Software for Systematics and Evolution

18 August 2021

KoT: an automatic implementation of the K / θ method for species delimitation

Yann Spöri ${ }^{1,2}$, Fabio Stoch ${ }^{1}$, Simon Dellicour ${ }^{3,4}$, C. William Birky, Jr. ${ }^{5}$ and Jean-François Flot, ${ }^{1,2}$
${ }^{1}$ Evolutionary Biology $\S \mathcal{E}$ Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
${ }^{2}$ Interuniversity Institute of Bioinformatics in Brussels - (IB $)^{2}$, Brussels, Belgium
${ }^{3}$ Spatial Epidemiology Lab (SpELL), Université libre de Bruxelles (ULB), Brussels, Belgium
${ }^{4}$ Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
${ }^{5}$ Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA

Corresponding authors: yspori@ulb.ac.be, birky@arizona.edu, jflot@ulb.ac.be

Abstract

K / θ is a method to delineate species that rests on the calculation of the ratio between the average distance K separating two putative species-level clades and the genetic diversity θ of these clades. Although this method is explicitly rooted in population genetic theory, it was never benchmarked due to the absence of a program allowing automated analyses. For the same reason, its application by hand was limited to small datasets of a few tens of sequences.

We present an automatic implementation of the K / θ method, dubbed KoT (short for "K over Theta"), that takes as input a FASTA file, builds a neighbour-joining tree, and returns putative species boundaries based on a user-specified K / θ threshold. This automatic implementation avoids errors and makes it possible to apply the method to datasets comprising many sequences, as well as to test easily the impact of choosing different K / θ threshold ratios. KoT is implemented in Haxe, with a javascript webserver interface freely available at https://eeg-ebe.github.io/KoT/

SPÖRI ET AL.

Key words: 4X rule, K / θ, species delimitation, molecular systematics, DNA taxonomy

Introduction

Methods to delineate species from sets of DNA sequences have been an intense field of research for the last 20 years (Sites and Marshall, 2003; Flot, 2015). Some methods delimit species based on phylogenetic trees, other on genetic distances, and yet others on allele sharing (Fontaneto et al., 2015). Among these methods, one called K / θ (Birky et al., 2010; Birky, 2013; Birky and Maughan, 2020) stands out be resting on the genealogical species concept, in which closely related populations are considered as distinct species when their lineages for a given locus (or set of loci) are reciprocally monophyletic, that is, "if their loci coalesce more recently within the group than between any member of the group and any organisms outside the group" (Baum and Shaw, 1995). Of course, sampling all lineages from a population is usually impossible, but population genetic theory provides ways to calculate the probability that the lineages of two populations are monophyletic given the observation that the sequences samples from these populations form clades in a phylogenetic tree (Hudson and Coyne, 2002).

In particular, Rosenberg (2003) provides a formula that uses Watterson's estimator of genetic diversity $\theta=4 N_{e} \mu$ (Watterson, 1975) of each of two clades of sequences, the number of sequences in each of them, and the mean pairwise sequence difference between the two clades K to calculate the probability that the corresponding two populations are reciprocally monophyletic, i.e. distinct species according to the genealogical species concept. This formula is complex, but when the two θ values are similar and the number of sequences in each clade is higher than three, a useful rule of thumb is that pairs of clades with a K / θ ratio higher than 4 have a probability of at least 0.95 of belonging to different species. This forms the basis of the so-called "4X rule" (Birky and Barraclough, 2009), which has been
${ }_{64} \pi=\frac{1}{n(n-1)} \sum_{i j}\left(n \times x_{i}\right)\left(n \times x_{j}\right) \pi_{i j}$ (where x_{i} is the frequency of haplotype i in the clade),
which simplifies into $\pi=\frac{n}{n-1} \sum_{i j} x_{i} x_{j} \pi_{i j}$ (Equation 10.6 in Nei, 1987), i.e. the average heterozygosity multiplied by a sample size correction $n /(n-1)$ (Nei and Tajima, 1981; Korunes and Samuk, 2021). As KoT uses the direct formula comparing pairs of sequences, however, no sample size correction is needed.

For clades made up of identical sequences (in which case $\pi=0$), an upper bound of π is sought by assuming that one sequence differs from the others by a single mutation, i.e. by replacing one of the $\frac{n(n-1)}{2}$ pairwise distances with $1 / L$, where L is the sequence length; in such case π become $\frac{2}{\operatorname{Ln}(n-1)}$ (Birky et al., 2010). As this ratio is not defined for $n=1$, KoT uses $n=2$ (i.e. $\pi=1 / L$) for clades comprising a single sequence. To estimate the genetic diversity θ associated with a specific clade, KoT uses the formula $\theta=\frac{1}{\frac{1}{\pi}-\frac{4}{3}}$ (Equation 9 in Tajima, 1996), which corrects for multiple hits based on the Jukes-Cantor model of sequence evolution (Jukes and Cantor, 1969).

To compute the genetic divergence K between sister clades A and B, KoT computes the mean pairwise nucleotide distance $p=\sum_{i=1}^{n_{A}} \sum_{j=1}^{n_{B}} \pi_{i j}$ between the sequences in the two clades, where n_{A} stands for the number of individuals in clade A and n_{B} stands for the number of individuals in clade B, then corrects it for multiple substitutions using the Jukes-Cantor formula $K=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)$ (Jukes and Cantor, 1969). Using the Jukes-Cantor correction for calculating K is important to ensure that both terms of the ratio K / θ are computed using the same evolutionary model.

Finally, KoT computes the K / θ ratios of clades A and B and compares the smallest of the two with the threshold chosen by the user to delineate species. These calculations are performed iteratively from the leaves of the tree all the way to its root. When a ladder structure $((A, B) C)$ or a polytomy (A, B, C) is encountered, KoT starts by comparing the two clades separated by the smallest distance K, i.e. A and B: if the result of the calculation does not support the hypothesis that A and B are different species, the $\mathrm{A}+\mathrm{B}$ clade is then compared to C to find out whether they are conspecific or heterospecific; whereas if the result of the calculation indicates that A and B are likely two distinct species, C is compared with
whichever of A and B has the smaller average distance K to C (Birky et al., 2010). If C is then deemed to be distinct as well, the final result returned is three species A, B and C . On the other hand, if the result of the calculation suggests that C is conspecific with e.g. B , an additional comparison of C with A is warranted to ensure the transitivity of the result (Dellicour and Flot, 2018). As the extra calculations this entails can take lots of time in complex cases, this comparison is only performed if the box "transitivity" is checked by the user prior to running the analysis. If the "transitivity" box is not checked (as by default), KoT simply returns in such cases two species A and $\mathrm{B}+\mathrm{C}$; when the "transitivity" box is checked, by contrast, KoT checks whether the K / θ ratio for the C vs. A comparison is also above the user-selected threshold: if so, the final delimitation returned is a pair of species A and $\mathrm{B}+\mathrm{C}$; whereas if the calculation does not support the monophyly of A vs. C , the final result returned is a single species $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

KoT outputs a tree in which the θ values of each pair of clades being compared are displayed on the tree next to the node uniting them, together with their K distance and the K / θ ratio (obtained using the larger of the two θ values). Colors are applied to the tree in order to visually delineate the different species. A partition list, i.e. a two-column table indicating, for each sequence in the input FASTA, the species to which it was attributed (Spöri and Flot, 2020), is also outputted below the tree where is can be easily copied/pasted into other applications.

Biological Example

To investigate the behavior of KoT, we reanalyzed the COI dataset from one recent article (Stoch et al., 2020). In this article, a dataset of 34 COI sequences of specimens of the Niphargus tatrensis species complex was analyzed using a diversity of approaches: mPTP Kapli et al. (2017) delimited seven putative species, ABGD (Puillandre et al., 2012) returned ten of them, and bPTP (Zhang et al., 2013) and ST-GMYC (Pons et al., 2006) delineated eleven species-level units. The methods chiefly differed in their delimitation of
species among the non-Austrian specimens included in the study but were largely congruent in their treatment of the Austrian specimens, with mPTP, bPTP and ST-GMYC finding four species and ABGD delimiting five species in Austria.

When run with a K / θ threshold ratio of 4 (Figure 1), KoT returned twelve species, including five for Austria (separated by K / θ ratios of $21.39,17.50,4.52$ and 5.98); with a K / θ threshold ratio of 5 (Figure 2), the method returned eleven species, with precisely the same putative boundaries as those obtained using bPTP and ST-GMYC (including four species for Austria separated by K / θ ratios of $21.35,17.44$ and 5.94); finally, with a K / θ threshold ratio of 6 (Figure 3) KoT returned eight species-level units, notably lumping together all Austrian specimens into a single putative species. This highlights the sensitivity of this method to the K / θ threshold parameter.

Availability

KoT is written in Haxe. Its source code is available at https://github.com/eeg-ebe/ KoT, and a javascript webserver is freely accessible at https://eeg-ebe.github.io/KoT/.

References

Baum, D. A. and K. L. Shaw. 1995. Genealogical perspectives on the species problem. in Experimental and molecular approaches to plant systematics (P. C. Hoch and A. G. Stevenson, eds.) no. 53 in Monographs in systematics. Missouri Botanical Garden, St. Louis.

Birky, C. W. 2013. Species detection and identification in sexual organisms using population genetic theory and DNA sequences. PLoS ONE 8:e52544.

Birky, C. W., J. Adams, M. Gemmel, and J. Perry. 2010. Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5:e10609.

Birky, C. W. and H. Maughan. 2020. Evolutionary genetic species detected in prokaryotes by applying the K / ϑ ratio to DNA sequences. preprint bioRxiv.

Birky, W. C. and T. G. Barraclough. 2009. Asexual speciation. Pages 201-216 in Lost Sex (I. Schön, K. Martens, and P. Dijk, eds.). Springer Netherlands, Dordrecht.

Dasnois, B. 2011. HaXe 2 Beginner's Guide. Packt Publishing Ltd.

Dellicour, S. and J.-F. Flot. 2018. The hitchhiker's guide to single-locus species delimitation. Molecular Ecology Resources 18:1234-1246.

Flot, J.-F. 2015. Species delimitation's coming of age. Systematic Biology 64:897-899.

Fontaneto, D., J.-F. Flot, and C. Q. Tang. 2015. Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45:433-451.

Hudson, R. R. and J. A. Coyne. 2002. Mathematical consequences of the genealogical species concept. Evolution 56:1557-1565.

Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in Mammalian protein metabolism (H. N. Munro, ed.) vol. 3. Academic Press, New York.

Kapli, P., S. Lutteropp, J. Zhang, K. Kobert, P. Pavlidis, A. Stamatakis, and T. Flouri. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33:1630-1638.

Korunes, K. L. and K. Samuk. 2021. pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Molecular Ecology Resources 21:1359-1368.

Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.

Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76:5269-5273.

Nei, M. and F. Tajima. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97:145-163.

Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin, and A. Vogler. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55:595-609.

Puillandre, N., A. Lambert, S. Brouillet, and G. Achaz. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21:1864-1877.

Rosenberg, N. A. 2003. The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57:1465-1477.

Sites, J. W. and J. C. Marshall. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology \& Evolution 18:462-470.

Spöri, Y. and J.-F. Flot. 2020. HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. Methods in Ecology and Evolution 11:14341438.

Stoch, F., E. Christian, and J.-F. Flot. 2020. Molecular taxonomy, phylogeny and biogeography of the Niphargus tatrensis species complex (Amphipoda, Niphargidae) in Austria. Organisms Diversity \& Evolution 20:701-722.

Tajima, F. 1996. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457-1465.

Watterson, G. A. 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7:256-276.

Zhang, J., P. Kapli, P. Pavlidis, and A. Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869-2876.

Fig. 1. Output of KoT when run on the COI dataset of Stoch et al. (2020) with a K / θ threshold of 4

Fig. 2. Output of KoT when run on the COI dataset of Stoch et al. (2020) with a K / θ threshold of 5

Fig. 3. Output of KoT when run on the COI dataset of Stoch et al. (2020) with a K / θ threshold of 6

