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Cutting-edge technologies such as genome editing and synthetic biology allow

us to produce novel foods and functional proteins. However, their toxicity and

allergenicity must be accurately evaluated. Allergic reactions are caused by

specific amino-acid sequences in proteins (Allergen Specific Patterns, ASPs),

of which, many remain undiscovered. In this study, we introduce a data-

driven approach and a machine-learning (ML) method to find undiscovered

ASPs. The proposed method enables an exhaustive search for amino-acid sub-

sequences whose frequencies are statistically significantly higher in allergenic

proteins. As a proof-of-concept (PoC), we created a database containing 21,154
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proteins of which the presence or absence allergic reactions are already known,

and the proposed method was applied to the database. The detected ASPs in

the PoC study were consistent with known biological findings, and the aller-

genicity prediction accuracy using the detected ASPs was higher than extant

approaches.

Teaser We propose a computational method for finding statistically significant allergen-

specific amino-acid sequences in proteins.

Introduction

Food allergies are atopic disorders, which can be classified into immunoglobulin E (IgE)-

mediated and non-IgE-mediated disorders. Allergies to cow’s milk, egg, wheat, and peanuts for

examples, are IgE-mediated. Food allergies are typically caused by hypersensitivity of the im-

mune system to specific proteins in foods, which brings about various allergic reactions ranging

from itchiness, swelling of the tongue, vomiting, diarrhea, hives, trouble breathing, low blood

pressure, and systematic anaphylaxis in severe cases (1, 2). Gupta et al. (3) showed that chil-

dren under 18 years in the United States yielded an estimated food allergy prevalence of 8%,

and that approximately 40% of patients with food allergies have experienced a life-threatening

allergic reaction. Food antigen-specific IgE antibodies play a pivotal role in most of immediate

hypersensitivity to food components. The cross-linking of IgE receptors on mast cells and ba-

sophils triggers the release of mediators such as histamines and proteases (4). Antigen-specific

IgE production from B cells requires for T-cell help, and T-cell-derived cytokine induces the

class-switch of B cells into IgE-producing plasma cells (5). The production of such cytokines

from helper T cells is regulated by T-cell receptors, which mediate signaling through the affinity

to T-cell epitope peptides presented on human leukocyte antigen (HLA) molecules expressed

in professional antigen-presenting cells (APCs), and thymic microenvironments formed by
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medullary thymic epithelial cells (mTECs) enable T-cells lineage commitment by presenting

self-antigens (6).

Some of proteins contained in foods are the cause of food allergies. Currently, the allergenic-

ity of proteins has been evaluated by a method based on the homogeneity to known allergenic

proteins. In many countries, the method according to the Food and Agriculture Organization

(FAO)–World Health Organization (WHO) criterion is used, in which proteins having >35%

similarity in the 80-amino-acid sliding window of allergen proteins or those identical to six-to-

eight contiguous amino acids that are contained in allergen proteins are regarded as allergenic

proteins (7). However, novel foods and functional proteins can now be created using genome

editing technologies and synthetic biology. Because there is a possibility that newly produced

proteins much less homogenous to known allergenic proteins may have allergenicity, more re-

liable prediction methods are needed. Recently, machine learning (ML) has been applied to

various research field, and various bioinformatic methods have also been proposed to improve

the prediction accuracy of FAO/WHO rules. Most of them are built on whether the protein

contains a similar amino-acid subsequence to known allergen-specific peptides, which we call

Allergen-Specific Patterns (ASPs) (8–16). Unfortunately, these bioinformatic methods are still

limited in their ability to identify allergen proteins that does not contain known ASPs, therefore,

we developed a machine learning method to identify unknown ASPs by data-driven approach.

The goal of this study is to identify new ASPs that are responsible for allergenicity from a

database of allergen proteins and non-allergen proteins. We propose an ML method called aller-

Stat to efficiently identify statistically reliable ASPs, and utilize the results to investigate the

biological mechanisms of allergic reactions and predicting food allergic reactions. This prob-

lem is both computationally and statistically challenging. The computational challenge is that,

since the number of all possible sub-sequences in protein amino-acid sequences is extremely

huge, we need to develop a computational trick that enables an efficient exhaustive search. The
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statistical challenge is that, when a selection is made from a huge number of candidates, it

is difficult to properly evaluate the reliability (p-values and confidence intervals) of the selec-

tion, due to selection bias (c.f., multiple-comparison bias). Hence, it is necessary to develop a

method to properly mitigate the bias. The main novelty of allerStat is that it overcomes these

computational and statistical challenges by effectively combining sequence mining (17–24) and

multiple testing correction methods (25–37).

As a proof-of-concept (PoC) study, we developed a dataset consisting of 21,154 proteins

(2,248 allergen and 18,906 non-allergen proteins) by collecting them from multiple databases.

We applied allerStat to the dataset and successfully identified 5,994 statistically significant

ASPs after correcting the selection bias at the significance level of α = 0.05. We observe

that a part of the identified ASPs have high HLA type II binding activity which plays a sig-

nificant role in atopic diseases and food allergies (38, 39) and are consistent with known Inger

epitopes (40, 41). Furthermore, we develop an allergic reaction prediction method based on the

identified ASPs and demonstrate that its prediction accuracy of the method is better than exist-

ing methods (42–44). We provide the database for the PoC study in the supplementary materials

and the code is provided at https://github.com/takeuchi-lab/allerStat.

Results

In this paper we propose a ML method called allerStat for identifying amino-acid subsequences

highly associated with allergic reactions, which we call ASPs. As a PoC, we constructed a pro-

tein dataset that contains both allergic and non-allergic proteins in various biological categories,

and we applies allerStat to the dataset.

Allergen Protein Dataset The input format of the dataset for allerStat is illustrated in Fig. 1(A).

Each row of the table represents an individual protein. Each protein consists of three pieces of
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information: amino-acid sequence, biological category, and presence or absence of allergic re-

action (label). We call a protein that causes or does not cause allergic reaction as an allergenic

protein or a non-allergenic protein, respectively. Biological category information is needed to

avoid misidentifying category-specific patterns as ASPs. From the original dataset, we extracted

the information as illustrated in Fig. 1(B), in which each biological category in the dataset is

classified into three types. The first type contains both allergen and non-allergenic proteins

(called paired category), the second type only contains allergenic proteins (called positive-only

category), and the third type only contains non-allergenic proteins (called negative-only cate-

gory). The distinction of these three types of categories is needed because, e.g., amino-acid

subsequences frequently observed in a positive-only category cannot be distinguished whether

they are specific to the category or to an allergic reaction.

As a PoC, we developed a dataset of 21,154 proteins whose presence or absence of allergic

reactions have been already verified (see the Methods section). The whole dataset in the form

of Fig. 1(A) is given in Data S1 and the biological category information of the dataset in the

form of Fig. 1(B) is given in Data S2. The PoC dataset consists of 2,248 allergenic proteins

and 18,906 non-allergenic proteins. The average, minimum and maximum lengths of the pro-

teins are 421, 5, and 34,350, respectively. There are 20 paired categories, 204 positive-only

categories, and one negative-only category. It is generally difficult to discriminate between

allergenic and non-allergenic proteins. Thus, we focused on 20 foods that have been well ana-

lyzed for allergens. Allergens and their family proteins were deleted based on reviewed protein

information obtained from UniProt, and 17,372 non-allergenic proteins were prepared. Fur-

thermore, the thymic medulla provides a unique microenvironment in which virtually all the

self-antigens are presented so that autoreactive T cells are eliminated from the T cell repertoire

before emigrating to the periphery, thus establishing central T cell tolerance. mTECs play a

pivotal role in self-antigen presentation process by virtue of their promiscuous expression of
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tissue-restricted proteins. Therefore, such a protein expressed in mTECs basically cannot in-

duce allergic reactions. The published gene and protein expressions were integrated to create

1,534 non-allergenic proteins. Fig. S1 shows the distributions of several physico-chemical fea-

tures of allergenic and non-allergenic proteins, where, for each protein, these feature values

are computed by the average for amino acids in it, with the feature values for each amino acid

being presented in Data S3. There is no significant difference in the distributions of any physico-

chemical features between them, which suggests that it is impossible to predict allergenicity by

simply using those features.

Fig. 1(C) shows examples of amino-acid sequences and patterns (subsequences). We call

contiguous amino-acid subsequences of various lengths patterns. The goal of this study is to

find the patterns highly associated with allergic reactions as ASPs. The challenges stem from

the fact that there exists an extremely large number of candidate patterns to be considered. For

example, if we consider patterns up to length 50, because there are 20 amino-acids, there are

20 + 202 + · · · + 2050 = 1065 possible patterns. In fact, we have only to consider patterns

contained in the dataset, but even so, the total number of patterns in the PoC dataset is as

large as 3, 783, 825, 994. Such an extremely large number of candidate patterns causes not only

computational but also statistical difficulties. The main contribution in this paper is to develop a

method for overcoming these computational and statistical difficulties. The number of patterns

contained in the PoC dataset by their lengths is shown in Fig. S2.

Allergen-Specific Patterns (ASPs) In this study, we call the patterns that satisfy all the fol-

lowing three conditions as ASPs. The definition of an ASP is that

1) the pattern is observed statistically significantly more frequently in allergenic proteins

than in non-allergenic proteins,

2) the pattern is observed in none of the non-allergenic proteins, and
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3) the pattern is not specific to particular biological category.

The first condition is needed to guarantee the statistical reliability of the identified ASPs. The

second condition means that if an ASP is the cause of the allergic reaction, it should not be

observed in any non-allergenic proteins. The third condition suggests that patterns specific to

a particular biological category should not be mistakenly identified as ASPs. In this study, the

third condition is verified by checking whether one of the following conditions is met:

3a) the pattern is observed in at least one paired category, or

3b) the pattern is observed in multiple positive-only categories.

Because a paired category contains both allergenic and non-allergenic proteins, a pattern ob-

served more frequently in allergenic proteins can be considered allergen-specific, rather than

specific to the biological category (condition 3a). On the other hand, because it is not possi-

ble to distinguish whether the pattern contained in a single positive-only category is specific to

the biological category or the allergic reaction, we only regard the patterns as ASPs if they are

commonly contained in multiple positive-only categories (condition 3b). Fig. 2(A) shows the

definition of ASPs and Fig. 2(B) shows examples of ASPs and non-ASPs.

Statistically Significant Pattern Mining Method Because the number of candidate patterns

is huge, it is necessary to introduce a computational trick to reduce the computational cost.

Efficient algorithms for handling large number of patterns have been studied extensively in the

data mining community. In particular, methods for efficiently handling sequential patterns is

called sequence mining (17–24), and our method is built on one of sequence mining methods

called prefix-span (20). The large number of candidate patterns raises not only a computational

challenge but also a statistical one. Over the past decade, several methods have been proposed

for evaluating the statistical significance of discovered patterns in several data mining tasks (33,
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45–49). In this paper, we evaluate the statistical reliability of ASPs by adapting the techniques

developed in these studies to our problem setup.

As mentioned above, because the number of candidate patterns is huge, the computational

cost will be extremely large if all the candidate patterns are explicitly handled in the method. In

sequence mining, a tree structure of subsequence patterns is constructed, and efficient compu-

tation is made possible by pruning the branches of the tree structure, as illustrated in Fig. 3(A).

In the most basic sequence mining task called frequent sequence mining, one can efficiently

find patterns whose frequency (called support) is greater than a certain threshold. Frequent se-

quence mining takes advantage of the fact that the frequency of the parent pattern in the tree

structure is no less than the frequency of the child patterns. Fig. 3(A) illustrates the concepts of

tree structure and pruning in a frequent sequence mining task.

Statistical hypothesis testing based on contingency tables can be used to statistically evalu-

ate whether certain amino-acid subsequence is more frequently observed in allergenic proteins.

We employed the Fisher Exact Test (FET) for testing the significance of a contingency table.

Because we consider a large number of candidate patterns, we need to consider testing the sta-

tistical significance of a large number of contingency tables by multiple FETs. When multiple

tests are conducted, a multiple testing correction is needed to adequately control the risk of

false positive (FP) findings. In the context of multiple testing, one is often required to con-

trol the probability of finding one or more FPs below the significance level, a criterion known

as the family-wise error rate (FWER). The most basic multiple testing correction method for

controlling FWER is called the Bonferroni correction, for which one needs to use the signif-

icance level divided by the number of tests as the adjusted significance level. Unfortunately,

in our problem, the number of candidate patterns (i.e., the number of hypotheses) is so large

that the Bonferroni correction is over-conservative. In fact, because there are more than 3.7 bil-

lion candidate patterns in the PoC dataset, only those with the (nominal) FET p-value smaller
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than 0.05/3, 783, 825, 994 < 1.3 × 10−11 can be considered statistically significant for FWER

< 0.05. Fig. 3(B) illustrates that the statistical reliabilities of the identified ASPs can be quan-

tified by considering multiple testing problems with multiple FETs each of which corresponds

to each pattern in the dataset. Various multiple testing correction and other selection bias cor-

rection methods have been studied (25–32, 34–37).

In this study, we introduce a method for multiple testing correction for large number of

contingency tables by effectively combining a randomized test called the Westfall-Young (WY)

method (50) with a sequence mining method. In WY method, the labels (i.e., allergen/non-

allergen) are randomly shuffled to create a randomized dataset which does not contain any

ASPs by construction. Because all selected patterns from the shuffled dataset in WY method

are interpreted as FP findings, to avoid them, the significance threshold for FWER control

must be smaller than all the (nominal) FET p-values obtained from the shuffled datasets. By

generating multiple (e.g., 10,000) shuffled datasets with different random seeds, we can estimate

the distribution of minimal (nominal) FET p-values. The adjusted significance level is defined

to be the lower 100α% point of the minimal (nominal) FET p-value distribution. Fig. 3(C)

schematically illustrates the multiple testing correction for evaluating the statistical reliability

of the selected ASPs by WY method.

Unfortunately, because the WY method requires the calculation of (nominal) FET p-values

for all possible patterns, it cannot be used as it is. Thus, we introduce a trick to avoid computa-

tions that does not affect the lower 100α% of the minimal (nominal) FET p-value distribution.

Concretely, we compute the lower bound of the (nominal) FET p-values of the patterns included

in each branch of the tree structure shown in Fig. 3(C). Then, it is possible to avoid the com-

putation for the patterns which do not affect the lower 100α% point of the minimum (nominal)

FET p-value distribution by pruning the branches based on the lower bound. The main tech-

nical difference of allerStat from existing sequence mining methods is that the tree pruning
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strategy is designed so that branches only containing patterns not affecting the estimation of the

FWER distribution in the WY method are pruned. This computational trick was first introduced

in (46), in which the goal was to quantify the statistical significance of itemset mining tasks. In

this study, we adapted the method to our sequence mining task.

Statistical Properties of the ASPs in the PoC dataset The ASPs identified in the PoC dataset

are listed in Data S4. In total, 5,064 and 5,994 statistically significant ASPs were found when

the statistical significance thresholds were set to be α = 0.01 and 0.05, respectively. Figs. 4(A),

4(B), and 4(C) show the distributions of the lengths, the adjusted p-values, and the supports

of the identified ASPs, respectively. Fig. 4(D) shows the distributions of the number of ASPs

in each allergenic protein. Fig. 4(E) shows the distribution of how many different biological

categories each ASP is included in.

Biological Analysis of ASPs The 5,994 ASPs detected by allerStat with α = 0.05 were repro-

cessed to remove overlapped sequences and were concatenated to 1,072 patterns (ConcASPs;

Data S5) to make it easier for further analysis (see the Methods section and Supplementary

Text 1). Among the ConcASPs, 687 patterns had a length of 15 amino acids or more. There-

fore, we next examined HLA type II binding activities. A number of recent studies suggest

that HLA plays a significant role in atopic diseases and food allergies (51–53). Protein anti-

gens in foods are internalized by antigen presenting cells (APCs) such as dendric cells and B

cells. These antigens are processed into short peptides (12–25 amino-acid long) that can bind

to HLA-II. Antigen-specific T cells recognize peptide-HLA-II complex, leading to allergic re-

actions. The binding to HLA-II molecules, such as HLA-DR, is considered as the first step

to antigen-specific IgE antibody production. The association of the ConcASP and typical 15

HLA-DR alleles such as HLA-DRB1 was investigated using NetMHCIIpan 4.0 (38). A total of

82% of the 687 ConcASPs with ≥ 15 amino-acid long carried a HLA-DRB1 binding activity
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we examined (Fig. 5(A)). Of the 687 ConcASPs, 40.8% for HLA-DRB1*13.01 to 59.1% for

HLA-DRB1*04.01 showed HLA-DRB1 binding activity for each major allele. Consensus mo-

tifs of core sequences to each HLA-DRB1 allele are shown in Fig. 5(B) as Web logo. The full

result of the existences of binding for the 687 ConcASPs and 15 HLA-DR alleles is presented

in Data S6.

Furthermore, we examined the relationship between identified ASPs and known IgE epi-

topes. The web server program called allergen database for food safety (ADFS) provides an-

alytical tools for searching the similarity with these validated B-cell epitopes for which site

binds to the IgE from patients with food allergy. We performed a homology search with online

alignment search program called Protein Basic Local Alignment Search Tool (BlastP). As a

result, 24.3% of ConcASP were highly homologous to the sequences of B-cell epitopes (Data

S7). For instance, pattern 537 had a high degree of sequence homology with seven epitopes

identified from tree nut and bean allergens, suggesting an allergen cross reactivity (Fig. 5(C)).

Remarkably, patterns 80, 497, and 539 shared homologies with epitope sequences identified in

two completely different species: bee and peanut. Some more specific examples are presented

in Fig. S3. Additionally, 225 out of 1072 ConcASP (21.0%) were perfectly matched with the

known food allergen epitopes.

Predicting Allergic Reaction using ASPs We considered the problem of predicting allergic

reactions of unknown proteins using the ASPs identified by allerStat. Allergic reaction pre-

diction from amino-acid sequences is needed for safety assessments of biotechnology-based

synthetic foods such as genome editing.

Cross-validation (CV) is often employed in the evaluation of predictive modeling. CV eval-

uates predictive performance by removing some instances from the dataset, training an ML

model with the remaining instances, and applying the trained model to the removed instances
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for performance evaluation. It is important to note that CV is based on the assumption that

each instance is independently identically distributed (i.i.d.). Because the proteins used in this

study are strongly associated within the same biological category, we used what we call leave-

category-out CV (LCO-CV). In LCO-CV, all proteins in each category were removed, a machine

learning model is trained with the proteins in the remaining categories, and the prediction per-

formance is investigated by applying the trained model to the proteins in the removed category.

We considered LCO-CV for each paired category. Fig. 6(A) is a schematic illustration of LCO-

CV.

To predict the presence or absence of an allergic reaction, it is desirable to use not only the

ASPs but also the patterns that are more frequently observed in non-allergens. Therefore, we

also considered non-Allergen-Specific Patterns (non-ASPs) which were similarly identified as

ASPs. Non-ASPs differ from ASPs in that non-ASPs should be significantly more frequently

appeared in non-allergenic proteins, but may also be appeared in a small number of allergenic

proteins. Therefore, without the condition corresponding to the second condition 2) in the

definition of ASP, a non-ASP is defined as

1′) the pattern is observed statistically significantly more frequently in non-allergenic pro-

teins than in allergenic proteins, and

3′) the pattern is not specific to particular biological category.

When predicting an allergic reaction of a new protein, it is desirable to interpret why the

protein is or is not determined to have allergic reaction. Some ML models, such as deep neural

networks, are called black-box models in that are too complex to interpret how the predictions

are made. Because the interpretation of the prediction process is important in the current prob-

lem, we adopted a linear prediction model in which a feature is defined by the existence of each

ASP or non-ASP in the amino-acid sequence. In the training set, each row corresponds to a
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protein and each column corresponds to each ASP or non-ASP, where the ASPs and non-ASPs

in the training set are patterns that were identified without using the proteins in the removed

category by LCO-CV. Fig. 6(B) illustrates the concept of a predictive model based on the ASPs

and the non-ASPs selected by SVM. See the Methods section for the detail of prediction model

development by SVM.

Figs. 6(C-D) show the results of the predictive analysis based on the LCO-CV for the

PoC dataset. To evaluate the effectiveness of the ASPs identified by allerStat, we compared

the prediction performances with the methods proposed in previous studies. There are several

previous studies on ML-based allergen prediction from amino-acid sequences (10–16, 42–44).

An ML-based allergen prediction model consists of two steps: Step 1) feature extraction from

amino-acid sequences, and Step 2) model training based on the extracted features. Because the

goal of the current study is to evaluate the effectiveness of the ASPs identified by allerStat, we

only compared the feature extraction method at Step 1 with those of previous studies, and used

the same ML model (sparse SVM) at Step 2.

We compared allerStat with Alledictor (43), MEME (42), and Allertop (44). The features

extracted in Alledictor are amino-acid subsequences as in allerStat. The main drawback of

Alledictor is that it could only consider patterns of fixed length (only the patterns of the length 6

were considered in (43) as well as in the current experiment). MEME is a method for extracting

frequent amino-acid subsequences based on a probabilistic model called the hidden Markov

model (HMM). The main drawback of the feature extraction method by MEME is that it is an

unsupervised method and therefore cannot extract patterns observed at different frequencies in

allergenic and non-allergenic proteins. Allertop differs from allerStat, Alledictor and MEME in

that the features extracted by Allertop are constructed from the physico-chemical features of the

entire amino-acid sequence. The main drawback of the feature extraction method by Allertop is

that it is difficult to interpret which parts of the amino-acid subsequence are associated with the
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allergic reaction. Note that, unlike allerStat, the statistical reliabilities of the patterns extracted

in these three previous methods cannot be properly evaluated.

Fig. 6(C) shows the receiver-operating-characteristic (ROC) curves of the prediction results

based on LCO-CV. When interpreting the results, it is important to note that the sample size

of each category varies greatly, and the numbers of allergenic and non-allergenic proteins are

highly unbalanced. Fig. 6(D) shows the area-under-curve (AUC) scores of various prediction

models. It can be observed that the prediction performances of allerStat are consistently better

than the three existing methods. The information on the prediction model trained with the entire

PoC dataset is provided in Data S8.

Discussions

The problem of finding ASPs based on a database of allergenic/non-allergenic proteins can be

regarded as a typical feature selection problem for a binary classification problem. However, it

is important to note that the proteins in the database are not i.i.d., which is a common assump-

tion taken in conventional classification problem. In particular, proteins belonging to the same

category (apple, bovine, etc.) have amino-acid sequences that are specific to that category, and

if the search is not conducted carefully, category-specific amino-acid sequences will be identi-

fied instead of allergen-specific ones. To address this problem, we divided the proteins in the

database into categories and used different criteria for ASPs depending on whether each cate-

gory was paired, positive-only, or negative-only. Furthermore, in the allergen prediction task,

care must be taken not to make predictions based on category-specific amino-acid sequences by

introducing LCO-CVs in which each category is excluded from the training data. In the protein

allergen study, it is important to carefully take into account for the “non i.i.d.-ness” of proteins.

Our results show that 82% of the sequence patterns specific to allergenic proteins obtained

by allerStat carried the binding activity to any of the 15 major HLA-DRB1 alleles. Almost 50%
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of the patterns had the HLA-DRB1 binding affinity for either of the 15 HLA-DRB1 alleles.

This indicates that allerStat can extract biologically significant patterns. Sequence logo analysis

indicates that the core sequences had characteristic motifs at the position of 1, 4, 6, and 9 in

9 core sequences, especially DRB1*01.01, *04.01, *04.02, *07.01, *11.01 (Fig. 5(B)). This

suggests that our extracted patterns include many core sequences important for major HLA-

DRB1 binding. We did not evaluate HLA binding activities of the concASPs having a length

less than 15 amino acids. The remaining 18% of the patterns that do not have any HLA-DRB1

binding activity need to be investigated to clarify their importance, because they may include

biologically significant sequences. On the other hand, non-allergenic patterns have sequences

with three or six amino-acid long, which do not have any consensus motif.

Among the identified ASPs, 1,083 allergen-specific IgE epitopes on 247 food allergens have

been experimentally elucidated. Among the obtained 1,072 ConcASPs from allerStat, 225 of

which (21%) included any of the entire length of 125 epitope sequences. On the other hand,

only 19 epitope sequences were found in 17,372 non-allergen sequence (0.1%). Although three

epitopes including Pen c 3 epitope (ISSK and YGVA) and Fag e 1 epitope (QQPGQ) had over-

lapping in between, all 19 epitopes length is in three to seven amino acids considering to have

low specificity. Moreover, 24.3% of ConcASP showed high homology with known food aller-

gen epitopes. Interestingly, there are many patterns homologous with epitopes among different

species (Fig. 5(C)). These results indicated that allerStat could properly extracted B-cell epi-

tope sequences characteristic to the allergen from our dataset, even though epitope information

was not held in the training data. The remaining 75% patterns are thought to contain T-cell

epitopes and derived unexpected sequences, such as those related to immunological tolerance

and antibody production, in addition to unknown T- and B-cell epitopes.
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Methods

Allergen and non-allergen data collection Allergen data were retrieved from full-length

amino-acid sequence list in the COMprehensive Protein Allergen Resourse (COMPARE) 2020

data (https://comparedatabase.org/). The COMPARE database, a collaborative ef-

fort of the HESI Protein Allergenicity Technical Committee, is a curated database comprising

allergen-sequence-associated peer-reviewed publications. Non-allergen data were collected by

reviewing protein sequence expressed in twenty foods including Wheat (Triticum aestivum),

Bovine (Bos taurus), Chicken (Gallus gallus), Soybean (Glycine max), Crab (Scylla serrata),

Shrimp(Penaeus monodon ), Peanut (Arachis hypogaea), Buckwheat (Fagopyrum esculentum),

Salmon (Salmo salar), Kiwi (Actinidia deliciosa), Mustard (Sinapis alba), Olive (Olea eu-

ropaea), Carrot (Daucus carota), Apple (Malus domestica), Tomato (Solanum lycopersicum),

Peach (Prunus persica), Potato (Solanum tuberosum), Corn (Zea mays) Rice (Oryza sativa),

and Oyster (Crassostrea gigas), obtained from UniProt (https://www.uniprot.org/).

Since these agricultural and marine products were well analyzed as allergic foods, non-allergen

data was created by deleting known allergens contained in each and the proteins belongs to

the same family, from whole protein data. Known allergen were listed from ADFS and COM-

PARE databases. mTEC data set were generated by integrating gene and protein expression pro-

files (54,55). Data reduction of gene expression in SGLT1+ mature mTECs (GEO# GSE49625)

were selected with cutoff level of t = 5.

HLA-II binding activity of motifs specific to allergenic proteins Among 1,072 concate-

nated allergen-specific patterns, 687 of which had a length of 15 amino acids or more. HLA-

DRB1 binding activity was predicted by NetMHCIIpan server ver.4 (https://services.

healthtech.dtu.dk/service.php?NetMHCIIpan-4.0), which requires amino-acid

sequences with 15 amino acids or longer. The HLA-DRB1 binding activity of the allergen-
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specific sequences were examined at 15 amino-acid windows from the N-terminus to the C-

terminus. Allergen-specific patterns having strong and weak binding activities were analyzed

using sequence logo to clarify specific motifs to each HLA-DRB1 allele using Web Logo

(https://weblogo.berkeley.edu/logo.cgi).

Similarity between the identified ASPs and known IgE-epitopes Sequence similarity was

searched by running BlastP with following parameters: E value = 2,000 and cutoff of 10−4

(https://allergen.nihs.go.jp/ADFS/). The sequences exactly matched targets were

extracted from BlastP results (E value: 20,000). As a preprocessing for this purpose, we con-

catenated ASPs in the following criteria. For two sequences x and y, let x � y indicates the

concatenated sequence. We define overlapped concatenation between two sequences x and y

as x′ � w � y′ if there exists x′, y′, w ∈ S such that x = x′ � w and y = w � y′. Note that

the overlapped concatenation is just the ordinary concatenation x � y when we take w as an

empty sequence. The overlapped concatenation of three or more sequences is defined as the

repetition of an overlapped concatenation for two sequences. Then, we define a sequence x as

a concatenated ASP (ConcASP) if (i) there exists an allergen sequence y in the dataset such

that x is included in y as a subsequence (denoted by x v y), and (ii) x is represented as an

overlapped concatenation of any number of ASPs. Finally, after retrieving all ConcASPs, we

extracted only the maximal ones, that is, we excluded those that are included in other con-

catenated ASPs. In order to find completely matching IgE epitopes to concatenated ASPs, we

simply examined the inclusion, that is, checked whether x v y for each x in IgE epitope se-

quences and each y in ConcASPs. Here, an IgE epitope may consist of multiple sequences, and

it may contain non-sequence motifs. So we extracted only sequence motifs from them. As a re-

sult, 1,104 sequences were retrieved from 247 epitopes. Among the 1,072 concatenated ASPs,

225 completely matched at least one epitope sequence. We present the algorithm for overlapped
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concatenation as Algorithm 1 in Supplementary Text 1.

Fisher Exact Test (FET) Let D, D+, and D− represent the sets of all proteins, allergenic

proteins, and non-allergenic proteins, respectively. Furthermore, the sizes of D, D+, and D−

are respectively written as n, n+, and n−. To quantify whether there is a difference in the fre-

quencies of patterns between allergenic and non-allergenic proteins, we consider the following

contingency table,

Containing Not containing
pattern q pattern q Sum

Allergen D+[q] n+ −D+[q] n+

Non-allergen D−[q] n− −D−[q] n−
Sum D[q] n−D[q] n

where D[q], D+[q], and D−[q] denote the number of proteins in D, D+, and D− which contains

pattern q. To test the statistical significance, Fisher exact test (FET) is used. The p-value of

FET is computed by considering all possible realizations of the contingency table under the

condition that n+, n− and D[q] are fixed. Specifically, let

g(n+, n−, D[q], a) :=

(
n+

a

)(
n−

D[q]− a

)
(

n
D[q]

)

be the probability of finding a pattern q in a of n+ allergenic proteins conditional on n+, n− and

D[q]. The two-tailed FET p-value is then calculated as

p(D, q) = 2
∑

a∈A(D,q)

g(n+, n−, D[q], a), (1)

where A(D, q) :=
{
a | max{0, D[q]− n−} ≤ a ≤ min{n+, D[q]},

g(n+, n−, D[q], a) ≤ g(n+, n−, D[q], D+[q])
}
.

Multiple testing correction by Westfall-Young (WY) method When we conduct only one

hypothesis test, the type-I error, i.e., the probability of FP finding, can be controlled at a signifi-
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cance level α ∈ (0, 1) (typically α = 0.05) by rejecting the null hypothesis when the p-value is

less than α. However, when we conduct many hypothesis tests simultaneously, we often need to

control the FWER: the probability of having one or more FP findings. To control the FWER at

the significance level of α, we need to reject the null hypothesis more conservatively, i.e., a null

hypothesis is rejected when the p-value is less than the adjusted significance level δ ∈ (0, 1)

where δ is usually much smaller than α. Methods for finding the adjusted significance level δ

such that the FWER can be controlled to α is discussed in the context of multiple comparisons.

The most commonly used multiple comparison method is Bonferroni correction in which the

adjusted significance level δ is set to be α/{# of hypotheses}, where {# of hypotheses} is the

number of hypotheses to be tested simultaneously. Bonferroni correction is known to be overly

conservative, especially when the number of hypotheses is large. In allerStat, we employ a ran-

dom permutation test called the Westfall-Young (WY) method (50) as a multiple test correction

method. In the WY method, multiple randomized datasets are constructed by permuting the

labels (allergenic or non-alleregenic in our problem setup) at random. For each randomized

dataset, the minimum p-value is computed. Then, the adjusted significance level δ is set to

be the d(α + 1)/Meth smallest value among M smallest p-values where M is the number of

randomized datasets (typically M = 10000). Fig. 3(C) illustrates the notion of WY method.

Sequence mining and efficient computation of the WY method Unfortunately, since aller-

Stat needs to handle an extremely large number of patterns, it is impossible to calculate the

minimum p-value for each of the M randomized datasets for the WY method. In allerStat, we

consider a tree structure among patterns as shown in Fig. 3 for efficiently computing the min-

imum p-value. Specifically, we consider a node corresponding to a pattern q and the set of its

descendant sequence patterns S(q). Then, our basic idea is to compute a lower bound of the
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FET p-values of the descendant sequence patterns in the form of

plow(D, q) ≤ p(D, q′) for any q′ ∈ S(q)). (2)

If we can find such a lower bound, we can reduce the computational cost because we do not

need to calculate the p-values of all descendant nodes when we encounter a node whose lower

bound plow(D, q) is greater than the current minimum p-value. Here, we employed a lower

bound that satisfies the property in (2), written as

plow(D, q) = min{ g(n+, n−,min{D[q], n+},min{D[q], n+}),

g(n+, n−,min{D[q], n−}, 0)}. (3)

The lower bound in (3) was proposed in FastWY method in (45, 46), in which the authors

studied itemset mining tasks to find statistically significant combinations of multiple genetic

factors. In allerStat, we adapted the technique in the FastWY method for sequence mining

setting. Therefore, the proof that the bound (3) satisfies the property in (2) can be simply done

as described in (45, 46).

We present the algorithm for AllerStat as Algorithm 2 in Supplementary Text 2.

Prediction Model for Allergic Reaction using ASPs and non-ASPs In order to predicting

allergic reactions by proteins using ASPs and non-ASPs, we employed the support vector ma-

chine (SVM) with features being defined by ASPs and non-ASPs. We follow the formulation

of SVM employed by LinearSVC class in scikit-learn (https://scikit-learn.org/

stable/modules/generated/sklearn.svm.LinearSVC.html), a python imple-

mentation that we used. For an overview of SVM, see, for example, Chapter 7 of (56).

SVM assumes that we are given n instances, where each instance consists of d input vari-

ables xi ∈ Rd and binary output variable yi ∈ {−1, 1} (1 ≤ i ≤ n). Here, R denotes the set

of all real numbers, and Rd the set of all d-dimensional real vectors. Then, given a test instance
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whose d-dimensional input variables are x′ while its output variable is unknown, suppose that

its prediction result is given by the linear model

fw∗,b∗(x
′) := w∗>x′ + b∗,

where w∗ ∈ Rd and b∗ ∈ R are to be learned by SVM. If fw∗,b∗(x
′) is larger than (resp. smaller

than) zero, the prediction function conjectures that the output variable for x′ is 1 (resp. −1).

From the training dataset {(xi, yi)}ni=1 defined above, SVM learns optimal w∗ and b∗ by

(w∗, b∗) := argmin
w,b

1

2
w>w + C

n∑
i=1

(max{0, yifw,b(xi)})k,

where C is a hyperparameter to control overfitting or underfitting, while k ∈ {1, 2} is an option

of learning. For C, in this computational experiment we chose the best one in AUC by LFO-CV

from log10C ∈ {−27/9,−23/9,−19/9, . . . , 9/9} (10 cases). Note that, since this LFO-CV is

conducted for the training set composed by an LFO-CV, this LFO-CV for the selection of C is

conducted for a remained set of biological categories. For k, k = 1 is the original formulation of

SVM, while k = 2 is a modification for computational efficiency (57). In these computational

experiments we used k = 2.

Then we show how to apply ASPs by allerStat and protein sequences to the formulation of

SVM above. Let Qj ∈ S (1 ≤ j ≤ d) be an ASP or a non-ASP, zi ∈ S (1 ≤ i ≤ n) be

a training sequences, and yi ∈ {−1, 1} (1 ≤ i ≤ n) be their allergenicity (1 if allergenic or

−1 otherwise). Then we define xi ∈ Rd as the indicator variables of including patterns in zi,

that is, xij = 1 if Qj v zi or xij = 0 otherwise. As a result, we can employ SVM to learn a

allerginicity prediction function according to ASPs and non-ASPs. Here, we can see that the

jth element in w∗ is the importantness of the corresponding pattern: if it is a large positive

number, the pattern is expected to contribute the allergenicity. Note that the training sequences

are defined by LFO-CV stated in the Results section.
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Finally we show how the existing methods are compared to allerStat stated in the Results

section. For Allerdictor and MEME, we employed the same process as that for allerStat, except

for the retrievals of patterns. For Allerdictor, we used all length-six patterns rather than ASPs

and non-ASPs. For MEME, since it is an unsupervised method, we ran MEME by providing

only allergenic proteins to retrieve ASPs, then by providing only non-allergenic proteins to

retrieve non-ASPs. For Allertop, since it provides a fixed-length vector from a protein sequence,

we just used it for the SVM training and the prediction.

References

1. A. B. Kay, Allergy and allergic diseases. New England Journal of Medicine 344, 30–37

(2001).

2. R. S. Kagan, Food allergy: an overview. Environmental health perspectives 111, 223–225

(2003).

3. R. S. Gupta, E. E. Springston, M. R. Warrier, B. Smith, R. Kumar, J. Pongracic, J. L. Holl,

The prevalence, severity, and distribution of childhood food allergy in the united states.

Pediatrics 128, e9–e17 (2011).

4. A. K. Menon, D. Holowka, W. W. Webb, B. Baird, Cross-linking of receptor-bound ige to

aggregates larger than dimers leads to rapid immobilization. The Journal of cell biology

102, 541–550 (1986).

5. P. Mongini, W. E. Paul, E. S. Metcalf, T cell regulation of immunoglobulin class expression

in the antibody response to trinitrophenyl-ficoll. evidence for t cell enhancement of the

immunoglobulin class switch. The Journal of experimental medicine 155, 884–902 (1982).

22

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


6. L. Klein, E. A. Robey, C.-S. Hsieh, Central cd4+ t cell tolerance: deletion versus regulatory

t cell differentiation. Nature Reviews Immunology 19, 7–18 (2019).

7. FAO/WHO, Report of a joint fao/who expert consultation on allergenicity of foods derived

from biotechnology. Evaluation of allergenicity of genetically modified foods pp. 12–13

(2001).

8. G. S. Ladics, R. F. Cressman, C. Herouet-Guicheney, R. A. Herman, L. Privalle, P. Song,

J. M. Ward, S. McClain, Bioinformatics and the allergy assessment of agricultural biotech-

nology products: industry practices and recommendations. Regulatory Toxicology and

Pharmacology 60, 46–53 (2011).

9. N. J. Stagg, H. N. Ghantous, G. S. Ladics, R. V. House, S. M. Gendel, K. L. Hastings,

Workshop proceedings: challenges and opportunities in evaluating protein allergenicity

across biotechnology industries. International journal of toxicology 32, 4–10 (2013).

10. M. B. Stadler, B. M. Stadler, Allergenicity prediction by protein sequence. The FASEB

Journal 17, 1141–1143 (2003).

11. T. Riaz, H. L. Hor, A. Krishnan, F. Tang, K.-B. Li, Weballergen: a web server for predicting

allergenic proteins. Bioinformatics 21, 2570–2571 (2005).

12. K.-B. Li, P. Issac, A. Krishnan, Predicting allergenic proteins using wavelet transform.

Bioinformatics 20, 2572–2578 (2004).

13. A. M. Barrio, D. Soeria-Atmadja, A. Nister, M. G. Gustafsson, U. Hammerling,

E. Bongcam-Rudloff, Evaller: a web server for in silico assessment of potential protein

allergenicity. Nucleic acids research 35, W694–W700 (2007).

23

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


14. D. Soeria-Atmadja, T. Lundell, M. Gustafsson, U. Hammerling, Computational detection

of allergenic proteins attains a new level of accuracy with in silico variable-length peptide

extraction and machine learning. Nucleic acids research 34, 3779–3793 (2006).

15. L. Zhang, Y. Huang, Z. Zou, Y. He, X. Chen, A. Tao, Sortaller: predicting allergens using

substantially optimized algorithm on allergen family featured peptides. Bioinformatics 28,

2178–2179 (2012).

16. S. Saha, G. Raghava, Algpred: prediction of allergenic proteins and mapping of ige epi-

topes. Nucleic acids research 34, W202–W209 (2006).

17. P. Fournier-Viger, A. Gomariz, M. Campos, R. Thomas, Fast vertical mining of sequential

patterns using co-occurrence information, Pacific-Asia Conference on Knowledge Discov-

ery and Data Mining (Springer, 2014), pp. 40–52.

18. Z. Yang, M. Kitsuregawa, Lapin-spam: An improved algorithm for mining sequential pat-

tern, 21st International Conference on Data Engineering Workshops (ICDEW’05) (IEEE,

2005), pp. 1222–1222.

19. J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential pattern mining using a bitmap represen-

tation, Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining (2002), pp. 429–435.

20. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu, Mining

sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on

knowledge and data engineering 16, 1424–1440 (2004).

21. M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences. Machine learning

42, 31–60 (2001).

24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


22. T.-c. Fu, A review on time series data mining. Engineering Applications of Artificial Intel-

ligence 24, 164–181 (2011).

23. R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance im-

provements, International conference on extending database technology (Springer, 1996),

pp. 1–17.

24. P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, R. Thomas, A survey of sequential

pattern mining. Data Science and Pattern Recognition 1, 54–77 (2017).

25. Y. Benjamini, D. Yekutieli, False discovery rate–adjusted multiple confidence intervals for

selected parameters. Journal of the American Statistical Association 100, 71–81 (2005).

26. H. Leeb, B. M. Pötscher, Model selection and inference: Facts and fiction. Econometric

Theory pp. 21–59 (2005).

27. H. Leeb, B. M. Pötscher, et al., Can one estimate the conditional distribution of post-model-

selection estimators? The Annals of Statistics 34, 2554–2591 (2006).

28. Y. Benjamini, R. Heller, D. Yekutieli, Selective inference in complex research. Philosophi-

cal Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

367, 4255–4271 (2009).

29. B. M. Pötscher, U. Schneider, et al., Confidence sets based on penalized maximum likeli-

hood estimators in gaussian regression. Electronic Journal of Statistics 4, 334–360 (2010).

30. R. Berk, L. Brown, A. Buja, K. Zhang, L. Zhao, et al., Valid post-selection inference. The

Annals of Statistics 41, 802–837 (2013).

31. R. Lockhart, J. Taylor, R. J. Tibshirani, R. Tibshirani, A significance test for the lasso.

Annals of statistics 42, 413 (2014).

25

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


32. J. Taylor, R. Lockhart, R. J. Tibshirani, R. Tibshirani, Post-selection adaptive inference for

least angle regression and the lasso. arXiv preprint arXiv:1401.3889 354 (2014).

33. S. Suzumura, K. Nakagawa, Y. Umezu, K. Tsuda, I. Takeuchi, Selective inference for sparse

high-order interaction models, Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70 (JMLR. org, 2017), pp. 3338–3347.

34. K. Tanizaki, N. Hashimoto, Y. Inatsu, H. Hontani, I. Takeuchi, Computing valid p-values

for image segmentation by selective inference, Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (2020), pp. 9553–9562.

35. V. N. L. Duy, H. Toda, R. Sugiyama, I. Takeuchi, Computing valid p-value for optimal

changepoint by selective inference using dynamic programming, Advances in Neural Infor-

mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin,

eds. (Curran Associates, Inc., 2020), vol. 33, pp. 11356–11367.

36. V. N. L. Duy, S. Iwazaki, I. Takeuchi, Quantifying statistical significance of neural network

representation-driven hypotheses by selective inference. arXiv preprint arXiv:2010.01823

(2020).

37. K. Sugiyama, V. N. Le Duy, I. Takeuchi, More powerful and general selective inference for

stepwise feature selection using homotopy method, International Conference on Machine

Learning (PMLR, 2021), pp. 9891–9901.

38. B. Reynisson, C. Barra, S. Kaabinejadian, W. H. Hildebrand, B. Peters, M. Nielsen, Im-

proved prediction of mhc ii antigen presentation through integration and motif deconvo-

lution of mass spectrometry mhc eluted ligand data. Journal of proteome research 19,

2304–2315 (2020).

26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


39. Immune epitome database and analysis resource. Https://www.iedb.org.

40. H. Matsuo, T. Yokooji, T. Taogoshi, Common food allergens and their ige-binding epitopes.

Allergology International 64, 332–343 (2015).

41. Allergen database for food safety. Https://allergen.nihs.go.jp/ADFS.

42. T. L. Bailey, C. Elkan, Fitting a mixture model by expectation maximization to discover

motifs in biopolymer, Proceedings of the Second International Conference on Intelligent

Systems for Molecular Biology (AAAI, 1994), pp. 28–36.

43. H. X. Dang, C. B. Lawrence, Allerdictor: fast allergen prediction using text classification

techniques. Bioinformatics 30, 1120–1128 (2014).

44. I. Dimitrov, I. Bangov, D. R. Flower, I. Doytchinova, Allertop v.2 — a server for in silico

prediction of allergens. Journal of molecular modeling 20, 1–6 (2014).

45. A. Terada, H. Kim, J. Sese, High-speed westfall-young permutation procedure for genome-

wide association studies, Proceedings of the 6th ACM Conference on Bioinformatics, Com-

putational Biology and Health Informatics (ACM, 2015), pp. 17–26.

46. A. Terada, K. Tsuda, J. Sese, Fast westfall-young permutation procedure for combinatorial

regulation discovery, Bioinformatics and Biomedicine (BIBM), 2013 IEEE International

Conference on (IEEE, 2013), pp. 153–158.

47. A. Terada, M. Okada-Hatakeyama, K. Tsuda, J. Sese, Statistical significance of combina-

torial regulations. Proceedings of the National Academy of Sciences 110, 12996–13001

(2013).

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


48. L. Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation

testing, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (ACM, 2018), pp. 2070–2079.
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Figures and Tables

Fig. 1. Illustration of the data format for the proposed method allerStat. (A) Input data format.

Each line indicates a protein, and each protein is represented by an amino-acid sequence, bio-

logical category name, and allergenic reaction status. (B) Data format for biological categories.

Three types of categories (i.e., paired category, positive-only category and negative-only cate-

gory) are differently treated by the data analysis method. (C) Examples of patterns. We call a

contiguous amino-acid subsequence a pattern. The figure indicates that there are 33 patterns

within the amino-acid sequence MKRRELEK.

Fig. 2. Definition and examples of allergen-specific patterns (ASPs). (A) Decision diagram to

define ASPs. (B) Examples of ASPs and non-ASPs. These examples show the circumstances

under which a pattern that satisfies the condition 1 is defined as an ASP. (Example 1) Pattern

KLELS is not an ASP because it does not satisfy condition 2. (Example 2) Pattern PSQQ is an

ASP because it satisfies conditions 2 and 3a. (Example 3) Pattern RRLE is an ASP because it

satisfies conditions 2 and 3b. (Example 4) Pattern MMKLE satisfies condition 2, but is not an

ASP because it is found only in a single positive-only category, i.e., satisfies neither condition

3a nor 3b.

Fig. 3. Schematic illustrations of the proposed method. (A) Illustration of a sequence mining

problem and tree pruning. (B) Illustration of multiple testing problem with multiple Fisher exact

test each of which corresponds to each pattern. (C) Family-wise error rate (FWER) controlled

by the Westfall-Young (WY) method. (D) Illustration of a fast computation of WY method by
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exploiting the tree structure and its pruning.

Fig. 4. Statistical properties of allergen-specific patterns (ASPs) in the proof-of-concept (PoC)

dataset. (A-C) Distributions of the lengths, the adjusted p-values, and the supports of the iden-

tified ASPs, respectively. (D) Distributions of the number of ASPs in each allergenic proteins.

(E) Distribution of how many different biological categories each ASP is included in.

Fig. 5. Biological characteristics of the sequence patterns specific to allergenic proteins. Protein

sequences that have amino acids with a length of 15 or more were examined to predict human

leukocyte antigen (HLA)-DRB1 binding activities. (A) Percentage of HLA binding motifs

contained in the extracted sequence patterns. (B) Consensus motifs of core sequences to each

HLA-DRB1 allele are shown as sequence logos. (C) ConcASP patterns contain validated B-cell

epitope sequence. BLAST search was performed to find similarity with B-cell epitope.

Fig. 6. Illustrations and results of prediction analysis. (A) Schematic illustration of leave-

category-out cross validation (LCO-CV). (B) Schematic illustration of prediction analysis by

sparse support vector machine (SVM). (C) Receiver operating characteristic (ROC) curves for

11 paired categories in LCO-CV. (D) Area-under-the-curve (AUC) scores for 11 paired cate-

gories in LCO-CV.
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Fig. 1

(A)
ID Amino Acid Sequence Category Label
1 LLVAALCALVA Oribatida Allergen

2 EIASQIAQED Carnivora Allergen
3 WQTYVDDHLMC Carnivora Allergen
4 NKLFLVSATLAL Bos taurus Allergen
5 NCLFLVSATLAL Bos taurus Allergen
6 PTSVAVDQGS Bos taurus Allergen

7 LKVAAKCAKVA Gallus gallus Non-Allergen
8 EICSQNAQED Oryza sativa Non-Allergen
9 REKTGAGMQLMS Bos taurus Non-Allergen
⋮ ⋮ ⋮ ⋮

(B)

ID Category Category Type # of Allergen # of Non-Allergen Total
1 Oribatida Positive-Only 226 0 226
2 Gallus gallus Paired 18 2262 2280

3 Actinidia deliciosa Paired 21 11 32
4 Bos taurus Paired 25 5953 5978
⋮ 				⋮ ⋮ ⋮ ⋮ ⋮

(C)

An Example: Patterns from Sequence “MKRRELEK”

Length # of Patterns Patterns (Subsequences)

1 5 M, K, R, E, L
2 7 MK, KR, RR, RE, EL, LE, EK
3 6 MKR, KRR, RRE, REL, ELE, LEK
4 5 MKRR, KRRE, RREL, RELE, ELEK
5 4 MKRRE, KRREL, RRELE, RELEK

6 3 MKRREL, KRRELE, RRELEK
7 2 MKRRELE, KRRELEK
8 1 MKRRELEK
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Fig. 2

(A)
1) Significantly More in 

Allergen Protein

3a) Found in Paired-
Category

3b) Found in Multiple Positive-Only-
Categories

ASP Not ASPASP : Allergen Specific Pattern

Not ASP

Yes

Yes

Yes No

No

No

ASP

2) Found in Non-
Allergen Protein

Yes

Not ASP

No

(B)

3．Pattern “RRLE”

Sequence Label Category Category Type

…ELTERRRLETX… Allergen Poales Positive-Only

…MLETSRRLEKS… Allergen Oribatida Positive-Only

Allergen Specific Pattern

1．Pattern “KLELS”

Sequence Label Category Category Type

…TKLELSSX……… Allergen Poales Positive-Only

……ADKLELSP… Non-Allergen Bos taurus Paired

Not Allergen Specific Pattern

4．Pattern “MMKLE”

Sequence Label Category Category Type

…TXMMKLES……… Allergen Poales Positive-Only

……GABAMMKLEP… Allergen Poales Positive-Only

Not Allergen Specific Pattern

2．Pattern “PSQQ”

Sequence Label Category Category Type

…SADPSQQS… Allergen Bos taurus Paired

…MAPSQQEL… Allergen Bos taurus Paired

Allergen Specific Pattern

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 3
(A)

ID Sequence
1 ⋯ CABAA⋯
2 ⋯ CDCCD⋯
	⋮ 											⋮

Root

"A" (support: 2) "B" (support: 2)

"AB" (support: 2)"AA" (support: 1)

"AAA" (support: 0) "AAB" (support: 1) "ABA" (support: 2)
"AAB" (support: 0)

minimum support: 2

pruned

pruned

⋯

⋯⋯

(B)

For Pattern "ACD"

#Contain #Not contain Total

+1 3 0 3

-1 0 2 2

Total 3 2 5

#Contain #Not contain Total

+1 1 2 3

-1 2 0 2

Total 3 2 5

For Pattern "ACE"

p-value = 0.001 p-value = 0.002

ID Sequence Label

1 ⋯ CABAA⋯ +1

2 ⋯ CDCCD ⋯ -1

⋮ 	⋮ ⋮	

⋯ ⋯

⋯⋯

(C)

"A": 0.003
"B": 0.002

⋮
minimum p-value: 0.002

"A": 0.01
"B": 0.006

⋮
minimum p-value: 0.006

minimum p-value

de
ns

ity

δ

100α%

…
ID Sequence Label

1 ⋯	PGTI ⋯ -1

2 ⋯ LEK ⋯ +1

3 ⋯ LEK ⋯ -1

4 ⋯ PGTI ⋯ +1

5 ⋯ LEK ⋯ -1

ID Sequence Label

1 ⋯	PGTI ⋯ -1

2 ⋯ LEK ⋯ -1

3 ⋯ LEK ⋯ +1

4 ⋯ PGTI ⋯ -1

5 ⋯ LEK ⋯ +1

Label-Shuffled Dataset

ID Sequence Label

1 ⋯	PGTI ⋯ +1

2 ⋯ LEK ⋯ -1

3 ⋯ LEK ⋯ -1

4 ⋯ PGTI ⋯ +1

5 ⋯ LEK ⋯ -1

…

…

Create the table 
and compute p-value 
for each pattern

Original Dataset
(D)

Top 100α% minimum p-value
0.001

0.0027
0.0059

0.0062

"K"
lower bound: 	0.005
p-value = 0.0061

"B"
lower bound: 	0.003
p-value = 0.005

"KA"
lower bound: 	0.0063

→ Pruned

"KB"
lower bound: 	0.0065

→ Pruned

Root

→	𝑃!"# = 0.0061 →	𝑃!"# = 0.005

	𝑃$%&= 0.0062

… …

… …

34

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456743doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456743
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 4
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Fig. 5

(A)
DRB1_0101 DRB1_0301 DRB1_0401 DRB1_0402 DRB1_0404 DRB1_0405 DRB1_0701 DRB1_0901

Positive motifs (Ratio) 49.20% 41.90% 59.10% 55.60% 54.60% 54.30% 49.50% 53.40%

Positive motifs (Number) 338 288 406 382 375 373 340 367

DRB1_0803 DRB1_1101 DRB1_1104 DRB1_1201 DRB1_1301 DRB1_1302 DRB1_1501

Positive motifs (Ratio) 50.10% 51.50% 44.40% 44.70% 40.80% 45.10% 46.00%

Positive motifs (Number) 344 354 305 307 280 310 316

(B)
DRB1*01:01

DRB1*03:01

DRB1*04:01

DRB1*04:02

DRB1*04:04

DRB1*04:05

DRB1*07:01

DRB1*08:03

DRB1*09:01

DRB1*11:01

DRB1*12:01

DRB1*13:01

DRB1*13:02

DRB1*15:01

DRB1*11:04

(C)
Pattern  537

Pattern  537

Pattern  80

Pattern  497

Pattern  539

Pattern  80

Pattern  497

Pattern  539
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Fig. 6

(A) (B)

Gallus gallus Actinidia deliciosa Bos taurus ⋯

# of Allergen 18 21 25 ⋯

# of Non-Allergen 2262 11 5953 ⋯

Train or Test Train Train Test ⋯

Gallus gallus Out

Gallus gallus Actinidia deliciosa Bos taurus ⋯

# of Allergen 18 21 25 ⋯

# of Non-Allergen 2262 11 5953 ⋯

Train or Test Test Train Train ⋯

⋮

Actinidia deliciosa Out

Gallus gallus Actinidia deliciosa Bos taurus ⋯

# of Allergen 18 21 25 ⋯

# of Non-Allergen 2262 11 5953 ⋯

Train or Test Train Test Train ⋯

Bos taurus Out

Predictive Model

y = b + w1 RRS + w2 PRES + w3 PLA + w4 LLKS + · · ·
<latexit sha1_base64="i/exKdyFQhZxUzPd7e3ix9XP/SI="></latexit>

: Weight

pattern
<latexit sha1_base64="PQpRwuy1mm38lDVXP25ubxrwwHY="></latexit>

: 1 if pattern in the sequence, 0 otherwise

: Bias

Patterns
ASPs RRS, PRES, ⋯
Non-ASPs PLA, LLKS, ⋯

wi
<latexit sha1_base64="t+fXZiL66zZjr6N/Bd/QwYzP88U="></latexit>

b
<latexit sha1_base64="wTq61M+FXqbS497p5kE997Pmc90="></latexit>
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Category Proposed Allerdictor Allertop MEME

Apple 0.9983 0.9967 1 0.8575
Bovine 0.9284 0.8023 0.4942 0.6143
Buckwheat 0.8707 0.9694 0.9977 0.8231
Carrot 0.9512 0.9429 0.9011 0.7173
Chicken 0.7868 0.7137 0.8422 0.6574
Corn 0.9777 0.913 0.9331 0.8473
Crab 1 1 1 1
Kiwi 0.8701 0.8831 0.8824 0.6753
Mustard 0.8367 0.9286 0.8512 0.8554
Olive 0.9802 0.8175 0.9561 0.6012
Oyster 1 0.9766 1 1
Peach 0.9984 0.993 1 0.7656
Peanut 0.6965 0.8021 0.7358 0.7132
Potato 0.6517 0.853 0.7068 0.8308
Rice 0.8419 0.7624 0.7604 0.615
Salmon 0.9336 0.8461 0.8325 0.8986
Shrimp 1 0.6667 0.9444 0.9167
Soybean 0.8048 0.7968 0.8722 0.6428
Tomato 0.9022 0.8631 0.8752 0.6338
Wheat 0.8559 0.6946 0.703 0.7997
Average 0.8943 0.8611 0.8644 0.7732
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