
STonKGs: A Sophisticated Transformer Trained on
Biomedical Text and Knowledge Graphs

Helena Balabin1,2,*, Charles Tapley Hoyt3, Colin Birkenbihl1, Benjamin M Gyori3, John
Bachman3, Alpha Tom Kodamullil1, Paul G Plöger2, Martin Hofmann-Apitius1, and Daniel
Domingo-Fernández1,4,5,*

1. Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt

Augustin 53757, Germany

2. Bonn-Rhein-Sieg University of Applied Sciences, 53757, Sankt Augustin, Germany

3. Laboratory of Systems Pharmacology, Harvard Medical School, 02115, Boston, MA, USA

4. Fraunhofer Center for Machine Learning, Germany

5. Enveda Biosciences, Boulder, CO, 80301, USA

*Corresponding Author: Balabin, H., and Domingo-Fernández, D. Department of Bioinformatics, Fraunhofer
Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin 53757, Germany. Telephone details:
+49 2241 14-2354. Email: helena.balabin@scai.fraunhofer.de and
daniel.domingo.fernandez@scai.fraunhofer.de

Keywords: Natural Language Processing, Knowledge Graphs, Transformers, Bioinformatics, Machine learning

Abstract

The majority of biomedical knowledge is stored in structured databases or as unstructured text in
scientific publications. This vast amount of information has led to numerous machine learning-based
biological applications using either text through natural language processing (NLP) or structured data
through knowledge graph embedding models (KGEMs). However, representations based on a single
modality are inherently limited. To generate better representations of biological knowledge, we
propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs.
This multimodal Transformer uses combined input sequences of structured information from KGs and
unstructured text data from biomedical literature to learn joint representations. First, we pre-trained
STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning
Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by
multiple NLP systems. Then, we benchmarked STonKGs against two baseline models trained on
either one of the modalities (i.e., text or KG) across eight different classification tasks, each
corresponding to a different biological application. Our results demonstrate that STonKGs
outperforms both baselines, especially on the more challenging tasks with respect to the number of
classes, improving upon the F1-score of the best baseline by up to 0.083. Additionally, our pre-trained
model as well as the model architecture can be adapted to various other transfer learning applications.
Finally, the source code and pre-trained STonKGs models are available at
https://github.com/stonkgs/stonkgs and https://huggingface.co/stonkgs/stonkgs-150k.
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1. Introduction
In recent years the availability of biomedical data has increased drastically (Dash et al., 2019). Such
data originate from a vast collection of modalities such as high-throughput experiments, electronic
health records as well as cell-based and biochemical assay data. The information derived from
research carried out on those data is commonly stored in two distinct forms: 1) as unstructured free
text in scientific publications, and 2) in condensed, structured biomedical networks. However, the
biology represented in the literature strongly depends on the different contexts that it occurs in. For
instance, certain proteins or chemicals may exclusively interact with others in a specific tissue or cell
type (Stacey et al., 2018), or specific biochemical reactions may only take place under certain
conditions. Consequently, in order to leverage the most out of the biomedical knowledge stored in
both structured and unstructured formats, it is of utmost importance to study each relation in the
relevant context it was observed in. While networks often lack this contextual information due to their
inherent degree of abstraction (Saqi et al., 2019), unstructured text contains context at the expense of
explicit logical structure. Thus, the complementary strengths from both sources could be leveraged to
enable a more complete, context-specific, and actionable representation of biological knowledge.

Knowledge graphs (KGs) represent information in a structured manner in order to encode the
broad spectrum of complex interactions occurring in biology. In order to exploit the information
contained in KGs through machine learning algorithms, numerous knowledge graph embedding
models (KGEMs) have been developed to encode the entities and relations of KGs in a higher
dimensional vector space while attempting to retain their structural properties (Ji et al., 2021).
Utilizing the resulting vector representations, more sophisticated tasks can be conducted (i.e., link
prediction, node classification, and graph classification). When these KGs contain more detailed,
contextualized descriptions of biological interactions, the performance of KGEMs can be substantially
improved. Such improvements can be achieved by incorporating metadata that specifies the context of
each relation (e.g., the pH value in which a molecular interaction occurs or the specific cell type in
which a protein is expressed). Therefore, context-specific KGs have recently been used in
combination with other data modalities in several biomedical applications. For instance, Federico and
Monti (2021) demonstrated how to gain insights on specific human cell-line processes by annotating
protein-protein interaction networks with contextualized cell-line information extracted from the
scientific literature. Similarly, a recent study from Doncheva et al. (2021) introduced a methodology
that proposes the most suitable organism to model a human pathway by evaluating whether the
expression of genes in a certain pathway across four species (i.e., rat, mouse, pig and humans) is
maintained in the same tissue. To achieve this, the authors leveraged a contextualized protein-protein
interaction network generated with ortholog information together with transcriptomics data and
mentions of proteins in the scientific publications.

Due to the availability and abundance of unstructured text data in scientific literature and
electronic health records, natural language processing (NLP) has become an important tool for
extracting information on biomedical contexts. Similar to KGEMs, language models (LMs) are used
to transform their input, namely word sequences, into a high-dimensional vector space, resulting in
so-called embeddings. One approach to learning these embeddings in a contextualized manner is
through the use of the attention mechanism (Vaswani et al., 2017), which is for instance employed in
the Bidirectional Encoder Representations from Transformers (BERT) model by Devlin et al. (2019).
Its biomedical counterpart, BioBERT (Lee et al., 2020), is pre-trained on a large PubMed text corpus
to learn a contextualized representation of biomedical knowledge. Such a pre-trained Transformer can
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then be used on a variety of classification tasks (e.g., named entity recognition (Sun et al., 2016),
sequence classification (Baker et al., 2016) and question answering (Tsatsaronis et al., 2015)) with
minimal model architecture adaptations in a so-called fine-tuning procedure. The goal is to leverage
and flexibly adapt the pre-trained embedding representations, which is especially beneficial for
fine-tuning tasks with small training datasets.

To incorporate other data modalities, Transformers with cross-modal attention have been
proposed as an extension to purely text-based Transformer models. For instance, Tsai et al. (2019)
used cross-modal attention to capture complex interdependencies between text, video, and audio data
to enhance the frame of reference of context-specific LMs. More recently, Kamath et al. (2021)
improved state-of-the-art performances on multiple visual reasoning tasks by applying a cross encoder
on a concatenation of textual and visual embeddings. Moreover, several Transformer-based LMs have
demonstrated the benefit of incorporating structured KG data in the general (Zhang et al., 2019) as
well as the biomedical domain (He et al., 2020; Fei et al., 2020). However, the former approaches
operate at a word level (rather than sentence level) by combining textual embeddings from LMs and
entity embeddings from KGs through entity linking (i.e., the process of aligning text tokens and KG
entities). Recently, Sun et al. (2020) proposed a different strategy for combining information from
KGs and text by concatenating word, entity, and relation embeddings at the sentence level. Similarly,
Nadkarni et al. (2021) have combined textual descriptions of nodes with embedding representations
learned by KGEMs for link prediction. Finally, Transformer-based LMs have also been directly
applied on graph-structured data (Ying et al., 2021).

Here, we present STonKGs, a Sophisticated Transformer trained on biomedical text and
Knowledge Graphs. STonKGs is a multimodal approach that combines subgraph-level information
from a KG with corresponding sentence-level text data from literature to learn better embedding
representations. We demonstrate STonKGs on a KG consisting of millions of text-triple pairs
extracted from the biomedical literature and pathway databases, assembled using the Integrated
Network and Dynamical Reasoning Assembler (INDRA) (Gyori et al., 2017). Using this dataset, we
benchmark STonKGs against two baseline models (i.e., BioBERT (Lee et al., 2020) and node2vec
(Grover and Leskovec, 2016)) in a transfer learning setting on eight different fine-tuning tasks
corresponding to distinct biological applications. Our results highlight how combining both modalities
can enable STonKGs to outperform both baselines, particularly on more challenging classification
tasks with a larger number of classes. Furthermore, the STonKGs model architecture can be easily
adapted to other applications on text-triple pairs in the biomedical as well as general domain. We
released the source code and pre-trained STonKGs models at https://github.com/stonkgs/stonkgs and
https://huggingface.co/stonkgs/stonkgs-150k.

2. Methods
Our main goal was to evaluate the effect of combining text and KG data in the proposed model
architecture (i.e., STonKGs). As a data resource, we used the INDRA KG, which contains millions of
triples with text evidence and annotations, further described in Section 2.1 (Figure 1A). We compared
our proposed STonKGs model against two baseline models which only used one of the respective
knowledge sources in a unified experimental setting (see Section 2.2 and Figure 1B). Next, we
outline our evaluation setting consisting of eight different classification tasks (Section 2.3). Finally,
we describe the software implementation and hardware used to conduct this work in Section 2.4.
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Figure 1. Methodology workflow. This figure illustrates the classification of the context annotation for a given text-triple pair. In this
example, the models aim to predict the species in which a certain biological process was observed (e.g., mice). A) The three models (i.e., the
two baselines and the proposed STonKGs model) are trained and evaluated in a shared experimental setting. B) For each text evidence and
triple pair, the two baseline models exclusively employ a single modality, whereas STonKGs leverages both.

2.1. Dataset

To combine the structured information represented in a KG with unstructured text, we required a KG
containing relations for each triple and the corresponding text evidence from which the triple has been
extracted. As a result, our dataset consisted of text-triple pairs such as (“Sorafenib is a multi-kinase
inhibitor that inhibits various kinases including VEGFR-2”, (Sorafenib, directlyDecreases,
VEGFR-2), which is represented as (a(pubchem.compound:216239), directlyDecreases,
kin(p(hgnc:6307))). We employed a KG containing 35,150,093 triples assembled by INDRA (Gyori
et al., 2017) from pathway databases and the output of text mining systems (Supplementary Table 1)
run on i) MEDLINE abstracts, ii) PubMed Central full text articles, and iii) several publishers' text
mining corpora (see Supplementary Figure 1 for details on node and relation types). The original
version of the INDRA KG comprised non-grounded nodes (i.e., nodes that could not be normalized to
a standardized ontology) and triples without text evidence, both of which were filtered out in a
preliminary data cleaning step (described in Supplementary Text 1). Ultimately, the preprocessed
version of the INDRA KG consisted of 174,534 nodes and 13,609,994 triples. Out of all triples,
127,149 were selected for each of the eight fine-tuning tasks since they have been labelled with
context-specific information (i.e., annotation class) or they have been manually curated for
classification tasks (see Supplementary Table 2). The 13,482,845 remaining non-annotated triples
were used in the unlabelled pre-training procedure (see Supplementary Text 1).

2.2. Models

As shown in Figure 1, all three models were operating under the same experimental conditions (i.e.,
in the same transfer learning setting, evaluated on the same tasks), with the exception of their utilized
modalities. In contrast to the NLP- and KG-baselines (i.e., text evidence and triple-based models),
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STonKGs jointly builds upon both modalities. The following subsections outline our proposed
STonKGs model architecture as well as the two baseline models used as a benchmark. All three
models shared the same two-fold training procedure, consisting of a pre-training and a fine-tuning
part. The architectural change in the fine-tuning procedure was equivalent across all three models and
consisted of placing a classification head on top of the pre-trained model.

2.2.1. NLP-baseline

The NLP-baseline was built on the pre-trained BioBERT v.1.1 model (Lee et al., 2020), a
Transformer-based language model trained for 1 million steps on chunks of 512 tokens from a 4.5
billion token corpus stemming from PubMed abstracts (see Supplementary Table 3 for an overview
on the hyperparameters of this model). To prepare text evidences from INDRA statements for the
NLP-baseline, the contiguous string of text was first split into single (sub)words (i.e., tokens), using
the pre-trained tokenizer of BioBERT. The resulting token sequence was extended with special
classification and separator tokens (i.e., [CLS] and [SEP]), and then padded or truncated accordingly
to match the fixed input length of the language model (512 tokens, i.e., a paragraph). Passing the
sequence through BioBERT yielded token embedding vectors for a given text evidence, in which each
of these embedding vectors is based on the weighted average of its surrounding tokens that is learnt
by the attention mechanism of a pre-trained Transformer (Vaswani et al., 2017). This procedure
ensures that each token embedding vector contains the context of its surrounding tokens.

In order to adapt BioBERT as a classifier for text evidences in a fine-tuning procedure, further
model components, namely, pooling and a final linear layer with a softmax activation function, were
added to enable sequence classification. In line with a commonly used aggregation technique derived
from Devlin et al. (2019), our pooling procedure consists of using the special classifier (i.e., [CLS])
token embedding vector as a representation of the overall token embedding sequence for a given text
evidence. This token embedding vector is used as an input for the final linear layer to generate class
probabilities for the provided text evidence. Finally, we would like to note that in this transfer learning
setting, we not only trained the parameters of the sequence classification components, but also
fine-tuned all parameters of the entire model architecture, including the weights of the BioBERT
model.

2.2.2. KG-baseline

The input for the KG-baseline are high-dimensional node embeddings learnt by node2vec (Grover and
Leskovec, 2016) using the hyperparameters listed in Supplementary Table 3. Similar to the
embeddings of word sequences produced by word2vec (Mikolov et al., 2013), node2vec generates
embeddings for node sequences based on random walks. As a result, the embedding of a given node is
formed based on the structure of its surrounding network neighborhood.

5/16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2021.08.17.456616doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456616
http://creativecommons.org/licenses/by/4.0/


Figure 2. Transforming KG embeddings into sequential inputs. For a given triple , we generate the final random walk based
embedding representation based on the following steps:

1. Obtain the random walks based on the pre-trained node2vec model: and for and
2. Embed each node in those random walks, resulting in two random walk-based embedding sequences: and

3. Generate the final embedding sequence

In concordance with the other two models, our KG-baseline relied on sequential inputs for each
triple. Therefore, we designed a novel approach that generated a sequential representation for each
triple while incorporating the embeddings generated by node2vec (see Figure 2). The general idea
behind the sequential representation is to generate a sequence of embeddings for the two
nodes in the i-th triple . To do so, our proposed approach leveraged the sequence of
random walks and generated by node2vec for and , replacing
each random walk by the embeddings and learnt for each
node in the walk. Subsequently, we acquired the embedding sequence of a given triple as the
concatenation of the random walk-based embedding sequences of its two nodes

. This final random walk-based sequential
representation, as opposed to other alternatives (e.g., concatenation of the two original node
embeddings of a given triple), ensured a fair comparison, since the other two models (i.e., NLP
baseline and STonKGs) are also based on sequential inputs.

Similar to the NLP baseline outlined in Section 2.2.1, the embedding sequences for each triple
are pooled, and passed through a linear layer with a softmax activation function to generate the final
classification labels. Here, the pooling operation is defined as the dimension-wise maximum of the
sequence embeddings, consequently mapping the sequence to a single vector. Since the KG-baseline
employs static embeddings for the final classification task, the KG-baseline did not technically fit into
the pre-training and fine-tuning paradigm used in NLP. However, for the sake of consistency, we will
refer to the feature extraction based on transfer learning (i.e., embeddings from node2vec) used in the
KG-baseline as pre-training and the final classification tasks as fine-tuning procedures as well.
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2.2.3. STonKGs

Similar to BERT, STonKGs consists of multiple stacked Transformer layers with the attention
mechanism forming the core of the overall model architecture. However, in contrast to the standard
attention mechanism applied on text tokens, STonKGs uses a joint Transformer on a concatenation of
text tokens and KG nodes, as illustrated in Figure 3. In accordance with the terminology introduced
by Kamath et al. (2021) for their joint Transformer (on image and text data), this Transformer is
hereafter referred to as a cross encoder. The rationale behind using a cross encoder over other
information fusion techniques was that it allows for learning implicit alignments between text tokens
and KG nodes without requiring any entity linking step between the two modalities. More specifically,
the interdependencies in the combined input sequence are represented by attention weights, shown by
the links between the inputs in Figure 3. These weights are learnable parameters used to calculate
weighted average representation of a given entity (i.e., text token or node of the input sequence) based
on the embedding vectors of its surrounding entities from both modalities. As a result, the calculated
representation of each entity contains contextual information from the KG and text input.

To construct the cross encoder of STonKGs, we used the same hyperparameters as the BERTBASE

model (see Devlin et al., 2019), such as the maximum sequence length (512 tokens), hidden state
dimension, number of Transformer layers, and attention heads. We used embeddings of the combined
text and KG input sequences as the input to STonKGs, based on the text-triple pairs extracted from the
INDRA statements. The overall input sequence length was split into half, in order to comprise 256
text tokens and 256 KG nodes (including special tokens). The initial embedding sequences of the
text-triple pairs were generated with BioBERT and node2vec for text and triples, respectively, which
we will refer to as the NLP- and KG-backbone in the following (based on the steps outlined in Section
2.2.1 and 2.2.2). However, instead of simply concatenating the random walk-based embedding
sequences of the two nodes of a triple, we further added a [SEP] token between and after the two
random walk sequences , as shown in Figure 3. The
use of the special separator token intends to structurally differentiate between text and KG data in the
input sequence, similar to the distinction of two input sentences in the original BERT model.
Moreover, we masked some of the input using the embedding vector of the special [MASK] token
from the NLP-backbone (the masking strategy is explained in detail below). Additionally, we used
positional and segment embeddings to further distinguish text and KG nodes of the combined input
sequence in our cross encoder. Given the described inputs of STonKGs, the model has three different
training objectives during pre-training, which are jointly used to learn the parameters of the cross
encoder:

1. Masked Language Modeling (MLM): For the first 256 text tokens, we employed the same
MLM task and followed the same masking procedure used in the pre-training process of
BERT. The goal of this task is to correctly predict the masked tokens based on a so-called
MLM head. This head consists of a linear layer followed by the softmax function, which
maps the final hidden states of the cross encoder to probabilities for each token in the
vocabulary of the NLP-backbone.

2. Masked Entity Modeling (MEM): Inspired by the original MLM task, we built a counterpart
for predicting masked nodes for the latter half of the combined input sequence (i.e., the KG
input), again using the same masking strategy as in BERT. In this case, the goal is to correctly
predict masked nodes in the random walk-based embedding sequences. Analogous to the
MLM head, our custom MEM head consists of a linear layer followed by a softmax function.
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However, unlike the MLM head, the MEM head maps the hidden states to probabilities for
each node occurring in the KG of the KG-backbone (as well as the [SEP] token, to remain
consistent with the added [SEP] tokens) (see Figure 3).

3. Next “Sentence” Prediction (NSP): Similar to the original NSP task, we designed an
equivalent training objective that aims to correctly predict whether a text and triple belong to
each other, or whether they are randomly chosen from distinct INDRA statements. In
accordance with Devlin et al. (2019), we also used the final hidden state of the [CLS] token
for this binary prediction task. However, in order to preserve as much of the original training
data as possible, we decided to augment the training data (rather than replace entries in it)
with negative samples. In our case, we used 25% of the original pre-training dataset size,
which is significantly smaller than the 50% used in BERT.

As a result, the pre-training objective of STonKGs consists of minimizing the total loss, more
specifically, the sum of the losses across all three training objectives:

. All relevant hyperparameters used for the pre-training process
of STonKGs (e.g., batch size and learning rate) are listed in Supplementary Table 3.

Figure 3. Cross-modal attention between text data (token sequences) and KG data (triple sequences). The input is a concatenation of a
token and a triple sequence. Each element in the initial input sequence consists of its respective BioBERT embedding. The resulting hidden
states are processed by two different heads for text tokens and KG nodes, respectively. While the MLM head is returning probabilities for
each token of the NLP-backbone, the MEM head is converting the hidden states onto probabilities for each node of the KG-backbone.

In order to evaluate STonKGs on each of the eight fine-tuning tasks (explained in the next
section), we followed the same procedure that is outlined in Section 2.2.1 (NLP-baseline).
Consequently, we employed a classification head on top of the pre-trained STonKGs architecture,
consisting of a pooling step, a linear layer, and a softmax activation function to generate class
probabilities for a given text-triple pair. Similar to the NLP-baseline, we also utilized the [CLS] token
for pooling, and tuned all parameters of the entire STonKGs model architecture in our fine-tuning
tasks.
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2.3. Evaluation

In line with other Transformer-based transfer learning approaches, we used the majority of the
INDRA text-triple pairs, predominantly unannotated triples, for pre-training (see Section 2.1), and the
remaining annotated text-triple pairs (approximately 1.63%) were used for the fine-tuning datasets.
We evaluated the models on a benchmark consisting of eight fine-tuning tasks, namely, two relation
type classification tasks, four context annotation tasks, and two correct/incorrect tasks (tasks 1-2, 3-6,
7-8 in Table 1, respectively). The relation type tasks consist of two binary classifications in which
each model either predicts the polarity (i.e., increase or decrease) or the type of interaction (i.e., direct
or indirect interaction) of a given triple. The four context annotation tasks aim to predict the class (i.e.,
the context) of given text-triple pairs in a variety of biomedical settings: i) cell line, ii) disease, iii)
cellular location, and iv) species. All of these cases represent multiclass classification tasks employing
between three and ten classes depending on the most common occurrences of classes in each of the
contexts. Finally, the two correct/incorrect tasks consist of a binary classification task where the
model determines whether the text-triple pair is correct or incorrect, and a multiclass task where the
model not only determines whether it is correct or incorrect but also which type of error it is. The
sample sizes of the task-specific fine-tuning datasets ranged from 3,760 to 78,979 text-triple pairs,
depending on the availability of triple annotations. An overview on the tasks as well as their
respective summary statistics can be found in Supplementary Table 2. The distribution of classes of
the fine-tuning tasks can be found in Supplementary Figure 2.

Task Description Number
of
classes

Classes Example

1) Polarity Directionality effect of
the source node on the
target node

binary Increase and decrease “HSP70 [...] increases ENPP1 transcript and
protein levels” (PMID:19083193)

2) Interaction
type

Whether it is known to
be a physical interaction
between the source and
the target node

binary Direct and indirect
interaction

“SHP repressed [...] transcription of PEPCK
through direct interaction with C/EBPalpha
protein” (PMID:17094771)

3) Cell line Cell line in which the
given relation has been
described

10 HEK293, DMS114, HeLa,
NIH-3T3, HepG2, MCF7,
COS-1, THP-1, LNCAP,
and U-937

“We show that upon stimulation of HeLa
cells by CXCL12, CXCR4 becomes tyrosine
phosphorylated” (PMID:15819887)

4) Disease Disease context in
which the particular
relation occurs

10 Neuroblastoma, breast
cancer, lung cancer,
atherosclerosis, multiple
myeloma, leukemia,
melanoma, osteosarcoma,
lung non-small cell
carcinoma

“ [...] nicotine [...] activates the MAPK
signaling pathway in lung cancer”
(PMID:14729617)

5) Location Cellular location in
which the particular
relation occurs

5 Cell nucleus, extracellular
space, cell membrane,
cytoplasm and extracellular
matrix

“The activated MSK1 translocates to the
nucleus and activates CREB [...].”
(PMID:9687510)

6) Species Species in which the
particular relation has
been described

3 Human, mouse, and rat “Mutation of putative GRK phosphorylation
sites in the cannabinoid receptor 1 (CB1R)
confers resistance to cannabinoid tolerance
and hypersensitivity to cannabinoids in
mice” (PMID:24719095)

7)
Correct/Incorr

Whether the extracted
triple correctly

binary Correct and incorrect Examples are available at INDRA’s curation
guidelines
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ect (Binary) corresponds to the text
or not

(https://indra.readthedocs.io/en/latest/tutorial
s/html_curation.html#curation-guidelines)

8)
Correct/Incorr
ect (Multiclass)

Whether the extracted
triple correctly
corresponds to the text
or not (including all
error types)

8 Correct, no relation, wrong
relation, grounding,
polarity, act vs amt, entity
boundaries, hypothesis

Table 1. Overview on the fine-tuning classification tasks. While the two binary tasks (i.e., the polarity and interaction type tasks) intend to
evaluate the models’ abilities to classify the relation type of the triple, the other four tasks deal with the classification of different types of
contexts in which a given triple can appear in. Finally, the two tasks aim at predicting whether the triple has been correctly extracted from
the text evidence.

The performance of the models was evaluated on all eight classification tasks via a five-fold
cross-validation procedure using weighted F1-scores (i.e., averages of the class-specific F1-scores
weighted by number of true instances per class). In order to train and evaluate all three models on the
same cross-validation splits, we created the splits deterministically. All models were fine-tuned for
five epochs on the training data using a batch size of 16 and the AdamW (Loshchilov and Hutter,
2019) optimizer with a linearly decreasing learning rate initially set to 5*10-5.

In addition to the proposed baselines, we introduced two ablated variants of the STonKGs model
in order to analyze the effect of certain model design choices on the fine-tuning tasks:

1. Less training steps: We created two versions of the STonKGs model, STonKGs150k and
STonKGs300k, which were pre-trained for 150,000 and 300,000 steps (i.e., updates of the
weights), respectively. More specifically, this was achieved through model checkpointing
(i.e., STonKGs150k is an interim checkpoint of STonKGs300k). In doing so, we were able to
observe the effect of reducing the number of training steps on the model performance in the
fine-tuning procedures.

2. No NSP objective: Since the effectiveness of the NSP task for pre-training has been
questioned (see Liu et al., 2019), we decided to design a variant of STonKGs150k (termed
STonKGsNO NSP) that only uses the MLM and MEM training objectives. In result, this ablation
measures whether the learned distinction between associated and randomly coupled text-triple
pairs has an effect on fine-tuning task performances.

2.4. Implementation details

Both the NLP-baseline as well as STonKGs are implemented using the HuggingFace transformers
library (v.4.6.1). More specifically, the NLP-baseline was initialized using the dmis-lab/biobert-v1.1
BioBERT model available at the HuggingFace model hub. For STonKGs, we leveraged the
BertForPreTraining class as a basis, and modified its prediction heads and forward pass function.
STonKGs was pre-trained on 4x NVIDIA A100 40GB Tensor Core GPUs. The pre-training procedure
took 284.18h (11.84 days) and 568.35h hours (23.68 days) for STonKGs150k and STonKGs300k,
respectively. Finally, to set up the KG-baseline, we employed the nodevectors library (v.0.1.23) for
learning the random walk-based embedding sequences, and built a PyTorch Lightning (v.1.2.3) model
on top. We trained our random walk-based embedding sequences on a symmetric multiprocessing
(SMP) node with four Intel Xeon Platinum 8160 processors and 1.5TB RAM.
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3. Results

3.1. Benchmarking

In order to analyze the differences in performance across the models in our benchmark setting, it is
important to understand the information that is exploited by each baseline model. While the
KG-baseline aims to represent topological node information, the NLP-baseline leverages the
unstructured textual information underlying the relations between the extracted named entities (e.g.,
“Rosiglitazone directly increases Pdk4 transcriptional-levels in mice”). In our benchmark, six of the
classification tasks consisted of predicting both type and context for each relation (e.g., a specific
biological interaction is observed in a specific disease or species). Thus, the NLP-baseline seems more
suited for these tasks compared to the KG-baseline, since the information could explicitly be stated in
the evidence itself. Indeed, this is confirmed by our results, where we observed a better performance
of the NLP-baseline over the KG-baseline across all tasks. Additionally, our proposed KG-baseline is
limited by the use of static embeddings, as opposed to the transfer learning paradigm applied in both
Transformer-based models (i.e., the NLP-baseline and STonKGs), which is based on fine-tuning the
entire model architecture on given task-specific data. Below, we analyze the performances of the three
presented models, as well as the ablated versions, across our proposed benchmark (Table 2).

Firstly, we focus on the four more challenging classification tasks (i.e., those containing more
than five classes), namely, tasks 3-5 and 8 (see Table 2), where we could observe that STonKGs
considerably outperformed both baselines. Here, STonKGs achieved between 0.01 and 0.08 larger
F1-scores compared to the NLP-baseline. Compared to the KG-baseline, these differences were even
larger resulting in F1-scores about 0.1-0.52 higher for STonKGs. Specifically for the cell line and
disease tasks (task 3 and 4), the KG-baseline failed to predict the correct entity class among the ten
possible classes, which was not the case for task 5 and 8, which both contain a lower number of
classes. This suggests that it is particularly challenging for the KG-baseline to perform well across an
increasing number of classes. On the other hand, when looking at the remaining four classification
tasks containing with only two or three classes (i.e., task 1-2 and 6-7), we observe that both the
NLP-baseline as well as STonKGs result in higher F1-scores than the KG-baseline. However, while
STonKGs clearly outperforms the NLP-baseline with a difference of 0.067 on task 7, there are only
minimal differences between the two models across tasks 1-2 and 6. While the NLP-baseline leads to
a 0.009 and 0.005 improvement on the polarity and species tasks, STonKGs achieves a 0.004 F1-score
improvement on the interaction task.

Interestingly, the KG-baseline is only slightly worse than the other two models on the interaction
type and species classification tasks. On the polarity task, however, its performance is similar to a
random classifier. The relative increase in performance of the KG-baseline on the interaction type task
compared to the polarity task can be attributed to imbalanced associations between nodes and class
labels (e.g., a given node might be exclusively present in indirect interactions) (see Supplementary
Figure 3). Moreover, in the case of species classification, the good performance of the KG-baseline is
not surprising as the nodes in the INDRA KG can indirectly encode species information. For instance,
protein nodes corresponding to the same ortholog gene are represented by species-specific identifiers
(e.g., HGNC:PRKCG (human) and UP:P63319 (rat)).

When comparing STonKGs300k and STonKGs150k, there is no significant difference in model
performance. This is not surprising given the already low loss exhibited by STonKGs150k and the minor
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further reduction of the loss in STonKGs300k (Supplementary Figure 4). Moreover, the STonKGsNO

NSP model resulted in slightly lower performances than the STonKGs150k model on almost all the
evaluation tasks (apart from task 3), thus, suggesting that the NSP training objective is potentially
beneficial for the overall pre-training procedure.

Model Relation type
classification task

Context annotation classification task Correct/Incorrect
classification task

1)
Polarity

2)
Interactio
n type

3) Cell line 4) Disease 5) Location 6) Species 7) Binary 8)
Multiclass

NLP-Baseline
(BioBERT)

0.940 0.991 0.238 0.214 0.397 0.865 0.911 0.881

KG-Baseline
(node2vec)

0.448 0.945 0.020 0.030 0.295 0.670 0.708 0.446

STonKGs300k 0.930 0.995 0.252 0.248 0.405 0.860 0.977 0.964

STonKGs150k 0.931 0.995 0.256 0.240 0.404 0.860 0.978 0.963

STonKGsNO NSP 0.918 0.992 0.261 0.236 0.401 0.857 0.977 0.960

Absolute
performance
gain

-0.009 +0.004 +0.023 +0.034 +0.008 -0.005 +0.067 +0.083

Relative
performance
gain

-0.96% +0.40% +8.81% +15.89% +2.02% -0.58% +7.35% +9.42%

Table 2. Benchmark comparison of the baseline models and ablation variants of STonKGs on the chosen classification tasks. Performance is
measured as the average F1-score across the 5 cross-validation splits. While the absolute performance gains are calculated based on the
difference between the best STonKGs variant and the best baseline (i.e., the NLP baseline), the relative performance gains are obtained by

dividing that difference by the f1-score of the best baseline and expressing the value as a percentage: .
(𝑆𝑇𝑜𝑛𝐾𝐺𝑠

𝐵𝐸𝑆𝑇 
− 𝑁𝐿𝑃)

𝑁𝐿𝑃 * 100

3.2. STonKGs and Applications

The source code and trained models are respectively available at https://github.com/stonkgs/stonkgs
and https://github.com/stonkgs/results. The documentation is available at
https://stonkgs.readthedocs.io/. The pre-trained STonKGs model can be downloaded from the
HuggingFace model hub (https://huggingface.co/stonkgs/stonkgs-150k).

To demonstrate the generality of the pre-trained STonKGs model, we fine-tuned it on
INDRA-independent text-triple pairs specific to two neurodegenerative indication areas (i.e.,
Alzheimer’s disease, Parkinson’s disease) (Domingo-Fernández et al., 2017) (presented in the
Supplementary Text 2). Furthermore, the fine-tuned STonKGs models, which are also released, can
also be used to automatically annotate text-triple pairs with respect to the defined classes for each
fine-tuning task (e.g., human, mouse, and rat for the species context annotation task); thus, facilitating
automatic annotations of biomedical KGs in a variety of contexts.
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4. Discussion
In this work, we introduced STonKGs, a multimodal Transformer trained on millions of text-triple
pairs from biomedical literature assembled by INDRA. We demonstrate the utility of our approach in
a benchmark consisting of eight fine-tuning tasks. Here, STonKGs outperformed two baseline models,
which were trained solely on either text or KG data, on the majority of the benchmark tasks. Each of
the eight fine-tuning tasks represents a different classification problem with a specific biological
use-case, hence confirming the generalizability of our proposed transfer learning approach. In addition
to the benchmark, we conducted further ablation studies to measure the influence of the number of
training steps and the NSP training objective on the overall performance of STonKGs. Finally, the
source code and the pre-trained model are available at https://github.com/stonkgs, enabling to
leverage both the pre-trained STonKGs model as well as the overall model architecture for a variety of
additional ML-based tasks that use text and KG data.

There exist some limitations to our proposed STonKGs model. Firstly, while we have trained
STonKGs on a novel and comprehensive KG that has not been utilized by any other
Transformer-based model before, the INDRA KG is comparatively smaller than other large-scale
available non-biomedical KGs such as Wikidata (Vrandečić and Krötzsch, 2014) and DBpedia (Bizer
et al., 2007). This is mainly caused by the challenging tasks of recognizing biological entities and
extracting their relations, given the ambiguity and complexity of biomedical jargon. Furthermore,
INDRA aims at high precision and the employed extraction process focuses on high quality rather
than completeness. This impacted the text-triple pairs present in the fine-tuning datasets (i.e., some of
them contain only several thousand text-triple pairs). Secondly, one characteristic property of the
INDRA KG is that its textual evidences have been extracted on sentence level, consequently they are
shorter in length compared to text sequences used in other Transformer-based LMs (e.g., Devlin et al.
(2019) and Zaheer et al. (2020)). Given the complexity of biological scientific literature, the
contextual representations learned by STonKGs could benefit from longer sequences (i.e., the context
of a given triple is often mentioned in the surrounding sentences). Thirdly, while we have generated
the node embeddings based on node2vec, other more sophisticated models such as Graph
Convolutional Networks (GCNs) and Graph Attention Networks (GATs) (Ji et al., 2021) could be
employed. However, this is practically infeasible due to the computational complexity required given
the size of our KG. Furthermore, there are two advantages of using node2vec as opposed to
employing other models: i) node2vec scales well for large-scale KGs, and ii) sequential input is
implicitly generated by using random walks for each node. Another limitation is the absence of an
optimization procedure for hyperparameters such as the batch size or the learning rate of STonKGs
due to the run time implications (i.e., pre-training required several weeks, and running all benchmark
tasks for STonKGs took more than a day). However, we demonstrated the effectiveness of STonKGs
using the standard hyperparameters from the original BERT model. Finally, there are at least reasons
why we could not include other KG-extended Transformers (i.e., Zhang et al. (2019), He et al. (2020),
and Fei et al. (2020)) in our benchmark setting: i) these models require entity linking between text and
KG nodes (see Introduction), and ii) our benchmark is specifically designed to evaluate the
performance of the models in classifying context and relation type information, which is not covered
in benchmarks of other approaches.

Although we have demonstrated a proof-of-concept of our methodology across a variety of
classification tasks, we would like to mention possible future improvements of STonKGs. Firstly, the
STonKGs pre-training procedure could potentially benefit from an even larger corpus of text-triple
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pairs. Due to our proposed transfer learning setting, additional corpora of text-triple pairs can be
flexibly fed into the model by continuing the pre-training procedure. Secondly, while we have
proposed a novel method to generate contextualized graph embedding sequences based on random
walks from node2vec, more powerful KGE models could be potentially adapted to generate sequential
input embeddings as well. Thirdly, to maximize information gain, textual descriptions of the KG
nodes could be added to the model in a straightforward manner. Finally, an in-depth analysis of the
attention weights between the text tokens and KG nodes used in STonKGs could reveal valuable
insights about the interdependencies between the two modalities.
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