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Abstract 12 

Complex cognition relies on flexible working memory, which is severely limited in its capacity. The 13 

neuronal computations underlying these capacity limits have been extensively studied in humans 14 

and in monkeys, resulting in competing theoretical models. We probed the working memory 15 

capacity of crows (Corvus corone) in a change detection task, developed for monkeys (Macaca 16 

mulatta), while we performed extracellular recordings of the prefrontal-like area nidopallium 17 

caudolaterale. We found that neuronal encoding and maintenance of information were affected 18 

by item load, in a way that is virtually identical to results obtained from monkey prefrontal cortex. 19 

Contemporary neurophysiological models of working memory employ divisive normalization as 20 

an important mechanism that may result in the capacity limitation. As these models are usually 21 

conceptualized and tested in an exclusively mammalian context, it remains unclear if they fully 22 

capture a general concept of working memory or if they are restricted to the mammalian 23 

neocortex. Here we report that carrion crows and macaque monkeys share divisive normalization 24 

as a neuronal computation that is in line with mammalian models. This indicates that 25 

computational models of working memory developed in the mammalian cortex can also apply to 26 

non-cortical associative brain regions of birds. 27 

 28 
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Introduction 29 

Working memory (WM) can hold information for a short period of time to allow further processing 30 

in the absence of sensory input (Cowan, 2017; Oberauer et al., 2018). By bridging this gap 31 

between the immediate sensory environment and behavior, WM is a keystone for complex 32 

cognition. It is a very flexible memory system, yet severely limited in its capacity. While this 33 

capacity is often seen as a general cognitive bottleneck, for simple stimuli, like colors, the capacity 34 

is very similar between humans, monkeys, and crows (Balakhonov and Rose, 2017; Buschman 35 

et al., 2011; Cowan, 2001; Luck and Vogel, 1997).  36 

Different models have been proposed to conceptualize how this capacity limit arises. This work 37 

motivated many psychophysical and electrophysiological experiments that in turn led to a 38 

spectrum of more refined models of WM (Ma et al., 2014). ‘Discrete models’ of WM argue that a 39 

fixed number of items can be stored. Once this capacity is reached, an additional item can only 40 

be maintained if it replaces a previous item (Awh et al., 2007; Fukuda et al., 2010; Luck and Vogel, 41 

1997; Vogel and Machizawa, 2004; Zhang and Luck, 2008). ‘Continuous models’ describe WM 42 

as a flexible resource that is allocated to individual items. A minimum amount of this resource has 43 

to be allocated to each item for successful retention, thereby resulting in a capacity limit (Bays 44 

and Husain, 2008; Berg et al., 2012; Wilken and Ma, 2004).  45 

On the neurophysiological level, models of WM capacity suggest that interference between 46 

memory representations (‘items’) within the neuronal network is a source of information loss and 47 

capacity limitation (Bouchacourt and Buschman, 2019; Lundqvist et al., 2016, 2011; Schneegans 48 

et al., 2020). Interference may arise due to divisive normalization that appears as competition 49 

between items, related to oscillatory dynamics (Lundqvist et al., 2016, 2011), WM flexibility 50 

(Bouchacourt and Buschman, 2019), and neuronal information sampling (Schneegans et al., 51 

2020). Divisive normalization is a computational principle that acts upon neurons when presenting 52 

multiple stimuli simultaneously, it normalizes neuronal responses by creating ‘a ratio between the 53 

response of an individual neuron and the summed activity of a pool of neurons’ (Carandini and 54 

Heeger, 2012, p. 51). An effect related to divisive normalization can be observed when two stimuli 55 

are presented either individually or simultaneously within the receptive field of a visual sensory 56 

neuron. The neuron’s firing rate when the stimuli are presented simultaneously becomes 57 

normalized by the populations’ responses to each individual stimulus (Carandini et al., 1997; 58 

Heeger, 1992). This effect also occurs in relation to attentive processes (Reynolds et al., 1999; 59 

Reynolds and Heeger, 2009). Normalization of neuronal responses is commonly observed in 60 

many species throughout the animal kingdom, not just in sensory, but also in cognitive domains 61 
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(Carandini and Heeger, 2012).  62 

Investigations into WM capacity and model predictions focus mostly on humans and monkeys. 63 

By extending this work to include birds, one can gain a unique comparative perspective. Crows 64 

have a similar limit in WM capacity and neuronal correlates of WM are comparable to monkeys’ 65 

(Balakhonov and Rose, 2017; Nieder, 2017). But while the neuronal architecture of sensory areas 66 

is similar between birds and mammals, higher associative areas, critical for WM, do not share a 67 

common architecture between the species (Stacho et al., 2020). Therefore, an outstanding 68 

question is whether modern models of WM such as the ‘flexible model’ capture WM capacity in 69 

general, or if their predictions (e.g., divisive normalization) are confined to the mammalian 70 

neocortex. To resolve this, it is crucial to investigate the avian brain to understand how its different 71 

organization can produce such similar behavioral and neurophysiological results. While the 72 

neuronal correlates of WM maintenance in birds have been investigated in some detail (Diekamp 73 

et al., 2002; Hartmann et al., 2018; Rinnert et al., 2019; Rose and Colombo, 2005; Veit et al., 74 

2014), a neurophysiological investigation of WM capacity limitation is still lacking. The avian 75 

forebrain structure, nidopallium caudolaterale (NCL) is a critical component of avian WM. The 76 

NCL is considered functionally equivalent to the mammalian prefrontal cortex (PFC) (Güntürkün 77 

and Bugnyar, 2016; Nieder, 2017), as it receives projections from all sensory modalities (Kröner 78 

and Güntürkün, 1999), projects to premotor areas (Kröner and Güntürkün, 1999), and is a target 79 

of dopaminergic innervation (Waldmann and Güntürkün, 1993).  80 

To investigate the neurophysiology of WM capacity in birds, we adopted a task design developed 81 

for monkeys (Buschman et al., 2011) to use it with carrion crows (Corvus corone). Our animals 82 

were trained to memorize an array of colors and to indicate which color had changed after a short 83 

memory delay, while we performed extracellular recordings of individual neurons in the NCL using 84 

multichannel probes. We expected to find a clear correlate of WM representations in NCL neurons 85 

and a load-dependent response modulation based on divisive normalization of neuronal 86 

responses. This would allow us to evaluate if the behavioral WM capacity observations of crows 87 

fit a ‘discrete’ or ‘continuous’ WM resource model. If the neuronal responses also fit the 88 

contemporary neurophysiological models of WM capacity limitations (Bouchacourt and 89 

Buschman, 2019; Lundqvist et al., 2016, 2011; Schneegans et al., 2020) it would further suggest 90 

that crows and monkeys have convergently evolved a similar neurophysiological basis for WM 91 

capacity despite a different architecture of the critical forebrain structures. 92 

 93 

 94 
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Materials and Methods 95 

Subjects. 96 

Two hand-raised carrion crows (Corvus corone) of 2 years of age served as subjects in this study. 97 

The birds were housed in spacious aviaries in social groups. During the experimental procedures, 98 

the animals were held on a controlled food protocol with ad libitum access to water and grit. All 99 

experimental procedures and housing conditions were carried out in accordance with the National 100 

Institutes of Health Guide for Care and Use of Laboratory Animals and were authorized by the 101 

national authority (Regierungspräsidium). 102 

Experimental setup. 103 

We used operant training chambers (50 x 50.5 x 77.5 cm, width x depth x height) equipped with 104 

an acoustic pulse touchscreen (22’’, ELO 2200 L APR, Elo Touch Solutions Inc, USA) and an 105 

infrared camera (Sygonix, Nürnberg, Germany) for remote monitoring. The birds sat on a wooden 106 

perch so that the distance between the bird’s eye and the touchscreen was 8 cm. Food pellets 107 

were delivered as a reward via a custom-made automatic feeder (plans available at 108 

www.jonasrose.net). The position of the animal’s head was tracked online during the experiment 109 

by two open-source computer vision cameras (‘Pixy’, CMUcam5, Charmed Labs, Texas, USA) 110 

that reported the location and angle between two LEDs. For tracking, we surgically implanted a 111 

lightweight head-post and used a lightweight 3D-printed mount with LEDs that was removed after 112 

each experimental session. The system reported the head-location at a frame rate of 50 Hz and 113 

data was smoothed by integrating over 2 frames in Matlab using custom programs on a control 114 

PC. All experiments were controlled by custom programs in Matlab using the Biopsychology 115 

(Rose et al., 2008) and Psychophysics toolboxes (Brainard, 1997). Digital input and output of the 116 

control PC were handled by a microcontroller (ODROID C1, Hardkernel co. Ltd, Anyang, South 117 

Korea) connected through a gigabit network running custom software (available at: 118 

www.jonasrose.net). 119 

Behavioral protocol. 120 

The behavioral protocol was identical to the one described in (Balakhonov and Rose, 2017). We 121 

trained the birds to perform a delayed change localization task that had previously been used to 122 

test the performance under different working memory loads in primates (Buschman et al., 2011). 123 

Each trial started after a 2 s inter-trial-interval, with the presentation of a red dot centered on the 124 

touchscreen (for a maximum of 40 s). The animals initiated the trial by centering their head in 125 
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front of the red dot for 160 ms. This caused the red dot to disappear and a stimulus array of two 126 

to five colored squares to appear (Fig. 1A). The colored squares were presented for a period of 127 

800 ms, during which the animals had to hold their head still and center their gaze on the screen 128 

(no more than 2 cm horizontal or vertical displacement, and no more than 20° horizontal or vertical 129 

rotation). Failure to hold the head in this position resulted in an aborted trial. This sample phase 130 

was followed by a memory delay of 1000 ms after which the stimulus array reappeared with one 131 

color exchanged. The animal had to indicate the location of the color change by pecking the 132 

respective square. Correct responses were rewarded probabilistically (BEO special pellets, in 55 133 

% of correct trials, additional 2 s illumination of the food receptacle in 100 % of correct trials). 134 

Incorrect responses to colors that had not changed or a failure to respond within 4 s resulted in a 135 

brief screen flash and a 10 s timeout.  136 

The stimuli were presented at six fixed locations on the screen (1 – 6, Fig. 1A). For each location, 137 

a unique color pair was randomly chosen from a set of 14 colors (two possible pairs of colors 138 

were excluded due to similarity). Thus, during any given experimental session, a random pair of 139 

colors was fixed to each of the six locations. The order of presentation of colors within a pair, the 140 

target location (where the color change occurred), and the number of stimuli in the array (two to 141 

five) were randomized and balanced across trials so that each condition had an equal likelihood 142 

to appear. The color squares had a width of 10 degrees of visual angle (DVA) and were placed 143 

on the horizontal meridian of the screen and at 45.8 DVA above or below the meridian at a 144 

distance of 54 and 55.4 DVA from the center. This arrangement in combination with the head 145 

tracking ensured that all stimuli appeared outside of the binocular visual field of crows (37.6 DVA 146 

(Troscianko et al., 2012)). 147 

Surgery. 148 

Both animals were chronically implanted with a lightweight head-post to attach a small LED-holder 149 

during the experiments. Before surgery, animals were deeply anesthetized with ketamine (50 150 

mg/kg) and xylazine (5 mg/kg). Once deeply anesthetized, animals were placed in a stereotaxic 151 

frame. After attaching the small head-post with dental acrylic, a microdrive with a multi-channel 152 

microelectrode was stereotactically implanted at the craniotomy (Neuronexus Technologies Inc., 153 

Ann Arbor MI, DDrive). The electrode was positioned in NCL (AP 5.0, ML 13.0) of the left 154 

hemisphere (coordinates for the region based on histological studies on the localization of NCL 155 

in crows (Veit and Nieder, 2013)). After the surgery, the crows received analgesics. 156 

 157 

Electrophysiological recordings. 158 
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Extracellular single neuron recordings were performed using chronically implanted multi-channel 159 

microelectrodes. The distance between recording sites was 50 µm. The signal was amplified, 160 

filtered, and digitized using Intan RHD2000 headstages and a USB-Interface board (Intan 161 

Technologies LLC, Los Angeles CA). The system also recorded digital event-codes that were 162 

sent from the behavioral control PC using a custom IO-device (details available at 163 

www.jonasrose.net). Before each recording session, the electrodes were advanced manually 164 

using the microdrive. Recordings were started 20 minutes after the advancement, and each 165 

recording site was manually checked for neuronal signals. The signals were recorded at a 166 

sampling rate of 30 kHz and filtered with a band-pass filter at recording (0.5 kHz – 7.5 kHz). The 167 

recorded neuronal signals were not pre-selected for task involvement.  168 

We performed spike sorting using the semi-automatic Klusta-suite software (Rossant et al., 2016), 169 

which uses the high electrode count and their close spacing to isolate signals of single neurons. 170 

For spike sorting, we filtered with a low-pass of 500 Hz and a high pass of 7125 Hz. The software 171 

utilizes the spatial distribution of the recorded signal along the different recording sites to untangle 172 

overlapping signals and separate signals with similar waveforms but different recording depths. 173 

Data analysis. 174 

All statistical analyses were performed in Matlab (2018b, Mathworks Inc.) using commercially 175 

available toolboxes (Curve Fitting Toolbox Version 3.5.3, Statistics and Machine Learning 176 

Toolbox Version 10.2) and custom code. For all statistical tests, we assumed a significance level 177 

of α = 0.05, unless stated otherwise. Trials were classified as error trials if the bird chose a location 178 

where no change of colors had appeared. Trials in which the bird did not choose any location or 179 

failed to maintain head fixation were not analyzed. All correct trials were included in the analysis 180 

of neural data. Because there were only very few error trials in the load 1 condition, we performed 181 

error trial analysis only for the load 2 and load 3 conditions.  182 

The behavioral data were analyzed as described in our previous study (Balakhonov and Rose, 183 

2017), estimating the working memory capacity K for each load by equation 1. 184 

Equation 1: 𝐾 = 𝑛 ∗ 𝑝 185 

Where p is the percentage correct and n is the number of items in working memory. This estimate 186 

has been applied to similar primate data and in studies with humans (Johnson et al., 2013; 187 

Kornblith et al., 2016). 188 

Information about color identity. 189 
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Based on a one-way ANOVA of color identity at a given location, we calculated a percent 190 

explained variance statistic (PEV) to measure the effect size of neuronal modulation. Its main 191 

parameter ω² is a measurement for the percentage to which the tested factor can explain the 192 

variance of the data, and it is calculated from the sum of squares of the effect (SSeffect) and the 193 

mean squares of the within-group (error) variance (MSerror) (Eq. 2). 194 

Equation 2: 𝜔2 =  
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡− 𝑑𝑓∗𝑀𝑆𝑒𝑟𝑟𝑜𝑟

𝑆𝑆𝑡𝑜𝑡𝑎𝑙+𝑀𝑆𝑒𝑟𝑟𝑜𝑟
 195 

For each neuron, we determined a ‘favorite location’, which was defined as the location with the 196 

highest cumulative PEV, contralateral to the electrode position, across four non-overlapping bins 197 

during the sample phase (bin size 200 ms, advanced in steps of 200 ms, from start till the end of 198 

the sample phase). The significance of calculated effect size values was determined by a 199 

permutation test. We ran the permutation to calculate the likelihood of getting an explained 200 

variance value bigger than the one calculated from the actual distribution of the data by randomly 201 

permuting the color identity labels and calculating the PEV 1000 times. The test thereby does not 202 

assume any distribution of the data and returns an unbiased estimate of the likelihood of 203 

generating an effect size within the data randomly. The measured value of explained variance 204 

from the actual dataset was assumed to be significant if the likelihood of randomly generating a 205 

bigger value was below 5 %.  206 

We tested the proportions of significant neurons we found for the different trial phases by 207 

performing a binomial test, assuming a significance level α = 0.05 (Eq. 3).  208 

Equation 3: 𝑃(𝑋 = 𝑖) =  𝐵(𝑝0, 𝑛) =  (𝑛 𝑘 )𝑝0
𝑖 (1 − 𝑝0)𝑛−𝑖  209 

Calculating the probability P, of finding X significant neurons, given a total amount of i (362) 210 

neurons, and a probability p0 of 5 % finding a significance by chance. 211 

Population analyses. 212 

We considered neuronal significance (i.e., significant PEV as determined above) for each load 213 

independently. This means, we tested if the PEV of a neuron was significant three times with the 214 

permutation method described above: once for each of the three load conditions. Therefore, we 215 

can report seven groups of significance (Tab. 1, Fig. 3C). Subsequently, we created three pooled 216 

groups (Tab. 1) from all neurons with a significant PEV at each individual load. We used these 217 

pooled groups for the population analyses (Figs. 4 & 5). Neurons of these pooled groups, with a 218 

significant PEV during the sample phase were assigned to the ‘sample-population’, and neurons 219 
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with a significant amount of information during the memory-delay phase were assigned to the 220 

‘delay-population’ (significance criterion: one significant 200 ms bin, at α = 0.005). Thus, neurons 221 

with significant PEV during both the sample and delay phase were included in both 222 

subpopulations.  223 

We corrected for the unequal amount of correct and error trials when comparing information about 224 

color (PEV) between the trial conditions, by sub-sampling correct trials with the number of error 225 

trials 1000 times for each neuron. The resulting PEV-values of correct trials were then averaged 226 

for each neuron, this population of averaged PEV values was then statistically tested against the 227 

PEV values of error trials (of the same neurons) using a dependent t-test. 228 

Table 1: Overview of significant groups. The ‘+’ denotes that a neuron of the respective group had a significant PEV 229 

in the respective load condition. The ‘-’ denotes that a neuron of the respective group did not have a significant PEV 230 

in the load respective condition. The pooled groups contained only neurons with a ‘+’ for the respective load 231 

condition. 232 

Load 1 Load 2 Load 3 Group name  

+ - - Load 1 neurons Group I 

- + - Load 2 neurons Group II 

- - + Load 3 neurons Group III 

+ + - Load 1&2 neurons Group IV 

+ - + Load 1&3 neurons Group V 

- + + Load 2&3 neurons Group VI 

+ + + Load 1&2&3 neurons Group VII 

Pooled group 1 Pooled group 2 Pooled group 3   

 233 

Divisive normalization like regularization. 234 

We tested for the presence of divisive normalization using the method of (Reynolds et al., 1999). 235 

Three conditions were considered: (1) neuronal response to stimulus A, (2) neuronal response to 236 

stimulus B, and (3) neuronal response to the simultaneity of stimulus A and B. As we wanted to 237 

relate this to the information about color identity, we selected subsets of the favorite location and 238 

the additional two ipsilateral locations. To test how the neurons altered their response when 239 

multiple stimuli were presented simultaneously, we calculated the color selectivity index (SE) and 240 

the sensory interaction index (SI) of each neuron.  241 

SEi was calculated by subtracting the normalized firing rate for the chosen reference color i (REFi) 242 
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at the neuron’s favorite location, from a second color j (PROBEj) at a different location (ipsilateral 243 

to the favorite location, Eq. 4). 244 

Equation 4: 𝑆𝐸𝑖 =  𝑃𝑅𝑂𝐵𝐸𝑗 − 𝑅𝐸𝐹𝑖 245 

The resulting selectivity index lies between -1 (completely selective for the reference color) and 1 246 

(completely selective for the probe color). SI was calculated (Eq. 5) by subtracting the normalized 247 

firing rate for REFi from the normalized firing rate of the combination of REFi and PROBEj (PAIRi,j).  248 

Equation 5: 𝑆𝐼𝑖,𝑗 = 𝑃𝐴𝐼𝑅𝑖,𝑗 − 𝑅𝐸𝐹𝑖 249 

This interaction index also lies between -1 (full suppression of reference stimulus by the probe 250 

stimulus) and 1 (full enhancement of the reference stimulus by the probe stimulus). As each of 251 

the three locations had two possible colors, we calculated eight SE and SI indices per neuron and 252 

performed a linear regression for all indices. This is required as each stimulus combination is 253 

informative about the normalization.  254 

The effects of divisive normalization were compared between the sample and the delay phase. 255 

Therefore, SE and SI indices were calculated across the entire sample (800 ms) and memory 256 

delay (1000 ms) phase. Neurons with significant information were accordingly identified over the 257 

entire sample and delay as one bin, using the permutation test described in the section 258 

‘information about color identity’. 259 

Hierarchical clustering. 260 

To visualize the different groups of neurons that encoded and maintained information about the 261 

color identity during different phases of the trial we performed a hierarchical clustering analysis in 262 

Matlab on the normalized PEV values of individual neurons throughout the trial. We used a (1 - 263 

correlation) distance metric and an average distance linkage function for a maximum of seven 264 

clusters. The maximum number of clusters was first determined by calculating the clustering for 265 

different amounts of clusters (1 to 10) and subsequently calculating the within-cluster sum-of-266 

squares. This resulted in a graph that allowed us to visually inspect the tradeoff between cluster 267 

number and fit-improvement, from which we estimated the inflection point (elbow-method). A 268 

cluster number of seven presented the best tradeoff that allowed visualization of the different 269 

groups at an acceptable clustering success. We then ordered the neuron clusters to minimize the 270 

average distance between the clusters in the dendrogram. 271 

 272 
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Results 273 

The working memory capacity of crows is similar to that of monkeys. 274 

The behavioral performance was influenced by the number of colored squares on the screen. It 275 

significantly decreased with an increasing number of ipsilateral squares (median performances, 276 

load 1: 95.88 %,  load 2: 78.31 %, load 3: 58.21 %; Friedman test: Χ² = 92.00, p < .001, Fig. 1B). 277 

We ran a generalized linear model with ipsilateral load (i.e. load of hemi-field where a color 278 

changed), contralateral load (i.e. load of hemi-field without a color change) and their interaction 279 

as predictors for performance (R2
adj = .78, F(460,456) = 555.00, p < .001). We found that the 280 

number of ipsilateral colors significantly reduced performance (βipsi = -.177, t(459) = -18.00, p < 281 

.001), whereas the number of contralateral colors did not (βcontra = -.021, t(459) = -1.77, p = .0772; 282 

Fig. 1C). There was also a significant interaction between ipsilateral and contralateral load (β = -283 

.024, t(458) = -4.28, p < .001). We compared this model to a reduced model, where we omitted 284 

the non-significant βcontra and found that this reduced model (R2
adj = .78, F(460,457) = 828.00, p < 285 

.001) explained the performance equally as well (|ΔLLR| = .0102). Therefore, we conclude that 286 

contralateral load by itself did not significantly affect performance. We calculated the capacity K 287 

(see methods) for all full WM-loads (i.e., two to five items). The capacity K peaks at four items 288 

(mean +/- SEM: 3.05 +/- .038, Supplementary Fig.1). These observations are very similar to 289 

observations made in primates (Buschman et al., 2011) and fully reproduce our earlier behavioral 290 

findings (Balakhonov and Rose, 2017). 291 
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 292 

Figure 1: (A) Behavioral paradigm (reproduced from Balakhonov & Rose, 2017). (B) Boxplot of performance for different 293 

ipsilateral loads. Horizontal lines indicate significant differences between loads, box indicates the median, 1st, and 3rd 294 

quartile (whiskers extend to 1.5 times the inter-quartile range). (C) Mean performance matrix for ipsi- and contralateral 295 

load combinations. Additional contralateral items at an ipsilateral load of 1 barely affected performance (bottom row). 296 

At higher ipsilateral loads additional contralateral items reduced performance more clearly (middle and top row). 297 

Statistical modeling revealed an interaction at these higher loads (see text). 298 

Neurons of the NCL encode the color identity and maintain it in working memory. 299 

We recorded 362 neurons from the NCL of two crows performing the WM task (delayed change 300 

localization). All reported effects were also present in each individual bird (Supplementary Figs. 301 

2 & 3), we, therefore, pooled the data for population analysis. A large subset of neurons 302 

responded to the presence of a color (i.e. at load 1) by substantially increasing or decreasing their 303 

firing rate relative to baseline. This change in firing rate occurred selectively, depending on the 304 

presented color either in the sample (Fig. 2A) or the delay period (Supplementary Fig. 4). For 305 

most neurons, this difference in firing rate between the two possible colors became attenuated 306 

when the load increased from one to two colors, and it was further attenuated from two to three 307 

colors. To quantify this effect, we calculated the amount of information about the color identity at 308 

a neurons’ favorite location as the percent explained variance (PEV) during a memory load of 309 

one, two, or three items in bins of 200 ms (see methods for details). Most neurons did not sustain 310 

information about color (measured as a significant PEV, henceforth ‘information’) throughout the 311 
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entire sample or memory delay but rather had shorter periods in which the information was 312 

significant (Fig. 2A bottom). 313 

 314 

Figure 2: Color discrimination in the neuronal response (information, PEV) generally decreases with load, but some 315 

neurons show the opposite effect. (A) Example of a sample neuron with color information decline at load 1 (blue), load 316 

2 (yellow), and load 3 (red). Top: raster plot, where every dot represents a single spike during the individual trials (rows 317 

of dots); middle: peri-stimulus-time histogram (PSTH) of average firing rate (solid line for color ID 1, dashed line for 318 

color ID 2) with the standard error of the mean (shaded areas); bottom: percent explained variance of color identity (a 319 

measure of information about color) along the trial, the line at the top of the y-axis indicates significant bins. (B) Same 320 

as in (A) for an example of a delay neuron with information gain at a higher load. 321 
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To better capture the time points when the individual neurons carried information, we performed 322 

a hierarchical clustering analysis of the PEV values of the individual neurons at load 1 (see 323 

methods for details). We found a total of seven clusters that were organized into two overarching 324 

groups (Fig. 3A). Group 1 contained neurons (n = 227) that showed peak information during the 325 

sample and early delay phase, while group 2 contained neurons (n = 135) that showed peak 326 

information during the delay phase. For each neuron, we then calculated if it carried a significant 327 

amount of color information by applying a permutation test (for all bins at load 1, see methods). 328 

The individual neurons were then further classified into three groups depending on the phase in 329 

which they had a significant amount of information (Fig. 3B). Overall, 37.57 % (n = 136) of neurons 330 

were significant during the sample phase, 9.39 % (n = 34) of neurons were significant during the 331 

memory delay, and 14.64 % (n = 53) of neurons were significant during both the sample phase 332 

and the memory delay (all proportions of neurons were significantly higher than expected by 333 

chance (binomial test, see methods, all p < .001)). Refer to Fig. 2A for an example neuron, 334 

significant at load 1 with a large differentiation in firing rate between color identities (a large PEV) 335 

and a loss of differentiation with increasing ipsilateral load.  336 

Further inspection of individual neuronal activity revealed, however, that a substantial number of 337 

neurons responded differently. Instead of losing information at higher loads, many neurons gained 338 

information (e.g., Fig. 2B, Supplementary Fig. 5). Thus, we additionally performed the permutation 339 

testing for loads 2 and 3 to determine which neurons had significant information (see methods). 340 

We found that many of the neurons that did not have significant information at load 1 did have 341 

significant information at load 2 and load 3 (Fig. 3C). For the memory delay, more than half of the 342 

significant neurons we detected were only significant for either load 2 or load 3, compared to only 343 

36 % of neurons that were significant at load 1 (Fig. 3C middle). By including the higher loads in 344 

our analysis, we found a total of 249 (68.78 %) sample neurons and 94 (25.97 %) delay neurons. 345 

For the population analyses, we subsequently pooled all significant neurons into three groups 346 

(one per load). These pooled groups were then each subdivided into sample and delay neurons 347 

(i.e., ‘sample-load1’, ‘delay-load1’, ‘sample-load2’, etc., see table 1 in the methods for an 348 

overview). 349 

 350 
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 351 

Figure 3: (A) The neuronal population can be best described by 7 individual clusters. (B) Percentages of neurons (total 352 

n = 362) with significant color information at load 1, during the sample and the delay. (C) Percentages (rounded) of 353 

significant neurons in individual load conditions for sample (n = 249), delay (n = 94), and sample & delay (n = 133). The 354 

pieces of the pies depicting significance at a specific load relate to the number of significant neurons in the respective 355 

phase (e.g. 36 % of the 94 delay neurons (i.e., 34 neurons) are significant at load 1 (all pieces contain blue), these are 356 

the same neurons that make up the 9.36 % of the total 362 neurons depicted in B). 357 

The neuronal population has gradually less information with increasing load. 358 

The clustering analysis indicated that the population of neurons as a whole did sustain the color 359 

information throughout the entire trial (Fig. 3A). Plotting the information averages of each of the 360 

three ‘sample-populations’ and the ‘delay-populations’ over time confirmed this result (Fig. 4A, 361 

Supplementary Fig. 6). After the onset of the stimulus array, the average information exhibited a 362 

sharp increase that peaked roughly 400 ms after stimulus onset and remained at an elevated 363 

level throughout the memory delay, until the choice array appeared. Results obtained from 364 

neurons of the lateral prefrontal cortex of monkeys indicated distinct hemispheric independence 365 

of WM capacity (Buschman et al., 2011). This means that increasing ipsilateral load (i.e. load in 366 

the hemifield containing the target for which information is assessed) should affect neuronal 367 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456603doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456603
http://creativecommons.org/licenses/by/4.0/


15 
 

processing while increasing contralateral load should not. This effect might be further emphasized 368 

in birds due to the full decussation of their optic nerve (Husband and Shimizu, 2001). Parallel to 369 

the behavioral results and in line with the results from monkeys, we found a strong effect of 370 

ipsilateral load on the information maintenance, as there was a sharp drop in information when 371 

the load increased from 1 item to 2 items (Fig. 4A, blue and yellow curves). The addition of a third 372 

item only slightly decreased the maintained information further (Fig. 4A, red curve). The load 373 

dependence was much more pronounced during the sample period than during the memory delay 374 

where the information remained at a lower elevated level. Notably, the load effect was only 375 

present for ipsilateral manipulations. If the number of items on the contralateral side was 376 

increased, the information encoded about the colors at the favorite location did not change (Fig. 377 

4A, right). To compare our results to the results obtained in monkeys we also applied the method 378 

of (Buschman et al., 2011) for testing the ipsilateral load effect during the sample and delay phase, 379 

by splitting each phase into an early and a late portion (first and second 400 ms of the sample, 380 

and first and second 500 ms for the delay). We did find a significant drop in information with an 381 

increase in load from 1 through 3 in the early (F(2,537) = 18.73, p < .001, ω² = 0.0616) and late 382 

(F(2,536) = 20.07, p < .001, ω² = 0.0661) sample period and the early (F(2,267) = 6.88, p = .0012, 383 

, ω² = 0.0417) and late (F(2,267) = 3.85, p = .0225, , ω² = 0.0207) delay period (Fig. 4B). There 384 

was a large and significant drop between 1 and 2 items (post hoc Bonferroni corrected multiple 385 

comparisons: early and late sample p < .001, early delay p < .001, late delay p = 0.0198) and 1 386 

and 3 items (post hoc Bonferroni corrected multiple comparisons: early and late sample p < .001, 387 

early delay p = 0.019, late delay p > 0.05) but no difference between loads 2 and 3 (post hoc 388 

Bonferroni corrected multiple comparisons: all p > 0.05). The maintenance of a significant amount 389 

of information at higher loads (even for 3 items, early sample t(156) = 7.55, p < .001; late sample 390 

t(156) = 8.73, p < .001; early delay t(87) = 3.84, p < .001; late delay t(87) = 4.73, p < .001) and its 391 

gradual reduction when items were added to the corresponding hemifield are indicative of a 392 

flexible resource allocation and not an all-or-nothing slot-like WM. Furthermore, if there is a 393 

flexible resource, in error trials a small but insufficient amount of resource might still be allocated 394 

to an item.  395 

Indeed, error trial analysis (applying correct trial sub-sampling, see methods) for the load 2 & 3 396 

conditions further supported this interpretation. The amount of information in the early and late 397 

sample phase remained above zero (load 2: early, t(186) = 3.25, p = 0.0014; late, t(186) = 5.33, 398 

p < .001; load 3: t(156) = 4.21, p < .001; Fig. 4B asterisks), and was significantly smaller than in 399 

correct trials (load 2: late, t(186) = 2.81, p = .0055, d = 0.26; load 3: late t(156) = 2.55, p = .0117, 400 

d = 0.23). Additionally, there was no further maintenance throughout the memory delay at any 401 
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load (Fig. 4B, PEV at load 2 and 3 in error trials delay, all non-significant). This indicates that a 402 

failure to report which color had changed at higher loads (2 and 3 ipsilateral items) resulted from 403 

a smaller amount of information encoding during the sample phase that was not maintained 404 

through the delay. 405 

 406 

Figure 4: Information encoding at the population level. (A) Color information (PEV) decreases with an increasing 407 

ipsilateral load but not with an increasing contralateral load. (B) On correct trials (left) color is represented during the 408 

early and late phase of the sample and, to a lesser degree, during the early and late delay. On error trials (right), color 409 

information can be found in the early sample phase at load 2, and in the late sample phase at loads 2 & 3 (asterisks). 410 

Analysis of load 1 error trials was omitted due to their very low abundance. Statistical comparisons of correct vs. error 411 

trial information were performed on sub-sampled correct trials. Early and late sample each 400 ms, early and late delay 412 

each 500 ms, shaded areas, and error bars indicate the standard error of the mean. 413 

Higher loads produce divisive normalization-like neuronal responses. 414 

We next wanted to understand the neuronal mechanisms behind the information loss at higher 415 

WM loads. For that, we analyzed how the responses of individual sample- and delay-neurons 416 

changed when the load increased from 1 color to 2 colors. For the ‘sample-populations’ and the 417 

‘delay-populations’, an increasing number of items reduced the amount of encoded information 418 

about the color identity (Fig. 4). This effect was due to neurons that had a large difference of firing 419 

rates between the color 1 and color 2 at load 1 (high PEV, i.e. information about color), and 420 

reduced differentiation at load 2 (small PEV, no or little information about color, e.g. Fig. 2A).  421 

‘Divisive-normalization-like regularization’ (DNR, (Carandini and Heeger, 2012)) can explain this 422 

effect. DNR describes the computation that takes place when two stimuli are presented 423 
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simultaneously. In a simplified case a neuronal response becomes normalized, analogous to 424 

vector normalization, with a normalization factor consisting of the simultaneous stimuli (Carandini 425 

and Heeger, 2012). Applied to our context, a consequence of DNR would be a reduced 426 

differentiation between two color identities at load 2 because differences in firing rate (for each 427 

stimulus by itself) at load 1 would be normalized at load 2 (resulting in information loss, e.g., Fig. 428 

2A). We, therefore, hypothesized that DNR was observable for neurons with significant 429 

information at load 1.  430 

We tested for DNR in the NCL by calculating a selectivity index (SE) and a sensory interaction 431 

index (SI) for each neuron for the sample phase and the memory delay phase (Reynolds et al., 432 

1999), see methods for details). SE indicates how strongly the neuronal response is driven by a 433 

color at the favorite location of the neuron (reference) in relation to a selected probe color (when 434 

either is presented alone). SI indicates how the probe color interacts with the reference color when 435 

both are presented simultaneously. Values of both indices, SE and SI, lie between -1 and +1. The 436 

addition of a probe color influences the response to the reference color by either suppressing the 437 

firing rate of the reference color (if the reference elicits a higher firing rate than the probe, i.e., SE 438 

< 0), or increasing the firing rate for the reference color (if the probe elicits a higher firing rate than 439 

the reference, i.e., SE > 0). If DNR was present, this influence to suppress or enhance neuronal 440 

responses should be an even mixture at the population level, resulting in a significant regression 441 

between SE and SI with a slope of around 0.5 (Bouchacourt and Buschman, 2019).  442 

We compared regressions for the sample and delay phase (each as one bin, see methods for 443 

details) for two groups of neurons: information-carrying neurons (significant information at load 444 

1), and non-informative neurons (no information at load 1 or at load 2; Supplementary Fig. 7). We 445 

found that DNR was present in both sample and delay phases (Fig. 5A). Information-carrying 446 

sample neurons had a fitted slope of 0.47 (R2
adj = .39, F(1,838) = 547.69, p < .001, CI = [0.43 447 

0.51]) and delay neurons had a slope of 0.50 (R2
adj = .34, F(1,342) = 175.60, p < .001, CI = [0.43 448 

0.58]). As the slopes were not significantly different from 0.5, this indicates that reference and 449 

probe color had an equal influence on neuronal responses. We thus show that DNR was 450 

observable in the neuronal population, and as a consequence of this computation, neurons had 451 

generally less information about the color identity at load 2. 452 
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 453 

Figure 5: Divisive normalization-like regularization was observable for neuronal responses of neurons losing information 454 

(A) but not for neurons gaining color information at load 2 (B). Selectivity (SE) indicates how much the neuronal 455 

response is influenced by a color, relative to a second color when either is presented alone. Sensory interaction (SI) 456 

indicates how much the neuronal response is influenced by either color when both were displayed simultaneously. 457 

Slopes close to 0.5 indicate an equal influence of both colors. Slopes < 0.5, or > 0.5 indicate a weighted influence of a 458 

color. (A) Information carrying neurons in the sample (n = 105; left) and delay (n = 43; right) population. (B) Information 459 

gaining neurons in the sample (n = 56 ; left) and delay (n = 8; right) population. The red line indicates the regression 460 

fit. 461 

Gain of information at load 2 can be explained by neuronal normalization. 462 

Some neurons showed encoding of color identity at higher loads, instead of loss of information. 463 

These neurons were abundant in both the sample phase and the delay phase (Fig. 3C). For 464 

example, the neuron shown in figure 2B did not differentiate between color identities at load 1 but 465 

did so for load 2, thus, representing a case of information gain (instead of loss) at a higher load. 466 

We wanted to understand if DNR, the mechanism that we found reduced color information at load 467 

2, could also produce color differentiation. This would be the case if the interaction between the 468 

additional color and the target color is unequal, because neurons without a color differentiation at 469 

load 1 may have gained differentiation at load 2 (e.g. if the interaction of probe color 1 with 470 

reference color 1 is larger than the interaction of probe color 1 with reference color 2). This would 471 
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result in a population regression slope smaller than 0.5. We thus hypothesized that the population 472 

of neurons showing information at load 2, but not at load 1 (e.g. Fig. 2B), would have a smaller 473 

slope than the neurons that lost information (Fig. 5A). Sample neurons had a slope of 0.19 (R2
adj 474 

= .05, F(1,446) = 23.0, p < .001, CI = [0.11 0.27], Fig. 5B), and delay neurons had a slope of -475 

0.04 (R2
adj = -.015, F(1,62) = .08, p = .78, CI = [-0.29 0.22], Fig. 5B). Both slopes were significantly 476 

smaller than 0.5 and smaller than the slopes of the non-informative neurons (Supplementary Fig. 477 

7). This indicates that these neurons were influenced more strongly by the reference color, and 478 

that the addition of the probe color at load 2 resulted in an unequal interaction. Therefore, DNR 479 

was also computationally responsible for a gain of information at load 2, in a specific subset of 480 

neurons. 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 
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Discussion 499 

Neuronal resources of WM capacity are hemifield independent and gradually allocated. 500 

Our results confirm behavioral findings that have been discussed in detail in an earlier study 501 

(Balakhonov and Rose, 2017). In brief, we found that the WM capacity of crows is limited to about 502 

four items, and that the two visual hemifields are largely independent (i.e., the number of items 503 

on one side does not affect change detection performance on the other side). Within each 504 

hemifield, performance dropped gradually with the addition of a second and third item but 505 

remained above chance. Fittingly, on the neuronal level, we found a markedly reduced amount of 506 

color information when the number of colored squares was increased from one to two (roughly 50 507 

% reduction in correct trials). This suggests that WM could be conceptualized as a continuous 508 

resource that has to be divided between the two items (Bays and Husain, 2008; Berg et al., 2012; 509 

Wilken and Ma, 2004), rather than two ‘simple’ slots that would each have the same amount of 510 

information irrespective of the memory load. In contrast, the hemispheric independence we 511 

observed would fit a slot-like model, in which the hemispheres as a whole act like discrete slots. 512 

A more nuanced version of the slot model (‘slots and averaging’, (Zhang and Luck, 2008)) could 513 

also account for graded amounts of information within a limited number of slots (Fukuda et al., 514 

2010; Zhang and Luck, 2008), as we found here. The mix of discrete and independent 515 

hemispheres with a graded allocation of information between items that we found is comparable 516 

to results by (Buschman et al., 2011) observed in monkey PFC. On the neuronal level, recurrent 517 

connections between neurons within a hemisphere may reduce item differentiation when multiple 518 

items are present simultaneously, creating capacity limitations within the hemisphere 519 

(Matsushima and Tanaka, 2014). A lack of interhemispheric recurrent connections would make 520 

processing in the other hemisphere independent. Like in monkeys, WM capacity in crows may 521 

therefore result from neuronal activity patterns governed by multiple individual items. 522 

Attentional processes guide WM allocation and maintenance. 523 

One way to circumvent WM failure when item load increases is to allocate attention. Our results 524 

suggest that attention may play an important role in crow WM. Capacity limitation became 525 

apparent during encoding, as the amount of information at the end of the sample period was 526 

affected by the stimulus load. Adding a second and third item to the ipsilateral stimulus array 527 

reduced the amount of color information encoded by NCL neurons that carried over into the 528 

memory delay. Furthermore, neuronal activity in trials in which the birds made an incorrect 529 

response showed only weak encoding during the sample phase without information maintenance 530 
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during the memory delay. This fits studies of human WM that have shown attentive filtering during 531 

encoding of stimuli influencing WM capacity (Bays and Husain, 2008; Vogel et al., 2005; Vogel 532 

and Machizawa, 2004), and neuronal correlates of this have been reported for monkeys as well 533 

(Buschman et al., 2011). Furthermore, attention and WM may be directly linked, as neuronal 534 

correlates of WM and attention overlap in PFC neurons (Lebedev et al., 2004; Panichello and 535 

Buschman, 2021). The independence of hemifields that we observed on the behavioral level (this 536 

study and (Balakhonov and Rose, 2017)), and found in the neuronal responses could also be 537 

related to attention. Adding stimuli in the contralateral hemifield affected neither performance nor 538 

information maintained by NCL neurons, whereas additional ipsilateral stimuli strongly reduced 539 

both. This fits the influence of attention on WM and hemifield independence, which is consistently 540 

accentuated in studies in which attention had to be divided between the two hemifields (Alvarez 541 

and Cavanagh, 2005; Buschman et al., 2011; Cavanagh and Alvarez, 2005; Delvenne, 2005; 542 

Delvenne et al., 2011). Finally, the DNR computation can explain the responses of the neurons 543 

that gained information at load 2 through attention. This may appear counter-intuitive and 544 

contradictory, considering that the same process is also responsible for the loss of information. 545 

However, when attention is overtly directed to a specific (preferred or non-preferred) item within 546 

the receptive field of a neuron, the DNR computation shifts its weighting of the normalized 547 

response towards the response of the attended item (Reynolds et al., 1999; Reynolds and 548 

Heeger, 2009). This weighted normalization can produce a difference in the neuronal response 549 

to both color identities at load 2, even if the neuronal response was non-informative at load 1. 550 

Thus, an attentive process might have enhanced information in WM at higher loads.  551 

As we did not use any form of attentional cueing in our study, we cannot explicitly test such an 552 

attention effect. However, we do know that the animals participating in this study can use 553 

attentional cues to enhance their WM (Fongaro and Rose, 2020). The attention cues used by 554 

(Fongaro and Rose, 2020) positively affected not only encoding but also the maintenance and 555 

retrieval of the information held in WM, comparable to results from monkeys and humans (Brady 556 

and Hampton, 2018; Souza and Oberauer, 2016). We, therefore, want to emphasize that our data 557 

is in line with the interpretation that the birds possibly attended a load 2 stimulus array differently 558 

than a load 1 stimulus array in order to enhance their performance in trials with higher loads. 559 

Modern models of mammalian WM capacity are applicable to crows. 560 

Our neuronal recordings offer a mechanistic explanation for the behavioral effects, as we found 561 

clear evidence of DNR governing the neuronal responses tied to WM capacity that is in 562 

accordance with mammalian models of WM capacity (Bouchacourt and Buschman, 2019; 563 
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Lundqvist et al., 2016, 2011). The loss of information about color identity (i.e., neuronal response 564 

differentiation between colors) can be accounted for by DNR when an item is added to a neuron’s 565 

receptive field. The normalization of neuronal firing rate diminishes the differentiation between 566 

color identities. As such it is analog to neurophysiological responses from visual areas (Carandini 567 

et al., 1997; Reynolds et al., 1999) and to the prefrontal cortex during spatial WM (Matsushima 568 

and Tanaka, 2014). The WM model of (Bouchacourt and Buschman, 2019) is based solely on 569 

data from monkey electrophysiology, and thus implicitly tied to the layered columns of the 570 

neocortex. The results we report here show that the model also fits the neurophysiology of WM 571 

in crows. However, the picture is incomplete since important aspects of monkeys’ WM are still not 572 

investigated in crows. Oscillations of local field potentials (LFP) are relevant for how information 573 

enters WM and how it is maintained (Miller et al., 2018), and have been tied to normalization and 574 

competition between items in WM (Lundqvist et al., 2018). Thus, the oscillatory interplay of the 575 

layers and different regions of the mammalian neocortex are important fields of research to further 576 

our understanding of WM. Such aspects are so far completely unknown in crows and their non-577 

layered associative areas. This encourages further investigation into the neuronal circuits of WM 578 

in birds.  579 

Therefore, while we cannot, yet, fully equate crow and monkey WM, our results raise two 580 

important questions about how WM is implemented on the level of neuronal networks that have 581 

implications for our comparative view of crow WM. The first regards the neuronal computations 582 

underlying WM. Is there a common canonical computation governing WM, or are there different 583 

solutions based on different neuronal architectures? Recent work has shown that the sensory 584 

areas of mammals and birds show remarkably similar circuit organization (Stacho et al., 2020). 585 

However, higher-order associative areas involved in WM, like the LPFC in mammals and the NCL 586 

in birds, have distinctly different architectures (Stacho et al., 2020). The fact that differently 587 

organized areas like LPFC and NCL produce strikingly similar physiological responses, points to 588 

shared computational principles. Modeling work already suggests that the competing WM 589 

capacity models can be accommodated into a unifying framework based on theoretical neuronal 590 

information sampling, where stochastic information sampling (assumed for continuous resource 591 

models) can account for item limitations better than fixed information sampling (assumed by the 592 

slots and averaging models) (Schneegans et al., 2020). Similarly, DNR is already considered to 593 

be a general, canonical computation of the nervous system, present in evolutionarily distant phyla, 594 

e.g. fruit flies and monkeys (Carandini and Heeger, 2012). The second question regards the 595 

tradeoff between WM flexibility and capacity (Bouchacourt and Buschman, 2019). Is the WM of a 596 

crow as flexible as that of a monkey? Our results show that the computations by individual 597 
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neurons that result in WM capacity limitations are virtually the same in crows and monkeys, 598 

highlighting a further aspect of WM that is similar between these animal groups (Nieder, 2017). 599 

Ultimately, our results were in line with different modern models of WM that implement DNR to 600 

explain capacity (Bouchacourt and Buschman, 2019; Lundqvist et al., 2016, 2011; Schneegans 601 

et al., 2020). However, the data we presented cannot carry a definitive conclusion about which of 602 

the different models fits best. For example, a tradeoff between flexibility and capacity 603 

(Bouchacourt and Buschman, 2019) might be present, but further investigation into the models’ 604 

predictions is required. We do, however, show that mammalian models of WM are in line with WM 605 

in birds, which implies that fundamental aspects of WM are shared between these animal groups. 606 

Conclusion. 607 

Together, all these facets of crow WM capacity suggest that the different intricate neuronal 608 

architectures that carry out the computations in monkeys and crows have likely been shaped by 609 

convergent evolution - into systems that yield similar cognitive performances. The systems may 610 

share the same basic mechanisms and thus limitations. Further investigation into the oscillatory 611 

dynamics of WM in the avian brain may elucidate if birds also share the prominent limitation of a 612 

tradeoff between flexibility and capacity. 613 
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Supplementary Material 771 

 772 

 773 

Supplementary Figure 1: Capacity of crow WM. Line indicates capacity K at different loads. The peak at 4 items 774 

indicates the capacity. Dashed lines indicate maximum capacity and fixed capacity of 1. Error bars indicate the standard 775 

error of the mean. 776 
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 777 

Supplementary Figure 2: Overview of analyses for bird 1. (A) The neuronal population can be best described by 7 778 
individual clusters. (B) Percentages (rounded) of significant neurons in individual load conditions for sample (n = 68), 779 
delay (n = 19), and sample & delay (n = 37). (C) On correct trials (left) color is represented during the early and late 780 
phase of the sample and, to a lesser degree, during the early and late delay. On error trials (right), color information 781 
can be found in the early sample phase at load 2, and in the late sample phase at loads 2 & 3 (asterisks). Analysis of 782 
load 1 error trials was omitted due to their very low abundance. Statistical comparisons of correct vs. error trial 783 
information were performed on sub-sampled correct trials. Early and late sample each 400 ms, early and late delay 784 
each 500 ms, error bars indicate the standard error of the mean. (D) Divisive normalization-like regularization was 785 
observable for neuronal responses of neurons losing information (top) but not for neurons gaining color information at 786 
load 2 (bottom). Selectivity (SE) indicates how much the neuronal response is influenced by a color, relative to a second 787 
color when either is presented alone. Sensory interaction (SI) indicates how much the neuronal response is influenced 788 
by either color when both were displayed simultaneously. Slopes close to 0.5 indicate an equal influence of both colors. 789 
Slopes < 0.5, or > 0.5 indicate a weighted influence of a color. (Top) Information carrying neurons in the sample (n = 790 
35; left) and delay (n = 15; right) population. Bottom) Information gaining neurons in the sample (n = 10; left) and delay 791 
(n = 3; right) population. The red line indicates the regression fit. 792 

 793 
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 794 

Supplementary Figure 3: Overview of analyses for bird 2. (A) The neuronal population can be best described by 7 795 
individual clusters. (B) Percentages (rounded) of significant neurons in individual load conditions for sample (n = 181), 796 
delay (n = 75), and sample & delay (n = 96). (C) On correct trials (left) color is represented during the early and late 797 
phase of the sample and, to a lesser degree, during the early and late delay. On error trials (right), color information 798 
can be found in the late sample phase at loads 2 & 3 (asterisks). Analysis of load 1 error trials was omitted due to their 799 
very low abundance. Statistical comparisons of correct vs. error trial information were performed on sub-sampled 800 
correct trials. Early and late sample each 400 ms, early and late delay each 500 ms, error bars indicate the standard 801 
error of the mean. (D) Divisive normalization-like regularization was observable for neuronal responses of neurons 802 
losing information (top) but not for neurons gaining color information at load 2 (bottom). Selectivity (SE) indicates how 803 
much the neuronal response is influenced by a color, relative to a second color when either is presented alone. Sensory 804 
interaction (SI) indicates how much the neuronal response is influenced by either color when both were displayed 805 
simultaneously. Slopes close to 0.5 indicate an equal influence of both colors. Slopes < 0.5, or > 0.5 indicate a weighted 806 
influence of a color. (Top) Information carrying neurons in the sample (n = 70; left) and delay (n = 28; right) population. 807 
Bottom) Information gaining neurons in the sample (n = 46; left) and delay (n = 5; right) population. The red line indicates 808 
the regression fit. 809 
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 811 

Supplementary Figure 4: Color discrimination in the neuronal response (information, PEV) decreases with load. Example 812 
of a delay neuron with color information decline, at load 1 (blue), load 2 (green), and load 3 (red). Top: raster plot, 813 
where every dot represents a single spike during the individual trials (rows of dots); middle: peri-stimulus-time histogram 814 
(PSTH) of average firing rate (solid line for color ID 1, dashed line for color ID 2) with the standard error of the mean 815 
(shaded areas); bottom: percent explained variance of color identity (a measure of information about color) along the 816 
trial, the line at the top of the y-axis indicates significant bins. 817 

 818 

Supplementary Figure 5: Color discrimination in the neuronal response (information, PEV) increases with load. Example 819 
of a sample neuron with color information gain; at load 1 (blue), at load 2 (green), and load 3 (red). Top: raster plot, 820 
where every dot represents a single spike during the individual trials (rows of dots); middle: peri-stimulus-time 821 
histogram (PSTH) of average firing rate (solid line for color ID 1, dashed line for color ID 2) with the standard error of 822 
the mean (shaded areas); bottom: percent explained variance of color identity (a measure of information about color) 823 
along the trial, the line at the top of the y-axis indicates significant bins. 824 
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Notably, the ‘delay-populations’ also showed an elevated level of information during the sample, 825 
whereas the ‘sample-populations’ did not show an elevated level of information during the delay 826 
(Supplementary Fig. 4). 827 

 828 

Supplementary Figure 6: Sample population (A) and delay population (B), same as Fig. 4A with full time axis. 829 

Non-informative sample neurons had a fitted slope of 0.38 (R2
adj = .16, F(1,1366) = 258.08, p < 830 

.001), significantly smaller than 0.5 (CI = [0.33 0.42]). Delay neurons had a slope of 0.40, also 831 

significantly smaller than 0.5 (R2
adj = .13, F(1,1366) = 197.51, p < .001, CI = [0.35 0.46]). This 832 

indicates that for these neurons the reference color influenced firing rate more than the probe 833 

color. This smaller slope is not related to the amount of information encoded for the individual 834 

colors (which determined the favorite location). It does however indicate those non-informative 835 

neurons were influenced by any color at their favorite location and thereby might have been 836 

informative about if the favorite location had a color but not about what color. 837 

 838 

 839 

Supplementary Figure 7: Divisive normalization-like regularization was observable for neuronal responses of neurons 840 
without significant information. Both phases contain the same neurons (n = 171). Selectivity (SE) indicates how much 841 
the neuronal response is influenced by a color, relative to a second color when either is presented alone. Sensory 842 
interaction (SI) indicates how much the neuronal response is influenced by either color when both were displayed 843 
simultaneously. Slopes close to 0.5 indicate an equal influence of both colors. Slopes < 0.5, or > 0.5 indicate a 844 
weighted influence of a color. The red line indicates the regression fit. 845 
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