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Abstract

Activity-dependent myelination is the mechanism by which myelin changes as a function of neural

activity, and plays a fundamental role in brain plasticity. Mediated by structural changes in glia, activity-

dependent myelination regulates axonal conduction velocity. It remains unclear how neural activity

impacts myelination to orchestrate the timing of neural signaling. We developed a model of spiking

neurons enhanced with neuron-glia feedback. Inspired by experimental data and use-dependent synaptic

plasticity, we introduced a learning rule, called the Activity-Dependent Myelination (ADM) rule, by which

conduction velocity scales with firing rates. We found that the ADM rule implements a homeostatic

control mechanism that promotes and preserves synchronization. ADM-mediated plasticity was found

to optimize synchrony by compensating for variability in axonal lengths by scaling conduction velocity

in an axon-specific way. This property was maintained even when the network structure is altered. We

further explored how external stimuli interact with the ADM rule to trigger bidirectional and reversible

changes in conduction delays. These results highlight the role played by activity-dependent myelination

in synchronous neural communication and brain plasticity.
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1 Introduction

Neural communication is supported by oligodendrocytes, a type of glial cell that produces a white lipid-rich

substance called myelin. Like a conductor, myelin wraps around axonal membranes, influencing the conduction

velocity of action potentials. Axonal conduction velocity is a critical feature of the nervous system because it

determines conduction delays (i.e., the time it takes for an action potential to reach its destination). The

distribution of such delays promotes a rich repertoire of dynamics [1–4]. While often overlooked, axonal

conduction delays play a critical role in neural communication due to the integrative and synchronous nature

of neural signaling. Synchrony is defined as coincident neural activity (i.e., temporal alignment of action

potentials) and represents an important challenge for neural circuits, especially in presence of axons of

various lengths. This is distinct from the concept of oscillatory synchrony in which periodicity is also present.

Multiple converging action potentials travel along different paths, yet still manage to arrive synchronously

at their destination. Synchrony is thus crucial not only for neuronal communication (e.g., post-synaptic

integration), but also for synaptic plasticity. Inadequate or incomplete myelination (e.g., in white matter

injury) may lead to jittered action potential timing and conduction lags resulting in suboptimal integration

in postsynaptic cells and thus impacting the whole downstream neural signaling [5]. As such, neural networks

need to be tightly coordinated. Glia-mediated control of axonal conduction velocity through myelination is

thus of upmost importance because optimal dynamics must be maintained to preserve brain function during

development and learning.

Activity-dependent myelin remodelling, through neuron-glia feedback, dynamically coordinates neuron

signaling by optimizing conduction velocity and the temporal synchrony of action potentials. But how

does activity-dependent myelination optimize synchrony amongst neurons in spite of variability in axon

length [5,22]? From a network perspective, conduction delays between neurons/populations should be roughly

equal with each other to guarantee synchrony (i.e., temporally coincident action potentials). This implicitly

means that conduction velocity should scale with distance and/or axon length (i.e., longer axons should

be more myelinated – see Fig. 1), minimizing the variance between conduction delays and aligning action

potential timing. To test this in silico, we combined computational and mathematical approaches and

developed a deceptively simple recurrent spiking neural network model endowed with neuron-glia feedback.

To characterize myelin remodelling, we created a learning rule inspired by experimental data called the

Activity-Dependent Myelination (ADM) learning rule. This learning rule is: a)activity-dependent : fluctuations

in neural firing rates positively regulate myelination; b) phenomenological [24]: the net conduction velocity

along an axon is assumed to reflect the degree of myelination along that axon; and c) unsupervised : no a

priori knowledge about optimal myelination structure is used to guide learning. As a first approximation to
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experimental observations about activity-dependent myelination, the learning rule assumes that conduction

velocity scales linearly with firing rates (see Methods).

New experimental findings indicate that, just like synaptic plasticity, myelination is activity-dependent

and is influenced by neural activity [6–13]. Optogenetic and electrical manipulations have shown that

increases in neuronal firing promote myelin formation and stabilization [6, 7], revealing that neuron-glia

interactions play an important yet understudied role in brain plasticity. The plasticity of white matter has

been shown to have measurable physiological and behavioral impact in both animal models [8–10], and

human studies [14–16]. For example, in rodent studies, it has been shown that learning induces de novo

myelination in motor circuits [8, 17], and circuits underlying spatial memory [9,10]. In humans, it has been

shown that activity-dependent myelination plays a key role in homeostasis [14,15]. Computational work based

on human data has also shown that activity-dependent myelination can preserve oscillatory activity in the

presence of disease [18]. Identifying the neurophysiological mechanisms involved in neuron-glia interactions

and activity-dependent myelination is a focus of intense research [6, 7, 11]. Experiments collectively point

towards a relationship between myelin remodelling and neuronal firing, where axonal conduction velocity

(and hence delay) may change bidirectionally in a use-dependent way [6,12]. Studies have shown increased

firing rates result in increased myelination, and decreased firing results in myelin retraction [6, 19–21].

Building on these findings to generalize the results to spiking networks, we equipped every axonal

connection of our network model with conduction velocity obeying the ADM rule and explored how it shaped

temporal synchrony between neurons. We did this to: (1) gain insight about the role played by neuron-glia

feedback and activity-dependent myelination on synchrony; (2) disambiguate the respective contributions of

synaptic versus axonal/glial plasticity with respect to synchrony and homeostasis. Synaptic connectivity in

the model was tuned so that, in the absence of time delays (i.e., zero distance between neurons or infinite

conduction velocity), the network exhibits synchrony: firing rates undergo correlated and synchronous jumps

between quiescent and active states, mimicking fluctuations observed in vivo [25, 26]. We then embedded

this network in a three-dimensional volume and assigned uniform conduction velocities for all network

connections, exposing axonal connections to conduction delays of various durations – mirroring variability in

axon length. Unsurprisingly, resulting delays suppressed correlated activity and pushed the network away

from the synchronous state, despite strong synaptic coupling. Introducing plasticity through the ADM rule,

network dynamics homeostatically converged back towards synchrony.

Furthermore, we tested the influence of the ADM rule on network synchrony under two physiologically

relevant conditions: when the network geometry changes to emulate development or disease, and as the network

is perturbed by external stimuli, to model experience-dependent circuit modifications (or learning). We found

that the ADM rule made the synchronous regime scalable: synchronous dynamics were robustly preserved
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despite changes in network volumes that scaled over four orders of magnitude. Most importantly, changes in

conduction velocities observed during learning were not uniformly distributed across network connections:

modifications in conduction velocities were instead found to be axon-specific and length-dependent. Second,

exposing the network to external stimuli (excitatory or inhibitory) to mimic inputs resulting from experience

or learning, our simulations show that axonal conduction velocities and delays could be bidirectionally and

reversibly tuned through the ADM rule.

Figure 1. Myelination, axonal length and synchrony. In this illustrative example, pre-synaptic neurons
(yellow, red and green circles) are connected with a post-synaptic target cell (black circle) with axons of various
lengths. a, In absence of myelination, the slow conduction velocity results in conduction delays (τ1, τ2 and τ3) which
are proportional to axonal lengths. These delays are dispersed enough to prevent the temporal alignment of
propagating action potentials, resulting in asynchronous activation of the post-synaptic neuron. b, If myelination is
uniform across axons (blue cylinders), the conduction velocity is higher (but finite) and remains proportional to
axonal lengths. Delays may remain too variable and action potentials are asynchronous. c, If myelination is adaptive
and axon-specific, each axon possesses a conduction velocity that scales with its length, yielding similar delays. This
results in synchronous action potentials and successful activation of the post-synaptic neuron.

Figure 2. Representative dynamics in conduction velocity resulting from the ADM rule. a, Sketch of
the ADM rule. Neuron j receives signals from neuron i (both neurons are depicted as grey circles) with different
intensity. Myelin retraction (red cylinder) occurs at low firing rates resulting in slow conduction velocity, while myelin
formation (blue cylinder) occurs at high firing rates resulting in fast conduction velocity. b, Firing rate fluctuations
across an axon result in jumps in net conduction velocity which, collectively, change axonal conduction delays.
Sustained spiking promotes myelin formation (blue rectangles), while periods of silence promote myelin retraction (red
rectangles). Because formation and retraction occur at different rates, their magnitude is not equal and the overall
conduction speed increases until it stabilizes. Parameters used are αretraction = 0.0001ms, αformation = 0.001ms,
Ω = 10mm, wo = 0.21, h = 0.1, β = 25, ρ = 0.15, cmin = 0.1m/s and cmax = 100m/s. The same values of the
parameters are used throughout, unless otherwise noted.
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2 Results

Variability in Conduction Delays Suppresses Synchrony

To model the effect of axon-glia feedback and myelin remodelling, we devised a learning rule, referred thereafter

as the activity-dependent myelination rule (ADM; see Methods for details), in which conduction velocity (cij)

along the axonal connection between neuron i and neuron j changes as a function of the firing rates passing

along that axon (see Fig. 2a). This rule combines two elements: i) a positive, firing-rate dependent term

(fij) that increases the conduction velocity as activity passing along an axon increases – representing myelin

formation; and ii) a negative decay term (rij), portraying the decrease of conduction velocity in absence of

neural activity – representing myelin retraction. Combined, these two components compete at the level of

individual axons, resulting in a dynamic and adaptive feedback between neural firing rate and conduction

velocities.

We set all conduction velocities to the same baseline (before learning) uniform initial value of co = 0.1m/s

(for all axons). This baseline conduction velocity sits inside the range of unmyelinated and/or minimally

myelinated axons [27,28].

We tuned synaptic connectivity in our model such that when distances between neurons are zero (i.e., zero

conduction delay and no influence of conduction velocity), the network resides in a synchronous regime. The

appropriate values of synaptic gain and connection probability parameters were determined mathematically.

For such dense synaptic coupling, synchrony (i.e., temporal alignment of action potential fluctuations) is

expected due to a phenomenon called multistability. Multistability leads to noise-induced jumps in firing rates

which flip between quiescent and active states (see Methods). Such dynamics notably exhibit critical-like

features, reminiscent of those observed in vivo [25,26].

Does synchrony, resulting from dense synaptic connectivity, persist in the presence of conduction delays?

To explore this, we introduced variability in axonal lengths to the model by spatially distributing the neurons

randomly in a cubic volume of Ω3 = 103mm3 (here Ω denotes the edge of a cube). Axonal lengths, resulting

from the physical distance between the neurons, were approximated by the Euclidian distance. Introducing

such non-zero distances between the neurons resulted in axonal conduction delays. Those delays (τ) were

computed as the ratio of the Euclidian distance (l) between neurons over the conduction velocity (c) for that

particular axonal connection, i.e., τ = l/c. Through this process, we introduced significant variability in

conduction delays and length-dependent jitter in the timing of action potentials (see Fig. 1). We note that

throughout, synaptic gains and connection probability remained unchanged.

We first performed numerical simulations of our spatially distributed baseline model network in the

absence of the ADM rule – to serve as a control condition. As shown in Fig. 3a, without activity-dependent

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.17.456520doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.17.456520
http://creativecommons.org/licenses/by/4.0/


changes in conduction velocity, network activity was found to be asynchronous and characterized by low firing

rates. Despite dense synaptic connectivity, the uniform and slow conduction velocity (co) of this baseline

model resulted in significant variability in conduction delay, which suppressed synchrony, as described above.

This result was expected from the previous theoretical studies on delayed networks [2,29]. This confirms that

conduction delay variability, resulting from inadequate conduction velocity distribution, represents a major

obstacle to coincident neural signaling and synchrony, despite strong synaptic coupling.

Homeostatic Control on Synchrony

We then tested whether the introduction of the ADM rule to our baseline network model would restore

synchrony. How can adaptive and activity-dependent changes in conduction velocity autonomously restore

synchrony in the network? Can it be used to compensate for variability in axonal lengths as physical distances

change such as during development? To answer these questions, we let the baseline system evolve and adapt

as we monitored its activity. As seen in Fig. 3b, after a simulation period of 105ms, the system converged back

to synchrony autonomously. Conduction velocities throughout the network stabilized: they first increased and

then plateaued. As a direct consequence, both the mean and variance of the conduction delay distribution

decreased (Fig. 3c and 3d). The results depicted in Fig. 3 demonstrate that adaptive changes in conduction

velocity amplify firing rates and foster synchrony.

Adaptive Myelination Compensates for Changes in Network Geometry

One of the important roles of myelination is to compensate for increasing physical distances in the developing

brain. We tested whether the results of Fig. 3 could be generalized across different spatial scales, and whether

ADM-based learning preserved synchrony despite changes in network geometry. By geometry, we refer to

changes in the network spatial scale and axonal lengths.

We thus repeated the numerical experiments in Fig. 3 and let the system stabilize, but on geometries –

or spatial scales – that spanned four orders of magnitude (from Ω = 1mm to Ω = 103mm). Importantly,

synaptic connectivity remained unchanged throughout – allowing us to dissociate the role of synaptic versus

glial plasticity in maintaining synchrony.

Our simulations demonstrated that the network autonomously adjusted its conduction velocity statistics

to compensate for increased spatial distances. Indeed, as can be seen in Fig. 4, synchrony was achieved

irrespective of the spatial scale considered. The ADM rule tuned the conduction velocities until synchronous

correlated fluctuations in firing rate emerged. Despite increasing variability in axonal lengths, stabilized

delays were found to be statistically similar. To quantify this and measure the level of synchrony in the
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Figure 3. Activity-dependent myelination (ADM) tunes the network towards synchrony. a, Network
axonal connections were initialized with baseline conduction velocity of co = 0.1m/s. Neurons were distributed
randomly in a cubic volume with dimensions Ω3 = 103mm3. The resulting dynamics are characterized by
asynchronous and low firing rates. b, After a period of 105ms adapting under the action of the ADM rule, the
conduction velocity increased and plateaued, leading the network dynamics towards synchrony. c, Without the ADM
rule, baseline conduction delays were highly variable and conditioned by the axonal tract lengths set up randomly by
the Euclidean distance between neurons. d, After ADM-based learning, the conduction delays are both less variable
and statistically shorter, as a direct consequence of increased conduction velocities.

network, we measured the firing rate variance (σ2) across independent trials and after the same learning

period (see Methods). Across the four spatial scales considered, the variance σ2 remained stable and decreased

dramatically only when ADM learning was turned off by setting the learning rate to zero (i.e., ε = 0 in

Eq. (3)).

Our simulations revealed another important consequence of activity-dependent changes in conduction

velocity. Despite being uniformly distributed across network connections before adaptation (i.e., baseline),

stabilized conduction velocities were not. Indeed, changes in conduction velocities were found to be axon-

specific. As can be seen in Fig. 4d, stabilized conduction velocities scaled with axon lengths, across all

network scales considered: longer axons became faster compared to shorter ones, compensating for axon

length variability and minimizing the variance between conduction delays (cf. Fig. 4ab). These simulations

demonstrate that the ADM rule can adapt conduction velocities to preserve synchronous dynamics over a

wide range of spatial scales, implementing activity-dependent and axon-specific modifications in conduction

velocity.
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Bidirectional and Reversible Influence of Stimuli on Axonal Conduction Velocity

One key experimental observation stemming from multiple recent studies is that stimuli and learning-dependent

inputs engage myelination. Optogenetic [6], electromagnetic [7] or learning-dependent [9,10,12,16] stimuli

translate into changes in myelin micro-structure. Such myelin remodelling impacts action potential propagation

and timing [7]. Changes in myelination have further been shown to be reversible and bidirectional [13,16],

suggesting that stimuli can interfere with neuron-glia feedback loops to influence conduction velocity and

hence conduction delays.

We investigated whether stimuli could engage network plasticity in our model to influence axonal conduction

velocity. We transiently stimulated neurons in our model and examined how inputs influenced conduction

velocities during and after stimulation. We first let the system adapt and stabilize, and applied both excitatory

(increasing fire rate) and inhibitory (decreasing fire rate) stimuli of various intensities during a fixed time

period. We then measured how conduction velocities and delays changed both during and after stimulation.

As can be seen in Fig. 5, prior to stimulation, conduction velocities and associated delays have reached

an equilibrium. This equilibrium is perturbed during stimulation. Because the connectivity has stabilized

before stimuli onset, network dynamics were synchronous. However, during stimulation, synchrony was

replaced by input-driven responses in which firing rates scaled with stimuli amplitudes. Because the ADM

rule scales linearly with firing rate, conduction velocities also mirrored stimuli amplitudes. The dynamics

observed were reversible: at stimulation offset, conduction velocities converged back to their pre-stimulation

values in a homeostatic fashion. This reversibility is reminiscent of myelin retraction observed in absence of

stimuli [12, 13, 16]. Firing rates also converged back to their baseline values as stimulation was turned off and

synchrony reemerged. Together, these results show that activity-dependent myelination in our model can be

bidirectionally and reversibly modulated by stimuli.
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Figure 4. The ADM rule preserves synchrony even as network geometry changes. As the distance
between neurons and axonal lengths increase, activity-dependent myelination compensates to maintain synchronous
activity. a, Conduction velocities scale with network size. As the spatial extent of the network varies across the range
Ω = 1mm to Ω = 103mm, the stabilized conduction velocity distribution (after ADM-based learning, blue) shifts
towards an increasingly larger range, despite the same initial baseline value (black). b, Resulting changes in
conduction delays. As the spatial scale increases, the initial baseline distribution is wider (the asterisk denotes that
part of the distribution exceeds the range plotted the range examined here and were excluded). This is, however,
compensated by adaptive changes in conduction velocity via the ADM rule (Panel a). c, Adaptive conduction enables
the network to stay in the synchronous state despite changes in physical distances (blue). This scalability property
vanishes once ADM rule is turned off (black). Same initial conditions were used throughout the simulations. d,
Activity-dependent changes in conduction velocity are not uniform, but axon-specific: stabilized conduction velocities
increased with axon lengths, across all scales considered in Fig. 3, where Ω ranges from 100 to 103mm (dark to light
blue). These axon-specific changes compensate for axon lengths and reduce conduction delay variability.
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Figure 5. Bidirectional control of conduction velocities and delays by transient stimulation. a, As
stimuli of various amplitudes (I = −0.10,−0.05,−0.01, 0.00, 0.01, 0.05 and 0.10) are delivered uniformly to all neurons
in the network, the response triggers adaptive changes in conduction velocities and associated time delays. Increases
in activity speed up connections, and the opposite occurs if the firing rate decreases. Because of the inverse
relationship between conduction velocities and delays, inhibitory stimuli have a more salient effect on conduction time.
As the stimulation is turned off, conductive properties of the various network connections converge back
homeostatically to their pre-stimulation values. The blue shading reflects the magnitude of the conduction velocity
and the corresponding conduction delays. b, Firing rates of the neurons are also tightly regulated. During
stimulation, they reflect the stimulation amplitude, but otherwise converge back to their equilibrium values. Network
activity was simulated for a total of 1200 s, while stimulation was applied during the interval 400 s and 800 s.
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3 Discussion

The question that is puzzling especially from the perspective of neural networks, whose structure continuously

change due to learning, stimuli and during development, is how neural circuits compensate for variability

in axonal lengths to preserve synchronous neural communication. In this work, we hypothesized that

neural circuits optimize synchrony through firing rate-dependent changes in axonal conduction velocity. We

developed a spiking neural network model enhanced with neuron-glia feedback. To model myelination, we

created a learning rule inspired by experimental data and known synaptic plasticity rules [31], called the

Activity-Dependent Myelination learning rule (ADM). By this rule, axonal conduction velocity changes linearly

with firing rates. We tuned synaptic connections so that network activity is synchronous, and introduced

conduction delays to examine their impact on synchrony. Despite strong synaptic coupling, conduction delays

induced by variable axonal lengths suppressed synchrony. Once the ADM rule was enabled, our simulations

and analysis showed that the network converged back to synchrony autonomously, compensating for axonal

length variability. This suggests that synchrony represents a homeostatic target for our network model under

the action of the ADM rule.

To generalize these results, we explored the effect of increasing spatial distance between neurons, and

altered the geometry of our model network by considering distances ranging over four orders of magnitude.

Our results demonstrate that irrespective of the range considered, the ADM rule allowed the network to

reach synchrony despite increased variability in axonal lengths and delays. These simulations demonstrated

that through ADM learning, synchrony becomes scalable: synchronous activity can be maintained in a

homeostatic fashion over a wide range of geometric constraints. Our simulations also showed that despite

being uniform before learning, conduction velocity became axon-specific and length-dependent: stabilized

conduction velocities scaled with axon lengths. Note that this length dependence of conduction velocity is

in line with numerous experimental observations, in which longer axons are usually more myelinated than

shorter ones to promote coincident neural signaling (see [32] and references therein).

To examine the influence of inputs resulting from learning or experience, we subjected our network model to

both excitatory and inhibitory stimuli of various amplitudes. Our simulations showed that axonal conduction

velocities and delays could be bidirectionally and reversibly tuned. At stimuli offset, the conduction velocities

converged back to the synchronous state in a homeostatic fashion. This firing rate-dependent change in

conduction velocity mirrors the reversible changes in myelination observed experimentally during and after

learning [16].

In [18], a large scale brain network model informed by primate structural connectivity data was used to

examine how phase-dependent changes in conduction velocity influence global oscillatory activity, notably
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in presence of injury. Our results extend and generalize these results using an adaptive myelination rule

inspired by experimental data [6,19–21] focused on spiking activity, as opposed to oscillatory responses. While

neural oscillations are certainly involved in neural communication, numerous systems do not display neural

oscillations while requiring tight temporal coordination (e.g., auditory and electrosensory systems [32]).

Combining these results suggests that activity-dependent myelination endows neural circuit with flexible

coordination properties. Because synaptic connectivity was fixed throughout, only the timing of neural

interactions changed. As such, it is not the amplitude, but instead the coordination of neural interaction

that reinforced synchrony. If we regard synaptic plasticity as a gain control mechanism, activity-dependent

myelination represents a timing control property; this speaks of synaptic and axonal/glial plasticity as playing

complementary roles in implementing and preserving brain function.

While insightful, our network model and plasticity rule (i.e., the ADM rule) represent trade-offs between

biological relevance and mathematical tractability, and we acknowledge the following limitations and opportu-

nities for future study. First, the ADM rule implemented is phenomenological [24] in nature and bypasses the

rich neurophysiological mechanisms involved in axon-glia signaling and myelination [6, 13, 33, 34]. The ADM

rule was not only inspired by experimental data, but also by decades of work on synaptic plasticity [35,36]:

phenomenological learning rules (e.g., Hebbs learning, STDP) have played a key role in our current under-

standing of learning and memory. Nonetheless, uncovering the mechanisms involved in neuron-glia feedback

remains a topic of intense research. Future experimental work more precisely defining the relationship between

neuronal firing and myelination in different brain regions and cell types will help us to refine our model.

Second, we have limited our modelling to the net effect of glia on conduction velocity. Oligodendrocytes,

as well as other glial cells (e.g., perinodal astrocytes) are known to significantly impact neural activity [21]

and thus likely involved in maintaining homeostasis. This important oversight is left for future work.

Third, the neuron and circuit models used here retain limited abstractions, and do not capture the full

richness of action potential emission and propagation. We justify these shortcomings by our desire to assess

network-scale (e.g., as opposed to single axon) effects of activity-dependent changes in conduction velocity.

Towards this goal, mathematical tractability represents a powerful asset to better understand the contribution

of myelination in neural network plasticity.

Fourth, using the Euclidian distance to estimate axonal lengths is commonplace in the computational

literature, notably in models informed by connectomic data [1, 3, 4, 18]. It nonetheless remains a coarse

approximation. Including detailed anatomy of axonal pathways (e.g., using DTI tractography estimates)

would represent a relevant development to improve the link between experiments and modelling.

Fifth, the spatial and temporal scales considered in this study do not necessarily match those involved

during and after animal development. Indeed, adaptive myelination occurs over periods of hours, days and
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years, and thus much slower than what is modelled here [37, 38]. However, the change of time scale does not

impact the asymptotic value of the conduction velocities, simply their convergence rate. In addition, the

distances considered here certainly go beyond those concerned in many animal neural circuits, but instead

represent idealized milestones.

Lastly, our results and conclusions are contingent on the dynamics generated by our model. The

synchronous activity observed by our network model results from noise-induced transitions between quiescent

and active states. This is one out of many neural activity patterns that could also represent homeostatic

targets. The inclusion of both excitatory and inhibitory cells would further enrich the range of possibilities,

notably the presence of local and/or global oscillations [18].

4 Methods and Materials

Spiking Network Model

We built a network of N recurrently connected excitatory spiking neurons. This microcircuit represents

distributed functional network where neurons can be either local (spatially clustered together) or not (distant

from one another). This distributed neural assembly is interacting through axonal pathways, which could be

thought of as projecting globally through white matter, or locally between cortical layers, for instance. To

this end, we uniformly and randomly distributed the neurons location in the cubic volume Ω3. The resulting

Euclidian distance between neurons was used to determine axonal lengths. Because of spatial distances (i.e.,

axonal lengths), propagating action potentials experience conduction delays. Given an axonal length between

any two neurons, l, and a conduction velocity, c, the time delay is computed as τ = l/c.

The spiking response of neurons in the model was modelled using a non-homogeneous Poisson process,

where the membrane potential of neuron i, ui(t), obeys the following delay differential equation

d

dt
ui (t) = −ui (t) +N−1

N∑
j=1

wijXj

(
t− lij

cij (t)

)
, (1)

where Xj → Poisson (g[uj ]) is the spike train of neuron j with firing rate g. The firing rate response function,

which maps inputs to firing rate is given here by a sigmoid of the standard form

g[u] =
1

1 + e−β(u−h)
(2)

with β = 25 and h = 0.1. The constants lij = lji > 0 represent the axonal tract length (i.e., Euclidean

distance) between neurons i and j, and cij(t) is the conduction velocity. We chose Poisson neurons to account
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for the intrinsic variability in spike timing in vivo [39].

The synaptic weights were scaled by the connection probability ρ = 0.15 and are given by wij = wo/ρ,

where wo = 0.21 is the connection coupling weight. We did this so that the net synaptic connectivity remained

invariant to changes in connection probability.

The weights have furthermore been tuned so that the network exhibits synchronous correlated activity

in absence of time delays. Mathematically, this means that the weights have been chosen such that the

network dynamics sit in a multistable regime and exhibits noise induced jumps between stable steady states,

leading to correlated network dynamics as seen in Fig. 3b. While the presence of delays does not impact

multistability per se (i.e., steady states of Eq. (1) remain the same with or without delays), it will impact

significantly the ability of the network to visit and transition between those states and hence for the network

to exhibit synchrony.

Modeling Neuron-Glia Feedback: the Activity-Dependent Myelination (ADM)

Learning Rule

Experimental results show that oligodendrocytes are responsive to changes in neural activity and that

myelination is activity-dependent. Optogenetic and electrical manipulations have shown that increases in

firing activity promotes myelination [6,7]. Fluctuations in neural activity engages oligodendroglia, resulting in

changes in axonal conduction velocity through the formation of new myelin segments, adaptive changes myelin

sheath thickness and/or internodal length [8, 33]. While neuron-glia signaling remain poorly understood and

a topic of intense research [6,7,11], experiments indicate that neuronal firing rates and axonal conduction

velocity are generally positively correlated.

To model such neuron-glia feedback and examine the effect of activity-dependent myelination on neural

synchrony, we enhanced our network model in Eq. (1) with an axonal plasticity mechanism. We took a

phenomenological approach inspired by Hebbian and use-dependent plasticity [35,36]. Instead of modelling glia

directly, we modeled their effect on conduction velocity. We created a phenomenological learning rule – called

the Activity-Dependent Myelination rule (ADM). This learning rule is characterized as phenomenological in

the sense that along a single axon the conduction velocity reflects myelination.

The ADM learning rule states that the action potential conduction velocity is linearly proportional to the

firing rate along a given axon. Specifically, more firing leads to more myelin formation (i.e., conduction velocity

increases), and less firing leads to retraction (i.e., conduction velocity decreases). While activity-dependent

myelination is most likely not a linear process, the ADM rule is nonetheless a useful simplification for the

current model in the absence of more parametric data that speak directly to the relationship between firing
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rates and myelin remodelling.

Mathematically, the ADM learning rule obeys the following linear ordinary differential equation of the net

conduction velocity cij :

d

dt
cij(t) = fij(t) + rij(t). (3)

The conduction velocity cij along an axonal pathway between neurons j and i changes according to the

interplay of two components: myelin formation, fij(t), and myelin retraction, rij(t).

The myelin formation term is defined as

fij(t) := ε αformation γij(t)Xj(t) (4)

and represents the positive influence of action potentials Xj traveling from neuron j to neuron i on the

conduction velocity cij . The coefficient ε = 0.3 – analogous to the learning rate – sets the gain of how much

conduction velocity changes as a function of neural activity. It was chosen so that changes in conduction

velocity remain within a relevant physiological range [27, 28]. The rate αformation = 0.001ms represents

a timescale of myelin formation induced by neural firing. Taking into account that the range of potential

change in conduction velocity on longer axons is wider than in shorter axons, we added the coefficients

γij(t) = lij/cij(t) to compensate for that length-dependent changes in conduction velocity. In addition, γij(t)

weights the declining impact of increasing conduction velocity with respect to time delays.

The second component of Eq. (3), i.e., the myelin retraction rij(t), is given by

rij(t) := αretraction (co − cij(t)). (5)

This negative term represents the decrease of conduction velocity in absence of neural activity – identified

with activity-dependent myelin retraction. The coefficient αretraction = 0.0001ms sets the timescale of this

decrease. A baseline conduction velocity, co = 0.1m/s, was added to model the minimal conduction velocity

along an axon. The term rij was included in the ADM rule to reflect metabolic demands and resulting myelin

retraction in absence of neural activity, in which the conduction velocity decreases exponentially towards a

baseline velocity co with a rate αretraction.

Combined, the myelin formation and myelin retraction terms set an equilibrium conduction velocity that is

specific to one particular network axonal connection and mirror the neural activity passing through it. Notice

that the ADM rule, Eq. (3), models processes that occur at much slower timescales than the activity of the

individual neurons. This can be seen from the values of the parameters αformation � 1 and αretraction � 1.

According to the ADM learning rule, and as described above, single action potentials Xj , have a positive
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influence on myelin formation and reflected as an (albeit small) increase in conduction velocity. These two

components (myelin formation and myelin retraction) shape the conduction velocities and, by corollary, the

conduction delays in the network. Specifically, conduction delays, denoted by τij , between any two neurons i

and j were computed by

τij =
lij
cij

(6)

where, recall, lij corresponds to the Euclidean distance between these neurons, which have been uniformly

and randomly distributed in a cubic volume of size Ω3, and cij is the conduction velocity determined as per

Eq. (3). The influence of spiking activity on the conduction time is immediate and the effective conduction

delay for this connection decreases. In absence of spiking, the opposite occurs: conduction velocity stagnates

and/or decreases and time delay increases. As can be seen in Fig. 2b, baseline spiking, even in absence of

synchrony, increases the conduction velocity. However, more significant increases in conduction velocity occur

during correlated and/or synchronous fluctuations.

Combining the ADM learning rule with the network model of Eq. (1) implements a feedback loop in

which neural activity influences axonal conduction, and vice-versa, and allows us to examine its impact on

network synchrony.

Quantifying the Variance in Network Mean Activity

To quantify the network response and compare its dynamics with and without activity-dependent changes in

conduction velocity, we computed the variance of the mean firing rate. Specifically, we computed

σ2 =
〈
(g[ū]−R)2

〉
T
, (7)

where 〈·〉T represents the average over trial time T , R := 〈g[ū]〉T and

g[ū] := N−1
N∑
i=1

g[ui(t)] (8)

represents the ensemble average response. The variance σ2 of Eq. (7) is depicted in Fig. 4c.

Conduction Velocity, Synchrony and the Effect of Time Delays

Our prime focus is to understand the multi scale properties of adaptive myelination. Hence, we are not directly

modelling the specific biophysical mechanisms involved in axon-glia feedback [6,13,40] or oligodendrogenesis [9].

While myelination patterns observed in experiments are variable and diverse [23], we choose to focus on the
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net resulting conductive properties of axons. The conduction velocity over a given axonal tract of length L

can vary among other factors as a function of myelin thickness (t), segment length (l) and nodes of Ranvier

density (R). Here we consider the net conduction velocity given by

cij(t) =

∫
lij

c(t, l, R)ρL(t, l, R) dl, (9)

where ρL is the probability distribution of those different parameters over the axonal length. The above

equation further implies that multiple myelin distribution patterns can lead to identical conduction speeds.

In our model, the homeostatic target state corresponds to synchrony: neural firing rates fluctuate in a

collectively correlated fashion, no a priori periodicity is observed. The mean network activity undergoes

jumps between quiescent and active states, driven by noise and due to multistability. The presence of time

delays influences the probability for such transitions to occur.

To better understand how such fluctuations occur in the network and how they relate to conduction

velocity, we may use a mean field approach and consider the collective average behavior of Eq. (1). Assuming

only K ≈ ρN connections are non-zero, we may rewrite Eq. (1) as

d

dt
ui(t) = −ui(t) +

wo
ρ
N−1

K∑
k=1

Xk (t− τik) (10)

for some 0 < K < N . Recall that the delays τik are defined as in Eq. (6), ρ is the connection probability and

the spike trains Xk → Poisson (g[uk]).

If we assume that the spike trains are uncorrelated, the sum on the right hand side of Eq. (10) corresponds

to a composite non-homogeneous Poisson process, defined by X̄ :=
∑K
k=1Xk(t− τik), for which the rate is

equal to the sum of the individual firing rates (Xk), that is, gX̄ [uk] =
∑K
k=1 g[u(t− τik)]. For sufficiently high

firing rates, X̄ can be approximated by a Gaussian white noise process with mean and variance gX̄ ,

X̄ = gX̄ [uk] +
√
gX̄ [uk] ξ(t) (11)

where ξ(t) is a Gaussian white noise process such that 〈ξ(s) ξ(s′)〉 = δ(s− s′).

In a mean-driven regime, it is possible to write the local membrane potential uk as a small deviation

from the ensemble average: uk = ū+ vk, where ū is the ensemble average membrane potential defined as in

Eq. (8), and vk is a small deviation from the mean. Applying this decomposition into Eq. (11), expanding

the resulting equation and assuming that vk � ū we obtain

X̄ ≈ gX̄ [ū] +
√
gX̄ [ū] η(t),
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where η(t) is a Gaussian white noise process such that 〈η(s) η(s′)〉 = δ(s− s′). In the derivation above, higher

order terms can be neglected whenever β is small enough – which occurs whenever the response function g is

smooth [41,42].

Let us now consider

G[ū] = K−1gX̄ [ū].

Given that the above calculation holds for all i and that K ≈ ρN , we receive the following nonlinear stochastic

delay differential equation with finite multiplicative noise

d

dt
ū(t) = −ū(t) + woG[ū] +

√
Q[ū] η(t) (12)

where Q[ū] :=
w2

oG[ū]
ρN . Taking the limit as N →∞, as the number of neurons N in the network becomes very

large, Eq. (12) is simplified to

d

dt
ū (t) = −∂V

∂ū
. (13)

Here ∂V
∂ū = ū − woG[ū], and G[ū] =

∫∞
0
gX̄ [ū(t − s)]P (s) ds, with P (s) the probability distribution of

conduction delays in the network. Eq. (13) is a noise-free equation for the mean activity.

The dynamics observed in the network are analogous to those of a particle randomly fluctuating in a

potential well. Indeed, Eq. (13) specifies that the network mean dynamics evolve in a potential V with optima

given by the steady states, φµ, µ = 1, 2, 3. The system possesses three steady states due to the choice of the

parameters of g, as shown in Fig. 6a. In other words, the potential V is cubic.

The three steady states are solutions to the equation

∂V

∂ū
(φµ) = 0, µ = 1, 2, 3, (14)

or equivalently, φµ − woG[φµ] = 0. The points φ1 and φ3 are stable, while φ2 is unstable. The first stable

steady state φ1 corresponds to a state of quiescence and thus low firing rates. The second stable steady state

φ3 corresponds to a state of active neural firing and thus elevated firing rates. These are quiescent and active

states visited in Fig. 3b. The fixed point φ2 (white circle in Fig. 6a) is unstable, and delineates the basins of

attraction of the two stable steady states.

Our main goal is to understand the role of the delays to transitions between different states leading to

synchronization. In [43], the author uses a Fokker-Planck approach to derive the stationary probability

density for nonlinear stochastic delay differential equations. To observe intuitively the changes to the system

caused by delays we will use a linear approximation. Consider small fluctuations, v(t), around the stable
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steady state φ1 such that the solution ū(t) of Eq. (12) takes the form ū(t) = φ1 + v(t). Linearizing Eq. (12)

about φ1 yields

d

dt
v (t) = −v(t) + κ

N∑
i,j=1

v(t− τij) +

√
Q̃ η(t) (15)

where κ := woN
−2g′(φ1), and Q̃ :=

w2
og(φ

1)
ρN +O(2). Since κ = O(δ) with δ � 1, the perturbation approach

of [44] is applicable. Therefore, the variance of the dynamics of Eq. (15) is

var(v) =
Q̃

2(1− κΓ)
, (16)

where Γ :=
∑N
i,j=1 e

−τij =
∑N
i,j=1 e

−lij/cij .

Fig. 6c depicts the simulated variance of Eq. (15) and the variance in Eq. (16). Observe that the variance

is proportional to conduction velocities, or equivalently is inversely proportional to the time delays. That is,

long conduction delays (i.e., prior to ADM induced changes when conduction velocities are small) will result

in low variance. Fluctuations around the stable steady states will have small amplitude and no network-wide

correlated fluctuations (i.e., synchrony) occur. Network firing rates remain low and there is no synchrony. This

is the dynamics portrayed in Fig. 3a. In contrast, when conduction delays are small (i.e., after stabilization

once velocities are high), the opposite occurs: synchronous fluctuations take place as the mean activity jumps

between the stable steady states. This is what is portrayed in Fig. 3b. Representative dynamics for these two

cases are plotted in Fig. 6b.

Figure 6. Effect of time delays on mean network dynamics. a, Fixed points of the network mean activity.
Stable (resp. unstable) steady states are labelled as black (resp. white) circles. b, Representative dynamics for
baseline (black) and stabilized (blue) conduction velocities. Large conduction delays lead to small amplitude activity
that does not permit correlated synchronous fluctuations. The network mean activity remains close to the low activity
equilibrium state. Whenever conduction velocities increase due to the ADM rule, mean activity fluctuations increase,
and the network undergoes noise-induced jumps between the stable states, resulting in synchrony. c, Effect of
conduction velocity on mean activity variance. As the conduction velocity increases, conduction delays decrease,
amplifying mean activity fluctuations: the variance increases. Simulation data resulting from linearization around the
stable steady state plotted alongside theoretical predictions.
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Table 1. List of model parameters.

Symbol Definition Value

N network size 100
Ω3 cubic volume 103mm3

ε learning rate 0.3
αretraction myelin retraction rate 0.0001ms
αformation myelin formation rate 0.001ms

h the u value of the sigmoid’s midpoint 0.1
β steepness of the sigmoid function 25
wo connection coupling weight 0.21
ρ connection probability 0.15

cmin minimal conduction velocity 0.1m/s
cmax maximal conduction velocity 100m/s
lij axonal length variable
cij conduction velocity variable
τij conduction delay variable
wij connection weights variable
co baseline conduction velocity 0.1m/s
γij weight coefficient variable
σ2 variance of the mean activity a.u.

var(v) variance of the linear dynamics a.u.
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