were selected for growth stage tracking from sowing to flag leaf 176 

emergence. The panel comprised 11 genotypes, which were selected based on divergent yield 177 

performance in previous rainfed yield trials (i.e., high yielding and low yielding lines). Each 178 

genotype was replicated 2-3 times in the trial (total 23 plots). Each plot was monitored for 179 

Zadoks’ growth stages (GS) and 10 plants in the middle two rows of each plot were tagged for 180 

tracking tiller number until flag leaf emergence at 16, 22, 29, 36, 43, 50, 57, 63, 70, 78, and 85 181 

DAS.  182 

To investigate yield effects of SNPs associated with canopy development, analyses used yield 183 

data from the 2020_WW trial, plus data from the three other yield (2017_WW, 2017_RW and 184 

2019_TS; Table 1). DTF was captured in all trials, except for 2017_RW (Table 1). 185 

Analysis of phenotypic data 186 

Spatial analyses were conducted for each trait to correct for spatial heterogeneity within each 187 

trial. A linear mixed model was fitted in ASReml-R to estimate adjusted genotype means (best 188 

linear unbiased estimates; BLUEs) for all traits in each trial as follows (Butler et al., 2009): 189 

       𝑦𝑖𝑗𝑘𝑚 = 𝜇 + 𝑅𝑒𝑝𝑚 + 𝑅𝑗 + 𝐶𝑘 + 𝐺𝑖(𝑚) + 𝑒𝑖𝑗𝑘(𝑚)                               (1) 190 

where 𝑦𝑖𝑗𝑘𝑚 denotes the plot observation of genotype i in replicate m, row j and column k, was 191 

modelled by fitting fixed effects for the overall mean (µ) and genotype i (𝐺𝑖(𝑚)); and random 192 

effects for replicate m (𝑅𝑒𝑝𝑚), row j (𝑅𝑗) and column k (𝐶𝑘); and 𝑒𝑖𝑗𝑘(𝑚) represents the vector 193 

of spatially correlated residuals. The variance components of 𝑅𝑗, 𝐶𝑘 and 𝑒𝑖𝑗𝑘(𝑚) were assumed 194 

to follow 𝑅𝑗~𝑁(0, 𝜎𝑟
2) , 𝐶𝑘~𝑁(0, 𝜎𝑐

2)  and 𝑒𝑖𝑗𝑘(𝑚)~𝑁(0, AR1 ⨂ AR1 𝜎2) , respectively. To 195 

correct for known or expected sources of variation that were suspected to have some effects on 196 

traits, the model was tested to assess the need for fitting of covariates (i.e., differences in 197 

establishment between genotypes, lodging). The covariates and random terms were evaluated 198 

with Wald chi-squared test and likelihood ratio test, respectively. The model was adjusted 199 

according to the identified significant terms at α = 0.05. Except for the replicate, non-significant 200 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457180


model terms were dropped in an attempt to obtain the best fit. Slight modifications were made 201 

for analysing 2017_RW, where the residual term was modelled by a two-dimensional spatial 202 

model with correlation in row direction only. 203 

Time-series modelling of canopy development used NDVI recorded from sowing to the peak 204 

of NDVI measures at 78 DAS (Fig. 1). To describe the trend of longitudinal BLUEs for NDVI, 205 

a smoothing spline was implemented in ASreml-R (Verbyla et al., 1999). To summarize the 206 

NDVI growth curve, AUC was calculated using the following formula: 207 

                                      AUC = ∑ [
𝑁𝐷𝑉𝐼(𝑖+1)+𝑁𝐷𝑉𝐼𝑖

2
]𝑛

𝑖=1 [𝑇(𝑖+1) − 𝑇𝑖]                                       (2) 208 

Where 𝑁𝐷𝑉𝐼𝑖 is the NDVI prediction at the 𝑖th DAS; 𝑇𝑖 is the 𝑖th DAS; and 𝑛 is the number of 209 

DAS of interest after i.  210 

Association mapping 211 

All data captured at the 2020_WW trial were used to perform association mapping. Genotype 212 

data was subjected to quality control, which excluded genotypes with > 20% missing marker 213 

information and markers with a call rate < 90% and a minor allele frequency (MAF) < 5%.  214 

Two different approaches were used to map QTL for canopy development. The first approach 215 

used BLUEs for NDVI at each time-point. The second approach used the AUC based on spline 216 

modelling of time series NDVI. Population structure was investigated using principal 217 

component analysis (PCA). An appropriate number of principal components (PCs) were 218 

determined by estimating the variances of PC scores. The retained PCs were included as 219 

covariates in association tests carried out with “FarmCPU” in R (Liu et al., 2016). The p‐values 220 

of marker–trait associations (MTA) were adjusted in a multiple comparison procedure using 221 

false discovery rate (FDR) (Benjamini and Hochberg, 1995). Only associations with adjusted 222 

p‐values (p‐FDR) less than 0.05 were considered as statistically significant and reported. For 223 

each QTL, the positive allele was determined as the allele associated with an increase in trait 224 

value. Data from each homozygous allele were tested for normality and homogeneity of 225 

variance. The means of genotypes carrying different homozygous alleles were statistically 226 

compared by independent t-tests. In several cases where data did not meet the normality criteria, 227 

non-parametric Wilcoxon rank sum test was performed to compare the allelic effect on traits. 228 
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Marker × environment analysis 229 

The marker × environment interaction (M × E) was analysed with a linear mixed model, in a 230 

multi-environment context using all four field trials (Table 1):  231 

                              𝑦 = 𝜇 + 𝐸 + 𝑀 + 𝑀 × 𝐸 + 𝐺 +  𝐺 × 𝐿 + 𝐺 × 𝑌 + 𝑒                              (3) 232 

where 𝑦 is the vector of yield BLUEs; 𝜇 is the general mean; 𝐸 represents trial; 𝑀 denotes 233 

SNP; 𝑀 × 𝐸  is the interaction term between SNP and trial; 𝐺  is genotype; 𝐺 × 𝐿  is the 234 

genotype by location interaction; 𝐺 × 𝑌  is the genotype by year interaction, and 𝑒  is the 235 

residual, assumed independent with identical distribution. In the model, 𝐸 , 𝑀 , and 𝑀 × 𝐸 236 

were fixed effects, whereas 𝐺, 𝐺 × 𝐿 and 𝐺 × 𝑌 were treated as random effects. 237 

The SNP effect was modelled as the sum of a main effect common to all tested environments 238 

(M), plus the interaction term representing environments-specific deviations (M × E). Since M 239 

× E was tested conditional on the main effect, no attempt was made to interpret the SNP main 240 

effect when M × E is significant (Malosetti et al., 2013). When M × E is not significant, the 241 

SNP main effect could be sufficient to represent the SNP effect. After testing, only SNPs with 242 

either significant main effect or M × E effects were reported and further investigated. The 243 

predicted means of each SNP allele × trial combination were compared with Tukey’s HSD test. 244 

A summary of the key steps and workflow involved from modelling NDVI time series data to 245 

the M × E analysis is provided in Fig. 2.   246 

Results  247 

Field environments experienced variable rainfall patterns 248 

The amount of in-crop rainfall varied across the four trials, ranging from 12.8 mm (2019_TS) 249 

to 320.7 mm (2017_RW). While 2019_TS received the least in-crop rainfall (only 12.8 mm) 250 

the trial was sown into a full soil profile and the soil is described as deep with high water-251 

holding capacity. This delayed water stress until the grain filling period and the site recorded 252 

the lowest mean yield (2.24 tonnes ha-1) in comparison with other trials (Fig. S4C, Table 1). 253 

The distribution of rainfall through the season also varied across the trials (Fig. S4). For 254 

example, 2017_RW experienced a typical Mediterranean-type environment, where most 255 

rainfall occurred early in the season. In contrast, the two trials conducted at Warwick received 256 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 21, 2021. ; https://doi.org/10.1101/2021.08.21.457180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457180


more rainfall during the critical grain filling period (Fig. S4B, D). The highest average yield 257 

was obtained in 2017_WW, which was on average 1 tonne ha-1 higher than 2017_RW and 258 

2020_WW, and 2.7 tonnes ha-1 higher than 2019_TS (Table 1).  259 

To quantify the degree of water stress in the 2020_WW canopy phenotyping trial, soil cores 260 

were sampled from dryland and irrigated strips adjacent to the main trial. Sampling performed 261 

one week prior to anthesis revealed significant differences in soil moisture (all soil depths from 262 

0 - 1.2 m) for the dryland treatment compared to the irrigated treatment (Fig. S7A). At anthesis, 263 

soil moisture was further depleted, particularly at depth (Fig. S7A). DBA Aurora and Fadda98 264 

obtained significantly higher yield in the irrigated treatment (Fig. S7B). Based on average yield 265 

differences between dryland and irrigated treatments, the degree of water stress experienced in 266 

the 2020_WW trial resulted in an approximate average yield loss of 1.1 tonnes ha-1. 267 

Relationships between NDVI, phenology traits and yield-related traits 268 

The 309 NAM genotypes evaluated in 2020_WW trial displayed a high degree of phenotypic 269 

variation for temporal NDVI (Fig. 1). Phenotypic variation in NDVI was largest at the 270 

beginning of the growing season, reached a peak at 36 DAS and reduced thereafter. The NDVI 271 

reached an average peak value of 0.9 at 78 DAS (Table 3). The Pearson correlation among all 272 

traits was computed (Fig. 3). For a specific time-point NDVI, its correlations with other 273 

timepoints decreased with increasing developmental stage. Positive correlations between 274 

NDVI and SL were significant at 29 and 78 DAS (p < 0.05). A reverse trend was observed for 275 

SN, where NDVI in the early season (22 and 29 DAS) was negatively correlated with SN. For 276 

plant height, the only correlation with NDVI was evident at 50 DAS (p < 0.05). Further, NDVI 277 

captured over time was negatively correlated with DTF (Fig. 3), with higher NDVI associated 278 

with faster time to flowering. No direct NDVI-yield relationship was found before 63 DAS in 279 

our study. Rather, NDVI recorded closer to flowering time was more highly related to final 280 

yield, as the strongest correlation between NDVI and yield was observed at 78 DAS (p < 0.001).  281 

Modelling NDVI over time to estimate growth stages 282 

The longitudinal data fitted with a spline showed that the NDVI growth curves overall, 283 

increased slowly initially, then rapidly, before reaching a final plateau (Fig. 4). This suggested 284 

three different growth phases likely involved in canopy development in durum wheat. Although 285 

the trends of these curves were more or less in parallel over time, the distribution of genotype-286 

specific NDVI trajectories indicated some heterogeneity in each phase, leading to variation in 287 
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phase-specific AUC traits. For this reason, the entire simulated AUC during the vegetative 288 

stage (AUC_VS) could be divided into three phases, each illustrating a different growth status, 289 

to capture phase-specific variation that contributes to the overall canopy development.  290 

To understand how NDVI dynamics reflected changes in vegetation phenology, 11 genotypes 291 

including 10 NAM lines and the reference variety DBA Aurora were investigated. Given the 292 

similar phenology of the 11 genotypes, Zadok’s GS20 (start of tillering) and GS31 (first node) 293 

were aligned with 29 and 63 DAS (Fig. S1), respectively. Since no significant change was 294 

observed for the tiller number of most genotypes from 57-63 DAS (Fig. S1), Zadok’s GS30 295 

(start of stem elongation) was estimated at 60 DAS. To evaluate the use of NDVI to define the 296 

growth stage, we hereafter used 30 and 60 DAS as two breakpoints to approximate GS20 and 297 

GS30, respectively. 298 

Using 30 DAS as the first breakpoint, the NDVI trajectories of genotypes displayed two distinct 299 

growth patterns before and after the point. For instance, the sharp increase in NDVI after 30 300 

DAS suggested a transition from seedling to tillering stage. According to the fitted NDVI 301 

curves, most genotypes reached the start of maximum canopy cover at approximately 60 DAS 302 

(Fig. 4). This finding aligned with the start of the maximum canopy cover as indicated by time-303 

point NDVI measures (Fig. 1), where NDVI after 63 DAS remained constant. As such, the 304 

estimated transition from tillering to stem elongation by the NDVI curve was deemed 305 

reasonably accurate. However, to further identify and interpret phenology metrics, the 306 

saturation issue may impact NDVI-based recommendations as NDVI becomes insensitive to 307 

changes in canopy structure when the crop reaches canopy closure.  308 

The relationship between time-point NDVI and AUC traits 309 

NDVI curves were binned into three growth stages: seedling stage (SS, 0-30 DAS), tillering 310 

stage (TL, 30-60 DAS) and stem elongation stage (SE, 60-78 DAS) (Fig. 4). Accordingly, the 311 

AUC traits for each stage were designated AUC_SS, AUC_TL and AUC_SE, and were used 312 

to quantify the cumulative status for each stage. Given this, the same duration of each growth 313 

stage was applied to all studied genotypes. Hence, differences in growth rate appeared to 314 

contribute to variation in AUC, where higher AUC values represented faster canopy 315 

development and closure. 316 
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As expected, because of the linear nature of the operations involved, stage-specific AUC traits 317 

showed strong correlations with NDVI measured within the respective stage (Fig. 3). Moreover, 318 

stage-specific AUC traits were also found to correlate well with NDVI measured at other stages. 319 

The integral NDVI approach ensured that canopy differences related to yield formation were 320 

captured. For example, AUC_SE was correlated with yield, but only some of the NDVI time-321 

points during SE showed significant correlations with yield (e.g., 70 DAS was not correlated, 322 

but readings captured at 63 DAS and 78 DAS were, as shown in Fig. 3). These results 323 

highlighted the robustness and suitability of the approach for proceeding with genetic 324 

dissection studies.  325 

Time-point NDVI and AUC correlate with canopy cover 326 

NDVI displayed a positive linear relationship with FGCC before NDVI reached the maximum 327 

value of 0.9 (Fig. 5). Most genotypes obtained 80% FGCC at 50 DAS. Thus, rapid growth 328 

during the tillering stage could almost achieve canopy closure before the start of stem 329 

elongation. Moreover, all AUC traits showed significant correlations with FGCC, except for 330 

AUC_SS (Fig. 3). This highlights the value of NDVI to estimate canopy cover as measures 331 

were similar to RGB-based estimates. As such, a higher NDVI and/or a greater AUC value 332 

represented a larger canopy that was faster to close.  333 

Association mapping for canopy development 334 

A total of 5,298 high-quality polymorphic SNP markers for 309 lines were used for association 335 

mapping. The PCA revealed six clusters in the NAM population (Fig. S2A), which aligned 336 

with the family structure (Table 2). The first five PCs were used as covariates in association 337 

mapping, because explained variance rapidly decreased until PC = 5 and changed little 338 

thereafter (Fig. S2B). The first two PCs explained ~ 23% of the genetic variance (Fig. S2B).  339 

Association mapping was performed for time-point NDVI, stage-based AUC, crop phenology-340 

related traits, spike traits and grain yield traits captured in the 2020_WW trial. Using time-341 

point NDVI, a total of 11 significant MTAs were detected across nine chromosomes, including 342 

2A, 2B, 3A, 4A, 4B, 5A, 6A, 6B and 7A (Table 4). Among these, only one SNP was detected 343 

for more than one NDVI time-point (i.e., SNP 1271404 on chromosome 2A). Notably, in 344 

agreement with the genetic variation in NDVI (Fig. 1), most MTAs were identified at specific 345 

time-points between 29 and 50 DAS. 346 
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To identify markers associated with AUC, we conducted association mapping using the 347 

following traits: AUC_SS, AUC_TL, AUC_SE and AUC_VS. This detected six significant 348 

MTAs, of which five were associated with more than one AUC trait. SNP 1271404 on 349 

chromosome 2A, was also detected using time-point NDVI measures during the TL growth 350 

stage. Mapping AUC enabled the identification of five additional signals, on chromosome 2A 351 

(SNP 4004899), 2B (SNPs 1095539 and 1108975), 4A (SNP 3946360) and 5B (SNP 1093322) 352 

(Table 4). 353 

Interestingly, most MTAs for phenology-related traits were independent of MTAs associated 354 

with canopy development, except for SNP 2256343 on chromosome 2A which was associated 355 

with NDVI_50DAS and DTF (Table 4). 356 

M × E analysis revealed markers associated with grain yield 357 

The M × E interaction analysis was conducted to assess the significance and strength of the 358 

SNP effects on yield across trials. Analyses focussed on 13 SNPs that were associated with 359 

canopy development and segregating in population subsets evaluated across all trials.  360 

The allelic effects on canopy development were first explored using data collected from 361 

2020_WW. For all SNPs, the allele associated with either higher NDVI or larger AUC was 362 

defined as the positive allele, which was linked to rapid canopy closure (Table 4). To account 363 

for the fact that SNP 2256343 was also associated with flowering time (Fig. S3, Table 4), we 364 

excluded the top 20% and bottom 20% of genotypes in 2019_TS and 2020_WW based on DTF. 365 

As a result, 131 and 185 genotypes that showed no significant difference in DTF were retained 366 

in 2019_TS and 2020_WW, respectively, and were used for the analysis of yield effects 367 

associated with SNP 2256343.  368 

A linear mixed model approach was employed to evaluate effects for each of the 13 SNPs using 369 

yield data from four rainfed trials (Table 1). In the current study, no significant marker main 370 

effect was detected for yield. Instead, 9 markers showed significant M × E interactions for yield 371 

(Table 5). Notably, SNP 1095539, 3949783, 4404447 and 5324123 showed significant yield 372 

effects in 2017_WW, 2017_WW, 2017_RW, and 2020_WW, respectively (Table 5). Alleles 373 

associated with a significant yield benefit were associated with slow canopy closure (Fig. S5; 374 

Table 4, 5). Therefore, these four SNPs of interest were subjected to further investigation.  375 
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Alleles influencing canopy development and yield were also associated with spike length 376 

and spike number 377 

Three of the four marker alleles associated with a slower closing canopy and yield (1095539, 378 

3949783, 4404447 and 5324123) also showed associations with SL or SN. Interestingly, SNP 379 

5324123 was strongly associated with both SL and SN in 2020_WW, but the yield benefit in 380 

this trial was related to a reduction in SN (Fig. S6D, Table 5-6). Similarly, the significant yield 381 

effect of SNP 1095539 in 2017_WW was associated with SL (Fig. S6D, Tables 5-6). On the 382 

other hand, SNP 3949783 was associated with SL in 2020_WW but not yield (Tables 5-6). 383 

SNP 4404447 was not associated with either component traits (Table 6). Notably, SNP 384 

4404447 was not associated with yield in 2017_WW and 2020_WW and these were the 385 

environments where data for SL and SN were captured (Table 5). Overall, alleles associated 386 

with slow canopy closure supported yield, however, the contribution and yield benefit 387 

associated with pleiotropic effects on SL and SN appeared highly context dependent across the 388 

environments. 389 

Discussion 390 

Wheat yield is determined by the interaction between source, which is the availability of 391 

photoassimilates, and sink, which is the number of grains per unit area (Reynolds et al., 2017). 392 

Canopy development underpins yield potential, as it influences the capture of light, water use, 393 

transpiration, and overall biomass production. In water-limited environments, optimal canopy 394 

development balances water use both pre- and post-anthesis to maximise yield. For example, 395 

while slow canopy development may not favour biomass accumulation pre-anthesis, it can help 396 

to conserve soil moisture for the critical grain filling period. However, in environments where 397 

water is non-limiting, optimal canopy development should maximise biomass production and 398 

overall sink strength as there is no penalty of high water-use early in the season. This study 399 

revealed a high degree of variation for temporal canopy dynamics in elite durum wheat 400 

populations derived from Australian × ICARDA crosses, which could be used to improve 401 

durum wheat adaptation to a range of target environments. New knowledge of the underlying 402 

genetics and value of canopy developmental traits described in this study provide important 403 

steps towards the development of new cultivars with improved resource-use efficiency to 404 

maximise crop yield. 405 

Using NDVI to measure canopy development 406 
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NDVI serves as an easy-to-measure indicator of canopy development in real time. The link 407 

between NDVI and canopy development is strongly underpinned by the functional relationship 408 

between NDVI and aboveground biomass. In accordance with previous research, time-specific 409 

NDVI measures during the early growing period were generally poor predictors of yield 410 

(Magney et al., 2016), whereas NDVI captured at the peak of canopy development is more 411 

associated with yield. This is somewhat expected due to the complexity underpinning yield 412 

development. Furthermore, the stem elongation to flowering phase is considered the most 413 

critical for determining grain number and ultimately sink strength. 414 

Phenological and environmental changes over time affect the canopy status represented by 415 

NDVI. Therefore, the use of the NDVI integral (i.e., area under the curve) provides an 416 

advantage over time specific NDVI as it captures the impact of those changes on canopy 417 

development. To accurately assess long-term patterns of canopy development, regular NDVI 418 

measurements are required. Nonlinear models have been widely used to account for the 419 

complexities of plant growth (Paine et al., 2012; Villegas et al., 2001). Previous studies 420 

comparing different models to characterise the dynamics of NDVI over time found that spline-421 

fitting better approximated the variation of smoothed NDVI values than other non-linear 422 

functions and was more suitable for describing the time-series model (Sun et al., 2017; 423 

Vorobiova and Chernov, 2017). In this study, the trajectories of smoothed NDVI data showed 424 

a typical temporal pattern of NDVI evolution during the vegetative stage, where crop 425 

emergence was followed by a rapid growth period, then a relatively stable period of maximum 426 

vegetation approaching anthesis. Therefore, cumulative NDVI at specific growth stages could 427 

be used to gain insights of the physiological drivers underpinning grain yield. 428 

The genetics of canopy development 429 

To identify loci underpinning canopy development, time-point NDVI data were treated as 430 

independent traits and association mapping was performed for each timepoint to identify time-431 

specific NDVI (Fig. 2). Next, spline-fitted curve-derived AUC was subject to mapping, and 432 

results were compared to mapping of time-point NDVI.  433 

Time-point NDVI measures were highly correlated, suggesting the underlying genetic controls 434 

either provide long-term regulation of canopy growth or have prolonged effects originating 435 

from an early growth phase. This was further confirmed in the mapping results, where the 2A 436 

QTL (SNP 1271404) was detected by multiple time-point NDVI.  437 
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AUC in the current study was used to capture the genetic basis of canopy growth with respect 438 

to key developmental stages. However, some QTL could only be detected using time-point 439 

NDVI and it is unclear why these QTL could not be captured using the AUC approach. One 440 

possible explanation is that they were transient QTL sensitive to time of data collection, 441 

whereas AUC represented a period of growth, and therefore more likely detected loci with 442 

more consistent and robust effects. Thus, time-point NDVI and AUC had different mapping 443 

strengths and were complementary to each other. The use of AUC for mapping time-dependent 444 

canopy development should be implemented on a case-by-case basis, with the aim of ensuring 445 

good quality data for use in modelling canopy dynamics. Additionally, AUC values should not 446 

be directly compared across different studies, as AUC is a product of many contributing factors, 447 

including the environment, modelling approach, phenotyping method and crop phenology. 448 

This study uncovered four SNPs on chromosomes 2B (1095539 and 3949783), 4A (5324123) 449 

and 6A (4404447) that could be useful for durum wheat breeding, as alleles associated with 450 

slow canopy closure were linked to a yield advantage in some environments, but not a yield 451 

penalty in other environments. Notably, all four SNPs were not associated with DTF, which 452 

improves the utility of the genes from a breeding perspective, as canopy development could be 453 

manipulated without shifting flowering time. Three of the four SNPs (1095539, 3949783 and 454 

5324123) were also associated with yield component traits: SN and SL, where SL is considered 455 

a proxy for the number of grains per spike (Baye et al., 2020). Interestingly, most of these SNPs 456 

were detected using NDVI measures recorded at the early tillering stage, an important phase 457 

for spike formation in wheat (Khadka et al., 2020), when no correlation between NDVI and 458 

yield was found. The 2B (3949783) and 6A (4404447) regions have previously been reported 459 

to influence a range of spike traits including spike dry matter, grain weight per spike, grains 460 

per spike and grain weight (Giunta et al., 2018; Mangini et al., 2018; Patil et al., 2013; Peleg 461 

et al., 2009; Soriano et al., 2017). While the 4A region (5324123) has not previously been 462 

reported for SN and SL per se, it has been reported to influence similar or related traits, 463 

including biomass, harvest index, spike harvest index, spike density (spikelet number/SL), and 464 

importantly grain yield (Mengistu et al., 2016; Peleg et al., 2011; Peleg et al., 2009; Tzarfati 465 

et al., 2014). 466 

Yield benefits of slow canopy development, trade-offs and pleiotropic effects 467 

Four QTL for slow canopy development were associated with yield in three of the four rainfed 468 

environments (2017_RW, 2017_WW and 2020_WW). These three trials likely experienced 469 
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water stress at anthesis, whereas 2019_TS received very little in-crop rainfall (Fig. S4C) and 470 

likely experienced pre-anthesis water stress. This highlights the value of slow canopy 471 

development in water-limited environments that experience drought at anthesis or during the 472 

grain filling period. As discussed above, the benefit of a slow closing canopy likely manifests 473 

from water savings that support yield formation during grain filling. Without having sufficient 474 

environmental data to perform robust envirotyping in APSIM (Chenu et al., 2013), it is difficult 475 

to quantify the degree of water-stress in the rainfed experiments. However, soil moisture was 476 

measured in the dryland and irrigated strips adjacent to the 2020_WW trial. Soil moisture under 477 

the rainfed conditions was clearly depleted at anthesis, particularly in deeper soil layers (Fig. 478 

S7A), and the water limitation resulted in an average yield loss of 1.1 tonnes ha-1. This 479 

highlights the impact of drought under rainfed conditions in Australia, despite three of the four 480 

trials being conducted on deep soils with a high water-holding capacity. Although soil moisture 481 

data was not available for 2017_WW, the same site was used for 2020_WW. In 2017_WW the 482 

trial received less in-crop rainfall compared to 2020_WW (Table 1), suggesting it likely 483 

experienced similar or more severe water stress than 2020_WW. Terminal drought often occurs 484 

in Mediterranean-type environments, such as South Australia. In 2017_RW, about 90% of the 485 

in-crop rainfall occurred from May to September, suggesting the trial experienced water stress 486 

late in the season (Fig. S4A). Regardless of the delayed onset of water stress (compared with 487 

the Warwick sites in Queensland), the four QTL associated with slow canopy development 488 

contributed positive yield effects.  489 

Harvested wheat yield is a result of three components: spike number per unit area, grain number 490 

per spike, and average grain weight (Simmonds et al., 2014; Zhang et al., 2018). In the current 491 

study, the relationship between SL, SN and yield varied across the two trials (2017_WW and 492 

2020_WW). Specifically, SL showed a significant correlation with yield in 2017_WW, but not 493 

in 2020_WW (Fig. S6A, C), while SN showed a significant correlation with yield in 2020_WW, 494 

but not in 2017_WW (Fig. S6B, D). Previous studies in both bread and durum wheat have 495 

reported positive relationships between SL and yield under water-limited conditions (Munir et 496 

al., 2007; Nofouzi, 2018). In this scenario, genotypes with fewer tillers could accumulate less 497 

biomass, but produce longer spikes with more grains, to achieve a yield advantage.   498 

It is plausible that loci associated with canopy development and yield component traits could 499 

be involved in modulating root architecture. The study by Voss-Fels et al. (2018) reported that 500 

allelic variation at Vrn1, a key gene in the wheat flowering pathway, not only influences spike 501 
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and canopy development, but also root system architecture. In the current study, a QTL on 2B 502 

(1095539) associated with AUC_SS and AUC_SE was positioned in close proximity with 503 

previously reported QTL for root growth angle and primary root length (Maccaferri et al., 504 

2016). Thus, either closely positioned or pleiotropic loci on chromosome 2B could be important 505 

for both above- and below-ground developmental traits. 506 

Clearly, the value of different yield component traits in durum wheat is highly context 507 

dependent, and genotypes can exploit a range of pathways to maximise yield in each 508 

environment. A priority for future research is to understand the complex interactions and 509 

possible pleiotropic effects of loci influencing both canopy development and yield component 510 

traits. Such insight will enable selection and deployment of desirable gene combinations in 511 

breeding programs seeking to develop new varieties with improved resilience and productivity.  512 
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Table 1. Attributes of the four rainfed yield trials conducted between 2017 and 2020. 

1 Sowing date. 
2 Harvesting date. 
3 Total number of plots in the experiment.  
4 In-crop rainfall. 
5 Growing degree days during growing period.  
6 Range of flowering time of durum NAM population grown in the experiment, expressed as days to flowering. 
7 Data is not available. 
8 Mean yield of all genotypic BLUEs.  
9 Number of durum NAM lines and parents. 
10 Spike length measured in cm.  
11 Spike number per unit area.  
12 Canopy related traits include NDVI, and fractional green canopy cover at multiple time points at population level, and tiller number measured 

on 11 selected genotypes. 

Trial 2017_RW 2017_WW  2019_TS 2020_WW 

Location Roseworthy Warwick Tosari Warwick 

SD1 09/05/2017 22/06/2017 08/07/2019 01/07/2020 

HarvD2 22/11/2017 15/11/2017 15/11/2019 26/11/2020 

No. of plots3 576 336 440 456 

ICR (mm)4 320.7 137.5 12.8 185.0 

GDD (°C)5 2468 2190 2222 2377 

Range of DTF6 na7 96-108 84-102 90-104 

Yld (t-ha-1)8 3.95 4.91 2.24 3.87 

No. of geno9 149 147 217 309 

Traits measured Yld SL10, SN11, DTF, Yld DTF, Yld 

Canopy related traits12, 

SL, SN, DTF, PH13, 

Yld 
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13 Plant height measured in cm. 

 

Table 2. Description of durum wheat genotypes in the 2020 field trial, including the 10 NAM parents and subset of 299 NAM lines  

NAM Parent Pedigree No. of rep 

Fastoz2 T.polonicumTurkeyIG45272/6/ICAMORTA0463/5/Mra1/4/Aus1/3/Scar/GdoVZ579//Bit 2 

Fastoz3 Msbl1//Awl2/Bit/3/T.dicoccoidesSYRIG117887 5 

Fastoz6 Azeghar1/6/Zna1/5/Awl1/4/Ruff//Jo/Cr/3/F9.3/7/Azeghar1//Msbl1/Quarmal 2 

Fastoz7 CandocrossH25/Ysf1//CM829/CandocrossH25 2 

Fastoz8 MorlF38//Bcrch1/Kund1149/3/Bicrederaa1/Miki = Kunmiki 3 

Fastoz10 Younes/TdicoAlpCol//Korifla = Trouve 1 

Fadda98 Awl2/Bit = Awalbit9 5 

DBA Aurora Tamaroi*2/Kalka//RH920318/Kalka///Kalka*2/Tamaroi 3 

Jandaroi 110780/111587 1 

Outrob4 Ouassel-1/4/GdoVZ 512/Cit//Ruff/Fg/3/Pin/Gre//Trob = Fadda98 1 

NAM family  Pedigree No. of geno 

1 DBA Aurora/Fastoz7 20 

2 DBA Aurora/Outrob4 74 

3 DBA Aurora/Fastoz8 80 

5 DBA Aurora/Fastoz3 80 

6 Jandaroi/Fastoz8 16 

10 Jandaroi/Outrob4 29 
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Table 3. Summary statistics for traits studied in the 2020 field trial, including minimum (Min), mean, maximum (Max), and coefficient of variation 

(CV) for trait BLUEs. 

Traits Min Mean Max CV (%) 

NDVI_22DAS1 0.22 0.27 0.33 6.3 

NDVI_29DAS 0.23 0.33 0.4 9.3 

NDVI_36DAS 0.26 0.45 0.55 9.6 

NDVI_43DAS 0.39 0.63 0.74 7.9 

NDVI_50DAS 0.67 0.84 0.88 3.5 

NDVI_63DAS 0.82 0.88 0.9 1.3 

NDVI_70DAS 0.87 0.89 0.91 0.6 

NDVI_78DAS 0.88 0.9 0.91 0.5 

FGCC_29DAS2 3.21 10.35 16.52 17.1 

FGCC_36DAS 7.6 23.34 33.67 16.9 

FGCC_43DAS 20.63 44.01 57.51 13.5 

FGCC_50DAS 39.81 70.86 83.91 9.9 

AUC_SS3 3.77 5.6 7.08 7.4 

AUC_TL4 14.83 20 21.8 5 

AUC_SE5 15.47 15.98 16.32 0.7 

AUC_VS6 34.99 41.57 44.46 3.4 

PH (cm) 58 77 94 7.9 

DTF (days) 90 95 104 2.1 

SL (cm) 7.19 9.21 11.35 8.3 

SN (-m-2) 115 248 365 17.7 

Yld (t-ha-1) 1.66 3.63 5.56 17.8 
1 Normalized difference vegetation index (NDVI) measured at 22 days after sowing (DAS).   
2 Fractional green canopy cover (FGCC) measured at 29 DAS. 
3 Area under the curve of smoothed time-series NDVI (AUC) between 0-30 DAS. 
4 AUC between 30-60 DAS.  
5 AUC between 60-78 DAS.  
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6 AUC between 0 and 78 DAS. 

 

Table 4. Summary of results from association mapping of canopy development and other traits in the 2020 field trial (2020_WW). 

Trait SNP Positive allele Chr1 MAF2 Pos.St (bp)3 Pos.End (bp)4  -log10 (p)5  -log10(p‐FDR)6 

NDVI_29DAS 

1271404 1 2A 0.21 745108704 745108769 6.15 2.44 

3023448 1 3A 0.49 41109698 41109735 4.80 1.78 

5324123 1 4A 0.13 642498972 642499004 4.33 1.39 

1202152 0 4B 0.49 565602357 565602424 5.72 2.31 

4404447 1 6A 0.35 12144868 12144909 4.97 1.85 

1127685 0 6B 0.22 135162876 135162808 5.09 1.85 

NDVI_36DAS 
977411 1 4A 0.21 695150339 695150395 5.45 2.03 

1130263 0 5A 0.06 417840038 417840097 7.77 4.05 

NDVI_43DAS 1271404 1 2A 0.21 745108704 745108769 5.97 2.25 

NDVI_50DAS 

2256343 1 2A 0.11 36364366 36364298 5.98 2.57 

1271404 1 2A 0.21 745108704 745108769 6.34 2.63 

3949783 0 2B 0.28 697623388 697623452 4.71 1.47 

NDVI_70DAS 996714 1 7A 0.17 109908919 109908968 5.71 2.00 

AUC_SS 

4004899 1 2A 0.35 735922887 735922955 4.47 1.35 

1095539 1 2B 0.29 618076302 618076370 7.17 3.45 

3946360 1 4A 0.19 24099524 24099564 5.46 2.22 

1093322 0 5B 0.20 528696884 528696822 5.91 2.49 

AUC_TL 1271404 1 2A 0.21 745108704 745108769 5.48 1.76 

AUC_SE 

4004899 1 2A 0.35 735922887 735922955 4.47 1.35 

1095539 0 2B 0.29 618076302 618076370 7.17 3.45 

3946360 1 4A 0.19 24099524 24099564 5.46 2.22 

1093322 0 5B 0.20 528696884 528696822 5.91 2.49 
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AUC_VS 
1271404 1 2A 0.21 745108704 745108769 5.82 2.31 

1108975 0 2B 0.07 55930502 55930570 5.73 2.31 

DTF 2256343 0 2A 0.11 36364298 36364366 17.50 13.78 

PH 

4009205 0 2A 0.27 982116 982183 4.73 1.54 

1698984 1 2A 0.22 131154183 131154248 4.50 1.54 

1017668 1 2A 0.17 695473023 695473091 4.50 1.54 

1088708 1 4B 0.50 637884852 637884784 5.30 1.58 

3064427 1 5B 0.18 533724323 533724367 4.80 1.54 

5411254 0 7A 0.20 32647340 32647399 4.48 1.54 

SL 

1215020 0 1B 0.47 640187467 640187527 4.65 1.78 

4992547 0 3A 0.22 618058814 618058882 5.86 2.75 

1091678 1 4A 0.46 636321605 636321665 8.84 5.13 

3954609 0 4A 0.12 190565472 190565511 4.67 1.78 

1055097 0 5A 0.09 639650884 639650944 6.51 3.27 

982085 0 5A 0.46 43161899 43161953 4.79 1.78 

1092206 1 6A 0.39 543489106 543489174 7.16 3.75 
1 Chromosome.  
2 Minor allele frequency.  
3 The start of the SNP position on the 'Svevo' durum reference genome.  
4 The end of the SNP position on the 'Svevo' durum reference genome.  
5 -log10 of uncorrected p value of marker-trait association.  
6 -log10 of FDR adjusted p value.

 

Table 5. Summary of marker × environment interactions for yield. Predicted means of yield are presented for allele 0 and 1 at each SNP locus, 

and each SNP allele × trial combination. Significant differences are indicated by different letters at 0.01 probability level following Tukey’s test. 

  Chromosome 2A 2A 2B 2B 2B 3A 4A 6A 6B 

    Allele 1271404 4004899 1108975 1095539 3949783 3023448 5324123 4404447 1127685 
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SNP 
 0 3.24 3.65 3.69 3.63 3.63 3.62 3.7 3.7 3.68 
 1 3.77 3.7 3.66 3.76 3.77 3.64 3.58 3.5 3.66 

SNP × Env 

2017_RW 
0 3.43b 3.94c 4c 3.84bc 3.85cd 4.02c 3.93d 4.03c 4.00c 

1 4.00b 3.95c 3.55abcd 4.07c 4.08d 3.80bc 3.98d 3.61b 3.76bc 

2017_WW 
0 4.5bc 4.95d 4.91d 4.70d 4.71e 4.81d 4.96e 4.98d 4.88d 

1 5.11c 4.9d 4.67bcd 5.16e 5.16f 4.86d 4.83e 4.58d 5.05d 

2019_TS 
0 1.86a 2.22a 2.27a 2.26a 2.26a 2.25a 2.20a 2.26a 2.26a 

1 2.22a 2.25a 2.45abc 2.22a 2.22a 2.22a 2.35a 2.05a 2.11a 

2020_WW 
0 3.19b 3.49b 3.57b 3.70b 3.72bc 3.40b 3.69c 3.54b 3.60b 

1 3.74b 3.69bc 3.98bcd 3.60b 3.59b 3.68bc 3.16b 3.76b 3.74bc 

p-value 
Main effect 1.36e-05 0.1 0.66 0.22 0.28 0.13 0.07 0.52 0.93 

M × E effect 0.02 0.04 4.39e-09 8.64e-06 8.93e-06 0.01 4.47e-06 1.22e-08 0.002 

 

 

Table 6. Comparison of two homozygous alleles at four SNP loci for spike traits measured in 2017_WW and 2020_WW. Data was analysed 

with unpaired t-test in two trials separately. 

 

SNP  Chr Trial Allele N1 Mean _SL2 p-value_SL Mean_SN3 p-value_SN 

1095539 2B 

2017_WW 
0 80 7.29 

<0.05 
323 

0.16 
1 66 7.52 311 

2020_WW 
0 89 8.98 

<0.001 
254 

0.11 
1 218 9.3 245 

3949783 2B 

2017_WW 
0 80 7.35 

0.35 
321 

0.40 
1 66 7.46 314 

2020_WW 
0 84 8.99 

<0.001 
248 

0.94 
1 223 9.31 248 

5324123 4A 2017_WW 
0 92 7.44 

0.44 
311 

<0.05 
1 50 7.34 330 
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2020_WW 
0 256 9.27 

<0.001 
245 

<0.01 
1 36 8.82 268 

4404447 6A 

2017_WW 
0 122 7.39 

0.37 
321 

0.12 
1 25 7.46 304 

2020_WW 
0 200 9.18 

0.28 
250 

0.27 
1 109 9.28 244 

 
1 Number of individuals carrying allele 0 or 1 of a given SNP within the trial.  
2 Mean spike length (cm).  
3 Mean spike number per m2.
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Fig. 1. Variability of normalized difference vegetation index (NDVI) of the durum nested-

association mapping population in 2020_WW. Each boxplot represents the range of best linear 

unbiased estimates (BLUEs) for NDVI at each time-point. 

 

Fig. 2. Experimental analyses performed in this study involved the fitting of NDVI time series 

with a spline (1), estimation of growth stages (2), calculation of AUC for NDVI (3), link of 

NDVI/AUC to fractional green canopy cover (4), association mapping (5) and marker by 

environment analysis (6). 
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Fig. 3. Heatmap of trait by trait correlations in the 2020_WW trial. Pearson’s correlation was 

computed for each pair of traits. The colour key represents the Pearson’s correlation coefficient. 

Level of significance *: p < 0.05; **: p < 0.01; ***: p < 0.001. The explanation for trait 

abbreviation can be found in Table 3. 
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Fig. 4. Trajectories of time-series NDVI of all genotypes in the mapping population fitted with 

smoothing splines. The breakpoints 30 and 60 days after sowing were used to bin the whole 

range of simulated NDVI data. First phase = seedling stage (AUC_SS, 0-30 DAS), second 

phase = tillering (AUC_TL, 30-60 DAS), third phase = stem elongation (AUC_SE, 60-78 

DAS). 

 

Fig. 5. Relationship between BLUEs of NDVI and fractional green canopy cover measured at 

29, 36, 43 and 50 DAS. 
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